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ABSTRACT
Information from the web is a key resource exploited in the do-
main of competitive intelligence. �ese sources represent important
volumes of information to process everyday. As the amount of infor-
mation available grows rapidly, this process becomes overwhelm-
ing for experts. To leverage this challenge, this paper presents a
novel approach to process such sources and extract only the most
valuable pieces of information. �e approach is based on an un-
supervised and adaptive ontology-learning process. �e resulting
ontology is used to enhance the performance of a focused crawler.
�e combination of Big Data and Semantic Web technologies allows
to classify information precisely according to domain knowledge,
while maintaining optimal performances. �e approach and its
implementation are described, and an presents the feasibility and
performance of the approach.
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1 INTRODUCTION
Everyday in the context of competitive intelligence, experts look
for information in a high number of information sources to redirect
important information to their clients. An important part of their
work consists in gathering, analyzing, and summarizing informa-
tion. �is process is done manually by experts on a daily basis.
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As the number of sources evolves rapidly, this process becomes
overwhelming. In particular, Cross-Referencing1 is an important
aspect of this process, required to synthetize information, as well as
verify its Veracity. �is task is even more challenging in an uncon-
trolled web environment where content is dynamic, and constantly
evolving: the data is nonstationary (i.e. evolving/dri�ing), where
the probabilistic properties of the data change over time.

Considering these challenges, [1](to-be published) presents a
novel architecture called SemXDM to perform cross-referencing
of web items without overloading the experts. Unlike previous ap-
proaches, the system is adaptive and scalable: a scalable ontology-
based classi�cation method based on web-reasoning is used, while
ontology evolution is managed at crawling time. �e system is
designed as a set of modules, which revolve around an ontology-
described knowledge base. Five distinct modules compose the pro-
cess, i.e. Recommender, Crawling, Classi�cation, Maintenance, and
Priority modules.

To the extent of our knowledge, a scalable and adaptive focused
crawling process based on unsupervised ontology-learning and
web-reasoning is novel. �is paper extends the work of [1] with
additional information regarding the Priority module, and the ar-
chitecture’s implementation. An evaluation of the architecture is
also presented, evaluating the feasibility and performance of the
approach. Next section discusses related work in web crawling,
focusing on the use of ontologies in this context. �e third section
describes the system architecture and each of the modules. �e
fourth section presents the system implementation and a set of
evaluations to validate the approach. �e last section concludes
and draws lines for current and future work.

2 RELATEDWORK
�e objective of focused crawlers, or topic-oriented crawlers, is
to limit the crawling process only to pages relevant to the topic.
To optimize chances to �nd relevant pages, several sub-types of
focused crawlers have emerged.

Learning crawlers can learn on the topic from a set of example
pages (training set). Training may also involve learning the path
leading to relevant pages. Early approaches in designing learning
crawlers use classi�ers such as Nave Bayesian classi�er to distin-
guish relevant pages [2]; others suggest using decision trees [5],
First Order Logic [14], Neural Networks and Support Vector Ma-
chines [7].

�ese models are based on lexical term matching, thus they do
not take into account the semantics associated to the text. Semantic

1Cross-referencing consists in �nding multiple sources for a same piece of information.
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crawlers resolve this issue using term taxonomies or ontologies
to describe documents. In these approaches, ontologies and/or
taxonomies are used to enhance the description of documents. Doc-
ument similarity is then computed by VSM or by specialized models
such as the Semantic Similarity Retrieval Model (SSRM) [12].

�e main limitations of ontology-based (semantic) crawlers is
that the crawler’s performance is highly dependant on the ontology
used. Two notable issues emerge [4]: as ontologies are designed
by domain experts, their understanding of the domain knowledge
and the domain knowledge that exists in the real world can be
di�erent. Secondly, knowledge described in the data is dynamic and
is constantly evolving. �ese changes in the data distribution can
induce more or less radical changes in the target concept, which is
generally known in literature as concept dri� [8]. In nonstationary
data distribution, the performance of a non-adaptive classi�cation
model trained under the false stationary assumption may degrade
the classi�cation performance over time.

Because of these issues several approaches are interested in inte-
grating semantic-based crawling techniques with ontology learning
techniques. [16] proposes a supervised ontology-learning-based fo-
cused crawler that aims to maintain the harvest rate of the crawler
in the crawling process. �e main idea of this crawler is to con-
struct an arti�cial neural network (ANN) model to determine the
relatedness between a Web document and an ontology.

[10] describes an unsupervised ontology-learning-based focused
crawler in order to compute the relevance scores between topics
and Web documents. �e relevance score between a Web document
and the topic is the weighted sum of the occurrence frequencies of
all the concepts of the ontology in the Web document.

[4] proposes a self-adaptive semantic focused (SASF) crawler,
by combining the technologies of semantic focused crawling and
ontology learning. Ontology learning technology is used to main-
tain the high performance of the crawler in the uncontrolled Web
environment.

Based on the li�erature review, two limitations of focused crawlers
have been identi�ed. First, few approaches combine web content
mining and web graph mining to harness the web e�ciently. Sec-
ondly, ontology-based approaches have advantages but o�en fail
to adapt to non-stationary data such as the web, where content is
dynamic and constantly evolving.

To tackle these challenges, a novel web mining system called
SemXDM (Semantic Cross-Referencing Data Mining) is proposed,
extending the approaches of [9][8]. �is process uses a focused
crawler and a semantic-based classi�er to cross-reference data items
without expert intervention. Next section describes the SemXDM
system and details each of its components. More details on the
architecture can be found in to-be published approach described in
[1].

3 SEMXDM: SYSTEM DESCRIPTION
SemXDM performs cross-referencing of data items at web scale,
using Semantic Web and Big Data technologies. An item is any
type of web document which contains text, including (but not re-
stricted to) web pages. As in [9], an ontology-described knowledge
base is used to describe, and classify the items. �is ontology has
two purposes: �rst, it serves as a classi�cation model, composed

of a label hierarchy taxonomy, along with classi�cation rules, as
exposed in the approach of [9]. Secondly, data items (Item class) are
integrated in the ontology at the assertion level, thus the ontology
is a repository from which data items can be retrieved.

Figure 1 describes the system and the role of each module. �e
next subsections describe each of the system’s modules individually.

3.1 Recommender Module
�e recommender module interacts with the user and respond to
its queries. �e user can issue two types of queries : Item and
Cross-reference queries.

Item �eries searches for items according to an input query in
the form of a set of Terms. �e search for relevant items is per-
formed o�ine, ie. all returned items are integrated in the ontology-
described knowledge base. �e set of Terms ωtermi = (term1,
term2, ..., termn ) as is used as input. �e output consists of the
set of items ωitemj = (item1, item2, ..., itemn ) where |{∀j, ∃item :
hasTerm(itemj , termi ) ∧ termi ∈ ωtermi }|. All items in the set
ωitemj can then be ranked using Vector Space Model and similarity
measures such as cosine similarity[13].

Cross-reference queries take a classi�ed document in the ontol-
ogy described knowledge base as input. �e query is sent to the
crawling module, which searches for similar items on the web: rel-
evance of discovered items by the crawling module is computed as
the similarity between the initial item (query) and newly discovered
items, as described in section 3.4.

3.2 Crawling Module
�e crawling module uses one or multiple web crawlers to mine
the web, searching for relevant items. It is triggered when a cross-
referencing query is received from the recommender module. Web
crawling is an iterative process: at each step, a �xed set of unvisited

Figure 1: SemXDM components
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URLs, called the frontier, is considered for future fetching2. �e
most promising URLs are fetched, which originates a new frontier
to be explored in the next step.

�e crawling process is parrallelized, as exploring huge portions
of the web is a time-consuming task for one machine.

An item is classi�ed based on relevant terms in its content. A
Term-based inverted index is used to store new data items and
extract relevant terms for classi�cation. A�er each crawling step,
the Term-based inverted index is updated with all newly acquired
items from the web. �e index allows e�cient retrieval of items
by Term. �e inverted index is composed by a set of item vec-
tors, one vector for each term ∈ Term, in the form: vterm <

item1, item2, ..., itemn >. Terms are extracted from each item in
the form vitemi < term1, term2, ..., termn > using a term extrac-
tion approach proposed in [9], which includes spelling correction,
stop-word and synonym detection. Labels corresponds to the most
relevant terms, as described in [9], with Label v Term.

3.3 Classi�cation Module
�is module performs the classi�ction of new items at crawling time,
using a Hierarchical Multi-Label Classi�cation method described in
[9]. In this approach, relevant terms are �rst extracted from items
as Labels (Label class in the ontology). �en, a label hierarchy and
classi�cation rules are constructed from the whole item set. Finally,
a web-reasoner is used to classify new items according to the label
hierarchy and classi�cation rules.

Each item is described with a set of relevant terms. Term rele-
vance is determined based on the indiviual tf-idf value of each term
in the set of crawled items. To infer the most speci�c labels, the rule
generation process described in [9] is used : based on the extracted
set of terms, rule-based reasoning applies exhaustively a set of rules
to a set of triples (i.e. the extracted terms) to infer conclusions [11],
i.e. the item’s classi�cations or labels. �e rules are translated into
rules in the Semantic Web Rule Language (SWRL) and integrated
in the ontology to perform the classi�cation.

Classi�cation at query-time is more suited in the context of this
work, because items must be re-classi�ed as the ontology-described
knowledge base evolves (see next section). �us, a backward-
chaining inference engine is used to determine the classi�cations
of each item at query-time.

A�er an item is successfully classi�ed with terms and labels, it
is possible to determine its relevance compared to the initial query
(i.e. item or cross-reference query).

�e result is a label vector vlabelitemi
, where each dimension is

a Label in the ontology. �e label vector is used in the priority
assignement method (next section).

As described in previous section, focused crawlers lack ways
to adapt to the web environment where data is non-stationary.
�e classi�er used in a focused crawler must adapt to a constantly
changing environment, where features are evolving[4]. Secondly,
focused crawlers should learn from experience how to �nd relevant
information, using the graph of the web (hyperlinks) [3]. To lever-
age theses issues, a Maintenance module and a Priority module are
described in the next sections. �e objective of the Maintenance
module is to adapt the ontology-described knowledge base over

2fetching is the action of downloading a web page to extract its content

time. �e Priority module learns ways to �nd relevant information,
by enhancing the priority assignment of items.

3.4 Maintenance Module
[8] proposes a scalable Adaptive Learning process to consistently
adapt an Ontology-described classi�cation model used for hierar-
chical multi-label classi�cation regarding a non-stationary stream
of unstructured text data in Big Data context. �is approach shows
enhancement of the classi�er’s performance when the classi�cation
model is updated with a stream of data.

�e crawling module outputs new data items, which are used
as the input of the maintenance process. �e Maintenance Module
integration is depicted in �gure 2.

�e adaptive learning process focuses on adapting the ontology-
described classi�cation model regarding a stream of unstructured
text documents in Big Data context. �ree characteristics of data
stream processing are addressed in the adaptive learning process:
feature-evolution, concept-evolution, and concept-dri� [6]. Using
the approach described in [8], the adaptive learning process man-
ages the impact of changes in the classi�cation model according to
the speci�c semantic of the classi�cation process. �e approach is
based on a cyclic maintenance scheme [15] to constantly update a
cooccurrence matrix of the features (terms) retrieved from the data
stream. Changes in the conditional proportion of terms are detected,
and their impact on the classi�cation model are propagated.

As the process uses classi�cation at query-time to classify items,
the evolution of the ontology-described classi�cation model impacts
automatically the classi�cations of new items.

3.5 Priority Module
�e objective of the Priority Module is to combine web graph infor-
mation and content information retrieved on the web to enhance
and guide the search of the Crawling Module, by de�ning the pri-
ority of the link frontier. �e priority module computes expected

Figure 2: Maintenance Module
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scores of items in the frontier, i.e. items that have yet to be down-
loaded. �e Priority Module update web graph information a�er
each mining operation (crawl) in the ontology, as described in �g-
ure 3. �e webgraph is composed of the complete set of discovered
items, along with web graph information, i.e. outlinks and inlinks
between items.

For each data item itemi , the Priority Module populates the
ontology-described knowledge base with new inlinks and outlinks
at the assertion level. �e hasInlink and hasOutlink properties de-
�ne web graph information for each item in the ontology-described
knowledge base.

To identify potential paths leading to relevant items, the context
graph approach described in [3] is used. A�er each crawl, the
di�erent layers of the context graph are recomputed as described
below.

A weighted vector vtermi for each layer Li , where each dimen-
sion of the vector is a Term. Each vector vtermitemi

is recomputed a�er
each crawl, as new relevant items and links are discovered and
added to the web graph. A second vector vlabelitemi

is generated, such
as each dimension is a Label in the ontology.

�e degree of belonging of an item in layer Li is then approxi-
mated by calculating the distance between the term and label vec-
tors, respectively with the term vector and label vector extracted
from new items, as de�ned in section 3.3. �e cosine similarity
between each pair of vectors is used for that purpose, such as:

cos(vvvtermLi ,vvvtermitemj
) =

vvvtermLi
·vvvtermitemj

| |vvvtermLi
| | · | |vvvtermitemj

| |
(1)

�e similarity calculation of the labels vectors is identical. Both
vectors are used to determine the similarity of items with each layer.
We de�ne the degree of belonging di for each layer of the graph as
the arithmetic mean of label and term similarity as follows:

di =
cos(vvvtermLi

vvvtermitemj
) + cos(vvvlabelLi

vvvlabelitemj
)

2 ) (2)

Figure 3: Priority Module

As some items might not belong to label classes from the predic-
tive model, we assume that term similarity is a more reliable value,
thus we de�ne the �nal relevance score as follows:

ritemj =max(cos(vvvtermLi vvvtermitemj
),di ) (3)

where ritemj ∈ [0, 1]. �is ensures that items with few labels but
high term similarity are still ranked highly. Another solution would
be to weight labels and terms depending on the use case.

�e resulting score is used to approximate the distance from a
page to a relevant page, and re-rank the frontier according to the
new web graph a�er each crawl. Data items that are potentially
closer are have their priority in the frontier queue increased based
on their belonging in the context-graph : the outlinks extracted
from the most similar items are prioritized in the frontier queue.
Each new item is assigned to the most appropriate layer, using the
relevance score as scoring function. A�er each crawl cycle, the
context graph is updated. A relevance threshold θ is de�ned by the
user. �e set of highly relevant itemsωr elL0

is determined, such as all
items in the set have a relevant score for the �rst layer of the graph
L0, i.e. ritemi > θ . In the �rst crawling step, this set corresponds
to user-provided items, ie. seed items.

4 IMPLEMENTATION, EVALUATION
�is section presents the system’s implementation and two evalua-
tions of the approach. �e �rst is a proof-of-concept, which aims to
validate the approach’s feasability. �e second is a quality evalua-
tion that monitors the performance of the approach for information
retrieval(cross-referencing).

4.1 Implementation
�e system is implemented as a Java application and deployed on
a Hadoop Cluster3, which integrates the di�erent modules with
several scalable tools from the Semantic Web and Big Data domain.
All nodes of the cluster are equipped with Intel Core I5 �ad Core
processors and 8GB of RAM, except for the master node, equipped
with 16GB. �e Stardog triple-store is deployed on a dedicated
server with 8GB of RAM. Apache Nutch4 is used a scalable and
distributed crawler. �e maintenance module is based on Apache
Storm and Apache Ka�a5 as described in [8]. Derived classes
from the Nutch API allows to integrate the other modules. Apache
Solr6 is used to build the inverted index of crawled items. Finally,
Stardog7 is used as a scalable triplestore to integrate the ontology-
described knowledge base.

4.2 Proof of concept
4.2.1 Setup. �is evaluation consists in monotoring each mod-

ule’s behaviour during a crawling process following a cross-reference
query. An economic article is used as the cross-reference query. A
training dataset composed of 45k economic-related news is used
to train the classi�cation model prior to crawling. Also, a list of
1200 economic-related URL seeds is used as the starting point of the

3h�p://hadoop.apache.org/
4h�p://nutch.apache.org/
5h�p://storm.apache.org/, h�ps://ka�a.apache.org/
6h�p://lucene.apache.org/solr/
7h�p://stardog.com/
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crawler. �e priority module consists of a 3-layer graph (layers 0 to
2). Layer 0 is initially composed of one item to be cross-referenced,
while layers 1 and 2 are empty. �e relevance threshold θ for the
�rst layer is set to 0.5, i.e. items for which the relevance score with
the initial item is greater than 0.5 will be added to the layer 0 of
the graph. �is value is intentionnally restrictive to limit the size
of the context-graph and restrict the search to highly similar items.

4.2.2 Results. �e data obtained from the crawl is divided by
crawl iteration, or ”round” : each round, the top 2000 ranked items
in the frontier queue are fetched. �e total number of fetched items
is approximately 15000 over 9 rounds as some links naturally fail
to be fetched. Figure 4 describes the number of labels inferred (i.e.
classi�cations) at each step of the crawl.
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Figure 4: Inferred labels (classi�cation module)

�e number of classi�cations increases accordlingly to the num-
ber of items classi�ed and to the increase of the number of rules
(�gure 5.c).

Figure 5.a shows the increase in the number of items per layer
at each step. We can observe that no relevant item is added to
the layer 0 before step 5, hence all layers only increase from step
6. A more lenient (lower) value of the θ threashold would make
the context-graph grow faster, while decreasing its quality, i.e. its
similarity with the initial item.

Finally, �gure 5.b and 5.c shows the evolution of the classi�cation
model according to the detected input changes. Values for the round
0 are the initial properties of the classi�cation model, generated
from the initial dataset (45k items). Similarly to the observations in
[8], most changes in the classi�cation model are additions of new
classi�cations rules, although as the item set is more diverse (items
are crawled from very diverse web sources), the ratio of learned
terms and rules is higher. A limitation of the process is the high
computation cost of the mainetnance process. �e total number of
term coocurrences in one item can be very high depending on its
dimension, thus the propagation of these input changes exceeds
the average time of all the other modules. �e technical limitations
of the experiment environment makes it hardly practicable in real
time.

4.3 �ality evaluation
4.3.1 Setup. �is evaluation consists in evaluating the perfor-

mance of the approach using standard crawling metrics, i.e. average
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Figure 5: Context-graph and classi�cation model evolution

similarity and harvest rate. Parameter values and initial setup re-
main unchanged. �e term-based cosine similarity of the retrieved
items against the �rst layer of the context graph (L0) is used as the
similarity score. �e harvest rate is a user-de�ned metric which
represents the proportion of relevant items over the total number
of crawled items. In our study we de�ne the harvest rate as the set
of items for which the term-based similarity is greater than 0.25,
i.e. cos(vvvtermL0

,vvvtermitemj
) > 0.25.

5



SBD’17, May 19, 2017, Chicago, IL, USA Thomas Hassan, Christophe Cruz, and Aurélie Bertaux

We compare the performance of the proposed approach with an
implementation of a best-N-�rst crawler, against the same cross-
reference query. �e term-based cosine similarity and harvest
rate are used to compare both approaches : the objective of each
algorithm is thus to maximize both metrics.

4.3.2 Results. Figure 6 presents the comparison between the
SEMXDM approach and a Best-N-First crawler for a cross-reference
query (an input economic article).

�e results show that for a sample cross-reference query, the
SEMXDM approach performs be�er than a standard Best-N-First
approach using standard metrics. In particular, the harvest rate data
shows that the proportion of highly relevant items is signi�cantly
higher in SEMXDM a�er 5 crawl rounds, which is an important
factor for the cross-referencing task. �is indicates that using the
relevance score as a priority function using both term and la-
bel similarity instead of standard cosine similarity improves the
performance of the crawler. �ese are still early results, as the eval-
uation of the architecture represents ongoing work. It is required
to perform a larger scale cross-reference evaluation, averaging the
performance of the approach over a high number of cross-reference
queries. Secondly, we consider comparing the approach with a
wider range of focused crawling approaches, and analyzing the in-
dividual impact of each module on the performance of the approach
to re�ne the results and optimize each module.

5 CONCLUSION
In this paper we present a novel approach for unsupervised focused
crawling, and a preliminary evaluation to validate its implemen-
tation. �is approach, called ’SemXDM’, tackles several issues in
focused crawling and performs cross-referencing of web documents
using Semantic Web and Big Data techonologies. Classi�cation of
web items at crawling time is achieved using a scalable ontology-
based approach. Web graph mining is used in conjunction with
an adaptive maintenance process to increase the e�ciency of the
cross-referencing process.

�e system has been implemented with success and deployed
on a Big Data platform. A preliminary evaluation shows that the
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Figure 6: Average term-based cosine similarity and harvest
rate per round(cross-reference query)

ontology-described classi�cation model performs classi�cation of
web sources at crawling time. Although the adaptive maintenance
process allows tho adapt the classi�cation model to new data in
real time, technical limitations of the approach underline the high
computation cost of the maintenance process. �e quality evalua-
tion shows promising performances for a sample cross-reference
task, but larger scale tests are required to assess the performance
of the approach.
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