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ABSTRACT
In this paper, we study the problem of subgraph matching that ex-
tracts all subgraph isomorphic embeddings of a query graph q in a
large data graph G. The existing algorithms for subgraph matching
follow Ullmann’s backtracking approach; that is, iteratively map
query vertices to data vertices by following a matching order of
query vertices. It has been shown that the matching order of query
vertices is a very important aspect to the efficiency of a subgraph
matching algorithm. Recently, many advanced techniques, such
as enforcing connectivity and merging similar vertices in query or
data graphs, have been proposed to provide an effective matching
order with the aim to reduce unpromising intermediate results es-
pecially the ones caused by redundant Cartesian products. In this
paper, for the first time we address the issue of unpromising re-
sults by Cartesian products from “dissimilar” vertices. We propose
a new framework by postponing the Cartesian products based on
the structure of a query to minimize the redundant Cartesian prod-
ucts. Our second contribution is proposing a new path-based aux-
iliary data structure, with the size O(|E(G)| × |V(q)|), to generate
a matching order and conduct subgraph matching, which signifi-
cantly reduces the exponential size O(|V(G)||V(q)|−1) of the existing
path-based auxiliary data structure, where V(G) and E(G) are the
vertex and edge sets of a data graph G, respectively, and V(q) is
the vertex set of a query q. Extensive empirical studies on real and
synthetic graphs demonstrate that our techniques outperform the
state-of-the-art algorithms by up to 3 orders of magnitude.

1. INTRODUCTION
In recent years, graph analysis has been playing an increasingly

important role in the area of data analytics. Subgraph matching is
one of the most fundamental problems in graph analysis. Given a
query graph q and a large data graph G, the problem of subgraph
matching is to extract all subgraph isomorphic embeddings of q in
G. Subgraph matching has a wide range of applications includ-
ing protein interaction network analysis [13], social network anal-
ysis [17], and chemical compound search [20].

Despite the NP-completeness of subgraph matching [5], recent
research efforts lead to significant advances in developing comput-
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ing paradigms to conduct subgraph matching [4, 8, 14, 15, 22].
A key issue is to reduce the number of unpromising intermedi-
ate results when iteratively mapping vertices one by one from a
query graph to a data graph, especially to prevent generating un-
promising immediate results caused by redundant Cartesian prod-
ucts. VF2 [4] and QuickSI [15] propose to enforce the connectivity
to reduce redundant Cartesian products; that is, prevent generat-
ing an intermediate embedding, in a data graph for a query graph
q, from two disjoint subgraphs q1 and q2 of q such that there are
no edges connecting a vertex in q1 and another vertex in q2. To
further reduce the chance of unnecessarily enumerating Cartesian
products, TurboISO [8] proposes to merge together the similar ver-
tices in a query graph q (i.e., the vertices with the same labels and
the same neighborhoods), and [14] significantly extends the work
of [8] to compress a data graph G by merging together the similar
vertices in G to boost the performance of the technique in [8].

The second key issue is to generate an effective matching order
for iteratively mapping vertices one by one from a query graph to
a data graph with the aim to minimize the total number of interme-
diate results. QuickSI [15] proposes to generate a matching order
based on the infrequent-labels first strategy. SPath [22] proposes
to generate a matching order based on the infrequent-paths first
strategy to resolve the limitations of only considering vertices and
edges in [15]. The technique TurboISO in [8] proposes to exactly
enumerate all paths to overcome the limitations in [22] that possi-
bly overestimates the join cardinality by an estimation formula.
Challenges and Our Approaches. Our initial empirical study
demonstrated that TurboISO [8] and its boost [14] can be very in-
efficient when the size of a query graph gets larger. This motivates
us to develop new, more efficient and scalable techniques to con-
duct subgraph matching. Below are the two challenges that we will
deal with in the paper.
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Figure 1: Challenge 1

Challenge 1: Redundant Cartesian Products by Dissimilar Ver-
tices. Consider the query q in Figure 1(a) and the data graph G in
Figure 1(b). It is immediate that q and G cannot be compressed by
the techniques in [8] and [14], respectively, since there are no sim-
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ilar vertices in q or G (i.e., no vertices with the same labels and the
same neighborhoods). Note that the recent techniques [8, 14, 15,
22] are all based on iteratively extending a mapping (i.e., embed-
ding) from q to G along a spanning tree of q and also checking the
non-tree edges adjacent to a newly extended vertex in q. Suppose
that the spanning tree qT of q is as depicted by thick lines in Fig-
ure 1(a); that is, (u1, u2), (u2, u3), (u3, u4), (u1, u5), and (u5, u6). The
state-of-the-art edge-based ordering (i.e., QuickSI) and path-based
ordering (i.e., TurboISO) techniques will both choose the matching
order in qT as (u1, u2, u3, u4, u5, u6). Consequently, the 100 par-
tial mappings (v0, v2, v1000+i, v2100+i) (3 ≤ i ≤ 102) of (u1, u2, u3, u4)
have to be combined with the 1000 partial mappings (v0, v j) (3 ≤
j ≤ 1002) of (u1, u5) before checking the mapping of the non-
tree edge (u2, u5). Clearly, in this case the Cartesian product of
(100000 − 100) partial mappings are false positive and redundant.
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Figure 2: Our Approach

Our Approach: Postpone Cartesian Products. Regarding the above
example, if we use the matching order (u1, u2, u5, u3, u4, u6), then
we can avoid this Cartesian product of 100×1000 partial mappings.
In fact, the second matching order leads to only 100 + 1000 par-
tial mappings since an early checking of the non-tree edge (u2, u5)
can eliminate the 999 partial mappings (v0, v j) (4 ≤ j ≤ 1002) of
(u1, u5) before extending the mapping to u3 in q. This can be gen-
eralized into a new framework by decomposing a query graph into
a dense subgraph (i.e., core) and a forest such that we process the
core first; for example, Figure 2(a) illustrates such a decomposition
of the query graph in Figure 1(a). Note that a dense query sub-
graph has a stronger pruning power (thus, reduces the number of
unpromising partial mappings) while a forest potentially may have
more mappings in G. Therefore, processing core first potentially
postpones Cartesian products and thus reduces the chance to gen-
erate redundant Cartesian products.

Moreover, we can further postpone possible redundant Cartesian
products by processing all leaf (i.e., degree-one) vertices (if exist)
of a query in the last. For example, suppose that now the data graph
is the one in Figure 2(b), we process the leaf vertices u4 and u6 of
q in the last. In this case, the 1000 partial mappings of the sub-
graph of q induced by (u1, u2, u5, u3) will be generated. Neverthe-
less, we will leave their Cartesian product with the 1000 mappings
of (u5, u6) to the last. The advantage of doing this is that such Carte-
sian product could be redundant if the query graph in Figure 1(a)
has additional parts; thus it should be postponed, to be avoided.
Challenge 2: Exponential Size of The Path-based Data Structure in
TurboISO. The state-of-the-art approach, TurboISO [8], outperforms
the other approaches due to its accurate calculation of join cardi-
nality of a root-to-leaf query path in a spanning tree of a query q
and the materialization of all embeddings in a data graph for each
of such query paths so that they can be used to generate subgraph
isomorphic embeddings. This immediately results in the exponen-
tial size O(|V(G)||V(q)|−1) of such path embeddings in the worst case,
where |V(G)| and |V(q)| are the number of vertices in a data graph G
and a query graph q, respectively (see Section 4.1 for more details).
To resolve this, TurboISO [8] in its implementation only material-

izes k embeddings for each root-to-leaf query path to compute the
matching order of query vertices, if we only retrieve k subgraph iso-
morphic embeddings for q. Note that such a materialization cannot
always guarantee to generate k subgraph isomorphic embeddings
for q. Thus, more path embeddings may be materialized on demand
when enumerating subgraph isomorphic embeddings. Moreover, if
we want to retrieve all subgraph isomorphic embeddings, then we
have to materialize all path embeddings; that is, the worst-case ex-
ponential size is unavoidable in TurboISO. As a result, TurboISO

cannot scale to large queries or large data graphs.
Our Approach: Compact Path-based Data Structure with Polyno-
mial Size. As shown in [8], the auxiliary path-based data struc-
ture can greatly speed up the computation of subgraph matching.
To resolve the issue of the exponential size of the path-based data
structure in TurboISO, in this paper we propose not to enumerate
and materialize all embeddings of query paths. Instead, we com-
pute a data structure, called compact path-index (CPI), to store the
candidates of embeddings of each query path. Since we generate
subgraph isomorphic embeddings from CPI, it is immediate that
the smaller the size of CPI, the more efficient conducting subgraph
matching. We can show that while minimizing the size of CPI is
NP-hard, the size of the CPI generated by our techniques is poly-
nomial O(|E(G)| × |V(q)|) and our CPI construction algorithm runs
in O(|E(G)| × |E(q)|) time, where |E(G)| and |E(q)| are the number
of edges in G and q, respectively.

Moreover, in this paper we also propose to compute a matching
order of query vertices based on a cost model and the CPI. Our
experiments demonstrate that our ordering technique significantly
outperforms the existing techniques.

Contributions. Our main contributions are summarized as follows.
• We develop a new framework with the aim to postpone Carte-

sian products. The new framework decomposes a query graph
into a core and a forest for subgraph matching and proposes
to deal with all leaf vertices of a query (if exist) in the last.
We also develop an effective technique to compress the map-
pings of leaf vertices on the fly to avoid generating redundant
Cartesian products.

• We design a compact auxiliary path-based data structure CPI
with size O(|E(G)|×|V(q)|) for accurately estimating the num-
ber of embeddings of query paths and for generating sub-
graph isomorphic embeddings.

• While showing that minimizing CPI is NP-hard, we propose
an efficient heuristic to build CPI in O(|E(G)| × |E(q)|) time.

• We develop efficient and effective algorithms for conducting
subgraph matching.

Our extensive experiments on various dataset and query settings
demonstrate that our techniques outperform the state-of-the-art tech-
niques [8, 14] by up to 3 orders of magnitude, even excluding the
cases when TurboISO [8] and its boost [14] cannot terminate.

Organization. The rest of the paper is organized as follows. A
brief overview of related work follows immediately. Section 2 de-
fines the problem of subgraph matching. Section 3 presents our
new framework to postpone Cartesian products. We propose our
CPI-based techniques in Section 4, while CPI construction tech-
niques are presented in Section 5. Experimental results are reported
in Section 6. We give a conclusion in Section 7. Proofs are omitted
due to space limits and can be found in Section A.1 in the Appendix.

Related Works. Related works are categorized as follows.
1) Subgraph Matching over a Single Large Data Graph. The prob-
lem of subgraph matching over a single large graph has been stud-
ied for decades. The first result is Ullmann’s algorithm [19] pro-
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posed in 1976, which iteratively maps vertices one by one from a
query graph q to a data graph G by following the input order of
query vertices. To enhance the performance, connected matching
order is used in VF2 [4] and QuickSI [15] that propose to generate
the matching order by selecting a vertex connected to one of the
already selected vertices rather than a random selection; this en-
ables to prune false-positive candidates at an early stage, especially
those caused by redundant Cartesian products. QuickSI [15] pro-
poses to further remove false-positive candidates by first process-
ing vertices and edges of q that are infrequent in G. GraphQL [9]
and SPath [22] focus on reducing the candidates of query ver-
tices by exploiting neighborhood-based filtering. As mentioned
earlier, TurboISO [8] and the boost technique in [14] propose to
merge similar vertices (i.e., vertices with the same labels and the
same neighborhoods) in q and G, respectively. In this paper, we
propose new efficient and effective techniques to scalably conduct
subgraph matching. Firstly, we for the first time address the is-
sue of unpromising results by Cartesian products from “dissimilar”
vertices, in addition to that from similar vertices [8, 14]. Secondly,
we propose to compute a connected matching order of query ver-
tices based on a cost model and a compact path-based data structure
rather than simple edge-frequencies in [15]. Thirdly, we propose a
new light-weight candidate filtering technique to reduce the candi-
dates of query vertices, in addition to the existing ones in [9, 22].

While the above techniques are based on the depth-first paradigm
that is shown as the most efficient strategy to conduct subgraph
matching on a single computer, the problem of subgraph matching
has also been investigated in a distributed environment [11, 16, 18],
where the join paradigm has been demonstrated as the most popu-
lar strategy. The goal of this paper is to develop novel techniques
on a single computer to resolve the scalability issues in the existing
techniques. Recently, the problem of similarity subgraph matching,
which is to retrieve all subgraphs from a large data graph that are
similar to a query graph, is also studied in the database community
(e.g., [21, 24]). Our contributions in this paper may also be useful
to study the problem of similarity subgraph matching.
2) Subgraph Containment Search over a Graph Database. The
problem of subgraph containment search over a graph database is
to identify the data graphs (from a graph database) that contain
a query graph. This involves performing the subgraph isomor-
phism search over a graph database. To efficiently conduct this,
many graph-feature based approaches have been proposed, follow-
ing the filtering-and-verification framework, and can be classified
into two categories: frequent subgraph mining based approaches
(e.g., gIndex [20], Tree+∆ [23], and FG-Index [3]) and exhaustive
enumeration based approaches (e.g., gCode [25], CT-Index [10]
GraphGrepSX [2], and Grapes [7]). Although both subgraph con-
tainment search and subgraph matching involve subgraph isomor-
phism search, they are inherently different; the problem of sub-
graph matching, the problem we study in the paper, is harder since
it requires enumerating all embeddings.

2. PRELIMINARIES
In this paper, we focus on a vertex-labeled undirected graph

g = (V, E, l,Σ). Here, V is the set of vertices, E ⊆ V × V is the
set of edges, Σ is the set of labels, and l is a labelling function
that assigns each vertex v ∈ V a label in Σ (denoted lg(v)). The
number of vertices and the number of edges in g are denoted by
|V(g)| and |E(g)|, respectively. The set of neighbors of v ∈ V(g)
in g is denoted by Ng(v) = {v′ ∈ V(g) | (v, v′) ∈ E(g)}, and the
degree of v, denoted dg(v), is the number of neighbors of v (i.e.,
dg(v) = |Ng(v)|). Given a subset Vs of V , the subgraph of g induced

by Vs is g[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}, l,Σ). In the following,
for ease of presentation we simply refer a vertex-labeled undirected
graph as a graph. Note that, our techniques can be readily extended
to handle edge-labeled and directed graphs.

Definition 2.1: Given graphs q = (V(q), E(q), l,Σ) and G = (V(G),
E(G), l,Σ), q is subgraph isomorphic to G if and only if there
exists an injective mapping M from V(q) to V(G) such that ∀u ∈
V(q), lq(u) = lG(M(u)) and ∀(u, u′) ∈ E(q), (M(u),M(u′)) ∈ E(G),
where M(u) is the vertex to which u is mapped. �
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Figure 3: Subgraph Matching
We call an injective mapping from vertices of q to vertices in G as

a subgraph isomorphic embedding of q in G. For example, consider
the graph q in Figure 3(a) and the graph G in Figure 3(b) where
{A,B,C,D,E} is the set of vertex-labels, q is subgraph isomorphic
to G since there is a subgraph isomorphic embedding M(u1 → v0,
u2 → v2, u3 → v3, u4 → v5, u5 → v6).

Problem Statement. Given a query q and a large data graph G,
in this paper we study the problem of subgraph matching which
efficiently extracts all subgraph isomorphic embeddings of q in G.

For example, for the query graph q in Figure 3(a) and the data
graph G in Figure 3(b), there are three subgraph isomorphic embed-
dings of q in G, which maps (u1, u2, u3, u4, u5) to (v0, v2, v1, v5, v4),
(v0, v2, v1, v5, v6) and (v0, v2, v3, v5, v6), respectively.

In the remaining of this paper, we use the term “embedding”
to refer to “subgraph isomorphic embedding” for simplicity when
there is no ambiguity, and we may use embedding and mapping
interchangeably. We also simplify lg(v), Ng(v) and dg(v) as l(v),
N(v) and d(v), respectively, when the context is clear. We assume
that both the query graph q and the data graph G are connected.

Notation Description
q and G Query and data graph
V(q) and E(q) Vertex set and edge set of q
V(G) and E(G) Vertex set and edge set of G
lg(v), Ng(v) and dg(v) Label, neighbors and degree of v in g
VC , VT and VI Core-set, forest-set and leaf-set of q
qT and r Rooted (BFS) spanning tree of q and its root
CPI Auxiliary data structure (compact path-index)
u.C Candidates of a query vertex u in CPI
Nu′

u (v) Adjacency list of v regarding (u′, u) in CPI

Table 1: Notations
Frequently used notations are summarized in Table 1.

2.1 Existing Subgraph Matching Algorithms
The study of subgraph matching is initiated by Ullmann’s back-

tracking algorithm [19], which iteratively maps vertices one by one
from a query graph q to a data graph G by following the input
order of query vertices. To enhance the performance, later algo-
rithms in [4, 8, 14, 15] all enforce connectivity of the matching se-
quence/order. That is, given a spanning tree qT of q, the matching
order, (u1, . . . , un), of qT is constructed such that, for each vertex
ui except u1, its parent ui.p in qT is always before ui in the match-
ing order. This is called a connected matching order. For example,
assume the spanning tree of the query graph in Figure 3(a) con-
sists of edges (u1, u2), (u2, u4), (u1, u3), and (u3, u5), then a possible
connected matching order is (u1, u2, u3, u4, u5) where u4.p = u2.
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A subgraph matching algorithm grows an embedding M by map-
ping each query vertex ui of q, according to the matching order, to
a data vertex in G. When mapping ui, the algorithm iteratively tries
each data vertex v that is adjacent to the mapping M(ui.p) of ui.p
as a candidate mapping of ui; v is a successful mapping of ui if 1) v
has not been used in the current partial embedding and 2) it satisfies
all the connection requirements specified by non-tree edges in the
query (i.e., for each (u j, ui) ∈ E(q) with j < i, (M(u j), v) ∈ E(G)).
A full embedding is obtained if every query vertex is mapped to a
data vertex. For example, consider the above matching order for q
and the data graph G in Figure 3(b). Assume a partial embedding
M maps u1, u2, u3, and u4 to v0, v2, v1, and v5, respectively. Then,
for mapping u5, the algorithm iteratively tries v4 and v6 which are
adjacent to M(u5.p) (= M(u3) = v1), to extend M.

Cost Model for Subgraph Matching Algorithms. In this paper,
we adopt the cost model in [15] for computing our matching or-
der; that is, the total cost of a backtracking algorithm for subgraph
matching is Tiso = B1 +

∑n
i=2
∑Bi−1

j=1 d j
i (ri + 1). Here, Bi (called the

search breadth) is the total number of embeddings in G for the sub-
graph of q induced by {u1, . . . , ui}, d j

i is the number of neighbors
of M j

i−1(ui.p) in G with the same label as ui where M j
i−1 is the j-

th embedding in G for the subgraph induced by {u1, . . . , ui−1} and
M j

i−1(ui.p) is the vertex to which the parent ui.p of ui in qT maps,
and ri is the number of non-tree edges between ui and vertices be-
fore ui in the matching order. Intuitively, a partial embedding M j

i−1
of (u1, . . . , ui−1) in G is extended by mapping ui to each vertex v in
G that is adjacent to M j

i−1(ui.p) and has the same label as ui (there
are d j

i such vertices); v is a successful mapping of ui if it satisfies
all connection requirements specified by the ri non-tree edges of ui.

Example 2.1: Given the matching order (u1, u2, u3, u4, u5) of q in
Figure 3(a), r3 = 0 while r4 = 1. M1

2 = {u1 → v0, u2 → v2}, then
the neighbors of M1

2(u3.p) (= v0) are v1 and v3 and thus d1
3 = 2. �

3. A NEW FRAMEWORK
In this paper, we propose a new framework for subgraph match-

ing aiming at postponing the Cartesian products. We first decom-
pose a query graph into three substructures, and then conduct sub-
graph matching in a substructure-by-substructure manner. In the
following, we first define the core-forest-leaf decomposition.
Core-Forest-Leaf (CFL) Decomposition. The core-forest-leaf de-
composition consists of core-forest decomposition and forest-leaf
decomposition.
Core-Forest Decomposition. Edges of q can be categorized into two
categories regarding a spanning tree qT of q: edges in qT are called
tree edges while edges of q that are not in qT are called non-tree
edges regarding qT . Our core-forest decomposition is to compute a
small dense subgraph containing all non-tree edges regarding any
spanning tree, which is defined as follows.

Definition 3.1: Given a query q, the core-forest decomposition of
q is to compute the minimal connected subgraph g of q that contains
all non-tree edges of q regarding any spanning tree of q; g is called
the core-structure of q. �

The subgraph of q consisting of all other edges not in the core-
structure is called the forest-structure of q, denoted T . We prove in
Lemma 3.1 that the core-structure of q is exactly the 2-core of q,
where a 2-core of q is the maximal subgraph of q such that every
vertex in the subgraph has at least two neighbors in the subgraph.
Note that, 2-core of q is a vertex-induced subgraph of q, and it is
connected and unique [1].

Lemma 3.1: The core-structure of q is the 2-core of q. �
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We call the vertex set of the core-structure as the core-set and de-
note it as VC ; then, the core-structure is q[VC]. One most important
feature of the core-forest decomposition is that the core-structure
is the minimal connected subgraph containing all non-tree edges of
q regarding any spanning tree of q. As illustrated by Challenge 1
in Introduction, a good matching order for q needs to conduct all
non-tree edge checkings as early as possible, which will not only
prune unpromising partial mappings but also reduce the total num-
ber of non-tree edge checkings. Thus, we put all vertices of VC at
the beginning of the matching order. Note that, the core-structure
is a connected subgraph which is required to generate a connected
matching order; this is vital for efficient subgraph matching [4, 15].
Compute Core-Forest Decomposition. Following Lemma 3.1, we
compute the core-set VC by iteratively removing all degree-one ver-
tices from q, and the final set of remaining vertices is VC . This
process of iteratively removing degree-one vertices can be imple-
mented in linear time regarding the query size (i.e., in O(|E(q)|)
time) [1]. For example, Figures 4(b) and 4(c) show the result of the
core-forest decomposition for the query in Figure 4(a). Initially,
{u7, u8, u9, u10} is the set of degree-one vertices, and its removal
creates new degree-one vertices {u3, u4, u5, u6} which are then also
removed. Finally, the core-set is VC = {u0, u1, u2} as shown in Fig-
ure 4(b). Note that if q itself is a tree, the core-set is simply the
root vertex of q, whose selection is discussed in Section A.6 in Ap-
pendix; it is possible that the entire query q is the core-structure.

One thing to notice is that, the forest-structure consists of a set
of connected trees and each connected tree in the forest-structure
T shares exactly one vertex with the core-structure. The shared
vertex acts as the connection vertex between the tree and the core-
structure. For example, u1 and u2 are shared by the core-structure
and the two connected trees in Figure 4(c), respectively.
Forest-Leaf Decomposition. As illustrated by Challenge 1 in Intro-
duction, a good matching order also needs to postpone the Carte-
sian products caused by the candidates of all leaf vertices. Thus,
we further decompose the forest-structure T , obtained by the core-
forest decomposition, to a forest-set VT and a leaf-set VI , and put
all vertices of VI to the end of the matching order.

Definition 3.2: Given the forest-structure T , the forest-leaf de-
composition is to compute the set VI of leaf vertices of T by root-
ing each tree of T at its connection vertex. The set of other vertices
of q not in VC ∪ VI is called the forest-set of q, denoted VT . �

Thus, V(q) = VC ∪VT ∪VI and VC ∩VT = VC ∩VI = VT ∩VI = ∅.
For example, Figures 4(d) and 4(e) are the results of the forest-leaf
decomposition for the forest-structure T in Figure 4(c). In the fol-
lowing, we simply call the subgraph of T after removing all vertices
of VI and their associated edges from T the forest-structure.

The CFL-Decomposition based Framework. From the above
core-forest-leaf decomposition for a query q, we obtain three ver-
tex sets, the core-set VC , the forest-set VT , and the leaf-set VI . We
define a macro ordering of query vertices of q as (VC ,VT ,VI); that
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is, we first map vertices of VC , then vertices of VT , and finally ver-
tices of VI , to data vertices. Thus, we propose a new framework to-
wards efficient and scalable subgraph matching, and its pseudocode
is shown in Algorithm 1, denoted CFL-Match.

Algorithm 1: CFL-Match
Input: a query q and a data graph G
Output: the setM of all embeddings of q in G

1 (VC ,VT ,VI )← CFL-Decompose(q);
2 CPI← CPI-Construct(q,G,VC);
3 M← ∅;
4 for each core embedding MC in Core-Match(VC ,CPI,G) do
5 for each forest embedding MT in Forest-Match(VT ,CPI,MC) do
6 M←M∪ ({MC} × {MT } × Leaf-Match(VI ,CPI,MC ∪MT ));

7 returnM;

Given a query q, we first compute its core-forest-leaf decom-
position (VC ,VT ,VI) (Line 1), which has been discussed in above.
Then, we build an auxiliary data structure, called compact path-
index (CPI), for the query q regarding the data graph G (Line 2); the
details of the CPI construction will be discussed in Section 5. Fi-
nally, based on the constructed CPI, we conduct core-match (Line 4),
forest-match (Line 5), and leaf-match (Line 6), respectively; the de-
tails of these matching algorithms will be discussed in Section 4.
Note that, each time when we invoke Core-Match or Forest-Match
or Leaf-Match, it returns the next embedding; that is, to save mem-
ory space, only one embedding is generated each time.

Benefits of the CFL-Decomposition based Framework. Con-
sider the query q in Figure 1(a) and the data graph G in Figure 1(b)
in Introduction. For the matching order (u1, u2, u3, u4, u5, u6) with
u5.p = u1, the search breaths (see Section 2.1) are B1 = 1, B2 = 1,
B3 = 100, B4 = 100, and B5 = 100. Since only u5 has a non-tree
edge, the total cost (see Section 2.1) of subgraph matching regard-
ing this matching order is Tiso = B1 + B1×1×1+ B2×100×1+ B3×

1 × 1 + B4 × 1000 × 2 + B5 × 1 × 1 = 200302. Our core-forest-leaf
decomposition based framework will generate the matching order
(u1, u2, u5, u3, u4, u6) which conducts the non-tree edge checkings
at an earlier stage, then the cost becomes T ′iso = 2302 which is
significantly smaller than Tiso. Moreover, it is immediate that the
Cartesian products caused by leaf query vertices are put to the end
of the subgraph matching process by our new framework.

4. OUR APPROACHES
In this section, we propose a new auxiliary data structure, called

compact path-index (CPI), for efficiently conducting subgraph match.
In the following, we first define the compact path-index (CPI) in
Section 4.1, and then give our CPI-based core-match, forest-match,
and leaf-match in Sections 4.2, 4.3, and 4.4, respectively, while the
CPI construction algorithm will be presented in Section 5.

4.1 Auxiliary Data Structure
To compactly encode all possible embeddings of a query in a

data graph, we propose a new auxiliary data structure, called com-
pact path-index (CPI). CPI not only prunes false-positive candi-
dates of query vertices, but also serves for the purpose of comput-
ing an effective matching order (see Section 4.2).

CPI Structure. Given a query q and a data graph G, CPI is defined
regarding a BFS tree qT of q and has the same structure as qT . To
differentiate the vertices of CPI from the vertices of q and G, we call
vertices of CPI as nodes. Each node u in CPI carries the same label
(i.e., lq(u)) as in qT . Similar to the parent-child relationships in qT ,
any two adjacent nodes in CPI also have a parent-child relationship.

The structure of CPI is as follows.
• Each node u of CPI has a candidate set, denoted u.C, which

stores all vertices of G to which u can be mapped.
• There is an edge between v ∈ u.C and v′ ∈ u′.C for adjacent

nodes u and u′ in CPI if and only if (v, v′) exists in G.
Thus, constructing CPI is equivalent to computing a candidate set
u.C for every query vertex u of q.
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Figure 5: Example CPI

For example, Figure 5(c) shows the CPI constructed for the query
q in Figure 5(a) over the data graph G in Figure 5(b). The candidate
sets of u0 and u1 are u0.C = {v0, . . . , v4} and u1.C = {v5, . . . , v9}, re-
spectively. The edges between vertices in u0.C and vertices in u1.C
are exactly the same as in the data graph, as shown in the CPI in
Figure 5(c). One thing to notice is that, a data vertex of G may
appear in the candidate sets of multiple nodes in CPI. Our storage
representation of CPI is discussed in Section A.2 in Appendix.

Soundness. Our goal is to directly use the CPI, constructed for a
query q over a data graph G, for computing all embeddings of q
in G. The data graph G is only probed for non-tree edge checkings
(i.e., check whether there exists an edge in G between the mappings
of the two end-points of a non-tree edge). To achieve this, the CPI
must satisfy the following soundness requirement:
• For every node u in CPI, if there is an embedding of q in G

that maps u to v, then v must be in u.C.
A CPI is sound if it satisfies the soundness requirement. Note that,
although in the soundness requirement we only consider candidates
of query vertices, the edges between candidates of parent-child
query vertices are automatically included based on our CPI defi-
nition. Regarding a sound CPI, we have the following theorem.

Theorem 4.1: Given a sound CPI, all embeddings of q in G can
be computed by traversing only the CPI while G is only probed for
non-tree edge checkings. �

The Size of A Sound CPI. A naive sound CPI can be constructed
by letting u.C to be the set of all vertices of G with label lq(u).
The naive CPI will contain a lot of false-positive candidates for
query vertices, which will greatly affect the running time of a sub-
graph matching algorithm due to generating many partial embed-
dings that are eventually pruned. One natural goal is to build a
minimum and sound CPI; that is, the total size of the candidate sets
of query vertices in the CPI is minimum. However, this is NP-hard
as shown in the lemma below.

Lemma 4.1: It is NP-hard to build a minimum and sound CPI. �

Nevertheless, the worst-case size of the CPI built for a query q
over a data graph G is O(|V(q)| × |E(G)|), though there can be expo-
nential number of embeddings of q in G. This is because, i) the size
of the candidate set for a query vertex is at most |V(G)|, ii) for any
pair (u, u′) of parent-child nodes in CPI, the size of all the adjacency
lists Nu

u′ (·) is at most |E(G)| since there is no duplicate edges, and
iii) there are |V(q)| query vertices and (|V(q)| − 1) pairs of parent-
child nodes. Moreover, for a data graph G with |Σ| different labels,
the average worst-case size of CPI is O( |V(q)|×|E(G)|

|Σ|2
+
|V(q)|×|V(G)|

|Σ|
). This

is because the average size of the candidate set of a query vertex
is |V(G)|/|Σ|, and the average total size of all adjacency lists corre-
sponding to a pair of parent-child query vertices is |E(G)|/|Σ|2 since
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Figure 6: A Running Example

the probability for an edge of G to be in an adjacency list in CPI is
1/|Σ|2.

In this paper, we aim to build a small and sound CPI, which will
be discussed in detail in Section 5. For example, Figure 6(c) shows
the CPI constructed by our algorithm for the query in Figure 6(a)
over the data graph in Figure 6(b).

Remark. TurboISO [8] also proposes an auxiliary data structure to
store all path embeddings in a data graph for all root-to-leaf paths
of a spanning tree of the query. However, CPI is inherently differ-
ent. One major difference is that, the data structure in TurboISO can
be of exponential size (i.e., with space complexity O(|V(G)||V(q)|−1)),
and thus the construction time is also exponential. To resolve this,
TurboISO [8] only materializes k embeddings for each root-to-leaf
query path, where k is the number of subgraph isomorphic embed-
dings to be reported, when computing the matching order of query
vertices; more path embeddings may be materialized on demand
when enumerating subgraph isomorphic embeddings. However, we
still have to materialize all path embeddings if we want to retrieve
all subgraph isomorphic embeddings; that is, the worst case expo-
nential size is unavoidable in TurboISO. As a result, TurboISO cannot
scale to large queries or large data graphs. Please see Section A.3
in Appendix for a detailed discussion about these issues.

4.2 CPI-based Core-Match
Given a sound CPI for a query q over a data graph G, all em-

beddings of q in G can be computed by traversing CPI while G
is only used for non-tree edge checkings. Here, for presentation
simplicity, we assume q itself is the core-structure; otherwise, we
only consider the part of CPI corresponding to the core-structure of
q. In the following, we first present our CPI-based matching order
selection, and then describe the embedding enumeration approach.

4.2.1 CPI-based Matching Order Selection
Our algorithm for computing a matching order of query ver-

tices is a path-based ordering. Recall that, CPI corresponds to a
BFS tree of q, from which we can get a set of root-to-leaf paths
{π1, . . . , πk} with all k paths sharing the root node of CPI. Our goal
is to compute an effective ordering of the k paths.

The matching order seq of query vertices can be obtained from
the ordering of paths as follows. Assume the paths are ordered
as (π1, . . . , πk). We initialize seq as π1, and then iteratively add
vertices of πi to seq for i = 2, . . . , k. When adding vertices of
πi = (vi1 , . . . , viy ) to seq, it is easy to see that πi shares a prefix with
seq; we call the last shared vertex vix as the connection vertex of
πi, and denoted πi.p in analogy to u.p as discussed in Section 2.1.
Then, we add vertices vix+1, . . . , viy of πi to seq. For example, for
the CPI in Figure 6(c), the BFS tree of the core-structure consists
of three paths π1 = (u0, u1, u3), π2 = (u0, u1, u4) and π3 = (u0, u2).
Assume the ordering of paths is (π2, π1, π3), then the matching order
of query vertices is (u0, u1, u4, u3, u2).

Cost Analysis of Subgraph Matching via Path-based Ordering.
Recall from Section 2.1 that, the total cost of a subgraph matching

algorithm based on the matching order (u1, . . . , un) is Tiso = B1 +∑n
i=2
∑Bi−1

j=1 d j
i (ri + 1) [15]. For a path-based ordering (π1, . . . , πk),

assume the matching order is (u1, . . . , un) and the position of the
leaf (i.e. last) vertex of πi in the matching order is li. Then, the
matching cost is rewritten as,

Tiso = B1 +
∑l1

i=2

∑Bi−1
j=1 d j

i +
∑k

x=2
∑lx

i=lx−1+1

∑Bi−1
j=1 d j

i (ri + 1)

≈
∑l1

i=1 Bi +
∑k

x=2
∑lx

i=lx−1+1 Bi(ri + 1)

≈ Bl1 +
∑k

i=2 Bli (rli + 1)

where the first equation follows from the fact that there is no non-
tree edge among vertices on the same root-to-leaf path in a BFS
tree, and the next two equations follow from two assumptions:
1)
∑Bi−1

j=1 d j
i ≈ Bi, and 2)

∑lx
i=lx−1+1 Bi(ri + 1) ≈ Blx (rlx + 1). Note

that, with the help of CPI, given a partial mapping (v1, . . . , vi−1)
of query vertices (u1, . . . , ui−1), the partial mapping is extended by
considering each vertex v ∈ Nu j

ui (v j) in CPI as a candidate of ui,
where u j is the parent of ui in CPI. The first assumption says that
each extension of an embedding of (u1, . . . , ui−1) based on Nu j

ui (v j)
in CPI will lead to an embedding of (u1, . . . , ui); this is based on the
fact that the pruning of non-tree edges has already been exploited in
building the CPI (see Section 5). The second assumption naturally
follows from the path-based ordering strategy; that is, we assume
that the largest cost of mapping vertices of a query path determines
the cost of mapping the path.

Greedy Approach to Ordering Paths. Note that the number of
non-tree edges (i.e., ri) between ui and vertices before ui in the
matching order depends on the actual matching order. Since the
total number of configurations of ris is exponential (i.e., O(|V(q)|!)),
it will be too expensive to optimize Tiso on the fly by considering ri.
Thus, we instead minimize an approximation of Tiso, T̃iso =

∑k
i=1 Bli

(i.e., the total size of the search breadths of leaf vertices of qT ).
Nevertheless, this is still a hard problem. We propose a greedy
approach for ordering paths aiming to minimize T̃iso.

The first path is the one with the minimum number of embed-
dings (i.e., arg minπ∈P c(π)), where P is the set of all paths and
c(π1, . . . , πi) is the number of embeddings in CPI for the tree formed
by these paths. Given a set of chosen paths P, the next path is the
one that together with P have the minimum number of embeddings
(i.e., arg minπ∈P\P c(P∪π), or equivalently arg minπ∈P\P

c(P∪π)
c(P) ). Here,

c(P∪π)
c(P) can be estimated as c(πu)

|u.C| , where u = π.p is the connection ver-
tex of π to P and πu is the suffix of π starting from u. Intuitively,
each embedding of P can be extended to c(πu)

|u.C| embeddings of P∪π.

Estimate c(π). Recall that π is a query path in CPI. Although the
embeddings of π are not explicitly stored in CPI, we can estimate
the number of such embeddings by a dynamic programming al-
gorithm. We illustrate the dynamic programming algorithm by an
example. Consider estimating the number of embeddings of the
path π = (u0, u1, u3, u7) in Figure 6(c). For each vertex v ∈ u.C with
u ∈ π, we compute cu(v), the number of embeddings in CPI for the
subgraph of q induced by the suffix of π starting from u such that
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u is mapped to v. Initially, cu(v) = 1 for the leaf vertex u; that is,
cu7 (v18) = cu7 (v19) = cu7 (v20) = 1. Then, we compute such num-
bers in a bottom-up fashion, cu(v) =

∑
v′∈Nu

u′
(v) cu′ (v′); for example,

cu3 (v10) = cu7 (v19) + cu7 (v20) = 2. Finally, c(π) =
∑

v∈u.C cu(v) where
u is the first vertex of π. The running time is linear to the total size
of all adjacency lists corresponding to edges of π.
The Greedy Algorithm. The greedy algorithm for ordering all root-
to-leaf paths in the BFS tree qT of q is shown in Algorithm 2. The
first path is the path with the minimum number of embeddings dis-
counted by the number of non-tree edges of vertices on the path
(Lines 2–3). Then, we iteratively select the next path, which is the
one minimizing c(πu)

|u.C| where u = π.p is the connection vertex of π to
seq (i.e., the last shared vertex between π and seq) (Lines 4–6).

Algorithm 2: Matching-Order
Input: A BFS tree qT of q and the corresponding CPI
Output: The matching order of query vertices

1 P ← all root-to-leaf paths in qT ;
2 π∗ ← arg minπ∈P

c(π)
|NT (π)| ; /* NT (π): non-tree edges of π */;

3 Add vertices of π∗ to seq; P ← P\{π∗};
4 while P , ∅ do
5 π∗ ← arg minπ∈P

c(πu)
|u.C| ; /* u = π.p */;

6 Add vertices of π∗ to seq; P ← P\{π∗};

7 return seq;

Time Complexity. Let N̄u
u′ denote the average total size of adjacency

lists corresponding to each pair of parent-child nodes in CPI. Then,
the time complexity of Algorithm 2 is O(N̄u

u′ × (
∑
π∈P |π|)), where

P is the set of all root-to-leaf paths in CPI and |π| is the number
of edges in π. Note that

∑
π∈P |π| is guaranteed to be at most the

number of leaf nodes in CPI multiplied by the height of CPI. This
time complexity can be achieved by computing c(πu) for each suffix
of π ∈ P in a bottom-up fashion, as described in Estimate c(π) in
above.

Example 4.1: Consider the CPI in Figure 6(c) and the core-structure
in Figure 6(d). There are three root-to-leaf paths, π1 = (u0, u1, u3),
π2 = (u0, u1, u4), and π3 = (u0, u2), with c(π1) = 4, c(π2) = 3,
and c(π3) = 2. Since |NT (π1)| = |NT (π2)| = 2 and |NT (π3)| = 1,
the first path is π2. Then, π1.p = u1, π3.p = u0, c(πu1

1 ) = 4, and
c(πu0

3 ) = 2. Thus, the second path is π1 with c(πu1
1 )/|u1.C| = 4/3.

The third path is π3, and the matching order is (u0, u1, u4, u3, u2). �

4.2.2 CPI-based Embedding Enumeration
Given a CPI and a matching order (u1, . . . , u|V(q)|), the embed-

dings of q in G are enumerated by Core-Match, where the pseu-
docode is shown in Section A.4 (Algorithm 5) in Appendix. We
iteratively map each query vertex ui to a data vertex regarding the
matching order. 1) If all query vertices are mapped (i.e., i = |V(q)|+
1), then we output the embedding. 2) If this is the first query ver-
tex (i.e., i = 1), then we map u1 to a data vertex v ∈ u1.C in CPI.
3) Otherwise, ui has a parent ui.p in the matching order, and ui.p
has been mapped to M(ui.p); the candidates of ui are obtained from
the adjacency list Nui .p

ui (M(ui.p)) in CPI, and we map ui to each
candidate each time and proceed to the next query vertex ui+1.

Remark. We do not compress the core-structure by the query graph
compression technique in TurboISO [8]. This is because for ran-
domly generated queries as tested in our experiments, their core-
structures can hardly be compressed; for example, the core-structures
can only be reduced on average by less than 1 vertex (i.e., most
core-structures cannot be compressed); see Table 4 in Appendix.

4.3 CPI-based Forest-Match
Our CPI-based forest-match is similar to the core-match in Sec-

tion 4.2, except that the forest-structure may consist of multiple
connected trees. Also note that the forest-structure has no non-tree
edges. Following the path-ordering strategy in Section 4.2, we first
estimate the number of embeddings in CPI for each connected tree,
and then order the connected trees in increasing order regarding
their number of embeddings; the root-to-leaf paths in each con-
nected tree are then ordered by Algorithm 2. In this way, we obtain
the matching order of query vertices in the forest-structure.

The embedding enumeration algorithm for forest-structure is sim-
ilar to Core-Match in Algorithm 5 except that we do not need to
conduct non-tree edge checkings. Thus, the data graph G is not
probed for forest-match. We omit the details of these algorithms.

Remark. We do not compress the forest-structure by the com-
pression technique in TurboISO [8], because the forest-structure in
a query q cannot be compressed based on the lemma below.

Lemma 4.2: The compression technique in TurboISO [8] for com-
pressing a query q cannot compress the forest-structure of q. That
is, there is no two vertices in the forest-set that have the same labels
and the same neighborhoods. �

4.4 CPI-based Leaf-Match
In this subsection, we propose an efficient technique for enumer-

ating all embeddings of the leaf-set VI , given an embedding MC of
the core-set VC and an embedding MT of the forest-set VT . Note
that, VC ∪ VT ∪ VI = V(q).

Based on MC and MT , we first compute a candidate set C(u) for
each query vertex u ∈ VI . Specifically, C(u) = Nu.p

u (M(u.p))\(MC∪

MT ); that is, C(u) is the set of vertices in the adjacency list of
Nu.p

u (v) excluding those vertices being used in MC ∪ MT , where
v = M(u.p) is the data vertex to which u.p maps in MC ∪MT . Note
that, C(u) ⊆ u.C where u.C is the set of candidates of u in CPI. For
example, in Figure 6, VI = {u7, u8, u9, u10}. Assume u3 (= u7.p),
u4 (= u8.p), u5 (= u9.p), u6 (= u10.p) are mapped to v12, v5, v13, v16,
respectively, then C(u7) = {v18, v19},C(u8) = {v21, v22}, C(u9) =

{v21, v23},C(u10) = {v26}.
Then, our technique is based on the following lemma.

Lemma 4.3: For any two query vertices, u and u′, in VI , if the
labels of u and u′ are different (i.e., lq(u) , lq(u′)), then C(u) ∩
C(u′) = ∅. �

Thus, we partition query vertices of VI into label classes depend-
ing on their labels. A label class with label a, denoted S a, consists
of all vertices of VI with label a, and we denote the set of label
classes of VI by S. After generating all embeddings of each label
class S a in S, the embeddings of VI can be obtained as a Cartesian
product of embeddings for all different label classes. For exam-
ple, continue the above example, there are two label classes, S G =

{u8, u9} and S F = {u7, u10}. After generating embeddings for these
two label classes, M(u8, u9) = {(v21, v23), (v22, v21), (v22, v23)} and
M(u7, u10) = {(v18, v26), (v19, v26)}, we obtain |M(u8, u9)|×|M(u7, u10)|
= 3 × 2 = 6 embeddings of VI .

Generate Embeddings for a Label Class. Firstly, we merge all
vertices of S a that have the same parents into neighborhood equiv-
alence class (NEC) vertices. Note that, these NEC vertices are ex-
actly the same as that obtained by the compression technique in
TurboISO [8]; that is, a degree-one vertex can only be in the same
NEC with another degree-one vertex. Moreover, all vertices in the
same NEC have the same set of candidates. Thus, we will be deal-
ing with this updated label class S a which contains NEC vertices.
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We sort all vertices of S a in increasing order according to their
numbers of candidates (i.e., |C(u)|), and then iteratively map each
query vertex u to a data vertex in C(u) according to this order. Note
that, for an NEC vertex u′ of cardinality |u′| (i.e., containing |u′|
query vertices), we map u′ to a combination, instead of a permuta-
tion, of |u′| vertices from C(u′). The set of all embeddings can be
obtained if needed, by permuting the mappings for query vertices
in each NEC vertex.

Compared with the compression technique in TurboISO [8], we
not only consider NEC vertices but also put all leaf query vertices
with the same label together (i.e., label class). Note that, only
query vertices with the same label may conflict with each other;
that is, two query vertices with the same label are not allowed to
be mapped to the same data vertex in the same mapping. Thus, by
putting query vertices with the same label together, we are able to
prune unpromising partial embeddings at early stages.

Remark. Note that, the concept of leaf-set VI can be generalized to
an independent-set (i.e., there is no edge between any two vertices
in the independent-set) of query vertices of q. Nevertheless, we
show that the leaf-set VI is the maximal possible independent-set
of the forest-structure of q; details are in Section A.5 in Appendix.

5. CPI CONSTRUCTION
In this section, we develop efficient techniques for construct-

ing a small and sound CPI. Since constructing the smallest sound
CPI is NP-hard as proved in Lemma 4.1, we propose a heuristic
approach for constructing CPI in two phases: top-down construc-
tion (see Section 5.2) and bottom-up refinement (see Section 5.3),
where both tree edges and non-tree edges are exploited to prune
false-positive candidates of query vertices (see Section 5.4). In the
following, we first present the general idea of our CPI construction
algorithms in Section 5.1.

5.1 General Idea
The CPI is constructed regarding a BFS tree qT of q. The selec-

tion of the root vertex r of qT is discussed in Section A.6 in Ap-
pendix. Then, vertices of q are partitioned according to their BFS
levels where the BFS level of a vertex of qT is one plus its distance
to r in qT ; edges of q are partitioned into tree edges and non-tree
edges. The non-tree edges are further categorized as follows.

Definition 5.1: For a non-tree edge (u, u′) in q regarding qT , if
u and u′ are at the same BFS levels in qT , then (u, u′) is called a
same-level non-tree edge (S-NTE); otherwise (u, u′) is called a
cross-level non-tree edge (C-NTE). �

For example, consider the query q in Figure 7(a). Assume u0 is
the root vertex, the BFS tree qT is shown in Figure 7(b), and the
non-tree edges are (u1, u2) and (u2, u3), where (u1, u2) is a S-NTE
and (u2, u3) is a C-NTE.

Following Section 4.1, the general idea of our CPI construction
is to compute the candidate set u.C for each vertex u in q, while the
induced edges in G between v ∈ u.C and vertices of u′.C are stored
as an adjacency list Nu

u′ (v) in CPI, regarding the tree edge (u, u′)
of qT . Thus, the main issue is to construct a sound CPI such that
u.C is as small as possible for each u ∈ V(q). However, we proved
in Lemma 4.1 that this is NP-hard. Thus, we propose a heuristic
approach for constructing a small CPI based on the following idea.

• A data vertex v can be pruned from u.C if there exists a neigh-
bor u′ of u in q such that u′.C contains none of the neighbors
of v in G (i.e., u′.C ∩ NG(v) = ∅).

Equivalently, u.C can be obtained as the intersection of the sets of
neighbors, with label lq(u), of vertices in u′.C for all u′ ∈ Nq(u).

Thus, following the above general idea, we propose to construct
the CPI in two phases: top-down construction, and bottom-up re-
finement, as will be discussed in the following two subsections.

5.2 Top-Down Construction
Given a BFS tree qT of the query q, the CPI is constructed by vis-

iting query vertices level-by-level in a top-down manner, in which
we also utilize the pruning power of non-tree edges to prune un-
promising candidates. The algorithm is shown in Algorithm 3.

Firstly, we obtain the candidates for the root query vertex r,
which are the vertices in G that have label lq(r) and degree at least
dq(r) and also pass the candidate-verification (CandVerify) (Lines 1–
2). CandVerify basically verifies whether a data vertex conforms
with the local features of the query vertex, which is discussed in
Section A.6 in the Appendix. We mark r as visited and set v.cnt to
be 0 for all vertices v in G (Line 3), where v.cnt will later be used
to determine whether a vertex is qualified to be a candidate.

Then, we process query vertices level-by-level (Lines 4–28) and
for query vertices at the same level, we 1) firstly generate their sets
of candidates in the forward processing, 2) then prune unpromising
candidates in the backward processing, and 3) finally construct the
adjacency lists corresponding to query vertices and their parents in
qT . Assume the set of vertices at level lev is Vlev.
1) Forward Candidate Generation. In the forward processing, we
process query vertices according to their order in Vlev. In process-
ing query vertex u, let u.N denote the set of visited neighbors of u
in q, and u.UN denote the set of unvisited neighbors of u in q that
are at the same BFS level as u in qT . u.UN is obtained at Lines 7–9,
and will be used in the backward processing (see Line 20). The set
u.C of candidates of u is generated from the sets of candidates of
vertices in u.N (Lines 11–16). Intuitively, a data vertex v is in u.C
only if for each u′ ∈ u.N, there is a data vertex v′ ∈ u′.C that is
adjacent to v. To achieve this, we maintain a counter v.cnt for each
data vertex in G to count the number of visited query neighbors of
u that have a candidate v′ adjacent to v. The counters of vertices
(i.e., v.cnt) are updated at Lines 11-13, and Cnt records the num-
ber of query vertices in u.N (Line 14). The candidate u.C is the
set of vertices satisfying v.cnt = Cnt and also passing CandVerify
(Lines 15–16), following Lemma 5.1. Then we mark u as visited,
and reset v.cnt to be 0 for every vertex v that has a positive count
(i.e., v.cnt > 0) (Line 17). Note that, to reset v.cnt, we only need to
access those vertices with positive counts, which are stored when
we change v.cnt at Line 13.

Lemma 5.1: Through lines 6–14 of Algorithm 3, a data vertex v
with label lq(u) has a neighbor in u′.C for every u′ ∈ u.N if and
only if v.cnt = Cnt (i.e., Line 15). �

2) Backward Candidate Pruning. In the backward processing, we
apply Lemma 5.1 again to filter candidates for each query vertex
u based on its set of unvisited neighbors (i.e., u.UN), which were
not exploited in the forward processing. In contrast to the forward
processing, now we process query vertices Vlev in reverse order
(Lines 18–23). For each u ∈ Vlev, we apply Lemma 5.1; a vertex
v ∈ u.C is pruned if v.cnt , |u.UN | (Lines 21–22).
3) Adjacency List Construction. After every query vertex u ∈ Vlev

has been assigned a set u.C of candidates, the adjacency lists cor-
responding to tree edge (up, u), where up = u.p is the parent of u in
qT , is constructed (Lines 26–28). For each data vertex v ∈ up.C, an
adjacency list Nup

u (v) is constructed, which is the set of data vertices
in u.C that are connected to v; that is, Nup

u (v) = {v′ ∈ u.C | (v, v′) ∈
E(G)} (Lines 27–28). Note that, up.C has already been constructed
in the iteration for processing query vertices at level lev − 1.
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Figure 7: Example CPI Construction

Algorithm 3: Top-Down Construction
Input: A query q and its root vertex r, and a data graph G
Output: the CPI of q over G

1 for each v in G with label lq(r) and degree at least dq(r) do
2 if CandVerify(v, r) then r.C ← r.C ∪ {v};

3 Mark r as visited; Set v.cnt ← 0 for all v in G;
4 for each level lev from 2 to max_level do

/* Lines 5�17: Forward Candidate Generation */
5 for each query vertex u at level lev do
6 Cnt ← 0;
7 for each query vertex u′ ∈ Nq(u) do
8 if u′ is unvisited and (u′, u) is a S-NTE then
9 u.UN ← u.UN ∪ {u′};

10 else if u′ is visited then
11 for each vertex v′ ∈ u′.C do
12 for each vertex v ∈ NG(v′) with label lq(u) and

degree at least dq(u) do
13 if v.cnt = Cnt then v.cnt ← v.cnt + 1 ;

14 Cnt ← Cnt + 1;

15 for each vertex v in G with v.cnt = Cnt do
16 if CandVerify(v, u) then u.C ← u.C ∪ {v};

17 Mark u as visited; Reset v.cnt ← 0 for all v in G s.t. v.cnt > 0;

/* Lines 18�23: Backward Candidate Pruning */
18 for each query vertex u at level lev in reverse order do
19 Cnt ← 0;
20 for each query vertex u′ ∈ u.UN do Same as Lines 11–14;
21 for each vertex v ∈ u.C do
22 if v.cnt , Cnt then Remove v from u.C;

23 Reset v.cnt ← 0 for all v in G s.t. v.cnt > 0;

/* Lines 24�28: Adjacency List Construction */
24 for each query vertex u at level lev do
25 up ← u.p;
26 for each vertex vp ∈ up.C do
27 for each vertex v ∈ NG(vp) with label lq(u) do
28 if v ∈ u.C then Nup

u (vp)← Nup
u (vp) ∪ {v};

29 return CPI;

Example 5.1: Consider the query q in Figure 7(a) with the BFS
tree in Figure 7(b) where u0 is the root vertex. Then, vertices of q
are partitioned into three levels, with u0 at level 1, {u1, u2} at level
2, and u3 at level 3. Firstly, we process vertices at level 1 (i.e., u0).
The set of candidates of u0 is assigned as u0.C = {v1, v2}.

Secondly, we consider vertices at level 2 (i.e., u1 and u2). 1) In
the forward processing, we first process u1 with u1.N = {u0} and
u1.UN = {u2}; u1.C is assigned to be the set of vertices with label
lq(u1) that are adjacent to a vertex in u0.C, and u1.C = {v3, v5, v7, v9}.
Then, we process u2 with u2.N = {u0, u1} and u2.UN = ∅; u2.C is
assigned as {v4, v6, v8}. Note that, although v10 also satisfies the re-
quirement specified by Lemma 5.1, v10 is pruned by the CandVerify
due to having no neighbor with label D which is required by u2.
2) In the backward processing, v9 is also pruned from u1.C due to
having no neighbor in u2.C; recall that u1.UN = {u2}. 3) In adja-
cency list construction, the adjacency lists corresponding to (u0, u1)
and to (u0, u2) are constructed as shown in Figure 7(d).

Finally, we process vertices at level 3 (i.e., u3). Since there is
only one query vertex at this level, we only have the forward pro-
cessing; u3.N = {u1, u2}, and u3.C = {v11, v12}. Vertices v13 and v15

are pruned due to having no neighbors in u2.C or in u1.C, respec-
tively. The adjacency lists corresponding to (u3.p, u3) (i.e., (u1, u3))
are constructed as shown in Figure 7(d). �

5.3 Bottom-Up Refinement
Note that the top-down construction algorithm in Section 5.2

only considers the ancestors (i.e., parent, parent of parent, · · · ) in
qT of a query vertex u to construct u.C. Thus, it is possible that a
candidate vertex v ∈ u.C does not have any neighbor in u′.C, where
u′ is a child of u in qT . For example, in Figure 7(d), v7 in u1.C does
not have any neighbor in u3.C; or equivalently, Nu1

u3 (v7) = ∅. In
this subsection, we propose a bottom-up refinement approach for
further refining the candidates of query vertices.

Algorithm 4: Bottom-Up Refinement
Input: A query q and its root vertex r, a data graph G, and a CPI
Output: The refined CPI

1 for each query vertex u of q in a bottom-up fashion do
/* Lines 2�7: Candidate Refinement */

2 Cnt ← 0;
3 for each lower-level neighbor u′ of u in q do
4 Same as Lines 11–14 of Algorithm 3;

5 for each vertex v ∈ u.C do
6 if v.cnt , Cnt then Remove v from u.C and remove all

adjacency lists of v from the CPI;

7 Reset v.cnt ← 0 for all v in G s.t. v.cnt > 0;
/* Lines 8�11: Adjacency List Pruning */

8 for each vertex v ∈ u.C do
9 for each child u′ of u in the BFS tree of q do

10 for each vertex v′ ∈ Nu
u′ (v) do

11 if v′ < u′.C then Nu
u′ (v)← Nu

u′ (v)\{v′};

12 return CPI;

The pseudocode of bottom-up refinement is shown in Algorithm 4.
We process query vertices of q in a bottom-up fashion regarding qT

(Line 1). Note that, here the order of query vertices at the same
BFS level can be arbitrary since we do not consider the S-NTE in
this bottom-up refinement process. Firstly, in candidate refinement,
similar to Lines 18–23 of Algorithm 3 we exploit the candidate
sets of lower-level neighbors of u to prune unpromising candidates
from u.C (Lines 2–7). Then, in adjacency list pruning, we remove
from each adjacency list Nu

u′ (v) those vertices that are not in u′.C
(Lines 8–11).

Example 5.2: Continuing Example 5.1, we refine the candidates
for query vertices of q in a bottom-up fashion regarding qT ; assume
they are processed in the order of u3, u2, u1, u0. Firstly, u3 has no
lower-level neighbors, and we do nothing. In processing u2, we
refine the candidates u2.C of u2 by the candidates u3.C of u3; v8

is pruned from u2.C since it has no neighbors in u3.C. Next, in
processing u1, v7 is pruned from u1.C, and the adjacency lists of v7

are also removed, as shown in Figure 7(e). Finally, we process u0;
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v2 is pruned from u0.C due to the same reason, and the adjacency
lists of v2 are removed. Moreover, we also need to remove v7 from
the adjacency list Nu0

u1 (v1) of v1, since v7 is no longer a candidate of
u1. The final CPI after refinement is shown in Figure 7(e). �

5.4 Analysis of CPI Construction
Pruning Power of Tree Edges and Non-Tree Edges. In our CPI
construction (i.e., Algorithms 3 and 4), we exploit both tree edges
and non-tree edges as well as both directions of these edges to refine
candidates for query vertices. That is, for a query edge (u, u′) in q,
we exploit the candidates u.C of u to refine the candidates u′.C of
u′ as well as exploit u′.C to refine u.C; for example, if a candidate
v ∈ u.C has no neighbors in u′.C, then v is pruned from u.C. The
directions of query edges that are utilized for pruning in different
processing stages are summarized in Table 2, where the direction
(e.g., →, ←, ↓, ↑) indicates the direction of a unidirectional edge
regarding an ordered BFS tree; for example, in Figure 7(a), u1 →

u2, u2 ← u1, u1 ↓ u3, and u3 ↑ u1. More details and an example are
given in Section A.7 in Appendix.

Algorithms Query Edges Directions
Top-down construction Tree edges & C-NTEs ↓

(Algorithm 3) S-NTEs →,←
Bottom-up refinement Tree edges & C-NTEs ↑(Algorithm 4)

Table 2: Directions of Query Edges Utilized in Pruning

Correctness. We prove the correctness of our CPI construction
(i.e., Algorithms 3 and 4) by the following two lemmas.

Lemma 5.2: For a data vertex v ∈ V(G) and a query vertex u ∈
V(q), if there is an embedding M of q in G that maps u to v, then
after running Algorithm 3, v is a candidate of u (i.e., v ∈ u.C). That
is, the CPI constructed by Algorithm 3 is sound. �

Lemma 5.3: Given a sound CPI, after the bottom-up refinement
(i.e., running Algorithm 4), the CPI is still sound. �

Time Complexity. The time complexities of Algorithms 3 and 4
are shown in the following theorem.

Theorem 5.1: Both Algorithm 3 and Algorithm 4 take time O(|E(G)|×
|E(q)|). �

6. EXPERIMENTS
We conduct extensive performance studies to evaluate the effi-

ciency of our core-forest-leaf decomposition based framework and
our CPI-based matching algorithms. Specifically, the following ex-
isting algorithms are evaluated.
• QuickSI: the algorithm in [15].

• TurboISO: the state-of-the-art algorithm in [8].

• TurboISO-Boost: the TurboISO algorithm boosted by the data
graph compression techniques in [14].

We also evaluate the following variants of our algorithms.
• CFL-Match: our core-forest-leaf decomposition based algo-

rithm (see Section 3) with the proposed CPI constructed by
Algorithms 3 and 4 (see Section 5) (i.e., our best algorithm).

• CFL-Match-Boost: the CFL-Match algorithm boosted by the
data graph compression techniques in [14].

• CFL-Match-Naive: the CFL-Match algorithm where the CPI
is naively constructed (see Section 4.1).

• CFL-Match-TD: the CFL-Match algorithm where the CPI is
constructed by Algorithm 3 in Section 5.2.

• CF-Match: the core-forest decomposition based algorithm
(see Section 3) with the proposed CPI (see Section 5); that
is, the forest-leaf decomposition is not applied.

• Match: the subgraph matching algorithm without query de-
composition and with the proposed CPI; that is, apply the
core-match algorithm in Section 4.2 on the entire query q.

All algorithms are implemented in C++ and compiled with GNU
GCC with the -O3 flag; source codes of the existing algorithms,
QuickSI [15], TurboISO [8], and TurboISO-Boost [14], are obtained
from their authors, respectively. Experiments are conducted on a
machine with an Intel i5 3.20GHz CPU and 8GB memory.

Datasets. We evaluate the performance of the tested algorithms on
both real and synthetic graphs as follows.
Real Graphs. We evaluate the algorithms on three real graphs,
HPRD1, Yeast, and Human, which are widely used in existing works
[8, 12, 14, 22]. All the three graphs are protein interaction net-
works where vertex labels are generated under the Gene Ontology
Term. HPRD contains 37, 081 edges, 9, 460 vertices with an av-
erage degree 7.8, and 307 distinct labels. Yeast contains 12, 519
edges, 3, 112 vertices with an average degree 8.1, and 71 distinct la-
bels. Human is a dense graph of human protein interactions, which
contains 86, 282 edges, 4, 674 vertices with an average degree 36.9,
and 44 distinct labels. We also tested the algorithms on WordNet
and DBLP (see Eval-A-II in Appendix), and get similar results.
Synthetic Graphs. We also generate large synthetic data graphs
to evaluate the algorithms. We first randomly generate a spanning
tree and then randomly add edges to the spanning tree, while vertex
labels are added following the power-law distribution. The default
settings of synthetic graphs are: |V(G)| = 100k (i.e., 105 vertices),
d(G) = 8 (i.e., the average degree is 8), and |Σ| = 50 (i.e. the
number of distinct labels is 50). Note that the smaller the number
of distinct labels, the more challenging. The following synthetic
data graphs are generated to test the scalability of our algorithms.
• Vary |V(G)|: We generate 3 data graphs denoted by G100k,

G500k, and G1000k, where each Gik has ik (= i × 103) vertices
with the default settings of d(G) and |Σ|.

• Vary d(G): We generate 4 data graphs denoted by Gd=4, Gd=8,
Gd=16, and Gd=32, where each Gd=i has an average degree of i
with the default settings of |V(G)| and |Σ|.

• Vary |Σ|: We generate 4 data graphs denoted by GL=25, GL=50,
GL=100, GL=200, where each GL=i contains i distinct vertex la-
bels with the default settings of |V(G)| and d(G).

Data graphs Query Sets Default

HPRD, Yeast, Synthetic q25S , q25N , q50S , q50N q50S , q50Nq100S , q100N , q200S , q200N

Human q10S , q10N , q15S , q15N q15S , q15Nq20S , q20N , q25S , q25N

Table 3: Default Query Sets
Query Graphs. A query graph is generated as a connected sub-
graph of the data graph, by conducting random walk on the data
graph. For each data graph, we generate 8 query sets, each contain-
ing 100 query graphs of the same size, as summarized in Table 3. In
specific, for HPRD, Yeast, and Synthetic graphs, we generate query
sets q25S , q25N , q50S , q50N , q100S , q100N , q200S , and q200N , where qiS

and qiN denote query sets with i vertices and, respectively, average
degree ≤ 3 (i.e., Sparse) and > 3 (i.e., Non-sparse); q50S and q50N

are default query sets. For Human which is a harder data graph for
subgraph matching due to a higher average degree and fewer dis-
tinct labels, we generate smaller query sets q10S , q10N , q15S , q15N ,
q20S , q20N , q25S , and q25N , with q15S and q15N being the default.
1http://www.hprd.org/download/
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#Embeddings. We vary the number of embeddings to be reported,
from 103 to 105 and 108 with #embeddings = 105 being the default.
Note that, the total number of embeddings can be much larger.
Metrics. For each testing, we run an algorithm for a query set,
containing 100 query graphs, three times, and report the average
CPU time in milliseconds for processing each query graph. Note
that, we set the time limit for processing a query set to 5 hours (i.e.,
1.8 × 107 ms). If an algorithm cannot finish within the time limit,
then we plot its processing time as “INF”.

6.1 Comparing with Existing Techniques
In this subsection, we evaluate CFL-Match against the existing

algorithms, QuickSI, TurboISO, and TurboISO-Boost. Note that, we
also ran TurboISO-Boost for our queries on the tested graphs using
the source code provided by the authors in [14]; however, it cannot
finish within the time limit for most of the queries, and even for the
cases that it can finish, it is much slower than TurboISO (see Fig-
ure 21 in Appendix). Apparently, there are some implementation
issues in the source code of TurboISO-Boost. We have communi-
cated with the authors in [14] through email and the problem can-
not be solved. Thus we omit TurboISO-Boost in the following com-
parisons to be fair to the authors in [14]. Nevertheless, we imple-
mented the techniques in [14] in combination with our techniques
as the boosted version of CFL-Match and evaluate it in Eval-IV.
Eval-I: Against Existing Algorithms by Varying |V(q)|. We eval-
uate CFL-Match against existing algorithms by varying |V(q)| re-
garding the total processing time, embedding enumeration time,
and query vertex ordering time. Embedding enumeration time is
the time to enumerate embeddings after obtaining a matching order
of query vertices, while query vertex ordering time is the time to
compute the matching order and other auxiliary data structures that
are required for computing the matching order.
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Figure 8: Against Existing Algorithms (total processing time)

Total Processing Time. Figure 8 shows the average total process-
ing time for each query graph. In general, all three algorithms run
slower for larger queries, and QuickSI and TurboISO may not finish
within the time limit for large queries (denoted as “INF” in the fig-
ures). CFL-Match consistently outperforms TurboISO which then
performs better than QuickSI. This is due to our new framework
by postponing the Cartesian products and also our CPI-based ef-
fective ordering of queries vertices. Our CFL-Match algorithm im-
proves upon the state-of-the-art algorithm, TurboISO, by over 3 or-
ders of magnitude (see query q200N in Figure 8(a)), even excluding
the cases when TurboISO cannot finish within the time limit.
Embedding Enumeration Time. Figure 9 shows the embedding
enumeration time of the three algorithms on HPRD and Synthetic
graph. We omit the results on Yeast and Human due to QuickSI and
TurboISO cannot finish within the time limit for most of the queries
on these two graphs (see Figure 8). CFL-Match consistently out-
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Figure 9: Against Existing Algorithms (enumeration time)
performs TurboISO across all queries for enumerating embeddings,
and the improvement can be over 4 orders of magnitude (see query
q200N on HPRD); QuickSI runs the slowest. This confirms the ad-
vantage of our new framework, by postponing the Cartesian prod-
ucts (see Section 3), over the existing algorithms.
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Figure 10: Against Existing Algorithms (ordering time)
Query Vertex Ordering Time. We illustrate the query vertex order-
ing time of TurboISO and CFL-Match on HPRD and Synthetic graph
in Figure 10. Note that, the query vertex ordering time of QuickSI
is negligible since the ordering is directly based on the edge fre-
quencies; thus, we omit QuickSI in Figure 10. We can see that
the query vertex ordering time of CFL-Match is much smaller than
that of TurboISO, due to the O(|E(q)| × |E(G)|) time complexity of
CFL-Match for CPI construction. Although TurboISO has a worst-
case exponential time complexity for constructing its data struc-
ture due to possibly exponential number of path embeddings, the
number of path embeddings in these two graphs are small. Thus,
TurboISO also performs well regarding query vertex ordering time.
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Figure 11: Enumeration Time for Core-Structures (Vary |V(q)|)
Eval-II: Evaluating Enumeration Time for Core-Structures of
Queries. In this testing, we evaluate the enumeration time of the
algorithms for processing core-structures of queries. That is, our
core-forest-leaf decomposition based framework has no effect on
the running time; CFL-Match is equivalent to the Core-Match algo-
rithm in Section 4.2. The results are shown in Figure 11. Different
from Figure 9, both QuickSI and TurboISO can now finish within
the time limit. This is because, 1) the size of a core-structure is
smaller than that of the original query in Figure 9, and 2) the num-
ber of embeddings of a core-structure is usually smaller than that of
a general query. The embedding enumeration time of CFL-Match is
much smaller than that of TurboISO; this confirms the better match-
ing order computed by our greedy path-ordering approach based on
the cost model in Section 4.2.1.
Eval-III: Varying #Embeddings. Figure 12 shows the results of
the algorithms by varying #embeddings. As expected, the process-
ing time of all three algorithms increases when more embeddings
are generated. Nevertheless, CFL-Match consistently outperforms
TurboISO with QuickSI performing the worst.
Eval-IV: Evaluating The Boost Technique in [14]. The results of
applying the boost technique in [14], which compresses the data
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Figure 12: Evaluating #embeddings
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Figure 13: Evaluating The Boost Technique
graph, to CFL-Match are shown in Figure 13. The boost tech-
nique improves CFL-Match on Human due to the high data graph
compression ratio (i.e., about 40%). However, CFL-Match-Boost
performs a little slower than CFL-Match on HPRD, due to the
low compression ratio of HPRD (i.e., < 5%); note that the query-
dependent compression has overheads. Thus, the boost technique
may not always help; we omit CFL-Match-Boost in the following.

6.2 Effectiveness of New Framework
In this subsection, we evaluate the effectiveness of our proposed

techniques in reducing the overall processing time, and the scala-
bility of our CFL-Match algorithm. We run variants of CFL-Match
on different graphs for query sets q50S (average degree ≤ 3, denoted
Sparse) and q50N (average degree > 3, denoted Non-Sparse).
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Figure 14: Evaluating Our Framework

Eval-V: Evaluating Our Framework. We compare CFL-Match
with CF-Match and Match to evaluate the effectiveness of our core-
forest-leaf decomposition based framework. The results on HPRD
and Yeast are shown in Figure 14. We can see that, the core-forest
decomposition based framework (i.e., CF-Match) improves upon a
non-decomposition based framework (i.e., Match), and the forest-
leaf decomposition based framework (i.e., CFL-Match) further im-
proves CF-Match by postponing the Cartesian products. The im-
provement of the core-forest-leaf decomposition based framework
on Yeast is more significant due to more candidates for each query
vertex in CPI (thus, more Cartesian products).
Eval-VI: Evaluating the Effectiveness of CPI Construction Strate-
gies. The evaluation results of the effect of different CPI construc-
tion strategies on the total processing time of our CFL-Match algo-
rithm are illustrated in Figure 15. The naively constructed CPI (see
Section 4.1) significantly degrades the performance of CFL-Match
due to lots of false-positive candidates for query vertices in CPI.
CFL-Match-TD improves upon CFL-Match-Naive by constructing
the CPI in a top-down fashion (see Section 5.2), which also exploits
the non-tree edges for candidate pruning. Finally, the bottom-up re-
finement of CPI (see Section 5.3) further reduces the candidates of
query vertices, thus leads to the best performance of CFL-Match.
Note that, due to very few candidates of query vertices in CPI con-
structed by the top-down algorithm for HPRD, the improvement of
CFL-Match over CFL-Match-TD is insignificant in Figure 15(a).
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Figure 15: Evaluating CPI Construction Strategies
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Figure 16: Scalability Testing of CFL-Match

Eval-VII: Scalability Testing. We test the scalability of CFL-Match
on Synthetic graphs by varying |V(G)|, d(G), and |Σ|.
Varying |V(G)|. The results of varying |V(G)| are illustrated in Fig-
ure 16(a). The processing time of CFL-Match increases linearly
with respect to |V(G)|. This is because, for Synthetic graphs, the
query vertex ordering time dominates the embedding enumeration
time as shown in Figures 9(b) and 10(b). The time for CPI con-
struction, O(|E(G)| × |E(q)|), is the dominating factor in the query
vertex ordering time, and it increases linearly regarding |V(G)|.
Varying d(G). Figure 16(b) shows the results of varying the av-
erage degree d(G) of Synthetic graphs. The processing time of
CFL-Match increases almost linearly regarding d(G). This is be-
cause the larger d(G), the more edges in CPI, and thus the more
running time of CFL-Match.
Varying |Σ|. Figure 16(c) illustrates the processing time of CFL-Match
on Synthetic graphs by varying the number |Σ| of distinct labels.
The processing time of CFL-Match decreases when |Σ| becomes
larger, due to fewer candidates for each query vertex as evidenced
in Figure 16(d) where the index size (i.e., y-axis) is the size of the
CPI constructed by our algorithm.

7. CONCLUSION
In this paper, we proposed a new framework by postponing the

Cartesian products based on the core-forest-leaf decomposition of
a query to minimize the redundant Cartesian products. We are the
first to address the issue of unpromising results by Cartesian prod-
ucts from “dissimilar" vertices. We proposed a new path-based
auxiliary data structure, of size O(|E(G)|×|V(q)|), to generate match-
ing order and conduct subgraph matching, which significantly re-
duces the exponential size O(|V(G)||V(q)|−1) of the existing data struc-
ture in [8]. Extensive empirical studies on real and synthetic graphs
demonstrate that our techniques outperform the state-of-the-art al-
gorithm by up to 3 orders of magnitude. As a possible future work,
extending our core-forest-leaf decomposition to a hierarchical de-
composition of the core-structure (e.g., compute k-core, (k-1)-core,
. . .) might be an interesting issue to be investigated.
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A. APPENDIX

A.1 Proofs of Lemmas and Theorems.
Proof Sketch of Lemma 3.1. Firstly, we prove that the 2-core of q
contains all non-tree edges of q regarding any spanning tree of q. It
is easy to see that the set of non-tree edges regarding any spanning
tree of q is exactly the set of edges in simple cycles [6] in q, and all

vertices in a simple cycle have exactly two neighbors in the cycle.
Thus, the 2-core will include all such simple cycles (i.e., include all
non-tree edges regarding any spanning tree of q).

Secondly, we prove that the 2-core of q is the minimal connected
subgraph of q containing all non-tree edges of q regarding any
spanning tree of q, by contradiction. Assume there is a smaller
connected subgraph g′ of q that contains all non-tree edges of q re-
garding any spanning tree of q. Denote the 2-core of q as g. Then,
there must be an edge (u1, u2) of g that is not in g′. Since g′ con-
tains all non-tree edges of q regarding any spanning tree of q, there
will be no simple cycle of q containing (u1, u2), which means that
(u1, u2) is a bridge of q [6]. Then, the set of all simple cycles in
q will form at least two connected components in the subgraph of
q by removing (u1, u2); otherwise, g will not contain (u1, u2). This
contradicts that g′ is connected and does not contain (u1, u2).

Thus, the lemma holds. �

Proof Sketch of Theorem 4.1. Firstly, it is easy to see that there
will be no false positives. This is because every edge between two
candidate vertices in the CPI is also an edge in the data graph.

Now, we give a constructive proof to show that there is no false
negative; that is, every embedding of q in G will be computed by
traversing CPI. Consider an embedding M = (v0, . . . , vn) of q =

(u0, . . . , un). Without loss of generality, assume u0 is the root node
in CPI, and the parent node of ui (i , 0) in CPI is ui.p and it is
mapped to vi.p by M. Then, v0 must be in u0.C, and moreover, for
each ui (i , 0), vi must be in both ui.C and Nui .p

ui (vi.p), since CPI
is sound. Thus, the embedding (v0, . . . , vn) will be generated by
traversing CPI, and it will also survive all non-tree edge checkings.

Hence, the theorem holds. �

Proof Sketch of Lemma 4.1. We reduce the problem of checking
subgraph isomorphism to the problem of determining whether a
minimum and sound CPI is empty. We prove that, given graphs q
and G, q is subgraph isomorphic to G, which is NP-complete [5],
if and only if a minimum and sound CPI is non-empty.

(=⇒). If q is subgraph isomorphic to G, assume the subgraph
isomorphic embedding is M, then for each u ∈ V(q), the mapping
M(u) of u must be in u.C in the sound CPI. Thus, the minimum
and sound CPI is non-empty.

(⇐=). It is easy to see that, if a minimum and sound CPI is
non-empty, then there must be an embedding of q in G. �

Proof Sketch of Lemma 4.2. Note that, each vertex in the forest-
structure and not in VC has at least two-neighbors in q; recall that,
all the degree-one vertices are put in the leaf-set VI (see Section 3).

We prove the lemma by contradiction. Assume there are two
vertices u and u′ from the forest-structure that have the same la-
bels and the same neighborhoods, and u1 and u′1 are the (common)
neighbors of u and u′. Then, (u, u1, u′, u′1) forms a cycle in q, which
means that u and u′ cannot be in the forest-structure. We reach a
contradiction. Thus, the lemma holds. �

Proof Sketch of Lemma 4.3. This lemma directly follows from the
fact that each vertex in G has a single label. Any vertex v ∈ C(u)
with label lG(v) = lq(u) is not in C(u′) since lq(u′) , lq(u). �

Proof Sketch of Lemma 5.1. We prove the lemma by induction.
Obviously, the lemma holds for |u.N| = 1 (i.e., Cnt = 1). Now,
let’s consider u.N = {u1, . . . , uk}. We assume the lemma holds after
processed the first (k − 1) visited neighbors of u. That is, a data
vertex v with label u has a neighbor in ui.C for 1 ≤ i ≤ k − 1 if
and only if v.cnt = k − 1; let Vk−1 denote the set of all such vertices
{v}. Then, after checking v.cnt = k − 1 at Line 13, only those
vertices from Vk−1 will satisfy this requirement. Moreover, a vertex
v ∈ Vk−1 have v.cnt = k after processing uk if and only if there is a
vertex from uk.C that is adjacent to v. Thus, the lemma holds. �
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Figure 17: Example Data Structure in TurboISO

Proof Sketch of Lemma 5.2. We prove the lemma by contradic-
tion. Firstly, it is easy to see that, if v is in u.C for every processed
query vertex u before running backward candidate pruning (i.e.,
Lines 18–23), then v is still in u.C afterwards. This is because for
every query vertex u′ ∈ u.UN, M(u′) is in u′.C.

Now, we assume u is the first query vertex according to the pro-
cessing order defined by Lines 4–5 of Algorithm 3 such that v < u.C
with v = M(u). Then, v must satisfy v.cnt , Cnt at Line 15. How-
ever, since u is the first such query vertex, M(u′) must be in u′.C
for every u′ ∈ u.N. Then, according to Lemma 5.1, v.cnt = Cnt.
We reach a contradiction. Thus, the lemma holds. �

Proof Sketch of Lemma 5.3. Let’s consider an arbitrary embed-
ding M of q in G, we prove that M(u) ∈ u.C in CPI for every
u ∈ V(q). Since this condition holds before running Lines 2–10
of Algorithm 4, M(u).cnt = Cnt holds afterwards according to
Lemma 5.1. Thus M(u) ∈ u.C, and the lemma holds. �

Proof Sketch of Theorem 5.1. Firstly, we consider Algorithm 3,
we show that Lines 6–17 for a specific u take time O(|E(G)| ×
|u.N |). In particular, for each vertex v′ ∈ u′.C, Lines 12–13 take
O(dG(v′)) time; thus, for all vertices in u′.C, Lines 12–13 take
time O(

∑
v′∈u′ .C dG(v′)) = O(|E(G)|). Similarly, Lines 19–23 for u

take time O(|E(G)| × |u.UN|) time and Lines 25–28 for u take time
O(|E(G)|) time. Thus, the total time for a specific u is O(|E(G)| ×
(|u.N | + |u.UN |)) = O(|E(G)| × dq(u)), and the total running time of
Algorithm 3 is O(

∑
u∈V(q) |E(G)| × dq(u)) = O(|E(G)| × |E(q)|).

The time complexity of Algorithm 4 can be proved similarly. �

A.2 Storage Representation of CPI
In representing a CPI, we store the candidate set for each node in

CPI as an array of vertex ids; for example, u0.C = {v0, v1, v2, v3, v4}

is stored as an array of five elements in Figure 5(c). For each pair
of parent-child (i.e., adjacent) nodes u and u′ in CPI with u being
the parent, we store the edges between each vertex v ∈ u.C and
vertices of u′.C as an adjacency list of v corresponding to the query
edge (u, u′), denoted Nu

u′ (v). For example, Nu0
u1 (v0) = {v5, v8}.

In order to support fast traversal of a CPI by following vertices’
adjacency lists, instead of directly storing vertex ids we store their
positions (i.e., offsets) in the corresponding candidate set of the
child node, into the adjacency lists. For example, the adjacency list
of v0 becomes Nu0

u1 (v0) = {1, 4}meaning that the adjacency list of v0

contains the first (i.e., v5) and fourth (i.e., v8) vertices in u1.C. Con-
sequently, the adjacency lists of v5 and v8 can be directly obtained,
as the first and forth adjacency lists among all adjacency lists stored
in u1 regarding each child of u1 in CPI, without the help of a hash-
structure. Nevertheless, for presentation simplicity, in the paper we
still use vertex ids instead of positions/offsets in the representation
of the contents of adjacency lists in CPI.

A.3 Analysis of The Data Structure in TurboISO

Exponential Size of The Auxiliary Data Structure in TurboISO.
The auxiliary data structure in TurboISO [8] can be of exponen-

tial size. For example, consider the spanning query tree q in Fig-
ure 17(a) and a data graph G with N + 2 vertices, where the sub-
graph of G induced by the first N vertices, (v0, . . . , vN−1), form a
near-clique and all have label A, edges (v0, vN−1) and (vi, vi+1) for
each 0 ≤ i < N−1 are absent from G, and v0 is connected to vN and
vN+1, respectively, with labels B and C.2 The data structure built by
TurboISO is shown in Figure 17(b). u0 has only one candidate, v0.
For u1, there are (N − 3) candidates {v2, . . . , vN−2}; note that v0 is
not a candidate because it has been used in the mapping of u0, and
v1 and vN−1 are also not candidates because they are not connected
to v0 (the map of the parent of u1, i.e., u0) in G. For u2, there are
(N − 3) × (N − 4) candidates; that is, regarding each candidate vi

of u1 (i.e., the parent of u2), there are (N − 4) candidates for u2.
In general, ui has

∏i
j=1(N − j − 2) candidates for 1 ≤ i ≤ n − 1

(assume n < N). Thus, the total size of the data structure is at least∏n−1
i=1 (N − i − 2) > ( N−3

e )n−1, which is exponential to the size of the
query; here e is a mathematical constant and is approximately equal
to 2.71828. Note that, if there is a non-tree edge between u2 and un

in q in Figure 17(a), then there will be no embeddings of q in G;
that is, all these generated candidates in the data structure will be
finally pruned during embedding enumeration.
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Figure 18: Restrict to k (= 1) Path Embeddings
Restrict to k Path Embeddings. To resolve the issue of possible
exponential size of the auxiliary data structure, TurboISO only mate-
rializes k embeddings for each root-to-leaf query path in its imple-
mentation when computing the matching order of query vertices, if
we only retrieve k subgraph isomorphic embeddings for q. How-
ever, such a materialization cannot always guarantee to generate k
subgraph isomorphic embeddings for q from the data structure. For
example, consider the query q in Figure 18(a) and the data graph G
in Figure 18(b), where the BFS tree qT of q is illustrated by thick
edges. Assume k = 1, the materialized auxiliary data structure in
TurboISO may only contain the embedding of qT in G as illustrated
by the thick edges in Figure 18(b). Then, from the data structure,
we cannot generate the embedding of q in G that maps u1 to v0.

To generate k embeddings of q in G, TurboISO materializes more
path embeddings on demand in enumerating subgraph isomorphic
embeddings, when needed. For example, in Figure 18(b), the path
embedding (v0, v3, v5) will be materialized in enumerating subgraph
isomorphic embeddings. Thus, the size of the data structure in
TurboISO can still be exponential in the worst case. We tested TurboISO

on the query q′ in Figure 18(c) and a data graph with 103 vertices,
where the vertices v0, . . . , v99 with label A form a near-clique as
above, v100 with label B is connected to vi for 0 ≤ i ≤ 99, and v101

with label C is connected to v0 and also connected to v102 with label
A; the spanning tree of q is chosen as indicated by thick edges in
Figure 18(c), k = 1, TurboISO crashes due to the exponential size of
the data structure constructed when enumerating subgraph isomor-
phic embeddings; note that, there actually is no result for this query
on this data graph.

Moreover, if we want to retrieve all subgraph isomorphic em-
beddings, then we have to materialize all path embeddings; that is,
the worst case exponential size is unavoidable using TurboISO. As
a result, TurboISO cannot scale to large queries or large data graphs.

2Note that neither the query q nor the data graph G can be com-
pressed by the techniques in [8] or [14].
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A.4 Pseudocode of Core-Match

Algorithm 5: Core-Match
Input: Matching index i, matching order (u1, . . . , u|V(q)|), a CPI, and a

data graph G
Output: All embeddings of q in G

1 if i = |V(q)| + 1 then Output M as an embedding of q in G;
2 else if i = 1 then
3 for each data vertex v ∈ ui.C do
4 M(ui)← v; Mark v as visited;
5 Core-Match(i + 1); Mark v as unvisited;

6 else for each data vertex v ∈ Nui .p
ui (M(ui.p)) do

7 if v is unvisited and ValidateNT(v, ui,G) then
8 Same as Lines 4–6;

The pseudocode of Core-Match is shown in Algorithm 5, where
ValidateNT(v, ui,G) validates non-tree edges. That is, for each non-
tree edge (u j, ui) ∈ E(q) with j < i and u j , ui.p in the matching
sequence/order, it checks whether (M(u j), v) ∈ E(G). Note that,
for simplicity, we present Algorithm 5 in a recursive form by recur-
sively invoking Core-Match; however, for efficiency consideration,
our implementation of Algorithm 5 is non-recursive.

A.5 Generalize Leaf-Set to Independent-Set
It is immediate that a leaf-set is an independent-set. However,

the reverse is not true. Thus, we can generalize the forest-leaf de-
composition in Section 3 to a forest-IS (independent-set) decompo-
sition; that is, compute the maximal independent-set of the forest-
structure T . Intuitively, we want the independent-set to be as large
as possible (or equivalently, the forest-set VT as small as possible);
moreover, we also need the subgraph q[VC ∪ VT ] to be connected
to obtain a connected matching order of VC ∪ VT . This is to com-
pute the Connected Minimum Vertex Cover (cMVC) that is also
connected to the core-structure q[VC], for each connected tree in T ;
that is, we need the connection vertex of the connected tree to be in
the cMVC. In general, computing cMVC is NP-hard for a graph [5].
The good news is that we are dealing with trees. Moreover, we re-
quire the connection vertex between the tree and the core-structure
to be in the cMVC (e.g., u1 and u2 in Figure 4(c) need to be in the
cMVC). Therefore, it is easy to verify that the set of vertices with
degree at least two and the connection vertex is the cMVC; thus, VT

is the set of vertices with degree at least two and excluding the con-
nection vertices, and VI is the set of degree-one vertices excluding
the connection vertices. That is, the leaf-set is maximal possible
independent-set we can get from the forest-structure T .

Discussion. It is, in principle, also possible to compute an indepen-
dent set from the core-structure q[VC] of q and put the independent
set at the end of the matching order. However, this will put some
of the non-tree edge checkings at the end of the matching, which
is not a good idea as shown in the Introduction. This is because
we have proved in Lemma 3.1 that the core-structure q[VC] is the
minimal connected subgraph containing all possible non-tree edges
regarding any spanning tree of q. For example, consider a query q
where the core-structure consists of a cycle, then every edge in the
core-structure is a possible non-tree edge. Thus, we do not compute
the independent set for the core-structure.

A.6 Root Selection and Candidate Filtering
Root Vertex Selection for a Query. To build the CPI, we first
need to construct a BFS tree of the query q, which is to choose a
root vertex for q. Recall that, in our core-forest-leaf decomposition
based framework (see Section 3), we put all query vertices from the

core-structure at the beginning of the matching order. Moreover the
root vertex will be the first vertex in a matching order. Thus, the
root vertex is chosen from the core-set VC .

Intuitively, we favor the root vertex to have a small number of
candidates and to have a large degree; fewer candidates means
fewer partial embeddings being generated, while larger degree means
more chance to prune partial embeddings at early stages. Similar
to [8], we choose the root vertex r as r ← arg minu∈V(q)

|C(u)|
dq(u) where

C(u) is the set of candidates in G of u. There are different strategies
for obtaining C(u), and different strategies will have different costs.
Thus, we first use a light-weight strategy to obtain C(u) based on
only the label lq(u) and degree dq(u) of u; that is, C(u) is the set
of vertices in G with label lq(u) and degree at least dq(u). Top-3
vertices are obtained based on the computed C(u). Then, we com-
pute a reduced (i.e., more accurate) set C(u) of candidates for the
selected top-3 vertices, by using the candidate filtering techniques
(i.e., CandVefiry) which will be described in below; the vertex with
the smallest |C(u)|/dq(u) is selected as the root vertex. For example,
for the query q in Figure 7(a) and the data graph G in Figure 7(c),
u0 is chosen as the root, because dq(u0) = 2 and C(u0) = {v1, v2}

and |C(u0)|/dq(u0) = 1 is the smallest among all query vertices.

Candidate Filtering. To reduce the size of candidate sets of query
vertices, many candidate filtering techniques have been proposed [4,
8, 15, 19, 22, 24] by exploiting the local features of query vertices,
such as vertex label filter [19], vertex degree filter [19], and Neigh-
borhood Label Frequency (NLF) filter [24]. In Algorithm 3, we
retrieve the candidates for a query vertex based on the vertex label
filter and vertex degree filter (see Lines 1,12). Applying the NLF
filter is time-consuming; that is, verifying one candidate vertex v
for a query vertex u takes O(|LN(u)|) time, where LN(u) is the set
of unique labels of u’s neighbors. In order to reduce the number
of invokings of the expensive NLF filter, we propose the maximum
neighbor-degree filter, which can be verified in constant time for
each candidate data vertex.

Definition A.1: The maximum neighbor-degree of a vertex u in a
graph g, denoted mndg(u), is the maximum degree of all its neigh-
bors (i.e., mndg(u) = maxu′∈Ng(u) dg(u′)). �

We verify candidates for query vertices by the lemma below.

Lemma A.1: Given a query q and a data graph G, a data vertex
v ∈ V(G) is not a candidate of u ∈ V(q) if mndG(v) < mndq(u). �

Proof Sketch: We prove the lemma by contradiction. Assume v is
a candidate of u with mndG(v) < mndq(u); that is, there is an embed-
ding M that maps u to v. Let u′ be the neighbor of u with the maxi-
mum degree among all neighbors of u (i.e., dq(u′) = mndq(u)), and
v′ be the vertex to which u′ maps in M. Then, dG(v′) ≤ mndG(v) <
mndq(u) = dq(u′), and u′ cannot be mapped to v′ due to degree
violation. We reach a contradiction. Thus, the lemma holds. �

Algorithm 6: CandVerify
Input: A potential candidate vertex v for a query vertex u
Output: true if v is a candidate of u, and false otherwise

1 if mndG(v) < mndq(u) then return false;
2 for each label l ∈ LN (u) do
3 if d(v, l) < d(u, l) then
4 return false;

5 return true;

Then, CandVerify is shown in Algorithm 6. We check the light-
weight (i.e., constant-time) filter (Line 1) before applying the more
expensive NLF filter (Lines 2–4), where d(v, l) denotes the number
of neighbors of v with label l.
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A.7 Pruning Power in CPI Construction
As shown in Table 2 in Section 5, both directions of S-NTEs are

exploited in the top-down construction algorithm. The direction
of→ is exploited in the forward processing of Algorithm 3, while
the direction of ← is exploited in the backward processing. The
direction of ↓ (i.e., from upper-level vertices to lower-level vertices)
for tree edges and C-NTEs is exploited in the forward processing of
Algorithm 3, while the direction of ↑ is exploited in Algorithm 4.
Therefore, both directions of every query edge in q are exploited
for reducing the size of candidates of query vertices.
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Process order Vertex Edges Algorithm phase

1 u1 e1 Algorithm 3 – Forward
2 u2 e2, e3 Algorithm 3 – Forward
3 u1 e4 Algorithm 3 – Backward
4 u3 e5 Algorithm 3 – Forward
5 u4 e6, e7, e8 Algorithm 3 – Forward
6 u3 e9 Algorithm 3 – Backward
7 u2 e12 Algorithm 4
8 u1 e10, e11 Algorithm 4
9 u0 e13, e14 Algorithm 4

(c) Pruning power of edges exploited
Figure 19: Exploit Both Directions of Query Edges in Pruning

Example 1.1: Figure 19 illustrates exploiting the pruning power
of both directions of query edges at different algorithm phases.
Figure 19(b) shows the unidirectional edges of the query q in Fig-
ure 19(a); each undirected edge of q is replaced by two unidirec-
tional edges, and solid edges are tree edges while dashed edges
are non-tree edges. Query vertices of q are processed in the order
shown in the first column of Figure 19(c); the last column shows the
different phases of the algorithms, while the third shows the set of
unidirectional edges exploited in candidates generation or pruning.
Thus, each edge is exploited twice, once in each direction. �

A.8 Additional Experimental Results
Eval-A-I: Additional Results for Section 6. Firstly, we show
some additional results for the testings in Section 6.
Effectiveness of Compressing Core-Structures. Table 4 shows the
average number (i.e., Avg) of reduced vertices by the query graph
compression technique (NEC) in [8] for compressing core-structures
of queries, and the number (i.e., #R) of queries whose core-structures
are compressed by NEC for each query set containing 100 queries.

HPRD Yeast Synthetic Human
Query Avg #R Avg #R Avg #R Avg #R

q25S /q10S 0.09 8 0.41 33 0.02 2 0.62 41
q50S /q15S 0.16 13 0.46 34 0.03 3 0.45 32
q100S /q20S 0.41 28 0.41 33 0 0 0.31 25
q200S /q25S 0.35 27 2.3 83 0.01 1 0.65 39
q25N/q10N 0.1 9 0.41 33 0.01 1 0.83 39
q50N/q15N 0.21 16 0.34 21 0 0 1.37 49
q100N/q20N 0.68 47 0.61 38 0.01 1 1.39 49
q200N/q25N 1.29 67 0.89 44 0 0 0.86 43

Table 4: Avg: average number of reduced vertices by NEC [8];
#R: number of queries compressed by NEC [8]
Enumeration/Ordering Time by Varying #embeddings. Figure 20
shows the results of splitting the total processing time in Figure 12
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Figure 20: Enumeration/Ordering Time (vary #embeddings)

into enumeration time and ordering time. The query vertex order-
ing time of CFL-Match remains the same when varying #embeddings
since our ordering time is independent of #embeddings. However,
the query vertex ordering time of TurboISO increases when more
embeddings need to be reported. This is because, TurboISO heuris-
tically restricts to only generate and materialize #embeddings em-
beddings in a data graph for query paths (see Section A.3).

Eval-A-II: Additional Datasets and Queries. In the following,
we report the experiment results on another two large real graphs,
DBLP3 and WordNet4. WordNet contains 133, 445 edges, 82, 670
vertices with an average degree 3.3, and 5 distinct labels; DBLP
contains 1, 049, 866 edges, and 317, 080 vertices with an average
degree 6.6. Vertices in DBLP have no labels, we randomly assign
a label out of 100 distinct labels to each vertex.
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Figure 21: Evaluating TurboISO-Boost

Total Processing Time of TurboISO-Boost. Figure 21 shows the pro-
cessing time of TurboISO-Boost against other algorithms on DBLP
and WordNet. TurboISO-Boost is faster than TurboISO for queries
q10S , q15S , q10N on WordNet, but slower for other settings. Never-
theless, CFL-Match significantly outperforms both algorithms.
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Figure 22: Frequent Query vs Infrequent Query

Frequent/Infrequent Queries. In addition to random queries as tested
in Section 6, we also consider frequent queries (#embeddings >
104 for DBLP and > 108 for WordNet), and infrequent queries
(#embeddings < 103 for DBLP and < 108 for WordNet). The
results are shown in Figure 22. CFL-Match is much faster than
TurboISO for all 3 query sets (frequent/infrequent/random queries).
CFL-Match is faster for frequent queries than infrequent queries on
WordNet since it is easier to reach #embeddings results for frequent
queries as a result of the permutation effect; however, it runs faster
for infrequent queries on DBLP since the number of candidates for
query vertices in infrequent queries is much smaller.

3https://snap.stanford.edu/data/
4http://vlado.fmf.uni-lj.si/pub/networks/data/

1214




