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ABSTRACT
We describe BUDS, a declarative language for succinctly and sim-
ply specifying the implementation of large-scale machine learning
algorithms on a distributed computing platform. The types sup-
ported in BUDS–vectors, arrays, etc.–are simply logical abstrac-
tions useful for programming, and do not correspond to the actual
implementation. In fact, BUDS automatically chooses the physi-
cal realization of these abstractions in a distributed system, by tak-
ing into account the characteristics of the data. Likewise, there
are many available implementations of the abstract operations of-
fered by BUDS (matrix multiplies, transposes, Hadamard products,
etc.). These are tightly coupled with the physical representation.
In BUDS, these implementations are co-optimized along with the
representation. All of this allows for the BUDS compiler to auto-
matically perform deep optimizations of the user’s program, and
automatically generate efficient implementations.

1. INTRODUCTION
Developing a statistical or machine learning (ML) application

that derives value from a large data set is difficult. Unless the appli-
cation uses a standard model whose usage is widely understood and
for which a library implementation exists (such as logistic regres-
sion or k-means clustering), building such an application typically
requires a three-step process:

1. The whiteboard step–Do the math to define the model and
derive the learning algorithm.

2. The small data prototype–Build a prototype of the mod-
el/learning algorithm using a tool such as Matlab or R, and
evaluate the prototype using a sub-sample of the data.

3. The big data deployment–Build a robust, distributed or par-
allel implementation and apply it to a production data set.

This workflow can require a tremendous amount of effort. In partic-
ular, moving to a distributed or parallel implementation of a large-
scale learning algorithm is not easy, even using a dataflow platform
such as Hadoop [44], Spark [46], DryadLinq [45], or Flink [6]. A
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programmer must work as a “human optimizer,” making dozens of
crucial design choices, most of which relate to questions such as
what is an appropriate representation of data (especially interme-
diate results), which operations will be used to perform the com-
putation (joins, maps, reduces, etc.), the order those operations are
applied in, and also physical design choices such as which opera-
tions will have results cached in RAM or on disk for future use. In
our experience, programmers have a very tough time planning such
a computation. For just a few examples, we have seen cases where:

• In a text mining application written on top of Spark, a pro-
grammer inappropriately chooses to normalize the term-fre-
quency vectors associated with each document in the corpus,
storing each non-zero entry as a separate entry in an RDD.
The result is that each step of a gradient descent algorithm
requires an expensive join.

• In another Spark text mining application, a programmer does
not cache an RDD that is used at each iteration of the algo-
rithm, requiring it to be recomputed at each iteration.

• In an application mining spatial data, a programmer joins a
large number of grid cells with information about the loca-
tions each grid contains, and then takes the top twenty cells,
based on a metric that was known before the join. Had the
top-k been run first, the join would have been costless.

These may be obviously poor programming choices, but most bugs
are obvious in hindsight. Further, there is the problem that even
once the programmer gets things right, changing data characteris-
tics (or moving to an even larger data set) can render an optimal im-
plementation suboptimal. Dependence of data manipulation code
written in a non-declarative programming interface on the charac-
teristics of the data it operates on has long been recognized as un-
desirable. In fact, the fragility of such non-declarative data pro-
cessing codes was impetus behind the definition of the fully declar-
ative relational calculus [19] and eventually the declarative subset
of SQL—two inventions that began thirty years of dominance for
the relational model.

A Declarative Language for Large-Scale Statistical Processing.
While there have been notable efforts aimed at analyzing host lan-
guages to automatically build efficient dataflow programs [7, 28],
this is provably an impossible task in the general case. A different
option is to use a declarative language. However, SQL—the most
widely-used declarative language—typically does not provide di-
rect support for mathematical structures such as vectors and ma-
trices. This is also true of extensions to SQL, such as Microsoft’s
U-SQL programming language for their Azure Data Lake services
platform [1]. U-SQL is a general-purpose framework, and is not
meant specifically for mathematical programming. Array databases
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that do support such structures (see [40] for a survey) generally lack
support for declarative specification of complex, recursive compu-
tations.

In this paper, we describe the BUDS programming language,
which is a statistically-oriented, declarative language. Our design
for BUDS is motivated by the BUGS language for probabilistic pro-
gramming [32]. BUDS can be used to declaratively specify a dis-
tributed Markov chain simulation whose state consists of millions
or even trillions of values, and may require terabytes to store.1

We are interested in Markov chain simulation since it is the fun-
damental method for learning a statistical model in Bayesian ML,
where it is known as Markov chain Monte Carlo, or MCMC [8].
While our emphasis is on Bayesian ML, BUDS can be used for
many iterative learning tasks.

At first glance, BUDS looks something like a variant of R or
MATLAB. In that sense, BUDS resembles SystemML [25] and
Mahout Samsara [2] which are scalable, declarative, linear alge-
bra systems. However, a key difference is that BUDS is not limited
to vectors and matrices. BUDS allows declarative, distributed com-
putations over sets, maps, arrays (including vectors and matrices),
and compositions of these types. In practice, we find that this can
significantly expand the set of computations that are easily speci-
fied using BUDS. For example, it is very difficult to code hidden
Markov model learning over a large document corpus as a pure vec-
tor/matrix computation, as we detail in the Appendix of the paper.

Our Contributions. They are as follows:

1. The types supported in BUDS—vectors, arrays, etc.—are
simply logical abstractions useful for programming, and do
not correspond to the actual implementation. In fact, BUDS
automatically chooses the physical realization of these ab-
stractions in a distributed system. A large matrix may be
physically stored as a set of column vectors; the optimal im-
plementation is chosen automatically by the system.

2. Likewise, there are many available implementations of the
abstract operations offered by BUDS (matrix multiplies, trans-
poses, Hadamard products, etc.). These are tightly coupled
with the physical representation—for example, a “pure ma-
trix multiply” using the BLAS library [29] is only available
for data stored as actual matrices, and not for a matrix stored
as a set of vectors. In BUDS, these implementations are au-
tomatically co-optimized along with the representation.

These two ideas: automatic optimization of data represen-
tation and co-optimization of the abstract operations offered
by BUDS, allow for a programmer to write efficient BUDS
programs with a minimum of effort.

3. Finally, we show that BUDS can be used to write four differ-
ent Bayesian machine learning codes. We evaluate the effi-
cacy of the BUDS optimizer on these codes.

2. BUDS OVERVIEW
In the next two sections of the paper, we describe the BUDS

language in detail. BUDS’ design follows a few core principles:

• The language should be declarative. It should have no control
flow, which is difficult to optimize and automatically paral-
lelize/distribute.

1For the uninitiated, a Markov chain is a discrete-time stochas-
tic process, where at time tick i the state of the system Xi ran-
domly transitions to state Xi+1, in such a way that Pr[Xi+1 =
xi+1|x0, x1, ..., xi] = Pr[Xi+1 = xi+1|xi].

• The BUDS language itself should serve primarily as a way to
describe how data are moved between user-defined functions.

• The language should have a small but useful set of compos-
able data types: maps, lists, and arrays.

• Implicit parallelism should be provided in the form of com-
prehensions over those data types.

• As in other mathematical languages, operations over vectors
and matrices should be part of the language.

2.1 A Simple BUDS Program
Example Model. Our example centers on a simple Markov chain
that simulates k people traveling around a set of n cities and visiting
m restaurants. In this model, each individual travels independently
from one city to the other. Once the person arrives in a city, she
chooses one of the local restaurants and then moves to the next
city, repeating the process indefinitely.

The simulation starts at iteration i = 0 by assigning each indi-
vidual to a city by drawing a random value from a categorical distri-
bution parameterized with the vector s of length n, which contains
the probabilities of starting at any given city (Here, “∼” should be
read as “is sampled from”):

c
(0)
j ∼ Categorical (s) for each j ∈ {1, 2, . . . , k}

Then each individual chooses a restaurant in that city. Given the
matrix D, which contains n rows and m columns and denotes the
probability of visiting each restaurant in a city (so that Da,b = 0 if
restaurant b cannot be found in city a), a restaurant is selected by
drawing a value from a categorical distribution, parameterized with
the row-vector corresponding to the assigned city c(0)j :

r
(0)
j ∼ Categorical

(
D
c
(0)
j

)
For subsequent iterations i = 1, 2, . . . , ..., the simulation chooses

the next city using the n-by-n transition matrix T denoting the
probability of moving from one city to another. The city is drawn
randomly from a categorical distribution parameterized with the
row-vector corresponding to the current city c(i−1)

j :

c
(i)
j ∼ Categorical

(
T
c
(i−1)
j

)
At each city, a restaurant is selected using a categorical distribu-
tion parameterized with the row-vector of D corresponding to the
current city c(i)j , subject to the constraint that the probability of the

previous restaurant r(i−1)
j is zero, to avoid visiting it again:

r
(i)
j ∼ Categorical

(
D
c
(i)
j

∣∣∣∣pr(i−1)
j

= 0

)
Representing the Data in BUDS. To implement this model in
BUDS, we begin by first specifying the base data set and variables.
This is done in the data section of a BUDS code:
data {
k: range(individuals);
n: range(cities);
m: range(restaurants);
s: array[n] of real;
D: array[n,m] of real;
T: array[n,n] of real;

}

The range type is used to associate an index variable with a set
of values. The index variable n is allowed to range over the integer
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Figure 1: Graph of variable dependencies for the cities-
restaurants model, iterations i = 0, 1, 2.

keys from the set {1, 2, . . . ,cities}. Users can then describe
structures over such domains, such as the matrix D, defined as an
array over the domains cities and restaurants.

Each value given as an argument to a range must be passed
into the BUDS compiler at compile time (see Section 5.5); the set
of range arguments are then used to cost candidate computational
plans. Note that it is fine to omit the index variable, and, for ex-
ample, simply declare range(individuals); without the n.
The benefit of declaring an index variable, however, is that since
the range argument must be supplied at compile time, its name is
typically chosen so as to be externally meaningful. The index vari-
able, however, is often chosen to match mathematical convention.

The random variables are then under the var section of the code:
var {
c: array[k] of integer;
r: array[k] of integer;

}

Describing Dependencies. BUDS differs from other mathematical
languages such as MATLAB in that it is fundamentally declarative;
to describe a computation, the programmer simply lists dependen-
cies among variables. When a BUDS program is executed, vari-
ables are then updated recursively according to those dependencies.
The set of dependencies can be represented as a directed graph in
which vertices represent variable instantiations and edges represent
relations of dependency. Figure 1 shows such a graph.

Since an iterative computation such as a Markov chain simu-
lation must be initialized, BUDS provides syntax for describing
initialization statements—that is, the variable assignments for the
“zeroth” iteration of the computation. The BUDS description of
the initialization for the variables c(0) and r(0) is:
init {
for (j in 1:k) {

c[j] <- categorical(s);
r[j] <- categorical(D[c[j]]);

}
}

The update assignments of c(i) and r(i) are then typically written
at the end of the BUDS program (in our example code, the function
setEntry is used to set the probability of the previously-visited
restaurant to zero):

for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
r[j] <- categorical(setEntry(D[c[j]], r[j], 0.0));

}

Note that this loop is an example of a comprehension [15]. Hence,
it is a parallel construct, akin to MATLAB’s parfor construct.

2.2 Another BUDS Example
We now give a complete BUDS implementation for an actual

Bayesian ML algorithm. The Bayesian Lasso [37] is a Bayesian
variant of the Lasso, using a regularizing prior on the regression
coefficients. In our discussion, we assume that the base dataset is

data {
n: range(responses);
p: range(regressors);
X: array[n,p] of real;
y: array[n] of real;
lam: real;

}

var {
sig: real;
b, t: array[p] of real;
yy, Z: array[n] of real;
A: array[p,p] of real;

}

init {
sig <- invGamma(1, 1);
t <- { invGauss(1, lam) | j in 1:p };

}

A <- inv(X ’* X + diag(t));
yy <- { y[i] - mean(y) | i in 1:n };
Z <- yy - X * b;

b <- normal(A * (X ’* yy), sig * A);
sig <- invGamma( ((n-1) + p) / 2,

(Z ’* Z + (b ’* diag(t) * b)) / 2 );

for (j in 1:p) {
t[j] <- invGauss(sqrt((lam * sig) / b[j]),

lam);
}

Figure 2: BUDS specification for Bayesian Lasso learning.

comprised of a regressor matrix X with n rows and p columns,
a response vector y of length n and the scalar, real-valued Lasso
parameter λ ≥ 0. The goal is to infer the vector of regression
coefficients β, the variance σ2, and the vector of features τ .

The learning algorithm for the Bayesian Lasso is a special Markov
chain simulation called a Gibbs sampler. Given the definitions
ỹ = y − µy, Dτ = diag (τ1, τ2, . . . , τp), Z = (ỹ −Xβ) and
A =

(
X>X+Dτ

)−1
as well as a suitable initialization for σ2

and τ , the update statements for the corresponding distributions of
the Gibbs sampler are:

β ∼ MultivariateNormal
(
AX>ỹ, σ2A

)
σ2 ∼ InverseGamma

(
(n− 1) + p

2
,
Z>Z+

(
β>Dτβ

)
2

)

τj ∼ InverseGaussian
(
λσ2

βj
, λ

)
for each j ∈ {1, 2, . . . , p}

This Markov chain can be specified in BUDS as in Figure 2. Note
that this simple bit of code tracks the mathematics almost precisely.
We begin with the definition of A, yy and Z, which correspond to
A, ỹ, and Z in the mathematical specification. We then give an ini-
tialization, as well as updates for b, sig and t, which correspond
to β, σ2, and τ in the math.

3. BUDS SYNTAX AND SEMANTICS

3.1 BUDS Data Types
A data definition binds a variable name to a data type that de-

scribes how the variable is structured. There are two kinds of data
definitions: base data definitions, which are located in the data
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section of the code and used to describe the domains and symbols
of the base dataset, and variable definitions, which are located in
the var section and describe the structure of random and tempo-
rary variables. The BUDS type system supports singleton types
such as integer, real, string, the compound array, list
and map types, and the special domain declaration and reference
types range and value.

Let us consider the Bayesian Lasso. Simple elements such as the
real-valued constant λ are easy to declare:

lam: real;

For the regressor matrix X and the response vector y to be de-
clared, a description of the domains on which those compound
structures are defined must be provided using the range type:

n: range(responses);

The above definition binds the symbol n to the domain of responses,
indexed by the integer key attribute values 1, 2, . . . ,n. Note that
range symbols can only be defined in the data section of the
code, and whenever a range symbol is referenced in the context
of a mathematical model expression, it denotes the maximum of
those integer key values. Once n has been declared and associated
with responses, both symbols can be used to describe structures
with compound types, such as the response vector y:

y: array[n] of real;

The above declaration defines y as an array of length n comprised
of entries of real type. In general, array types are meant for
describing dense structures, which means that, in a structure of the
form array[r1, r2, . . . , rk] of T, there is a value of type T on
each of the r1 × r2 × . . .× rk entries. In the case of the Bayesian
Lasso, all the structures in the dataset and random variables happen
to be dense, and therefore the array type is enough to describe
said structures.

Other Compound Types. Other models require sparse, set-based
structures. For instance, some text mining models have a base
dataset consisting of a dictionary of words w1, w2, . . . , wm and
a corpus of documents d1, d2, . . . , dn represented with the struc-
ture z where zi,j is a positive integer denoting the number of times
that word wj appears in document di (the so-called “bag of words”
model). Since the set of words contained in a given document usu-
ally corresponds to a small portion of the whole dictionary, a dense
area array is not an adequate type for representing z. BUDS pro-
vides the map type for such situations. The syntax for declaring a
map is map[d] of T, where d is the name of the key domain. Al-
though similar to array in most respects, map types can only be
defined over a single key domain2 and do not provide the guarantee
that there always exists an entry of type T on each possible entry in
the structure. Thus, this data set would be represented as:

data {
n: range(documents);
w: range(words);
z: array[n] of map[words] of integer;

}

The other compound data type in BUDS is the list type, which
is defined with the syntax list[d] of T, where d is the name of
the indexing domain. The list type is used to represent array-like
structures of variable length, which are useful for sequential ob-
jects, such as time series. In some text mining models, the position

2The reason why only one key domain is allowed is because BUDS
provides specific syntax for accessing the set of keys present in a
structure of type map using the domain name. Nonetheless, defini-
tions of the form map[d1] of map[d2] of . . . are acceptable.

of a word within a document is important, so that each document in
a data set is a variable-length sequence of words from a dictionary:

data {
n: range(documents);
w: range(words);
p: range(wpos);
z: array[n] of list[wpos] of value(words);

}

The above code defines each document as a list indexed over the
domain wpos, with a maximum length of p. The value type is
used to denote that each entry is a single value corresponding to the
domain of words, as an integer in {1, 2, . . . ,w}.

3.2 Expressing Computation
Assignments. A BUDS program is a set of dependencies; each
node is a variable, and an edge is a direct dependency (expressed
via the left arrow <- operator). A BUDS is executed as a series
of epochs; each epoch corresponds to an update of each program
variable according to the dependencies listed.

Recursion. Dependencies can be written in any order. With the
exception of initialization statements, circular references between
variables are permitted—in fact, such references are essential, as
they describe recursion. Consider the following statements:

init {
W <- f(c);

}
Z <- g(W);
W <- h(Z);

These specify a computation that begins with an initialization of W
using a function that takes constant values as input. Thereafter, new
instantiations of Z and W are iteratively generated using as parame-
ters the previously-generated instantiations of said variables.

Variable Expressions. The expression on either side of an <- de-
pendency may be the name of a variable or a reference to a par-
ticular entry in the variable structure using a temporary indexing
variable declared within the context of a block. For example, we
might separately applying an assignment expression on the rows of
a matrix or the entries of a vector, as in the Lasso vector τ :

for (j in 1:p) {
t[j] <- invGauss(sqrt((lam * sig) / b[j]), lam);

}

Here, the variable expressions t[j] and b[j] make use of the
temporary index variable j, which is defined over the domain of
those variables–that is, regressors. The above block does not
denote a “loop” in the conventional sense; rather, it denotes in-
dependent, parallel assignments to separate entries of the vector t.
Therefore, the use of temporary variables that change state on every
iteration of the “loop” or any form of variable dependence among
different cells of a compound variable inside the “loop” are invalid.

We return to the example from Section 2.1, where a user might be
tempted to denote setting the probability of the previously-visited
restaurant to zero as follows:
var {
tempD: array[m] of real; . . .

} . . .
for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
tempD <- D[c[j]];
tempD[r[j]] <- 0.0;
r[j] <- categorical(tempD);

}
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The above code does not compile in BUDS since it is not possible
to assign a variable to an expression more than once in an epoch.
Note, however, that even after removing the line tempD[r[j]]
<- 0.0;, this program would not compile, as tempD is being
fully reset in the body of the loop, and hence iterations of the loop
body cannot correctly be run in parallel.

However, the following would be valid:

var {
tempD: array[k, m] of real;
. . .

}
. . .
for (j in 1:k) {
c[j] <- categorical(T[c[j]]);
tempD[j] <- setEntry(D[c[j]], r[j], 0.0);
r[j] <- categorical(tempD[j]);

}

This is fine, as it is equivalent to the straight-line code:

...
c[1] <- categorical(T[c[1]]);
tempD[1] <- setEntry(D[c[1]], r[1], 0.0);
r[1] <- categorical(tempD[1]);
c[2] <- categorical(T[c[2]]);
tempD[2] <- setEntry(D[c[2]], r[2], 0.0);
r[2] <- categorical(tempD[2]);
...

Clearly, no variable is set twice.

Linear Algebra Operations. BUDS includes syntax for perform-
ing linear algebra operations over array types. The addition (“+”)
and subtraction (“-”) operators can be applied on any two com-
pound variables of the same type, and denote entry-wise arithmetic.
The operators .* and ./ work similarly. Arithmetic operations
between compound types and integer and real scalars are al-
lowed, and denote the independent application of the operation on
each element of the compound variables. For example, given the
vectors a and b of length k and the scalar value x, the expression

x1k + (a− b)

can be computed in BUDS as x + (a - b), where a and b are
both of type array[k].

In addition to the operations outlined above, BUDS includes syn-
tax for multiplication between matrices or vectors, possibly com-
bined with transposition. For these operations, BUDS assumes
that any array[k] value denotes a column vector of length k,
and that an array[m,n] denotes a matrix with m rows and n
columns. The multiplication operator * accepts two matrices with
types array[m,k] and array[k,n] and returns a matrix of
type array[m,n]. The transpose-multiply operators ’* and *’
have two applications: first, to allow for matrix multiplications of
the form A>B and AB>, respectively; and, second, as a require-
ment for vector products of the form x>y (inner product) and xy>

(outer product), which is necessary as BUDS treats all array[k]
types as column vectors. For example, the expression AX>ỹ from
the Bayesian Lasso can be represented in BUDS as:

A * (X ’* yy)

where the ’* operator produces an array[p] which, when mul-
tiplied with A on the left-hand side, results in an array[p].

Aggregate Functions. Performing aggregation on compound struc-
tures in BUDS is achieved with the employment of the sum, mean,
var, stdev and count functions. These functions take a struc-
ture defined over the domains d1, d2, . . . , dn and return a struc-
ture defined over the domains d2, . . . , dn. In the case where the

structure is defined over a single domain, the result is a real-valued
scalar, with the exception of count which returns an integer. In-
tuitively, BUDS aggregate functions can be understood as SQL ag-
gregates with a Group-by clause that encompasses d1, d2, . . . , dn−1.
Thus, for example, given the matrix X of type array[m,n], the
expression sum(X) returns an array[n] structure where the jth
entry equals

∑
i X[i,j].

Consider, for example, the vector ỹ from the Bayesian Lasso,
which is computed by subtracting the mean µY from each element
yi. The BUDS comprehension assignment is straightforward:

yy <- { y[i] - mean(y) | i in 1:n };

3.3 Comprehensions and Parallelism
Any assignment under a for block can be represented using a

comprehension syntax expression [15]. Comprehensions are a cen-
tral feature of the BUDS language and are used to describe com-
pound structures with a set of range definitions. In general, a com-
prehension is an expression of the form

{e|r1, r2, . . . , rk}

and is read as “the collection of all e where r1, r2, . . . , rk”. For ex-
ample, the for blocks shown above are equivalent to the following
assignments using comprehensions:

init {
t <- { invGauss(1, lam) | j in 1:p };

}
t <- { invGauss(sqrt((lam * sig) / b[j]), lam)

| j in 1:p };

Note that for blocks and comprehensions can be nested arbi-
trarily. Thus, the block

for (i in 1:n) {
for (k in 1:m) {
W[i,k] <- f(Z[i,k]);

}
}

can be represented with the comprehensions

W <- { { f(Z[i,k]) | k in 1:m } | i in 1:n };

which can be abbreviated as
W <- { f(Z[i,k]) | i in 1:n, k in 1:m };

In addition to range definitions of the form vt in vr , compre-
hensions also permit the use of boolean predicates for filtering ele-
ments, so that only the ones that satisfy said predicates are present
in the structure. For example, given the variable y of type array[n],
it is possible to write a comprehension that defines a structure that
only contains the positive values of y as follows:

v <- { y[i] | i in 1:n, y[i] > 0 };

Since the structure defined in the above comprehension will possi-
bly contain less than n entries, it cannot be treated as a dense struc-
ture anymore, and therefore the application of a boolean predicate
on any array structure produces a structure of type map defined
over the same domain. In the case of map and list types, no such
type demotion is applied.

Comprehensions provide many benefits. They are an elegant
construct for describing an entire model as a set of simple assign-
ments. Comprehensions are also central to the BUDS model of
parallelism. The right-hand side of the comprehension expression
defines the level of granularity of the computation, so that each in-
stance of the expression on the left-hand side can be computed in-
dependently and then “collected” together as separate component
of a larger structure.
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The fact that comprehensions are executed in parallel and do
not allow for dependencies between “iterations” can be a bit dif-
ficult for a programmer. For example, consider a Bayesian Hid-
den Markov Model for text (see Figure 5 in the Appendix). Since
the algorithm for learning such a model requires associating hid-
den states with each word in the text, and those hidden states have
statistical dependencies on their neighbors, it is not possible to per-
form this assignment massively in parallel. In this case, our solu-
tion was to implement a user-defined function that operates on each
document as a single, indivisible unit.

4. EXECUTION OVERVIEW

4.1 Choosing a Prototype Platform
Our goal is to design the BUDS compiler to sit on top of an

existing execution platform—BUDS is a front-end programming
interface, and not a replacement for existing dataflow or relational
database engines. Still, we had to choose a prototype backend.
It was clear early on that one of the key components of a BUDS
implementation is a cost-based optimizer to determine the quality
of various backend implementations. Since available, open-source
dataflow platforms lack a full-fledged, cost-based optimizer, we
chose a relational database system.

In particular, we settled in SimSQL as the backend [17] for two
main reasons. First is SimSQL’s support for a very flexible type
of user-defined function called a VG function, which allows rela-
tively complex constructions taking multiple tables as input, and
producing multiple tables as output. Second is SimSQL’s support
for recursively-defined tables, which make it a natural target for
fixpoint computations.

After choosing SimSQL, we asked, should we translate BUDS
directly into relational algebra (which will then be optimized and
executed by the relational database) or should the target be SQL?
After much thought, we decided on SQL as an intermediate. SQL-
to-relational algebra translation is a difficult task in itself, and the
translation involves many steps that are likely to be repeated in any
BUDS direct-to-relational translation, such as unnesting via magic
sets re-writing [9].

4.2 Translator Overview
Given these considerations, we designed the BUDS translator so

that it takes as input the stochastic model together with statistics
describing the size of each of the domains referred by variables in
the model, then executes a sequence of steps that produces

(1) A schema for storing the base dataset in a set of relational
database tables, presented to the user as a series of SQL CREATE
TABLE statements.

(2) A set of queries for initializing and generating samples for the
variables in the model. For each of the variables, a SQL statement
describing a derived relation is returned.

SQL is at a lower level of abstraction than BUDS, in that SQL typ-
ically supports tables of records, and the logical types supported
by BUDS (maps, lists, arrays) need to be implemented in terms of
tables. Thus, there are many possible SQL implementations for a
BUDS program. The BUDS optimizer searches among those, in-
voking the optimizer for each. The SQL optimizer is then used
as a black box to search among different relational algebra imple-
mentations for the resulting SQL program. The two key technical
difficulties of the translation process are:

(1) The types supported in a BUDS do not correspond to the physi-
cal implementation of the program. Thus, the BUDS compiler must

automatically choose the physical realization of these abstractions.
For example, a large matrix may be physically stored as a set of
column vectors; the choice of an optimal implementation should
be automatic.

(2) Likewise, there are many available implementations of the ab-
stract operations offered by BUDS, which depend upon the physi-
cal implementation—for example, a matrix multiply using the BLAS
library [29] is available for data stored as a matrix, and not for a
matrix stored as a set of vectors, where the multiplication would be
implemented as a set of inner products over the output of a join:

SELECT A.row_id, B.col_ID,
inner_product (A.vec, B.vec)

FROM A, B

Our central idea is to explore the space of alternative implemen-
tations using an A*-style search algorithm [38]. That is, we first
translate the source specification into a target code whose seman-
tics are equivalent, and then we employ a series of transformations
that move from one target implementation to another. For each so-
lution that the search algorithm evaluates, the translator generates
SQL code and passes it to the DBMS’s query compiler and query
optimizer. The query optimizer returns the execution cost of the
solution back to the translator and the process is repeated until a
solution of minimal cost is obtained and returned to the user. This
idea is reminiscent of the tactic pioneered by the developers of Mi-
crosoft SQLServer’s AutoTune wizard [18].

4.3 The Target Platform: SimSQL
We chose SimSQL due to its support for user-defined functions

and recursion. In the remainder of this section, we give an overview
of SimSQL’s support for both. One thing missing from SimSQL is
native support for vectors and matrices, which is crucial to produc-
ing efficient statistical codes. Thus, we also briefly describe our
SimSQL extensions for vectors and matrices.

We illustrate SimSQL VG functions as well as recursion by re-
turning to the simulation from Section 2. Let us assume that we
have the following table, which encodes the vector s containing the
starting probabilities for each city:

STARTPROBS(DIM, VAL)

DIM tells us the position in the vector, and VAL is the value in that
position. We also have a table listing all of the people:

INDIVIDUALS(PID)

The first city is chosen using the Categorical VG function as fol-
lows:
CREATE TABLE CITY[0] (PID, CID) AS
FOR EACH i IN INDIVIDUALS
WITH Res AS Categorical (

SELECT * FROM STARTPROBS)
SELECT i.PID, r.CID
FROM Res AS r

Briefly, what this code does is to consider every tuple i in the
INDIVIDUALS table. For each individual, the Categorical
VG function is parameterized with all of the city probabilities from
STARTPROBS, which it uses to select a city at random. This result
is stored in the table Res. For a given i, the final SELECT query
then creates a tuple which is added to the CITY table. In the gen-
eral case, more than one tuple can be added, but here it is exactly
one. The tuples produced by all of the executions of the SELECT
statement (one for each individual) are UNIONed together to create
the CITY[0] relation.

Ignoring (for brevity) how restaurants are selected, we can then
move all of the people to the next city by conditioning on the cur-
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rent city. We assume a CITYPROBS(FROM_CID, TO_CID,
VAL) table that encodes the T matrix and gives us the probabil-
ity of transitioning between cities. Then we have:

CREATE TABLE CITY[i] (PID, CID) AS
FOR EACH i IN INDIVIDUALS

WITH Res AS Categorical (
SELECT cp.TO_CID, cp.VAL
FROM CITYPROBS AS cp, CITY[i - 1] AS c
WHERE cp.FROM_CID = c.CID AND c.PID = i.PID)

SELECT i.PID, r.RID
FROM Res AS r

The probabilities that govern the transition to the next city is chosen
by looking at the last city that person i was located in (that is, join
CITY[i - 1] with the tuple i on c.PID = i.PID).

4.4 Vectors and Matrices
To achieve efficient execution of the code from the BUDS-to-

SQL translation task, it is important that vectors and matrices are
supported as native attribute types.

Consider the problem of computing a Gram matrix from a list
of vectors storing bag-of-words encodings of a set of documents
(where each distinct word present in the document is mapped to an
entry in the vector). If xi stores the ith document as a row vector,
the gram matrix is computed as

∑
i xTi · x. In “vanilla” SQL, with

the table DOCUMENTS(DOC_ID, DIM_ID, VAL) storing the
list of vectors, this would be expressed in SQL as:

SELECT SUM (x1.VAL * x2.VAL), x1.DIM_ID, x2.DIM_ID
FROM DOCUMENTS x1, DOCUMENTS x2
WHERE x1.DOC_ID = x2.DOC_ID
GROUP BY x1.DOC_ID

This is expensive, since it requires a join of (potentially) a very
large table, followed by an aggregation. Further, if each document
averagesm distinct words—m can easily be on the order of 1000—
aggregating n documents requires processing n×m2 tuples output
from the join. This can be debilitating.

In our extension to SQL (which we call eSQL) we can instead
store such vectors in the table DOCUMENTS(DOC_ID, WORDS)
where WORDS is a vector. The Gram matrix code is simply:

SELECT SUM (OUTER (WORDS, WORDS))
FROM DOCUMENTS

This is much more efficient, requiring a simple scan of the DOCUMENTS
table. As an alternative, DOCUMENTS could have a single attribute
ALLDOCS, which is a matrix type. In this case, the gram matrix
computation is simply:

SELECT MATRIX_MULTIPLY (TRANSPOSE(ALLDOCS), ALLDOCS)
FROM DOCUMENTS

In this case, the matrix multiply is implemented using BLAS [29].
The extended SQL also contains facilities for constructing vec-

tors and matrices. For example, a simple query to construct a ma-
trix from CITYPROBS(FROM_CID, TO_CID, VAL) is:
CREATE VIEW CITYPROBS_MATRIX (VAL) AS
SELECT ROWMATRIX (MROW)
FROM (SELECT LABEL(VECTORIZE(LABEL(TO_CID, VAL)),

FROM_CID) AS MROW
FROM CITYPROBS
GROUP BY FROM_CID)

Here, the inner query creates a vector for each FROM_CID using
the VECTORIZE aggregate function. These vectors are then la-
beled with their row identifier (the FROM_CID) and aggregated
into a single tuple with a matrix attribute using the ROWMATRIX
aggregate function. Vectors and matrices can be deconstructed as
well:

SELECT c.CNT AS ROW, GET_ROW (c.CNT, cm.VAL)
FROM COUNTS AS c, CITYPROBS_MATRIX AS cm

Here, COUNTS is a system table, containing tuples with values 1,
2, 3, etc.

5. TRANSLATING BUDS MODELS
In general, the compilation process begins by parsing the input

and performing semantic checks. Next, a data dependency graph
is created. It is then analyzed to check for correct initializations
and lack of cyclic dependencies. At this point, the translation can
begin.

5.1 Moving Among Data Representations
Programmers in BUDS choose from data structures such as ar-

rays, matrices, maps, etc. One of the most important tasks in the
translation process is choosing how these data structures can be
represented in the underlying relational or linear model. For exam-
ple, the matrix D from BUDS in our city-and-restaurants model can
be represented in eSQL using four possible different schemas:

1. A table with n ×m records, each containing a double at-
tribute with the value of the cell Di,j , an integer attribute
with the key value for city i, and another integer attribute
with the key value for restaurant j; or,

2. A table with n records, each containing a vector attribute
of sizem with the values of the row vector Di, and an int-
eger attribute with the key value for city i; or,

3. A table with m records, each containing a vector attribute
of size n with the values of the column vector

(
D>
)
j
, and

an integer attribute with the key value for restaurant j; or,
4. A table with a single record containing a matrix attribute

of size m,n with the entire contents of D.

It is incumbent upon the translation framework to automatically
choose a suitable representation—one that can be implemented ef-
ficiently by the underlying platform.

The most fundamental data structure used to move among repre-
sentations to choose the optimal one is the type graph, which is a
directed graph where an edge between two types indicates that it is
possible to generate code that directly moves between them. Since
certain types are incompatible with one another, this graph is al-
most assuredly going to be disconnected for most translation tasks.
Part of the BUDS-to-SimSQL typeGraph relation is depicted in
Figure 3. This shows four possible representations for a matrix (or
two-dimensional array) in BUDS.

Each edge in this graph has an associated eSQL code template
that can be used to generate code for moving between concrete
types. We describe how the type graph is used to move among vari-
ous eSQL representations for a BUDS type logically, using Datalog
(in our actual BUDS implementation, we use Prolog).

The codes associated with edges in the type graph are repre-
sented in Datalog via the relation:

xformImp(InType, OutType, InName, OutName, Str).

An entry in this relation means that it is possible to transform
the variable InName of type InType into the variable OutName
of type OutType using the code contained in the string Str. For
example, consider the edge from v1 to v2 in Figure 3, which corre-
sponds to moving from a purely relational matrix representation, to
a set of vectors. We have the corresponding Datalog rule (here, we
use the convention that identifiers beginning with lower-case letters
are literals, and those with upper-case are variables; + refers to the
string concatenation operation):
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matrix[n,p]
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vector[p]
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{id_n,id_p}

double

Figure 3: Type graph over possible representations of the ma-
trix variable X.

xformImp(v1, v2, InName, OutName, Str) :- Str =
"CREATE VIEW " + OutName +
"AS SELECT inp.id_n AS id_n, VECTORIZE(

LABEL(inp.val, inp.id_p)) AS val
FROM " + InName + " AS inp
GROUP BY in.id_n;".

This rule describes how the actual code string Str is constructed
by inserting the InName and OutName into the eSQL code. As
described previously, the special-purpose SimSQL aggregate func-
tion VECTORIZE takes a set of labeled numeric attribute values
and creates a single vector type, indexed using the each value’s
label as assigned using the LABEL function.

We can go the other direction as well.

xformImp(v2, v1, InName, OutName, Str) :- Str =
"CREATE VIEW " + OutName + " AS
SELECT inp.id_n AS id_n, r.id_p AS id_p,

GETSCALAR (inp.val, r.id_p) AS val
FROM " + InName + " AS inp, responses AS r;".

Here, the table responses contains p records with the key values
of id_p, which are used by the GETSCALAR function to obtain
individual entries from the vector value v2.val.

We not only want to be able to traverse one edge in the type graph
to change representations, but we want to be able to take multiple
hops. If a path from InT to OutT exists, we can generate code for
it using the following rule:

xformImp(InT, OutT, InName, OutName, Str) :-
Str = xformImp(InT, IntmedT, inName, temp) +

xformImp(IntmedT, OutT, temp, outName),
temp = InName + OutName + OutT.

Here, inName + outName + OutT is used to create a unique
identifier for the table holding intermediate results.

5.2 Searching for Implementations
The translator must not only be able to search among data rep-

resentations: it must search among implementations of BUDS op-
erators that run over those representations, and apply those imple-
mentations. The reason for this dual search (representations and
implementations) is that representations and their associated imple-
mentations may be good sometimes, but not all of the time. For ex-
ample, a direct eSQL matrix multiply that is implemented as a call
to BLAS is likely optimal for large matrices that are small enough
to fit in memory. But it will fail for very large matrices.

We do this using an abstraction called an expression graph. This
is an expanded version of the data dependency graph, where, in ad-
dition to all named variables, dependencies among all temporary
variables that exist only as the output of particular operations ap-
pear as well. Vertices without any input edges, which we will call
“leaf” vertices (although the structure might not be a tree) repre-

X

A

yy

tmul

mul

Figure 4: Expression graph for part of the Bayesian Lasso.

sent data–in the case of BUDS, they are variables from the data
and var sections of the program. Non-leaf vertices represent op-
erations. Edges represent flows among operations. For example, in
the case of BUDS, consider the expression graph for the following
portion of the Bayesian Lasso:

A * (X ’* yy)

The corresponding expression graph is shown in Figure 4.
To describe how this graph is used to power the search for im-

plementations, we will ignore how user-defined function calls are
handled; these have an arbitrary number of parameters and hence
make the presentation a bit more muddled. Excluding these, the
graph can be represented as three Datalog relations:

leafNode (VarName, Type).
unNode (OpName, InName, OutName).
binNode (OpName, LName, RName, OutName).

These relations have the obvious meaning. leafNode lists the
leaf nodes in the graph, unNode lists the unary, internal nodes
in the graph, and binNode lists the binary nodes. For the later
two operations, OpName is the name of the operation that needs to
be run (such as tmul), and the various Name parameters give the
names of the variables in the graph.

For each particular operation, we have one or more implementa-
tions, encoded in the following relations:‘

binImp (OpName, TypeL, TypeR, OutType, LName,
RName, OutName, Str).

unImp (OpName, TypeIn, OutType, InName,
OutName, Str).

These relations are analogous to the xformImp relation, except
that they provide code for implementing operations rather than mov-
ing between types. Note that, since operations are polymorphic
(for example, matrix multiplication can be defined over many input
types), there may be many entries in the relation for each operation
name—implementations may operate on different input types and
produce different output types. For example, we may have an im-
plementation of tmul that accepts two sets of vectors, and another
that accepts two matrices.

The various Imp relations store for us all available implementa-
tions, but it is also necessary to store instantiated implementations
associated with our particular translation problem. The relation
imp (Type, Name, Str) will accomplish this, storing in the
string Str for all available implementations of the node with name
Name, where the result takes the type Type. The first two rules
simply abstract away whether the operation is unary or binary, and
allow us to simply obtain its implementation code:

imp (Type, Name, Str) :-
binImp (OpName, TypeL, TypeR, Type, LName,
RName, Name, Str).

imp (Type, Name, Str) :-
unImp (OpName, TypeIn, Type, InName,
Name, Str).

One possible implementation is to do nothing, in case there is a leaf
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node:
imp (Type, Name, Str) :- leafNode (Name, Type, "").

And we can possibly run code to perform a type transformation:

imp (Type, Name, Str) :-
imp (InT, Name, InStr), InName = Name + Type,
xformImp(InT, T, InName, Name, TransStr),
Str = InStr + "ALTER VIEW " + Name " RENAME TO "

+ InName ";" + TransStr.

We can then use these implementations in conjunction with specific
definitions of binImp and unImp to build up all possible code
strings for a given query graph. For example, consider the operation
tmul where a matrix is transposed and multiplied with a vector. If
the input matrix is represented as a relation of tuples containing
vectors (type v2) and the input vector is represented as a set of
tuples containing double values (imagine this is type v12), then
we might have the following rule in binImp:

binImp (tmul, v2, v12, v2, LVar, RVar, OutVar, Str)
:- imp (v2, LVar, LStr), imp (v12, RVar, RStr),

binNode (tmul, LVar, RVar, OutVar),
Str = LStr + RStr + "CREATE VIEW " + outVar +
"AS SELECT SUM(X.val * yy.val) AS val
FROM " + lVar + " AS X, " + rVar + " AS yy
WHERE X.id_n = yy.id_n;".

This simply performs a vector-scalar multiply on each entry, then
sums the result to obtain the output, which is a single tuple con-
taining a vector. Or, a simple matrix transpose directly on a set of
matrices will use the rule:
unImp (trans, v3, v3, InVar, OutVar, Str) :-

imp (v3, InVar, InStr),
unNode (trans, InVar, OutVar),
Str = InStr + "CREATE VIEW " + outVar +
"AS SELECT TRANSPOSE(X.val) AS val

FROM X AS " + inVar + ";".

Note that the above code creates a unary operator (such as a matrix
transpose) as two separate queries; the SQL query that creates the
matrix to be transposed, and the query to transpose the matrix. This
may seem costly. However, SimSQL aggressively pipelines such
queries, meaning that the set of matrices produced by the first query
would be pipelined directly into the transpose operation, expectedly
at little cost.

5.3 Encoding Domain Specific Optimizations
Encoding domain-specific optimizations in this framework is easy.

For example, consider the case of a Gram matrix computation over
a matrix: XXT , which corresponds to a unary tmul operation.
Many different implementations of this computation are available.
While the direct computation XXT is typically desirable because
SimSQL will use BLAS to implement it directly, sometimes this
implementation is not possible because X is too large to fit into
RAM.

As an alternative, X can be represented as a set of vectors, and the
Gram matrix computed as

∑
i xTi · x. This special transformation

can be represented as a Datalog rule:

unImp (tmul, v4, v4, InVar, OutVar, Str) :-
imp (v4, InVar, InStr),
unNode (tmul, InVar, OutVar),
IntName = InVar + OutVar,
xformImp(v4, v2, InName, IntName, TransStr),
Str = InStr + TransStr +

"SELECT SUM (OUTER (val, val))
FROM " + IntName + ";".

Essentially, the above rule says that we can obtain a pure-matrix to
pure-matrix tmul operation by first transforming the pure matrix
to a set of vectors, and then performing a SUM of outer products.

5.4 Additional Details
The previous subsection described how all possible implemen-

tations for a given source program can be produced. As described
previously, the tactic that we employ is to generate each of those
possible implementations, send each to SimSQL’s optimizer to cost
them, and then we actually run the most inexpensive implementa-
tion. We rely on the optimizer—which has information about array
sizes, if they are available—to detect infeasible implementations,
such as the materialization of a huge matrix that cannot fit into
RAM.

Another issue is that, in practice, there may be many thousands
of valid implementations, and it is not practical to generate and
cost each of them. We have found that in fact, a purely greedy
algorithm works very well. We maintain a single best implementa-
tion, and then use the rules described in the previous subsections to
generate all possible implementations reachable by changing one
implementation or data representation. Each of those is costed, and
the lowest-cost alternative is chosen as the new implementation.
This is repeated until a fixpoint.

BUDS programs require statistics to optimize a computation cor-
rectly. These are supplied to BUDS by passing BUDS the various
range values declared in the program. These are then used to
compute the counts and the distinct values as the statistics for each
of the relational base tables that are sent to the SimSQL optimizer
for evaluation. For example:

> load models/lasso.txt
Model ’Lasso’ successfully loaded.
> size lasso.regressors 1000
Domain lasso.regressors, size 1000
> size lasso.responses 1000000
Domain lasso.responses, size 1000000
> compile lasso

The output of this execution is: (1) a file of CREATE TABLE state-
ments for the base tables that the user is expected to load data into,
(2) a set of materialized view statements, and (3) a set of stochastic
CREATE TABLE statements to power the simulation.

6. EXPERIMENTAL EVALUATION
In this section, we describe an experimental evaluation of the

performance of the BUDS language and compiler for a set of rep-
resentative Bayesian ML problems. The key task will be to dis-
cover BUDS-encoded programs comparing performance-wise to
programs written directly on top of SimSQL in eSQL. Does the
high-level interface provided by BUDS generate programs that are
as performant as hand-coded programs, written by an expert?

6.1 Implementation Overview
The BUDS compiler/optimizer prototype is currently implemented

around 17,000 lines of Java and Prolog. It accepts as input a BUDS
program, and then produces as output a SimSQL eSQL program.
Our current implementation has 16 different eSQL representations
of BUDS data types available (examples include: a matrix stored
purely as tuples, a matrix stored as a set of vectors, a map stored
purely as tuples, etc.), and 57 different eSQL implementations of
built-in BUDS operations (examples include: a pure matrix inverse,
scalar-vector-as-tuple multiplication, etc.), as well as 26 different
distribution functions (vector-based Dirichlet distribution, tuple-
based Categorical distribution, etc.).

6.2 Experimental Overview
Our experimental task is implementing four different Bayesian

ML models, which will be described subsequently. We evaluate
five different eSQL implementations of each of the four models.
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Model Mode Search Space Size Opt. Time
BL full 78 codes 00:08:57
BL greedy 4 codes 00:00:33
GMM full 1214 codes 08:54:27
GMM greedy 48 codes 00:20:34
LDA full 224 codes 00:15:22
LDA greedy 24 codes 00:01:37
HMM full 32 codes 00:01:51
HMM greedy 8 codes 00:00:27

Table 1: Summary of optimization complexity for the four
models. For each model, and for each optimizer mode (full
search or greedy search) we give the number of SimSQL codes
generated by the BUDS translator, as well as the time taken to
generate and cost all of those codes (HH:MM:SS).

(1) Hand-coded, naive eSQL, no vectors/matrices. Since BUDS
is translated into SimSQL’s eSQL, we begin by hand-coding each
ML algorithm directly in SimSQL’s eSQL as a baseline. “Naive”
here means that we do not anything special that might speed exe-
cution, such as grouping data items together and writing special-
purpose VG functions that process the data as a group (see below).
(2) Hand-coded, tuned eSQL, no vectors/matrices. This is a
carefully-tuned implementation, subject to the constraint that the
implementations do not directly use vectors and matrices to store
and manipulate data. Instead, a purely tuple-based encoding is used
(for example, a 100 by 100 matrix is always stored as 10,000 tuples
in the hand-coded implementations).
(3) Hand-coded, tuned eSQL, with vectors/matrices. In this im-
plementation, we make full use of eSQL’s vector and matrix sup-
port, and craft a carefully-tuned, hand written version. Given our
understanding of eSQL vector/matrix support, this is likely to be
the fastest implementation.
(4) BUDS-generated, non-optimized eSQL, with vectors/matri-
ces. Here we do not iterate through the implementations generated
as described in the previous section, costing each. Rather, we sim-
ply use the first implementation generated.
(5) BUDS-generated, optimized eSQL, with vectors/matrices.
Here, full optimization is used to search the space of types and
implementations.
Experimental Platform. All running times reported were obtained
by running the SimSQL SQL codes using SimSQL running on a
cluster of five Amazon EC2 m2.4xlarge machines.

6.3 Models Tested
Our experiments focus on the implementation of Markov chain

simulations for learning the following four Bayesian models:

Bayesian Lasso. The BL has already been described previously,
and the BUDS code for the model was given earlier as well. To
evaluate the various implementations, we created a synthetic data
set consisting of 500,000 data points distributed across the five ma-
chines, having 1,000 regressor dimensions each. Since there is not
an obvious way to optimize the BL implementation without vectors
and matrices, this option was not tested.

Bayesian Gaussian Mixture Model. The GMM assumes that the
data set was generated by a mixture of Gaussians (multi-dimensional
normal distributions) and the task is to recover the various compo-
nents from the data. We use ten clusters to process a ten-dimensional
data set, using a full covariance matrix. Fifty million synthetically-
generated data points are distributed across the five machines. Two

Model Implementation Code Lines Run Time
BL Naive SQL 100 00:07:28 (02:38:46)
BL Ve/Ma SQL 104 00:04:04 (00:04:44)
BL BUDS no-opt 30 00:13:41 (02:41:25)
BL BUDS opt 30 00:05:58 (00:20:22)
GMM Naive SQL 197 00:21:16 (00:11:22)
GMM Block SQL 161 00:06:39 (00:13:08)
GMM Ve/Ma SQL 111 00:09:15 (00:08:09)
GMM BUDS no-opt 39 00:20:27 (00:14:02)
GMM BUDS opt 39 00:11:12 (00:11:35)
LDA Naive SQL 126 14:32:04 (08:45:14)
LDA Doc-based SQL 117 04:12:37 (03:59:26)
LDA Ve/Ma SQL 101 00:29:28 (00:01:13)
LDA BUDS no-opt 31 13:54:32 (17:13:55)
LDA BUDS opt 31 00:37:42 (00:19:47)
HMM Naive SQL 131 08:17:07 (10:51:32)
HMM Doc-based SQL 123 03:36:47 (00:17:51)
HMM Ve/Ma SQL 122 00:28:17 (00:26:28)
HMM BUDS no-opt 33 00:45:32 (01:08:28)
HMM BUDS opt 33 00:30:08 (00:05:52)

Table 2: Performance and code size of the various implemen-
tations. All times are given as HH:MM:SS per iteration. The
value in parentheses is the time for the initialization iteration.

no-vector/matrix SQL implementations are tested: a naive imple-
mentation, and a second, highly-optimized implementation that up-
dates the membership of a large block of data points using a single
user-defined function call (see [16]).

Latent Dirichlet Allocation. LDA is a very standard topic model
for unsupervised learning over text. We use a non-collapsed Gibbs
sampler to learn this model (again, see [16] for details). For brevity,
we do not give the BUDS code. 12.5 million documents are dis-
tributed across the five machines. A dictionary size of ten thousand
words is used to learn 100 topics. Again, we have two SQL, no vec-
tor/matrix implementations: a naive implementation, and a second,
optimized implementation that has a special user-defined function
that determines the word-topic membership for each word in the
document using a single function invocation. The BUDS imple-
mentation assumes a similar user-defined function.

Hidden Markov Model. Here we learn a Bayesian HMM over
text. The data used are identical to the data used for LDA, but in the
case of a HMM, 20 latent states are used. As in LDA, we have two
SQL, no vector/matrix implementations: a naive implementation,
and a second, optimized implementation that has a special user-
defined function that determines the assignment of states to words
all-at-once for a single document. In the case of BUDS, a similar
user-defined function is used.

6.4 Results
For each of the four models, we give the search space size and

optimization time in Table 1. The search space size is the number of
distinct expression graphs that can be generated using the current
set of BUDS data representations and implementations. We also
have the optimization time (that is, the time to search the space) for
two different search strategies: full and greedy. The full strategy
exhaustively enumerates all alternatives. The greedy strategy is as
described in the previous section of the paper.

In Table 2 we give the per-iteration running time and code size
for each of the different implementations tested. All of the imple-
mentations are equivalent in the sense that they run the same algo-
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1 (2.5M) 5 (12.5M) 10 (25M) 20 (50M)
00:45:13 00:37:42 00:46:08 00:45:05

Table 3: Running time per iteration when increasing cluster
size, keeping documents per machine constant. Column header
format is num. machines (total data set size).

0.625M 1.25M 2.5M 5M
00:16:47 00:29:41 00:37:42 01:25:13

Table 4: Running time per iteration when keeping cluster size
constant, increasing corpus size. The column header is the
number of documents assigned per machine, for each of the
five machines in the cluster.

rithm; the only difference is in the details of the implementation
and hence in the running time.
Scalability. In addition, we ran a set of experiments aimed at test-
ing the scalability of the BUDS LDA implementation. We have
two experiments. In the first (Table 3) we try four different cluster
sizes: one machine, five machines, ten machines, and twenty ma-
chines, keeping the number of documents per machine constant at
2.5 million. If BUDS LDA scaled perfectly, the running time would
be constant across these four tests. In the second (Table 4), we ran
our five-machine experiment with four different corpus sizes: 625
thousand documents per machine, 1.25 million per machine, 2.5
million per machine, and 5 million per machine (25 million docu-
ments total). If BUDS LDA scaled perfectly with increasing data
set size, we would expect that the time per iteration would increase
linearly with corpus size.

6.5 Discussion
It is not surprising that ultimately, one of the hand-coded ver-

sions had superior performance in every case. Sometimes, the
fastest hand-coded version was a blocked or document-based im-
plementation, and sometimes the vector/matrix implementation was
best. The ratio of the time obtained by the optimized BUDS code
compared to the best hand-coded implementation for non-initializa-
tion iterations was 1.46, 1.68, 1.03, and 1.065 for BL, GMM, LDA,
and HMM, respectively. We argue that these are not overly worri-
some slowdowns, given the much greater simplicity of the BUDS
code.

There was more variance in the time spent in the initialization
iteration for each implementation, but the initialization is run only
one time, whereas anywhere from 10 to 500 non-initialization it-
erations are needed to obtain a fixpoint. Thus, initialization times
seem less important.

It is also interesting to note that in nearly every case, the vec-
tor/matrix extensions resulted in faster, hand-coded codes than the
codes without vector/matrix extensions. The one exception to this
is the GMM, where the block implementation (by definition) per-
forms a significant fraction of the computation within a VG func-
tion, in C++, where it uses vectors and matrices internally. In this
implementation, a special version of the categoricalGMM func-
tion is used that is parameterized only once for a block of data
points, meaning that the cost of the parameterization is amortized
across many data points, resulting in a highly efficient implemen-
tation. This mitigates the benefit of the vector-matrix extensions.
However, had we implemented a block-based vector/matrix version
of the GMM, undoubtedly it would have been faster. We believe
that this shows the importance of native vector/matrix support in
any system performing statistical computing.

The results also show the importance of the optimization of rep-
resentation and implementation. In every case, the BUDS opti-
mization process is able to arrive at a data representation and imple-
mentation that is far superior to the first solution obtained, without
optimization. In the case of the HMM, the non-optimized version
is about 1.5 times slower than the optimized. But in the case of
LDA, it is more than 25 times slower.

One of the interesting findings is that the greedy strategy does a
very good job of choosing a high-quality plan from among all of
the alternatives, when pure greedy can fail spectacularly in clas-
sical query optimization. One explanation is that the problem of
choosing from among data representations and physical operation
implementations during the implementation of a language such as
BUDS may actually be easier than classical query optimization—
assuming that a classical query optimizer is available to optimize
the SQL implementation chosen by BUDS. There is no structural
plan search during BUDS optimization as there is when choosing
a join ordering—the dependency graph among various data objects
is fixed, and the problem is labeling the objects and operations with
implementations. At the very least, there are fewer alternatives to
consider when optimizing a BUDS program than there are for a
relational algebra plan for a problem of similar size.

Final Remarks. Generally, BUDS did an exceptionally good job
of discovering a reasonable implementation for each algorithm,
considering the difficulty of the optimization problem. Consider
the LDA learning algorithm. The core of the LDA simulation is a
stochastic assignment of a topic label to every word in the corpus.
Then, all of those topic labels need to be aggregated. What is the
best way to do this? Should the words be aggregated into vectors
according to the topics (one entry per word for each topic vector)
and then summed? This would make sense, as subsequently, the
vectors need to be summed to obtain a vector of word sums per
topic. Or, perhaps it makes sense for those to be left as (word,
topic) pairs and aggregated directly and then transformed into vec-
tors? These are all difficult decisions to make, where the wrong
choice can result in an implementation that is an order of magni-
tude slow. Such choices are made more complicated by the fact
that attributes such as the dimensionality of the data (number of
words in the dictionary and topics being learned, in the case of
LDA) all have an effect on what the best implementation is. BUDS
takes these difficult choices away from the programmer. We be-
lieve these results have presented at least some evidence here that
BUDS can automatically do a reasonable job of choosing an effi-
cient implementation.

7. RELATED WORK
There exist a number of APIs for building machine learning com-

putations, including TensorFlow [5], Theano [10], and DistBelief
[23]. These three systems focus on deep learning as the primary
application. In addition, SystemML [25] and Mahout Samsara [2]
are scalable linear algebra systems, that focus on machine learn-
ing algorithms requiring the use of very large, distributed matri-
ces. The latter two systems are closest in spirit to BUDS. However,
BUDS allows declarative, distributed computations over a richer
set of types: sets, maps, arrays, and compositions of these. We be-
lieve that this significantly expands the set of computations that are
easily specified using the system. This issue is considered in detail
in the Appendix of the paper.

The development of the BUDS language is related to existing
research in probabilistic programming languages. “Probabilistic
programming” languages, broadly defined, are any languages that
naturally express or compute over probabilities or stochastic pro-
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cesses. Such languages include Church [26] and ProbLog [22].
Other efforts include existing languages such as BUGS [32] and
Stan [41], and libraries such as Factorie [35] and Infer.NET [36].

A number of dataflow platforms exist that could be used for
data analytics: Hadoop [44], Spark [46], DryadLinq [45], or Flink
[6]. Of such platforms, Microsoft’s Azure Data Lake Analytics is
closely related to our efforts. Azure Data Lake offers a declarative
programming language called U-SQL with a very tight C# binding.
GraphLab [31] is also related in that it aims to support distributed
machine learning.

BUDS bears some resemblance to mathematical programming
languages such as R and MATLAB. Notable efforts aimed at scal-
ing such languages include Ricardo [21] and Riot [47].

There have been some notable recent efforts at designing declar-
ative systems for ML [12]. MADLib [27] is a set of ML algo-
rithms implemented using SQL. Feng et al. [24] considered how a
database system can be used to perform efficient incremental gradi-
ent descent. They describe how a large class of learning algorithms
can be written as a specific type of user-defined aggregate. GLADE
is another effort along these lines [24]. GALDE specifically targets
a distributed environment, like BUDS, and has support for multidi-
mensional arrays, like BUDS. Because both of these systems offer
SQL interfaces, the resulting computations can be optimized and
executed by the database system.

We have briefly discussed enhancements to SimSQL to provide
vector and matrix support (see [33] for more detail). Others have
also considered to incorporate array data types into relational sys-
tems. For example, PostgreSQL has support for multidimensional,
variable-length array data types [4] that can easily be used to store
vectors and matrices, and Oracle has the UTL_NLA package for
linear algebra operations over its VARRAYs [3]. The key difference
however, is that SimSQL has support for vectors and matrices, not
arrays. Unlike simple arrays, the SimSQL optimizer is aware of
the semantics of relational algebra. It knows, for example, that a
multiplication of an n×m matrix and an m× p matrix is an n× p
matrix, and can use this fact during optimization.

Some of the most closely related work are the efforts in array
databases. For a survey, see Rusu and Cheng [40]. Qin and Rusu
considered the problem of computing a dot product between a very
large, sparse matrix and a set of dense vectors in a database-like
environment [39]. Key database systems include SciDB [13] and
SciHadoop [14]. The lack of structures such as vectors and matri-
ces has been identified as a key reason behind the limited accep-
tance of relational databases in scientific applications [34]. Pre-
vious work from the database literature aimed at integrating such
structures into the query language and query processing began with
the development of the Nested Relational Calculus for Arrays [30]
which allowed for a high-level query language based on the syn-
tax of comprehensions [15]. In fact, comprehensions were highly
influential in the design of the BUDS language. Comprehensions
are closely related to relational algebra and SQL [42], and can be
translated into SQL easily, as shown by approaches like the RAM
algebra [43, 20].

8. CONCLUSIONS
We have presented BUDS as an example of a domain-specific

language for Bayesian ML, and described techniques for compil-
ing and executing BUDS codes on a relational database system. We
considered some of the changes that need to be made to a relational
database system to make it an appropriate platform for large-scale
ML. Experimental results show that the BUDS optimized imple-
mentations have competitive performance compared to the hand-
coded and hand-optimized SQL implementations.

Future Work. There are a few obvious avenues for future work.

Heuristic Optimization. Cost-based optimization in BUDS requires
repeated calls to the SimSQL optimizer. Each one of those calls to
the optimizer is expensive—taking 3 to 30 seconds. Further, this
requires that BUDS be compiled to a platform that has an optimizer.
Dataflow platforms typically do not have such optimizer. Thus, it
would be valuable to design a heuristic or rule-based optimizer.

Portability to Other Platforms. Could BUDS easily be ported to
other platforms? Other systems with cost-based optimizers (rela-
tional databases, or dataflow platforms such as Microsoft’s Azure
Data Lake) have support for arrays or user-defined types. These
could be used to provide physical representations for BUDS data
structures. The biggest hurdle of porting to other platforms would
be imitating the “join and co-group” pattern embodied by Sim-
SQL’s VG function interface. In this pattern, for each record in
a so-called model table, a set of parameters are prepared via a se-
ries of subqueries (the “join”s). Then the parameter sets associated
with each record in the model table are fed into a table-function-
based UDF (the “co-group”). This pattern is difficult to implement
efficiently, in a generic fashion, without actually adding specially-
coded implementation strategies directly into the underlying plat-
form. The problem is that the total amount of data sent into the
UDF is often huge. Handling this efficiently requires careful phys-
ical optimization to ensure that after the subqueries are executed,
the results are sorted/hashed in a way that the co-group can be im-
plemented by simply pipelining the parameters into the UDF.
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APPENDIX
A. SAMSARA AND SYSTEMML

In this section, we detail our experiences implementing the Baye-
sian Lasso and HMM learning on top of Mahout Samsara [2] and
SystemML [25]. Both of these languages/platforms are often re-
ferred to as being declarative, and so our experiences using both
platforms may be helpful in illustrating how BUDS compares to
the state-of-the-art for declarative machine learning.

A.1 Mahout Samsara
Mahout provides a vector- and matrix-based algebraic environ-

ment called Samsara that supports R-like computations. Mahout
Samsara has a close binding with Spark. The key abstraction in Ma-
hout Samsara is the Distributed Row Matrix (DRM), which is a ma-
trix partitioned by rows and stored across multiple machines. From
a programmer’s point of view, the multiplication of two DRMs A
and B is as simple as A%*%B.

Mahout Samsara code for the Bayesian Lasso is given in Fig-
ure 6. As most computations in the Bayesian Lasso can be ex-
pressed in a linear algebraic form (such as matrix multiplication,
matrix-vector multiplication and vector multiplication), the Mahout
Samsara code is very similar to the BUDS specification. The non-
declarative dataflow code at the beginning is used only to load and
prepare the data. Mahout Samsara, like SystemML, performs al-
gebraic logical optimization as well as physical optimization for
linear algebra. We note, however, that the SystemML developers
assert that Mahout Samsara is not particularly declarative since de-
cisions on data layout and distributed/local matrices are made by
the programmer [11], and hence the system does not feature data
independence (the ability of different execution plans to be chosen
depending upon the data characteristics).

When we executed the Bayesian Lasso code on the five machine
cluster we used to execute BUDS, we found that each iteration took
202 seconds, with an initialization of 570 seconds.

val response = sdc.textFile("response.tbl")
.map{line => (line.split(’|’)(0).toInt,

line.split(’|’)(1).toDouble)}
.map(row => row._1 -> dvec(row._2))
.asInstanceOf[DrmRdd[Int]]

val y = drmWrap[Int](response)

val regressor = sdc.textFile("regressor.tbl")
.map{line => (line.split(’|’)(0).toInt,

line.split(’|’)(1).split(’,’)
.map(_.toDouble))}

.map(row => row._1 -> dvec(row._2))

.asInstanceOf[DrmRdd[Int]]
val X = drmWrap[Int](regressor)

val yy = y - y.colMeans().get(0)
val Gram = (X.t %*% X).collect
val Sum = (X.t %*% yy).collect.viewColumn(0)

val mu = dvec(Array.fill[Double](X.ncol)(1))
var sig = invGamma(1, 1)
var tau = invGauss(mu, 1)

val niter = 5
for(i <- 0 until niter) {
var A = solve(Gram + diagv(tau))
var b = multiNormal(A %*% Sum, A * sig)

var Z = yy - X %*% b
sig = invGamma((y.nrow - 1) / 2 + X.ncol / 2,

(Z.t %*% Z).collect.get(0, 0) / 2
+ (b * b).dot(tau) / 2)

val lam = 1.060047
tau = invGauss(((lam * lam * sig)

/ (b * b)).sqrt, lam * lam)
}

Figure 6: Mahout Samsara code for the BL.

In our opinion, Mahout Samsara achieves the declarative ideal
for Bayesian Lasso learning. However, Markov chain simulation
for HMM learning on Mahout Samsara is more challenging. For
HMM learning, each document is most naturally represented as a
sequence of numbers, where the numbers code, in order, the se-
quence of words in the document. Each sequence can be a differ-
ent length, depending on the length of the document. Thus, the
most natural representation for a document corpus in HMM learn-
ing is as a set of sequences. Fortunately, Mahout Samsara’s DRM
is essentially a wrapper for a Spark RDD of row vectors with type
[RowID, Vector], and so it can be used to store the corpus.

Specifying the required computation is difficult, however. Ma-
hout Samsara is essentially a distributed matrix system, and learn-
ing an HMM does not map naturally to matrix computations. In
particular, it is necessary to loop through all of the words in a doc-
ument, in sequence, and re-assign each word to a particular topic in
the current model. This requires various statistical computations,
culminating with a sample from a multinomial distribution to per-
form the topic assignment, whose results must be aggregated via a
series of somewhat complicated computations.

After some time spent investigating various ways to achieve this
using Mahout Samsara, we identified two different options. One
is to use Mahout Samsara’s iterator() method over DRMs,
which returns an iterator capable of looping over all of the rows in
the matrix. However, as far as we can tell, this iterator is not meant
to permit parallel execution. It appears to collect the entire DRM
into the RAM of the driver machine where iteration takes place.
This is problematic for at least a couple of reasons. First, the corpus
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invGamma = externalFunction(...)...
invGaussian = externalFunction(...)...
multiNormal = externalFunction(...)...

X = read("test_data/xb.bin", format="binary")
y = read("test_data/yb.bin", format="binary")
y_avg = avg(y)
y = y - y_avg

# compute the matrix X’X, and X’Y
XX = t(X) %*% X
XY = t(X) %*% y

# number of data points and number of features
n = nrow(X)
m = ncol(X)

shape_prior = 1.0
scale_prior = 1.0
mean_prior = matrix(1.0, rows=1, cols=m)
sigma2= invGamma(shape_prior, scale_prior)
tau= invGaussian(mean_prior, shape_prior)

niter = 5

for (i in 1:niter) {

A = XX + diag(t(tau))
A_inv = inv(A)
mu = A_inv %*% XY
covariance = A_inv * sigma2
beta = multiNormal(t(mu), covariance)
remain_sum1 = (t(y) - beta %*% t(X))

(y - X %*% t(beta)) / 2.0
remain_sum2 = (beta * beta) %*% t(tau) / 2.0
scale_m = 1.0 + remain_sum1 + remain_sum2
scale = as.scalar(scale_m[1,1])
shape = 1.0 + (n-1.0)/2.0 + m/2.0
sigma2 = invGamma(shape, scale)
tau_mu = sqrt(sigma2 / (beta * beta))
tau = invGaussian(tau_mu, 1.0)

}

Figure 7: SystemML code for BL.

can easily be too large to reside in the RAM of the driver machine.
And second, there is no distributed execution of the learning.

The second option would be to use the DRM’s mapBlock()
method, which performs a map-style iteration over the matrix blocks
underlying a DRM. This can be used to produce a second DRM that
lists the assignment of words to topics for each document. How-
ever, it is next necessary to perform a set of rather complicated
aggregations over the original data matrix and the resulting topic-
assignment matrix. For example, for each adjacent pair of topics,
the number of times that topicA transitions to topicB must be
computed. In the BUDS code of Figure 5, this is accomplished via
the getTransCounts user-defined function that maps the topic
assignments for each document to a matrix of transitions, followed
by a sum over the resulting set of transition count matrices. How-
ever, in Samsara, since a mapBlock operation cannot create a ma-
trix of transition matrices from the matrix of topic assignments, this
is difficult to realize.

The only real option left is to use the fact that Samsara is imple-
mented on top of Spark, and that it allows one to write Spark RDD
operations over DRMs. Careful tuning and implementation in this
way results in a highly-performant code. On our five-machine clus-
ter and data set, initialization takes 222 seconds, and later iterations
take 1,236 seconds. This is again somewhat faster than BUDS. On

# generate new states for the words
parfor (id in 1:doc_num) {

labels = matrix(0, rows=1,
cols=as.scalar(doc[id, 1]))

workProbs = matrix(0.0, rows=1, cols=topic_num)

# for the first word
parfor (i in 1:topic_num) {
workProbs[1, i] = start_prob[1, i] *

trans[i, as.scalar(topics[id, 1])] *
emis[i, as.scalar(doc[id, 2])]

}
tmp_first = categorical(workProbs[1, ])
labels[1, 1] = tmp_first

# for the middle words
for (j in 2:as.scalar(doc[i, 1]) - 1) {
parfor (i in 1:topic_num) {

workProbs[1, i] = trans[
as.scalar(labels[1, j - 1]), i] *
trans[i, as.scalar(topics[id, j + 1])] *
emis[i, as.scalar(doc[id, j + 1])]

}
tmp_middle = categorical(workProbs[1, ])
labels[1, j] = tmp_middle

}

# for the last word
parfor (i in 1:topic_num) {

workProbs[1, i] = trans[as.scalar(
labels[1, as.scalar(doc[id, 1]) - 1]), i] *
emis[i, as.scalar(
doc[id, as.scalar(doc[id, 1]) + 1])]

}
tmp_last = categorical(workProbs[1, ])
labels[1, as.scalar(doc[id, 1])] = tmp_last

parfor (i in 1:ncol(labels)) {
topics[id, i] = labels[1, i]

}
}

Figure 8: Snippet of the SystemML code for HMM inference.
This code is written in SystemML’s DML language, and updates
the state associated with each word in each document in the
data set.

the negative side, few programmers would describe the resulting
implementation as anything but a carefully hand-tuned Spark code
that is not particularly declarative.

A.2 SystemML
SystemML provides a high-level language syntax for scalable

machine learning. It offers two languages: an R-like language
called DML, and a Python-like language called PyDML. It also sup-
ports multiple execution modes such as Spark MLContext, Spark
Batch, Hadoop Batch, and so on. When performing large-scale lin-
ear algebra computations, SystemML uses cost-based optimization
to generate very efficient low-level execution plans.

We begin with our implementation of the Bayesian Lasso on top
of SystemML, depicted in Figure 7. The responses and regressors
are stored as SystemML matrices. The major computations are
conducted through a series of linear algebra operations. External
Java functions provide random sampling functionality. Since this is
mostly a linear algebra computation, the SystemML code appears
very close to both the BUDS code and the Samsara code. We have
tested this code on the same dataset and cluster as we did for the
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parfor (i in 1:doc_num) {
parfor (j in 1:as.scalar(doc[i, 1])) {

tmp = categorical(topic_prior[1, ])
topics[i, j] = tmp

}
}

Figure 9: Snippet of the SystemML code for HMM initializa-
tion. This code is written in SystemML’s DML language, and
samples the initial state associated with each word in each doc-
ument in the data set.

BUDS implementation. The initialization time is 57 seconds, and
the running time is 90 seconds per iteration. This result indicates
that SystemML is very competitive for linear algebra computations.

However, just as in the case of Mahout Samsara, it becomes dif-
ficult to write declarative code on top of SystemML as soon as it is
used to perform a computation that does not map nicely into vectors
and matrices. HMM learning was particularly troublesome because
if one views a document corpus as a matrix—the fundamental data
type supported by SystemML—each row in the matrix will have
a different length, corresponding to the length of the document.
Since this is not supported directly by SystemML, we have to use a
bit of a trick. We store all documents in a matrix, where the number
of columns in the matrix is max_length + 1 (max_length is
the maximum length over all documents). The extra column is used
to store the length of each document so that we only visit the valid
entries.

We give just a subset of the SystemML code for the Bayesian
HMM in Figure 8 because the entire code is quite long. This subset
gives the loop that walks through the various documents, updating
the hidden topic used to produce each word in the document. Since
SystemML supports comprehensions via the parfor statement,
we use parfor to execute the statements in parallel.

Unfortunately, we had a difficult time using the parfor con-
struct. When we tuned the parameters for the parfor loops (e.g.,
multi-core execution, map-reduce execution, data partition, task
partition, etc.), we found that the system would either generate too
many map-reduce tasks, or produce a map-reduce task which was
too large. Even for the initialization of the hidden topics (see Fig-
ure 9), we were unable to produce an execution that could finish
in five hours (after which time, we killed the computation). We
also had difficulties similar to what we experienced using Mahout
Samsara computing the topic-to-topic transition statistics, as well
as statistics describing how often a topic emits a word. We found
that these would have to be calculated by a linear scan of all docu-
ments, because SystemML does not provide the aggregation oper-
ation for the matrices produced in the parallel statements.

Just like Samsara, SystemML does have a Spark binding, and so
we could have written a code very similar to the Mahout Samsara
code–essentially a Spark code storing data in SystemML matrices.
But this would render SystemML essentially just another way to
access Spark’s RDD operations.

A.3 Summary
Both Mahout Samsara and SystemML codes look a lot like BUDS

codes for the Bayesian Lasso, and they actually give better per-
formance on this task. This is not surprising, as both of these
systems are effectively highly performant, scalable linear algebra
systems, as the Bayesian Lasso learning is a linear algebra task.
However, HMM learning was very different. Since HMM learn-
ing does not map nicely to simple linear algebra computations, and
requires transformations such as mapping a set of variable-length
vectors (the document corpus) to a set of matrices (the topic-to-
topic transition counts), it is difficult to avoid simply writing RDD
transformations using each system’s Spark binding. This illustrates
what we believe is the most significant distinction between BUDS
and these two systems: while BUDS supports declarative compu-
tations over complex data structures (mixtures of maps, sets, and
arrays), Mahout Samsara and SystemML seem, at present, to be
better suited to linear algebra tasks.

976




