
Transaction Healing: Scaling Optimistic Concurrency
Control on Multicores

Yingjun Wu, Chee-Yong Chan, Kian-Lee Tan
School of Computing, National University of Singapore

{yingjun, chancy, tankl}@comp.nus.edu.sg

ABSTRACT
Today’s main-memory databases can support very high transaction
rate for OLTP applications. However, when a large number of con-
current transactions contend on the same data records, the system
performance can deteriorate significantly. This is especially the
case when scaling transaction processing with optimistic concur-
rency control (OCC) on multicore machines. In this paper, we
propose a new concurrency-control mechanism, called transaction
healing, that exploits program semantics to scale the conventional
OCC towards dozens of cores even under highly contended work-
loads. Transaction healing captures the dependencies across oper-
ations within a transaction prior to its execution. Instead of blindly
rejecting a transaction once its validation fails, the proposed mech-
anism judiciously restores any non-serializable operation and heals
inconsistent transaction states as well as query results according to
the extracted dependencies. Transaction healing can partially up-
date the membership of read/write sets when processing dependent
transactions. Such overhead, however, is largely reduced by care-
fully avoiding false aborts and rearranging validation orders. We
implemented the idea of transaction healing in THEDB, a main-
memory database prototype that provides full ACID guarantee with
a scalable commit protocol. By evaluating THEDB on a 48-core
machine with two widely-used benchmarks, we confirm that trans-
action healing can scale near-linearly, yielding significantly higher
transaction rate than the state-of-the-art OCC implementations.

1. INTRODUCTION
Optimistic concurrency control (OCC) is gaining popularity in

the development of modern main-memory databases that target at
supporting OLTP transactions on multicore machines [21, 35, 42,
55]. By clearly detaching the computation of a transaction from its
commitment, OCC greatly shortens its lock-holding duration and
therefore yields very high transaction rate when processing low-
contention workloads.

Unfortunately, such performance benefits diminish for work-
loads with significant data contention, where multiple concurrent
transactions access the same data record with at least one trans-
action modifying the record. A transaction using OCC protocol

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915202

has to validate the consistency of its read set before commitment
in order to ensure that no other committed concurrent transaction
has modified any record that is read by the current transaction. If
a transaction fails the validation, the transaction has to be aborted
and restarted from scratch. Moreover, any partial work done prior
to the abort will be discarded, wasting the resources that have been
put into running the transaction. Such performance penalty can be
exacerbated if the accessed records are highly contended, forcing a
transaction to repeatedly abort and restart.

In this paper, we present transaction healing, a new concurrency-
control mechanism that scales the conventional OCC towards
dozens of cores even under highly contended workloads. The key
observation that inspires our proposal is the fact that most OLTP
applications contend on a few hot records [37], and the majority of
transactions failing OCC’s validation phase is due to the inconsis-
tency of a very small portion of its read set. By exploiting program
semantics of the transactions, expensive transaction aborts-and-
restarts can be prevented by restoring only those non-serializable
operations, whose side effects, i.e., the value returned by a read
operation or the update performed by a write operation, are (indi-
rectly) affected by a certain inconsistent read. Subsequently, in-
consistent transaction states as well as query results can be healed
without resorting to the expensive abort-and-restart mechanism.
This approach significantly improves the resource-utilization rate
in transaction processing, yielding superior performance for any
type of workloads.

A key design decision in transaction healing is to maintain a
thread-local structure, called access cache, to track the runtime be-
havior of each operation within a transaction. This structure fa-
cilitates the operation restoration in transaction healing from two
aspects. First, the recorded side effects of each operation can be
re-utilized to shorten the critical path for healing transaction in-
consistencies; second, the cached memory addresses of the ac-
cessed records can be leveraged to eliminate any unnecessary index
lookups for accessing targeted records. In particular, the mainte-
nance of this data structure is very lightweight, which is confirmed
by our experimental studies.

Transaction healing can partially update the membership of read-
/write sets when processing dependent transactions1. Observing the
high expense brought by such update, transaction healing avoids
unnecessary overhead by carefully analyzing the false invalida-
tion. While membership update can result in transaction abort due
to deadlock prevention, our proposed schema-based optimization
mechanism leverages the access patterns within the database appli-
cations to greatly reduce the likelihood of deadlock occurrences.

Different from the state-of-the-art OCC optimization techniques

1A dependent transaction is a transaction where its read/write set
cannot be determined from a static analysis of the transaction [53].

1689

that address scalability bottlenecks caused by redundant serial-
execution points [21, 35, 55], the emphasis of transaction healing is
to reduce the high cost of aborts-and-restarts from data contentions.
This essentially renders OCC effective for a wider spectrum of
OLTP workloads. The design of transaction healing is also a de-
parture from existing hybrid OCC schemes [28, 52, 60]. Instead of
executing restarted transactions with lock-based protocols, trans-
action healing attempts to re-utilize the execution results without
restarting the invalidated transactions from scratch.

We implemented transaction healing in THEDB, a main-memory
database prototype built from the ground up. Results of an ex-
tensive experimental study on two popular benchmarks, TPC-C
and Smallbank, confirmed THEDB’s remarkable performance es-
pecially under highly contended workloads.

This paper is organized as follows: Section 2 demonstrates trans-
action healing through a running example. Section 3 introduces
the static analysis mechanism and Section 4 describes the runtime
execution of transaction healing. We report extensive experiment
results in Section 5. Section 6 reviews related works and Section 7
concludes this work.

2. TRANSACTION HEALING OVERVIEW
Transaction healing aims at scaling the conventional optimistic

concurrency control (OCC) towards dozens of cores even under
highly contended workloads. Inheriting the success of the state-of-
the-art OCC protocols [21, 35, 55] in eliminating redundant serial-
execution points, transaction healing further strengthens OCC’s ca-
pability in tackling data conflicts by exploiting program semantics.

Optimistic concurrency control. The conventional OCC pro-
posed by Kung and Robinson [34] splits the execution of a trans-
action into three phases: (1) a read phase, which tracks the trans-
action’s read/write set using a thread-local data structure; (2) a val-
idation phase, which certifies the consistency of its read set; and
(3) a write phase, which installs all its updates atomically. While
the detachment between computation and commitment shortens the
lock-holding time during execution, the absence of lock protection
in the read phase can compromise the consistency of an uncommit-
ted transaction if certain record in its read set is modified by any
committed concurrent transaction. Conventional OCC tackles such
problem with a straightforward abort-and-restart strategy once in-
consistency is detected. We illustrate the mechanism with a running
example depicted in Figure 1a2.

1. PROCEDURE Transfer(srcId){

2. dstId<-read(Client, srcId)

3. srcVal<-read(Balance, srcId)

4. dstVal<-read(Balance, dstId)

5. tmp<-0.01*srcVal

6. write(Balance, srcId, srcVal-tmp)

7. write(Balance, dstId, dstVal+tmp)

8. bonus<-read(Bonus, srcId)

9. write(Bonus, srcId, bonus+1)

10. }

Table: Balance

Amy 2,000

Dan 1,200

Table: Bonus

Amy 18

Table: Client

Amy Dan

(a) Stored procedure. (b) Initial database state.

Figure 1: Bank-transfer example.

Given the initial database state shown in Figure 1b, a transac-
tion T1 issued with argument Amy first assigns dstId with the

2For simplicity, we respectively abstract the read and write op-
erations in a stored procedure as var←read(Tab, key) and
write(Tab, key, val). Both operations search records in
table Tab using the accessing key called key. The read operation
assigns the retrieved value to a local variable var, while the write
operation updates the corresponding value to val.

value Dan (Line 2) and then transfers $20 to Dan’s Balance ac-
count (Lines 3-7). Finally, $1 is returned back to Amy’s Bonus
account (Lines 8-9). During the validation phase, T1 will be deter-
mined as inconsistent if a concurrent transaction T2 gets committed
with Amy’s balance modified from $2,000 to, say, $2,500. In this
scenario, abort-and-restart mechanism is applied to ensure a serial-
izable execution of T1. Unfortunately, such a scheme can severely
degrade the system performance if a certain data record is inten-
sively updated, causing invalidated transactions to be repeatedly
restarted from scratch.

Transaction Healing. Confronting the pros and cons of con-
ventional OCC, transaction healing leverages program semantics
to remedy OCC’s weakness in addressing data conflicts. This is
achieved with the help of static analysis at compile time that ex-
tracts operation dependencies hidden within the stored procedures.

Figure 2 compares the runtime execution of transaction healing
with that of conventional OCC. Instead of directly rejecting an in-
validated transaction, transaction healing resorts to an additional
healing phase to handle any detected inconsistency by restoring
the transaction’s non-serializable operations. Given an invalidated
transaction T , a read/write operation o in T is defined to be a non-
serializable operation if the outcome of o would be different when
T is re-executed. The healing phase aims to re-utilize as many of
an invalidated transaction’s execution results as possible to heal its
inconsistent transaction state as well as its query results according
to the extracted dependencies. The forward progress of any in-
flight transaction is guaranteed by the design principle of transac-
tion healing, as will be elaborated further in the following sections.

OCC

Transaction

healing

Read Validation Healing AbortWrite

Figure 2: A comparison between OCC and transaction healing.

As an illustration, we discuss how transaction healing addresses
the data conflicts exhibited in the running example with minimal
execution overhead. Transaction healing maintains a thread-local
access cache to track the behavior of every operation that is exe-
cuted by T1. On detecting the modification of Amy’s balance dur-
ing the validation phase of T1, the operations in Line 3 and Lines
6-7 (see Figure 1a) are determined to be non-serializable. This is
because the operation in Line 3 assignsAmy’s balance to srcVal,
which is subsequently used in Lines 6-7. Transaction healing there-
fore directly corrects the side effects made by these three operations
without restarting the whole transaction. This strategy works as
the maintained access cache records the runtime behavior of every
operation in the transaction, and the results generated by those se-
rializable operations can still be reused. Meanwhile, the invoked
operation restoration does not trigger any expensive index lookups,
since all the records that are read or written by the corresponding
operation are logged in the access cache. Hence, the system over-
head is greatly reduced.

THEDB overview. We implemented transaction healing in a
main-memory database prototype called THEDB, which is specifi-
cally designed for modern multicore architecture. THEDB is de-
signed to optimize the execution of transactions that are issued
from stored procedures and it provides full support for ad-hoc
queries. THEDB maintains locks with a per-record strategy. For
each database record, THEDB maintains the following three meta-
data fields: (1) a timestamp field indicating the commit timestamp
of the last transaction that writes the record; (2) a visibility bit in-

1690

dicating whether the record is visible to other transactions3; and
(3) a lock bit indicating the lock status of the record. As we shall
see, these additional fields enable an efficient implementation of
the healing phase in THEDB.

In the following sections, we formalize the mechanism of trans-
action healing and show how this proposed technique improves the
performance of THEDB without bringing costly runtime overhead.

3. STATIC ANALYSIS
THEDB performs static analysis [7] to extract operation depen-

dencies from each predefined stored procedure prior to transaction
processing. The goal is to help identify the inconsistent transaction
states as well as the query results for any uncommitted transaction
that fails its validation, which is elaborated in Section 4. For ease
of presentation and to focus on the key ideas, this paper consid-
ers only stored procedures without conditional branches; details for
handling more general procedures are given in the extended version
of this paper [57].

THEDB classifies the dependencies among program operations
into two categories: key dependencies and value dependencies.
A key dependency captures the relation between two operations
where the preceding operation directly determines the accessing
key of the subsequent operation. A value dependency captures the
relation between two operations where the generated output of the
preceding operation determines the non-key value to be used in the
subsequent operation. The dependencies in a program are extracted
using a static analysis process and they are represented by a graph
referred to as a program dependency graph. Figure 3 shows such
a graph for the bank-transfer example listed in Figure 1a. We say
that the operations in Lines 4 and 7 are key-dependent on the pre-
ceding operation in Line 2, because Line 2 generates dstId that is
further used as accessing key in Lines 4 and 7. Operations in Lines
8 and 9, in contrast, depict a value-dependency relation, since the
preceding read operation defines the variable bonus that is later
used as update value in the subsequent write operation.

srcVal<-read(Balance, srcId)

dstVal<-read(Balance, dstId)tmp<-0.01*srcVal

write(Balance, srcId, srcVal-tmp) write(Balance, dstId, dstVal+tmp)

bonus<-read(Bonus, srcId)

write(Bonus, srcId, bonus+1)

dstId<-read(Client, srcId)
23

45

6 7

8

9

Figure 3: Program dependency graph. Solid lines represent key
dependencies, while dashed lines represent value dependencies.

Given a stored procedure’s program dependency graph, THEDB
can leverage the extracted dependency information for healing the
procedure’s transactions that fail to pass the validation phase. The
detailed mechanism is discussed in Section 4.

THEDB aborts any transaction that violates the integrities en-
forced by either application logic (e.g., user-defined constraints)
or database constraints (e.g., functional dependencies). This is
achieved by encoding additional dependencies for any enforced in-
tegrities in the program dependency graph. The whole transaction
will be aborted once the restoration of any non-serializable opera-
tion results in the violation of integrities.

3The visibility bit for a record R is set to 0 iff R has been deleted
by a committed transaction or R is newly inserted by a yet-to-be-
committed transaction.

4. RUNTIME EXECUTION
This section describes the runtime execution of THEDB, our

multicore database prototype that supports scalable transaction pro-
cessing on multicores. THEDB serializes concurrent transactions
using the transaction-healing protocol, which generally splits the
execution of a transaction into three phases, including a read phase,
a validation phase, and a write phase. During the validation phase,
an additional healing phase is invoked to restore non-serializable
operations once any inconsistent read is detected. This is achieved
by leveraging a combination of the statically extracted dependency
graph and the dynamically obtained execution information that is
explicitly monitored during the transaction’s execution.

In this section, we first explain transaction healing by modeling
transactions using simple read and write operations where records
are accessed given their key values (Sections 4.1-4.6). Specifically,
Section 4.1 explains how transaction healing tracks runtime infor-
mation during the read phase of the transaction execution, and Sec-
tions 4.2-4.6 show how the validation, healing, and write phases
are designed and optimized to facilitate transaction processing un-
der highly contended workloads. To show the generality of transac-
tion healing, we discuss the support for generic database operations
(e.g., inserts, deletes, and range queries) as well as ad-hoc transac-
tions in Sections 4.7-4.8.

4.1 Tracking Operation Behaviors
Similar with conventional OCC, transaction healing tracks the

read/write set of a transaction and buffers all the write effects dur-
ing the read phase of its execution [11]. In particular, a read/write
set is a thread-local data structure (i.e., a structure that is privately
updated by a single thread) where each element in the set is repre-
sented by the main-memory address of some data record accessed
by the transaction. In addition, the following metadata is main-
tained for each accessed record in the transaction’s read/write set:
(1) a mode field indicating the access type (i.e., read (R), write (W),
or read-write (RW)) to the data record; (2) an R-timestamp field
recording the value of the timestamp metadata of the data record at
the time it was read; and (3) a bookmark field uniquely identifying
the transaction’s operation that first reads the record; if the record is
created by a blind-write operation, its bookmark value is null. For
simplicity, throughout the paper, we represent a bookmark value by
the line number in the corresponding stored procedure.

In addition to the read/write set, transaction healing further main-
tains a lightweight thread-local access cache to keep track of the
runtime behavior of each operation. Each operation invokes an in-
dex lookup to retrieve a certain number of database records. By
using the outputs of preceding operations or the input arguments to
its stored procedure, a read operation op returns certain values that
will be either consumed by the operations that are dependent on op
or used as query results, while a write operation yields update ef-
fects that will be buffered to the local copy of its accessed record.
In transaction healing, the access cache monitors inputs, outputs,
as well as update effects to capture each operation’s behavior. Each
operation further maintains an access set in the access cache to log
the memory addresses of all the records it reads or writes. The
access cache facilitates the restoration of an operation as follows:
on the one hand, recording the runtime behavior for each operation
helps re-utilize the execution results yielded by those serializable
operations; on the other hand, caching the memory addresses of the
accessed records eliminates the need for invoking an index lookup
to access a record as long as the accessing key of the operation
remains the same.

Figure 4 shows the thread-local data structures maintained for
transaction T1 that is created in the bank-transfer example (see Sec-

1691

Address Mode R-Timestamp Bookmark

0xAAAA R 25 Line 2

0xBBBB RW 27 Line 3

0xCCCC RW 10 Line 4

0xDDDD RW 14 Line 8

Bookmark Inputs Effects Outputs Access set

Line 2 Amy - Dan 0xAAAA

Line 3 Amy - 2000 0xBBBB

Line 4 Dan - 1200 0xCCCC

Line 6 Amy, 1980 1980 - 0xBBBB

Line 7 Dan, 1220 1220 - 0xCCCC

Line 8 Amy - 18 0xDDDD

Line 9 Amy, 19 19 - 0xDDDD

ACCESS CACHE

READ/WRITE SET

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Figure 4: Thread-local data structures.

tion 2). The execution of the read operation in Line 2 accesses a sin-
gle data record stored at address 0xAAAA and produces the value
Dan that will be used by subsequent operations dependent on this
read operation. Similarly, the write operation in Line 6 consumes
two input arguments and updates the local copy of its correspond-
ing record to $1,980. In this example, although each entry in the
access cache is associated with exactly one element in the read-
/write set, in general, range queries in a transaction could retrieve
multiple records and therefore each entry in the access cache can
map to multiple elements.

As we shall see shortly, with the runtime information maintained
in these thread-local data structures, transaction healing is able to
restore any non-serializable operation efficiently during the vali-
dation phase without resorting to abort-and-restart mechanism that
can lead to extremely low resource-utilization rate.

4.2 Restoring Non-Serializable Operations

4.2.1 Validation Phase
The read phase in the transaction execution is performed in a

consistency-oblivious manner. That is, any committed concurrent
transaction can modify the global copy of a data record in the
database without notifying any concurrent transaction that has a
local copy of the same record in its read/write set. Thus, transac-
tion healing, similar to conventional OCC, resorts to a validation
phase to check the consistency of every record that is read by a
transaction before committing that transaction. We briefly depict
transaction healing’s validation phase in Algorithm 1.

Algorithm 1: Validation phase in transaction healing.
Data: Read/write set S of the current transaction.

Validation Phase:
foreach r in sorted(S) do

Lock data record located at r.address;
if r is accessed by any read operation then

if Validation of r fails then
Invoke healing phase for r;

In the validation phase for a transaction T , the data record corre-
sponding to each element in T ’s read/write set will be locked and
the locks are only released after the commit or abort of T . Locking
of data records during the validation, healing, and write phases is
necessary as multiple transactions could be concurrently validated
and committed. Since the data records accessed by a transaction are
known from its read/write set, deadlocks due to locking is avoided
in THEDB by ordering the lock acquisitions following a global or-
der that is applied to all transactions. In our implementation, the
global order is based on an ascending order of the memory ad-
dresses of the data records [55].

For each element r in the read/write set S, the validation phase
first locks the data record R corresponding to r by turning on its
lock bit. If R was retrieved by a read operation, the consistency of
r is then validated by comparing the timestamps ofR and r. A read
inconsistency is detected if these timestamps are not equal, imply-
ing that a committed concurrent transaction has updated the same
record. In this case, conventional OCC would abort and restart the
entire transaction from scratch, wasting resources that have been
put into running the transaction. Our proposed protocol, in con-
trast, detects and restores non-serializable operations by leveraging
the data structures maintained in the thread-local workspace. This
is achieved with the assistance of the healing phase.

4.2.2 Healing Phase

Algorithm 2: Healing inconsistent access during validation.
Data: Inconsistent element r, read/write set S, access cache C,
and program dependency graph G of the current transaction.

Healing Phase:
Retrieve operation op = r.bookmark;
Restore op;
Retrieve child operation list O for op w.r.t. G;
Initialize FIFO healing queueH = O;
whileH 6= ∅ do

heal_op = PopFront(H);
if heal_op is key-dependent on its parent operation then

Update heal_op’s access setM through re-execution;
foreach m inM do

if m.address < r.address then
if Attempting to lock m fails then

Abort();

Insert m into S and update C;

else
Restore heal_op;

Retrieve child operation list P for heal_op;
foreach p in P do

Insert p intoH;

Algorithm 2 shows how the healing phase works. On detect-
ing an inconsistent element r that is read by an operation op in
the transaction, the healing phase first corrects the outputs for op,
which is the initial non-serializable operation whose side effect
is influenced by the inconsistency of r. The modification on the
record pointed by r can affect op’s outputs, subsequently influenc-
ing the behavior of the operations that are dependent on op. Instead
of restoring opwith a straightforward operation re-execution, trans-
action healing corrects op’s outputs by directly visiting the mem-
ory addresses maintained in the access cache. This approach fully
eliminates the potential overhead brought by index lookup. Mean-
while, transaction serializability is still preserved. The key reason
is that op’s accessing key remains the same despite of the raised
inconsistency, and therefore the corresponding access set is still
unchanged4. The effect of op’s restoration must be propagated to
all operations dependent on op, which can be identified using the
statically-extracted program dependency graph. On retrieving an
operation list O comprising the operation that are directly depen-
dent on op, transaction healing selects the correct healing strategy
4This statement is still valid even if inserts, deletes, or range queries
exist. See Section 4.7 for a detailed explanation.

1692

for each operation according to the dependency type with op, as
described below.

Restoring value-dependent operations. The restoration of an
operation heal_op that is value-dependent on op simply requires a
direct access to the corresponding memory addresses maintained in
the access cache. This is because while the restoration can modify
op’s outputs that will be consumed as inputs by heal_op, the access
set cached for heal_op remains the same, due to the invariance of
heal_op’s accessing key.

For a transaction issued from the stored procedure in Figure 1a,
transaction healing merely restores operations in Lines 8 and 9 once
detecting the inconsistency ofAmy’s bonus account. Such restora-
tion is lightweight, as the access cache maintains the corresponding
record pointers that will be used by these operations, and the index
lookup overhead is consequently eliminated.

Restoring key-dependent operations. The restoration of an op-
eration heal_op that is key-dependent on op calls for a more so-
phisticated mechanism. This is because op’s output directly serves
as the accessing key for heal_op, and therefore the correction of
op’s output can affect the composition or even the size of heal_op’s
access set. Consequently, the maintained access cache should not
be used for accelerating the restoration of heal_op. Transaction
healing solves this problem by invoking a complete re-execution
of heal_op, where the latest access set is retrieved through in-
dex lookup. Such re-execution also updates the membership of the
transaction’s read/write set.

Address Mode R-Timestamp Bookmark

0xAAAA R 25 Line 2

0xBBBB RW 27 Line 3

0xCCCC RW 10 Line 4

0xDDDD RW 14 Line 8

Bookmark Inputs Effects Outputs Access set

Line 2 Amy - Dan 0xAAAA

Line 3 Amy - 2000 0xBBBB

Line 4 Dan - 1200 0xCCCC

Line 6 Amy, 1980 1980 - 0xBBBB

Line 7 Dan, 1220 1220 - 0xCCCC

Line 8 Amy - 18 0xDDDD

Line 9 Amy, 19 19 - 0xDDDD 0xCCCD RW 16 Line 4

ACCESS CACHE

READ/WRITE SET

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Delete

Insert

Figure 5: Healing inconsistency for the bank-transfer example.

We still use the bank-transfer procedure in Figure 1a to give a
detailed explanation. Figure 5 shows the scenario where the vali-
dation of an instantiated transaction fails due to the detection that
a committed concurrent transaction has updated Amy’s client to
Dave. The healing phase first corrects the output value from Dan
toDave for the operation in Line 2. As this output is used as the ac-
cessing key in Lines 4 and 7, transaction healing further re-executes
these two operations to retrieve the correct access set. In particular,
the re-execution triggers an index lookup with the accessing key
Dave. This also leads to a partial update to the membership of the
read/write set, where the original element pointing to the memory
address 0xCCCC is replaced by a new one referring to the address
0xCCCD. The healing phase terminates by correcting the update
effects and outputs for these two operations.

Note that membership updates can cause deadlocks. Let us con-
sider that a healing phase is invoked after detecting an inconsistent
element r in the read/write set during validation. At this point, ev-
ery element with a smaller memory address compared to r would
have been locked, as is guaranteed by the global order of the val-
idation phase. However, if a new element rn containing a smaller
memory address than r is inserted into the read/write set during the
healing phase, the global order will be violated when attempting to
lock rn. Consequently, potential deadlocks can occur. Transaction
healing resolves this problem using a no-waiting deadlock preven-
tion technique [11, 61]. On confronting a failure when attempting
to acquire the lock for rn, transaction healing directly aborts the

whole transaction instead of blindly spinning. This mechanism can
be further optimized by setting an upper bound controlling the max-
imum number of times the lock request is attempted.

The read inconsistency within a transaction can be propagated
through (indirect) operation dependencies. Transaction healing
therefore recursively checks and restores all the possibly non-
serializable operations by traversing the statically extracted pro-
gram dependency graph in a breath-first approach. This essentially
guarantees that any non-serializable operation is restored exactly
once, and the healing overhead is minimized. The execution of
a transaction resumes its validation once the healing phase com-
pletes. The forward progress of the validation is guaranteed be-
cause of the finite capacity of a transaction’s read/write set. A
transaction is allowed to commit if all the elements in its read/write
set have been successfully validated. Transaction healing aborts a
transaction only if the deadlock-prevention mechanism is triggered
during the healing phase, where the membership of the read/write
set is partially updated.

4.3 Committing Transactions at Scale
The commitment of a transaction installs all the locally buffered

write effects to the database state. In addition, all the updates will
also be flushed to the persistent storage for ensuring database dura-
bility. Transaction healing leverages a variation of epoch-based
protocol [55] for committing transactions in a concurrent manner.
The detailed mechanism is presented in Algorithm 3.

Algorithm 3: Commit protocol in transaction healing.
Data: Read/write set S of the current transaction.

Write Phase:
Generate global timestamp glocal_ts;
Compute commit timestamp commit_ts;
foreach r in sorted(S) do

if r is accessed by any write operation then
Install writes for data record R located at r.address;
Dump writes to persistent storage;
Overwrite timestamp of R with commit_ts;

foreach r in sorted(S) do
Unlock data record located at r.address;

In transaction healing, a commit timestamp is a 64-bit unsigned
integer, where the higher order 32 bits contain a global timestamp
and the lower order 32 bits contain a local timestamp. The global
timestamp is assigned with the value of a global epoch number E
that is periodically (e.g., every 10 ms) advanced by a designated
thread in the system, and the local timestamp is generated accord-
ing to the specific thread ID. As an example, given three threads
for executing transactions, the first thread generates a local times-
tamp from the list 0, 3, 6, ..., 3m, ..., while the third thread gener-
ates a local timestamp from the list 2, 5, 8, ..., 3n + 2, When
committing a transaction, the corresponding thread will assign the
transaction with the smallest commit timestamp that is larger than
(a) the commit timestamp attached in any record read or written by
the transaction and (b) the thread’s most recently generated com-
mit timestamp. On obtaining the commit timestamp commit_ts,
a transaction installs all the buffered writes to the database and as-
signs the corresponding records with commit_ts. In particular,
each thread persists its committed transactions independently, and
updates from transactions assigned with a same global epoch num-
ber E can be dumped to the persistent storage as a group. When a
transaction finishes its commitment, it releases all its locks.

1693

4.4 Guaranteeing Serializability
This section sketches an argument that transaction healing pro-

vides full serializability for transaction processing.
Compared with OCC, transaction healing restores non-

serializable operations to heal inconsistent transaction states and
query results. When processing a transaction whose read/write set
does not overlap with that of any concurrent one, the effect of trans-
action healing is essentially equivalent to that of OCC. Now let us
assume that an inconsistent element r that is read by the transac-
tion is detected during the validation. At this point, we denote the
set of elements with smaller memory address than r as Es, and
the set of elements with larger memory address as El. To restore
the initial non-serializable operation op that first reads the incon-
sistent r, transaction healing directly reloads the latest value of the
record’s global copy, which is referred to by r. This action does
not compromise database serializability, because the lock bit as-
sociated with this record has already been acquired by the current
thread. After restoring op, transaction healing begins to restore
all the operations that are (possibly indirectly) dependent on op.
Restoring operation opv that is value-dependent on its parent oper-
ation only requires retrieving the latest values of the records pointed
by the access cache. This action does not affect the serializability.
On the one hand, if a record accessed by opv is pointed by an el-
ement in Es, then the record access is consistent, because the cur-
rent thread has exclusive privilege for accessing the record; on the
other hand, if a record accessed by opv is pointed by an element
in El, then the record access can be inconsistent. However, the re-
maining part of the validation phase will lock and validate any ele-
ment inEl. Therefore, the raised inconsistency will be healed. The
restoration of an operation that is key-dependent on its parent oper-
ation, however, can partially update the membership of read/write
set. The potential deadlock brought by such membership update is
prevented by transaction healing, as transaction healing attempts to
lock any newly inserted element ri with a smaller memory address
than that of r. An uncommitted transaction will be aborted once
any lock-acquisition attempt fails during the membership update.
Transaction healing guarantees forward progress and final termina-
tion of transaction processing. This is because the read/write set of
any transaction maintains a finite number of elements, and the val-
idation phase certifies the consistency of any element for exactly
once. To conclude, transaction healing guarantees serializability
when restoring non-serializable operations, and the effect of trans-
action healing is equivalent to that of OCC.

4.5 Optimizing Dependent Transactions
Transaction healing optimizes the execution of dependent trans-

actions, which must perform reads for determining their full read-
/write sets [53, 54]. Compared with their independent counterparts,
dependent transactions usually require more efforts for resolv-
ing conflicting accesses, since the restoration of non-serializable
key-dependent operations can partially update the membership
of the read/write set, and transaction aborts can be invoked by
the deadlock-prevention mechanism. Transaction healing reduces
these overheads by (1) avoiding unnecessary membership update
by eliminating false invalidations and (2) reducing the likelihood
of deadlock occurrences by rearranging global validation orders.

Eliminating false invalidations. During the validation phase, a
false invalidation can occur if any concurrent transactions accessing
the same record modify a column that is not read by the current
transaction. Figure 6 shows a simplified example of such a case.

While transactions T1 and T2 both access record R, T1’s read
is not compromised by T2’s write. However, conventional OCC
can still invalidate T1’s access when checking R’s timestamp field.

Column 1 Column 2 … Column n Timestamp Visibility bit Lock bit

Conflicting record

Txn Txn

Figure 6: False invalidation. Transaction T1 reads the first column
while transaction T2 writes the nth one. T1 is invalidated although
the write installed by T2 does not affect T1’s correctness.

Such false invalidation is tolerable when processing independent
transactions, but the invoked healing phase can bring high over-
head for dependent transactions because of the partial membership
update of the read/write set. Transaction healing eliminates such
overhead by maintaining a local copy for each read operation. Once
the validation of a certain element fails, transaction healing directly
checks the value of the read column to determine whether a false in-
validation occurs. This proposed mechanism may incur additional
overhead inherited from memory allocation. However, our experi-
ments confirm that such overhead is negligible.

Rearranging validation orders. Transaction healing can abort
an uncommitted transaction when partially updating the member-
ship of the read/write set, which is invoked by the restoration of
an inconsistent key-dependent operation. The key reason is that the
record accessing order in the healing phase may not be aligned with
the global validation order, and therefore attempts will be made to
lock any record with comparatively smaller memory address (see
Section 4.2). Observing that most stored procedures in certain ap-
plications access tables based on a tree schema [20, 50], transac-
tion healing consequently sorts the elements in the read/write set
according to any topological order of the tree structure. In par-
ticular, elements pointing to the records extracted from the same
table are ordered based on the memory address. In this way, only
records with larger order are inserted into the read/write set dur-
ing the membership update. As a result, the likelihood of deadlock
occurrences is greatly reduced.

Warehouse

District

Customer Order NewOrder ……

1

2

3 4 5

Figure 7: Validation order in the TPC-C benchmark. The stored
procedures modeled in this benchmark touch Warehouse table
and District table before accessing any other tables.

Figure 7 shows the tree schema for the TPC-C benchmark. As
the restoration of an operation accessing District table never
affects those accessing Warehouse table, no deadlock can oc-
cur when healing the inconsistency of an element pointing to the
record from District table. Based on this principle, the pos-
sibility of transaction abort caused by deadlock prevention can be
significantly reduced.

4.6 Optimizing Independent Transactions
Transaction healing achieves optimal performance when pro-

cessing independent transactions, whose read/write sets can be de-
termined according to the input arguments prior to execution [18,
53, 54]. As transaction abort happens only when confronting mem-
bership update during the healing phase, independent transactions

1694

processed using the transaction healing protocol are guaranteed
to be committed due to the absence of key-dependency relations.
Based on this observation, transaction healing further optimizes the
execution of such transactions by combining the validation phase
with its subsequent write phase. Accordingly, any write effect of
a transaction can be directly applied to the database state once the
corresponding element in the read/write set has passed validation.
As a result, transaction healing reduces lock-holding duration for
independent transactions, increasing the overall level of concur-
rency when supporting OLTP workloads.

4.7 Supporting Database Operations
As a general database system, THEDB supports the full spec-

trum of database operations that are expressible by the SQL lan-
guage. In this subsection, we discuss how different operations are
implemented in THEDB.

4.7.1 Inserts and Deletes
When committing a transaction T , the timestamp of each record

modified or created by T is updated to the transaction’s commit
timestamp. In addition, the visibility bit of each record that is
deleted by T is turned off. THEDB further relies on a garbage
collector to periodically clean up all the deleted records. To guar-
antee the correctness of garbage collection, a reference counter is
maintained for each record to count the number of transactions that
are currently accessing the record. A deleted record can be safely
removed from the database once its reference counter drops to 0.

We further explain how THEDB handles insert operations in the
presence of conflicting operations using three scenarios.

In the first scenario, consider an insertion of a new record R by
transaction T1 followed by a read operation by another concurrent
transaction T2 to read R. To insert R, T1 performs the insertion
during its read phase, with the visibility bit of R set to false. When
T2 reads R, although R is added to T2’s read set, R is not visible
to T2 due to its visibility value (i.e.,R does not exist from T2’s per-
spective). When T1 commits, the visibility bit of R will be turned
on, indicating that R is now visible to other transactions. Dur-
ing the validation phase of T2, T2’s read operation that accesses R
would be detected to be non-serializable, and the healing phase will
be triggered to restore all the affected non-serializable operations.

In the second scenario, consider the reverse of the first scenario
where a transaction T1 first attempts to read a non-existent record
R followed by a concurrent transaction T2 that insertsR. When T1

attempts to read the non-existent R, THEDB will create a dummy
empty record Re to represent R with the visibility bit of Re set to
off, and an element corresponding to Re is inserted to T1’s read
set. If T2 attempts to insert R into the database, it must acquire
the lock on Re before performing the real insertion. Once T2 has
passed the validation, record insertion is executed by directly copy-
ing R’s content to Re. Suppose that T1 commits before T2. Both
transactions can commit successfully without confronting valida-
tion failure. However, if T2 commits before T1, T1 will detect the
modification of R’s timestamp during its validation phase, and a
healing phase will be triggered to heal the detected inconsistency.

In the third scenario, we consider the case where two concur-
rent transactions attempt to insert the same record R. Suppose that
T1’s insertion is performed before T2’s insertion during their read
phases. Similar to the discussion for the second scenario, a dummy
empty record Re would be created by T1’s insertion with its visi-
bility bit turned off. Subsequently, when T2 attempts to insert R, it
would detect the presence of Re and an element that points to Re

will be added to T2’s read/write set. Should T2 validate and com-
mit before T1, T2’s insertion will be committed and the visibility

bit for Re will be turned on. Subsequently, T1’s validation will fail
on detecting the modification of Re’s timestamp; in this case, T1

will be aborted due to the integrity constraint violation.
We have demonstrated that THEDB guarantees serializability in

all the cases where inserts are performed concurrently with con-
flicting operations. We conclude that database serializability can
be preserved with the existence of inserts and deletes.

4.7.2 Range Queries and Phantoms
The design of transaction healing naturally supports range

queries that access a collection of records in a table. However,
range queries can result in the phantom problem [23]. Instead of
utilizing the next-key locking mechanism [40] that is specifically
designed for two-phase locking protocol, THEDB solves this prob-
lem by leveraging a mechanism that is first proposed by Silo [55].
THEDB records a version number on each leaf node of a B+-tree to
detect structural modifications to the B+-tree. Any structural mod-
ification caused by inserts, deletes, or node splits will increase the
version number. When performing a range query in a transaction,
transaction healing records both the version number and the leaf
node pointers to the read/write set. During the validation phase, on
detecting a structural change that is indicated by the version mis-
match, transaction healing attempts to heal the inconsistency by
restoring the corresponding non-serializable operations.

4.8 Supporting Ad-Hoc Transactions
In real-world applications, a database user can submit ad-hoc

transactions without invoking stored procedures that are defined
prior to execution. THEDB processes such type of transactions us-
ing the conventional OCC scheme, which is fully compatible with
the transaction-healing mechanism. In the case that all the incom-
ing transactions are ad-hoc, THEDB is equivalent to a database sys-
tem that implements conventional OCC for serializing transactions.
While it is technically possible to enable transaction healing for ad-
hoc transactions by building an efficient program analyzer that ex-
tracts dependency graphs at runtime, there still exists two factors
that may restrict the system’s effectiveness. First, a database user
may issue SQL statements within a transaction interactively, mak-
ing the extraction of dependency graphs difficult due to the absence
of complete knowledge of the transaction program. Second, most
ad-hoc transactions may be executed only once, and the overhead
introduced by runtime program analysis can potentially outweigh
the benefits brought by transaction healing, making it unnecessary
to perform transaction healing to execute ad-hoc transactions. At
current stage, we restrict the scope of transaction healing to trans-
actions that are issued from stored procedures, and leave the inves-
tigation of supporting ad-hoc transactions as a future work.

5. EVALUATION
We implemented THEDB from the ground up in C++. As a high-

light, we automated the static analysis in THEDB with the LLVM
Pass framework [1]. In this section, we evaluate the effectiveness
of THEDB, by seeking to answer the following key questions:

1. Why do the state-of-the-art OCC protocols not scale well un-
der highly contended workloads?

2. Can THEDB scale linearly under different workloads?

All the experiments were performed on a multicore machine
running Ubuntu 14.04 with four 12-core AMD Opteron Processor
6172 clocked at 2.1 GHz, yielding a total of 48 physical cores.
Each core owns a private 64 KB L1 cache and a private 256 KB
L2 cache. Every 6 cores share a 5 MB L3 cache and a 8 GB local

1695

DRAM. The machine has a 2 TB SATA hard disk. We compare
THEDB with the following five systems:

THEDB-OCC. THEDB-OCC implements the conventional
OCC with several optimization techniques applied [61]. We have
implemented the scalable timestamp-allocation mechanism pro-
posed by Silo [55] to improve system concurrency.

THEDB-SILO. THEDB-SILO faithfully implements Silo’s de-
sign [55] on THEDB. It adopts a variation of OCC and improves
concurrency level by eliminating the necessity for tracking anti-
dependency relations.

THEDB-2PL. THEDB-2PL implements the widely accepted
two-phase locking (2PL) mechanism [11]. We adopt no-waiting
strategy for avoiding transaction deadlocks. We note that this strat-
egy is reported as the most scalable deadlock-prevention approach
for 2PL-based protocols [61].

THEDB-HYBRID. THEDB-HYBRID is a system that adopts a
hybrid concurrency-control mechanism [28, 52, 60] for optimized
performance. THEDB-HYBRID first executes an incoming trans-
action using OCC, and switches over to executing it using 2PL pro-
tocol should the transaction aborts due to OCC validation failure.

THEDB-DT. THEDB-DT is a partitioned deterministic
database that follows the design of existing works [32, 33, 54].
It leverages coarse-grained partition-level locks to serialize trans-
action executions. In particular, several optimization mechanisms,
including replication of read-only tables, were adopted [19, 45].

We adopted two well-known benchmarks, namely TPC-C [4]
and Smallbank [6], to evaluate the system performance. For the
TPC-C benchmark, we control the workload contention by vary-
ing the number of warehouses. Specifically, the contention degree
increases with the decrease in the number of warehouses. For the
Smallbank benchmark, the degree of workload contention is con-
trolled by a parameter θ, which indicates the skewness of the Zip-
fian distribution. Increasing θ yields more contended workload.
Our query-generation approach faithfully follows that employed by
several previous works [55, 61].

5.1 Existing Performance Bottlenecks
We begin our evaluation with a detailed performance analysis

on the state-of-the-art OCC protocols. We measure the transac-
tion throughput of THEDB-OCC and THEDB-SILO with different
degrees of workload contentions using the TPC-C benchmark. Fig-
ure 8 shows the results produced with 46 cores5. By decreasing the
warehouse count from 48 to 2, the performance of both systems
drops drastically. Specifically, when setting the number of ware-
houses to 2, these two systems respectively yield only 150 K and
60 K transactions per second (tps), reflecting high system sensitiv-
ity to workload contentions. To investigate how transaction aborts
influence system performance, we disable the validation phase of
the OCC protocols in both systems. Such modification can re-
sult in non-serializable results due to the absence of consistency
checking, but the achieved transaction rates essentially indicate
the peak performance that could be attained without any aborts.
As shown in Figure 8, disabling the validation phase essentially
yields 3 (THEDB-OCC) to 12 (THEDB-SILO) times higher trans-
action rate for highly contended workloads (see THEDB-OCC−

and THEDB-SILO−). In particular, the peak performance achieved
by THEDB-SILO can be 10-15% higher than that of THEDB-OCC
after disabling the validation phase. The key reason is that the
commit protocol of THEDB-SILO by design eliminates the neces-
sity for tracking anti-dependency relations [55], consequently lead-
ing to reduced locking overhead. Note that the transaction rate of

5We leave two cores for handling OS-related tasks.

both systems can still deteriorate even after disabling the valida-
tion phase. This is mainly because of lock thrashing effects [11,
61], where concurrent transactions are waiting for the access privi-
lege of contended locks. Such a phenomenon exists universally in
modern concurrency-control mechanisms that require fine-grained
locking scheme [61]. While the recently proposed deterministic
partitioned databases can prevent such overhead [32, 33, 53, 54],
the management of coarse-grained locks in these databases incurs
costly overhead when processing cross-partition transactions. This
is confirmed by our experiments presented later in Section 6.2.

0

200

400

600

800

1,000

1,200

1,400

1,600

2 6 12 18 24 30 36 42 48

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
K

 t
p
s
)

Number of warehouses

THEDB-OCC

THEDB-SILO

THEDB-OCC

THEDB-SILO

Figure 8: Transaction rate with different degree of contentions. The
number of cores is set to 46.

We next analyze the overheads incurred by OCC protocols due
to their abort-and-restart mechanism. Figure 9a depicts the per-
centage of the total execution time spent on transaction abort-and-
restart. With the number of warehouses set to 2, THEDB-OCC
and THEDB-SILO respectively spent 69% and 91% of their exe-
cution time on aborting-and-restarting transactions due to valida-
tion failure. This result confirms that the abort-and-restart mech-
anism is the key contributor to the inefficiency of the state-of-the-
art OCC protocols. Figure 9b illustrates that both THEDB-OCC
and THEDB-SILO achieve similarly high abort rate6 which in-
creases as expected with increasing data contention (i.e., lower
number of warehouses). Given the relatively weaker performance
of THEDB-SILO under highly contended workloads compared to
THEDB-OCC, this indicates that THEDB-SILO is more sensitive
to high abort rate. The main reason is that THEDB-SILO starts
its validation phase for a transaction only after locking its entire
write set, which therefore incurs more wasted effort for an aborted
transaction. Indeed, the concurrency-control protocol adopted in
Silo can be considered as a more optimistic OCC scheme. While
this design achieves comparatively higher transaction throughput
for low-contention workloads, its design suffers significant perfor-
mance penalty when the workload is highly contended.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 6 12 18 24 30 36 42 48

P
e

rc
e

n
ta

g
e

 (
x
1

0
0

%
)

Number of warehouses

THEDB-OCC

THEDB-SILO

(a) Percentage of allocated time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 6 12 18 24 30 36 42 48

A
b

o
rt

 r
a

te

Number of warehouses

THEDB-OCC

THEDB-SILO

(b) Abort rate.

Figure 9: Overhead of the abort-and-restart mechanism with differ-
ent degree of contentions. The number of cores is set to 46.

In the experiments above, we confirm that the existing OCC pro-
tocols are not scalable on multicore architectures due to the expen-
sive abort-and-restart mechanism. Given this, THEDB is designed
6The abort rate is calculated as the number of transaction restarts
divided by the number of committed transactions.

1696

and implemented to achieve high scalability even under highly con-
tended workloads by reducing the abort-and-restart overhead.

5.2 Scalability
This subsection evaluates the scalability of THEDB. Specifi-

cally, we attempt to address the following questions: (1) whether
THEDB yields high transaction rate under workloads with differ-
ent contentions; (2) whether THEDB achieves low latency when
processing transactions; (3) whether THEDB sustains high perfor-
mance in the presence of ad-hoc transactions; (4) whether THEDB
achieves satisfactory performance in benchmarks comprising short-
duration transactions; and (5) how each proposed mechanism af-
fects the system performance.

5.2.1 Transaction Rate
We first investigate the robustness of THEDB using the TPC-C

benchmark with 46 cores. We set the percentage of cross-partition
transactions to 0 and change the number of warehouses from 2
to 48 to decrease the workload contention. Figure 10 shows the
results. All the systems in comparison achieve near-linear scal-
ability with the number of warehouses set to 48. In particular,
THEDB-DT yields the highest transaction rate, due to the absence
of cross-partition transactions. However, with the increase of work-
load contention, the performance of THEDB-OCC, THEDB-SILO,
THEDB-2PL, THEDB-HYBRID, and THEDB-DT drop sharply,
especially when the number of warehouses is set to 2. THEDB, in
contrast, sustains a relatively high transaction rate that is very close
to THEDB-OCC’s peak performance (denoted as THEDB-OCC−)
where the validation phase of the OCC protocol is disabled. This
observation essentially confirms that the transaction healing proto-
col adopted in THEDB brings little overhead to the system runtime,
and it can scale well even when the workload is highly contended.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2 6 12 18 24 30 36 42 48

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
K

 t
p
s
)

Number of warehouses

THEDB THEDB-OCC

THEDB-SILO THEDB-2PL

THEDB-HYBRID THEDB-DT

THEDB-OCC THEDB-SILO

Figure 10: Transaction rate with different degree of contentions.
The number of cores is set to 46.

Figure 11 further presents the system scalability using the same
benchmark. Under the highly contended workload shown in Fig-
ure 11a, THEDB achieves much higher transaction rate than that
of the other five systems. In contrast, THEDB-SILO achieves the
worst performance. This is because THEDB-SILO’s commit proto-
col is vulnerable to frequent transaction aborts, as explained in Sec-
tion 6.1. Although THEDB-2PL achieves 25% higher transaction
rate compared to THEDB-OCC, its long-duration locks decrease
the concurrency degree, making it less effective on multicore ar-
chitecture. THEDB-HYBRID also achieves unsatisfactory results,
since its performance is severely restricted by the combination of
OCC and 2PL protocols. While the percentage of cross-partition
transactions is set to 0 in this experiment, THEDB-DT still yields a
low performance. The major reason is that the execution model of
THEDB-DT forbids concurrent execution on a single partition, and
therefore the number of cores that can be utilized for processing
transactions is strictly limited by the number of warehouses in the
TPC-C benchmark, consequently resulting in low resource utiliza-
tion rate. Compared to these systems, THEDB scales near linearly

towards 46 cores, achieving respectively 2.3 and 6.2 times higher
throughput than that of THEDB-2PL and THEDB-SILO. This is
because the transaction-healing protocol adopted by THEDB heals
any inconsistency that is detected during the validation phase, and
the expensive overhead caused by abort-and-restart is completely
eliminated with the help of the proposed optimization mechanisms.
Figures 11b and 11c further illustrate that, while the performance
of the other five systems improves under low-contention workload,
THEDB maintains a high transaction throughput when scaling to
46 cores, demonstrating THEDB’s high scalability and robustness.

While THEDB achieves a comparatively high transaction rate
when supporting high-contention workloads, the experimental re-
sults reported above indicate that THEDB still suffers from per-
formance degradation due to lock thrashing [11, 61]. While re-
cent research has proposed deterministic database systems to over-
come this problem, the management of coarse-grained locks in
such database systems incurs additional overhead when processing
cross-partition transactions. Figure 12 shows the transaction rate
of each system with different percentage of cross-partition trans-
actions. In this set of experiments, the number of cores is set
to 46. While all the other systems achieve a stable performance
that is not affected by the percentage of cross-partition transac-
tions, THEDB-DT suffers from a significant drop in performance
when cross-partition transactions are introduced. Specifically, re-
gardless of the workload contentions, THEDB-DT achieves a low
transaction rate when the percentage of cross-partition transactions
increases to 10%. This is because the coarse-grained locking mech-
anism adopted by THEDB-DT requires a transaction to lock all the
partitions that it accesses until it completes. Consequently, any con-
current transaction that needs to access one of the locked partitions
would be blocked. This experiment demonstrates that existing de-
terministic databases cannot perform well when supporting cross-
partition transactions.

5.2.2 Transaction Latency
Next, we analyze the transaction latency of THEDB when pro-

cessing highly contended workloads. We execute the TPC-C
benchmark with the number of warehouses set to 4, and mea-
sure the processing durations for NewOrder transactions and
Delivery transactions. Both types of transactions are depen-
dent transactions, which must perform read operations to obtain its
full read/write set. In particular, the program logic of Delivery
transactions is more complicated, and the processing latency can
be much longer compared to NewOrder transactions.

Table 1 shows the transaction latencies of different sys-
tems for processing NewOrder transactions. Compared with
THEDB-OCC THEDB-SILO, and THEDB-2PL, THEDB incurs
a much shorter latency with over 95% of the NewOrder trans-
actions committed within 80 µs. In contrast, the latencies for
THEDB-OCC, THEDB-SILO, and THEDB-2PL are more varied,
ranging from below 20 µs to over 640 µs. This is because the con-
ventional abort-and-restart mechanism adopted by these two sys-
tems could incur a high overhead when the same transaction has to
be re-executed multiple times. Table 1 also presents the latencies
achieved by THEDB-OCC and THEDB-SILO with the validation
phase disabled (denoted as THEDB-OCC− and THEDB-SILO−).
The reported numbers are very close to that obtained by THEDB,
showing that the adopted transaction-healing protocol incurs little
overhead to the system runtime. To conclude, THEDB enables ef-
ficient transaction processing as any transaction that fails the vali-
dation will be healed without getting restarted from scratch.

We further analyze the latencies achieved by different sys-
tems when processing Delivery transactions, which comprise

1697

0

100

200

300

400

500

600

700

800

1 6 12 18 24 30 36 42 46

T
ra

n
s
a
c
ti
o
n

 r
a

te
 (

K
 t
p

s
)

Number of cores

THEDB

THEDB-OCC

THEDB-SILO

THEDB-2PL

THEDB-HYBRID

THEDB-DT

(a) 4 warehouses.

0

200

400

600

800

1,000

1 6 12 18 24 30 36 42 46

T
ra

n
s
a
c
ti
o
n

 r
a

te
 (

K
 t
p

s
)

Number of cores

THEDB

THEDB-OCC

THEDB-SILO

THEDB-2PL

THEDB-HYBRID

THEDB-DT

(b) 12 warehouses.

0

200

400

600

800

1,000

1,200

1 6 12 18 24 30 36 42 46

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

Number of cores

THEDB

THEDB-OCC

THEDB-SILO

THEDB-2PL

THEDB-HYBRID

THEDB-DT

(c) 24 warehouses.

Figure 11: Transaction rate for TPC-C benchmark with different degree of workload contentions.

0

100

200

300

400

500

600

700

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
K

 t
p
s
)

Percentage of cross-partition transactions

THEDB THEDB-OCC THEDB-SILO
THEDB-2PL THEDB-HYBRID THEDB-DT

(a) 4 warehouses.

0

200

400

600

800

1,000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
T

ra
n

s
a

c
ti
o

n
 r

a
te

 (
K

 t
p
s
)

Percentage of cross-partition transactions

THEDB THEDB-OCC THEDB-SILO
THEDB-2PL THEDB-HYBRID THEDB-DT

(b) 12 warehouses.

0

200

400

600

800

1,000

1,200

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
K

 t
p
s
)

Percentage of cross-partition transactions

THEDB THEDB-OCC THEDB-SILO
THEDB-2PL THEDB-HYBRID THEDB-DT

(c) 24 warehouses.

Figure 12: Transaction rate for TPC-C benchmark with different percentage of cross-partition transactions.

complex dependencies among operations. As shown in Ta-
ble 1, by disabling the validation phase, THEDB-OCC commits
84.1% of the Delivery transactions within 320 µs (denoted as
THEDB-OCC−). In this scenario, no consistency check is per-
formed during the execution, and therefore transactions will always
be committed without being any restarts. However, enabling the
validation phase significantly increases the transaction latency, and
only 14.1% and 16.0% of the transactions are committed within
320 µs respectively by THEDB-OCC and THEDB-SILO. This re-
sult demonstrates the inefficiency of the abort-and-restart mecha-
nism. Compared with these two systems, THEDB could achieve a
much lower transaction latency. While the healing of inconsisten-
cies for dependent transactions could cause membership updates of
the read/write sets, THEDB is still able to commit nearly 90% of
the transactions within 640 µs. In addition, the transaction latency
is strictly bounded within 1280 µs, and hence the overall system
performance is much better than that achieved by THEDB-OCC,
THEDB-SILO, and THEDB-2PL.

The experiments reported above demonstrate that the
transaction-healing protocol adopted by THEDB does not
incur high latency when processing different types of transactions.

5.2.3 Ad-Hoc Queries
THEDB processes ad-hoc transactions using conventional OCC

protocol, which is fully compatible with transaction healing. On
detecting inconsistency during validation phase, ad-hoc transac-
tions will be directly aborted and restarted from scratch. In this
experiment, we randomly taint some transactions as ad-hoc trans-
actions, and examine how the transaction rate of THEDB is influ-
enced by the percentage of ad-hoc transactions. Figure 13 shows
the result with the number of warehouses set to 4. By changing
the percentage of ad-hoc transactions from 0% to 100%, the per-
formance of THEDB deteriorates smoothly, and finally degrades to
the performance of conventional OCC protocol. This is because
THEDB’s transaction-processing scheme is essentially equivalent
to that of THEDB-OCC when all the incoming transactions are ad-
hoc. Given the fact that most transactions in modern applications
are generated from stored procedures [50], we conclude that trans-
action healing can provide a great performance boost when sup-
porting real-world OLTP workloads.

0

100

200

300

400

500

600

700

800

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

Percentage of ad-hoc transactions

THEDB THEDB-OCC

THEDB-SILO THEDB-2PL

THEDB-HYBRID THEDB-DT

Figure 13: Transaction rate with different percentages of ad-hoc
transactions. The number of cores is set to 46.

5.2.4 Short-Duration Transactions
In the following experiments, we use the Smallbank benchmark

to evaluate the performance of THEDB for workloads with short-
duration transactions. Recall that the workload contention of the
Smallbank benchmark is controlled by a parameter θ, which indi-
cates the skewness of the Zipfian distribution. Table 2 shows the
percentage of accesses to different keys based on the various Zip-
fian distributions by varying θ. Here, the number of records in each
table is set to 1,000. Note that the workload contention grows ex-
ponentially with θ. The results in Table 2 show that the abort rates
of THEDB-OCC and THEDB-SILO climb rapidly from 0.007 to
0.324 and 0.403, respectively. Different from these two systems,
THEDB did not abort any transaction as all the detected validation
failures were resolved with the healing phase.

Figure 14 shows the transaction rate of different systems with θ
varying from 0.1 to 0.9. In this experiment, the number of cores
is set to 24. With θ set to 0.1, THEDB-SILO achieves around 5%
higher throughput compared to THEDB and THEDB-OCC. This
is because the design of THEDB-SILO’s concurrency-control pro-
tocol eliminates the necessity for checking anti-dependency rela-
tions. However, the tradeoff for such an extreme optimistic pro-
tocol is that it underperforms for high-contention workloads. In
particular, when θ = 0.9, THEDB-SILO yields the lowest transac-
tion throughput among all the systems being compared. However,
the performance of THEDB remains stable for different workload
contentions. Under highly contended workload, the transaction
throughput achieved by THEDB is 4.5 times higher than other sys-
tems, and this performance is very close to the peak throughput

1698

Transaction type Latency (µs) THEDB THEDB-OCC THEDB-SILO THEDB-2PL THEDB-OCC− THEDB-SILO−

NewOrder 10 - 20 0.2% 0% 3.5% 1.1% 0% 4.8%
20 - 40 36.7% 13.7% 25.9% 29.2% 34.0% 45.3%
40 - 80 59.1% 32.1% 28.8% 41.4% 62.8% 42.0%
80 - 160 2.7% 28.4% 28.1% 19.9% 3.2% 7.7%

160 - 320 1.3% 17.9% 7.8% 6.7% 0% 0.2%
320 - 640 0% 5.6% 4.7% 1.5% 0% 0%
640 - INF 0% 2.3% 1.2% 0.3% 0% 0%

Delivery 10 - 80 0% 0.3% 0.8% 1.4% 0% 0%
80 - 160 0.3% 0% 0% 1.6% 0.6% 1.4%

160 - 320 41.1% 14.1% 16.0% 29.6% 84.1% 69.3%
320 - 640 48.4% 31.4% 24.2% 38.1% 14.0% 22.7%
640 - 1280 10.2% 34.6% 37.9% 21.3% 1.2% 6.6%

1280 - 2560 0% 13.8% 16.8% 7.5% 0% 0%
2560 - 5120 0% 4.0% 3.9% 0.6% 0% 0%
5120 - INF 0% 1.7% 0.5% 0% 0% 0%

Table 1: Transaction latency for TPC-C benchmark. The number of warehouses is set to 4, and the number of cores is set to 46.

θ 1st 2nd 10th 100th Abort rate
0.1 0.25% 0.24% 0.20% 0.16% 0 / 0.007 / 0.007
0.2 0.45% 0.39% 0.29% 0.18% 0 / 0.008 / 0.008
0.3 0.78% 0.63% 0.40% 0.19% 0 / 0.009 / 0.009
0.4 1.34% 1.02% 0.55% 0.22% 0 / 0.013 / 0.010
0.5 2.26% 1.60% 0.74% 0.22% 0 / 0.016 / 0.012
0.6 3.70% 2.45% 0.95% 0.24% 0 / 0.024 / 0.023
0.7 5.86% 3.60% 1.20% 0.23% 0 / 0.047 / 0.084
0.8 8.91% 5.17% 1.48% 0.23% 0 / 0.251 / 0.347
0.9 13.01% 7.06% 1.72% 0.21% 0 / 0.324 / 0.403

Table 2: The percentage of accesses to the first, second, 10th,
and 100th most popular keys in Zipfian distributions for different
values of θ. The last column shows the abort rates of THEDB,
THEDB-OCC, and THEDB-SILO respectively.

that is achieved by disabling OCC’s validation phase. This result
essentially demonstrates the low overhead of transaction healing.

0

1,000

2,000

3,000

4,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

skewness (theta)

THEDB

THEDB-OCC

THEDB-SILO

THEDB-2PL

THEDB-HYBRID

THEDB-OCC

THEDB-SILO

Figure 14: Transaction rate with different degree of contentions.
The number of cores is set to 24.

We further compare the transaction latency of THEDB with that
of THEDB-OCC and THEDB-SILO in Table 3. When θ = 0.5,
the three systems in comparison yield similar transaction latency.
In THEDB, 25% of the transactions are committed within 4.86
µs. This number is very close to that achieved by THEDB-OCC
and THEDB-SILO, which are 4.79 µs and 5.45 µs, respectively.
This result essentially indicates that transaction healing brings lit-
tle overhead to the system runtime when processing workloads with
low contentions. When supporting highly contended workloads,
THEDB generates remarkably lower latency compared to the other
systems. Specifically, 95% of the transactions executed by THEDB
complete within 11.45 µs when θ = 0.9; in contrast, the latency for
THEDB-OCC and THEDB-SILO increases to 36.14 µs and 42.54
µs, respectively. This result indicates that the state-of-the-art OCC

θ Percentile THEDB THEDB-OCC THEDB-SILO

0.5 25% 4.86 µs 4.79 µs 5.45 µs
80% 8.52 µs 8.57 µs 9.02 µs
95% 10.63 µs 11.12 µs 11.58 µs

0.7 25% 4.55 µs 4.25 µs 3.20 µs
80% 9.12 µs 8.43 µs 7.75 µs
95% 11.84 µs 12.74 µs 12.34 µs

0.9 25% 4.57 µs 2.60 µs 2.21 µs
80% 9.14 µs 5.22 µs 4.50 µs
95% 11.45 µs 36.14 µs 42.54 µs

Table 3: Transaction latency for Smallbank benchmark. The num-
ber of cores is set to 24.

protocols cannot process each transaction uniformly, and the abort-
and-restart mechanism severely hurts the latency of some transac-
tions in the workload, hence causing degradation to the overall sys-
tem performance.

5.2.5 Runtime Overhead
In this section, we analyze the runtime overhead incurred by

transaction healing in THEDB. Compared with OCC, transac-
tion healing maintains an additional access cache during the read
phase of the transaction execution. In addition, a local copy of any
record that is read by the transaction is held to eliminate potential
overhead caused by false invalidation when processing dependent
transactions. Such overheads can potentially cause observable per-
formance degradation when processing low-contention workloads.
To precisely measure the performance overhead associated with
transaction healing, we executed the TPC-C benchmark with the
number of warehouses set to be equal to the core count. To min-
imize conflicting actions, we allocate each thread to be responsi-
ble for processing transactions associated with a single warehouse.
Table 1 shows the experimental results. Without maintaining the
access cache and local copies for read operations, THEDB yields
1139 K tps when processing transactions with 46 cores (denoted
by Normal). Maintaining the access cache incurs little overhead
to the system runtime, and THEDB still achieves 1087 K tps with
46 cores enabled (denoted by +Access Cache). Similarly, the over-
head caused by the maintenance of local copies for read operations
is also negligible, and less than 2% performance degradation is ob-
served (denoted by +Read Copy). Hence, we conclude that trans-
action healing brings little overhead to the system runtime when
processing low-contention workloads.

The experiments presented above demonstrate that the

1699

#cores 8 16 24 32 40 46
Normal (K tps) 328 606 840 971 1088 1139

+Access Cache (K tps) 325 602 811 937 1036 1087
+Read Copy (K tps) 314 588 790 924 1015 1067

Table 4: Transaction rate when processing the TPC-C benchmark.
The number of warehouses is set to be equal to the core count.

transaction-healing protocol can achieve both high scalability
and robustness for transaction processing on multicores, with little
performance overhead brought to the system runtime.

6. RELATED WORK
Multicore databases. Concurrency-control protocols have been

investigated in the last thirty years [11]. To facilitate the per-
formance in disk-based OLTP databases, several works [29, 30,
31, 43, 44] have been proposed to remove centralized locking
bottlenecks. With the evolution of hardware architecture, re-
searchers have shifted their attentions to improve performance in
multicore main-memory databases. Ren et al. [48] removed con-
tention bottlenecks in centralized lock manager by proposing a
lightweight per-tuple 2PL scheme. Yao et al. [59] extracted con-
currency control from execution to accelerate the multicore pro-
cessing of OLTP workloads. Larson et al. [35] recently revisited
two multi-version concurrency-control (MVCC) algorithms, and
their study further settled the foundation for Microsoft’s Heka-
ton database [21]. Faleiro et al. [25] proposed a technique for
lazily evaluating transactions, and this technique improves database
performance for certain kinds of workloads. Based on a similar
design principle, the same authors improved the MVCC perfor-
mance by decoupling concurrency control and version management
from transaction execution [24]. Levandoski et al. [36] presented
an efficient range concurrency-control scheme that extends multi-
version timestamp ordering to support range resources and fully
supports phantom prevention. As a departure from the traditional
database architectures, several deterministic databases, including
H-Store [32], Hyper [33], and Calvin [53, 54], have been proposed.
These databases divide the underlying storage into multiple parti-
tions, each of which is protected by a lock and is assigned a single-
threaded execution engine with exclusive access. To optimize sys-
tem performance, different partitioning schemes [19, 45] were pro-
posed to reduce the number of cross-partition transactions. Un-
like these databases, THEDB leverages static analysis to optimize
database performance.

Optimistic concurrency control. Optimistic concurrency con-
trol (OCC) was first proposed by Kung and Robinson [34]. Wit-
nessing its vulnerability to contended workloads, several works
have been introduced to reduce OCC’s abort rate. Agrawal et al. [5]
adopted a multi-versioned protocol to allow inconsistent access to
the database records. Herlihy [28] eliminated successive abort-
and-restart in OCC by resorting to pure lock-based protocol once
transaction abort occurs. Different from these proposals, THEDB
exploits program semantics to partially re-execute transactions in-
stead of blindly restarting the entire transaction from the scratch.
In recent years, OCC have been widely adopted in main-memory
databases. As a representative system, Silo [55] achieves high
transaction rate by avoiding anti-dependency tracking and taking
advantage of a main-memory index [39]. Hekaton [21] facilitates
the OCC’s performance by exploiting multi-versioning to avoid in-
stalling writes until commit time. Hyder [12] adopts a variant of
OCC protocol called meld [13] that is specifically designed for
log-structured databases. Absorbing the design benefits from these

systems, THEDB lays its major contribution to improve OCC’s
scalability and robustness to the contended workloads by leverag-
ing static analysis to the transaction programs. Some other recent
works focus on optimizing OCC in distributed environments and
new system architecture. For example, Bernstein et al. [9, 10] im-
proved OCC’s performance in distributed log-structured databases
without storage partitioning. Ding et al. [22] introduced a new elas-
tic distributed transaction processing mechanism that separates the
validation layer from storage layer. Wang et al. [56] leveraged re-
stricted transactional memory to optimize the OCC performance.

Program analysis. Many works have been proposed to adopt
program partitioning and transformation to optimize system perfor-
mance [8, 15, 16, 17, 26, 27, 46]. Among them, one widely adopted
technique is transaction chopping [49], which analyzes possible
transaction conflicts using SC-cycles. In fact, the database commu-
nity has investigated various types of transaction partitioning mech-
anisms for improved system performance [8, 26, 27]. Transaction
chopping is also applied to several modern database applications.
Zhang et al. [62] proposed transaction chain to achieve serializ-
ability in geo-distributed databases, and Mu et al. [41] tracked de-
pendencies between concurrent transactions to optimize distributed
transactions in high contention scenario. Several other works also
resorted to program analysis for improved performance. Dop-
pel [42] splits transaction execution into two phases, and processes
commutative operations in parallel for higher transaction rate. Wu
et al. [58] leveraged program analysis to parallelize command-log
recovery on multicores. Unlike these previous works, THEDB only
requires simple static analysis that extracts the dependencies within
a program, and ad-hoc queries are naturally supported.

Transactional memory. In the area of transactional memory
systems, researchers also adopt OCC to facilitate the performance
of transactional execution. Blundell et al. [14] adopted symbolic
tracking to commit transactions in the case of data conflicts by re-
executing read instructions in the programs. However, their ap-
proach is restricted to only "non-critical conflicts" occurring on
auxiliary or bookkeeping data. Litz et al. [38] resorted to snap-
shot isolation for reduced abort rate, but their approach inevitably
sacrifices program consistency. Ramadan et al. [47] proposed con-
flict serializability to reduce aborts by relaxing concurrency con-
trol. While their approach reduce abort rates in certain cases, it is
not general enough to provide full capability of tolerating all the
read-write conflicts. Different from these works, THEDB is specif-
ically designed for supporting OLTP applications and can be gen-
eralized to support all kinds of database operations. Meanwhile,
system durability is guaranteed by its effective commit protocol.

7. CONCLUSION
We have introduced a new concurrency-control mechanism,

called transaction healing, that scales the conventional OCC to-
wards dozens of cores even under highly contended workloads.
Transaction healing leverages the statically extracted program de-
pendency graph to restore any non-serializable operations once in-
consistency is detected during validation. By maintaining a thread-
local access cache, the overhead for committing conflicting transac-
tions is significantly reduced. Our experimental study confirms that
transaction healing can scale near-linearly, yielding much higher
transaction rate than the state-of-the-art OCC implementations.

Acknowledgment
We appreciate the reviewers’ insightful comments. This research is
supported in part by MOE Grant R-252-000-583-112. The source
code is available at https://github.com/Cavalia/Cavalia.

1700

8. REFERENCES
[1] http://llvm.org/docs/passes.html.
[2] https://github.com/apavlo/h-store.
[3] https://github.com/stephentu/silo.
[4] http://www.tpc.org/tpcc/.
[5] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta.

Distributed optimistic concurrency control with reduced
rollback. Distributed Computing, 2(1), 1987.

[6] M. Alomari, M. Cahill, A. Fekete, and U. Röhm. The cost of
serializability on platforms that use snapshot isolation. In
ICDE, 2008.

[7] T. M. Austin and G. S. Sohi. Dynamic dependency analysis
of ordinary programs. In ISCA, 1992.

[8] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Concurrency
control for step-decomposed transactions. Information
Systems, 24(8), 1999.

[9] P. A. Bernstein and S. Das. Scaling optimistic concurrency
control by approximately partitioning the certifier and log.
IEEE Data Eng. Bull, 38(1), 2015.

[10] P. A. Bernstein, S. Das, B. Ding, and M. Pilman. Optimizing
optimistic concurrency control for tree-structured,
log-structured databases. In SIGMOD, 2015.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
1987.

[12] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-a
transactional record manager for shared flash. In CIDR,
2011.

[13] P. A. Bernstein, C. W. Reid, M. Wu, and X. Yuan. Optimistic
concurrency control by melding trees. In VLDB, 2011.

[14] C. Blundell, A. Raghavan, and M. M. Martin. Retcon:
transactional repair without replay. In ISCA, 2010.

[15] A. Cheung, S. Madden, O. Arden, and A. C. Myers.
Automatic partitioning of database applications. In VLDB,
2012.

[16] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being
lazy is a virtue (when issuing database queries). In SIGMOD,
2014.

[17] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and
A. C. Myers. Using program analysis to improve database
applications. IEEE Data Eng. Bull., 37(1), 2014.

[18] J. Cowling and B. Liskov. Granola: low-overhead distributed
transaction coordination. In USENIX ATC, 2012.

[19] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and
partitioning. In VLDB, 2010.

[20] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic,
scalable, and self-managing transactional database for the
cloud. TODS, 38(1), 2013.

[21] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql
server’s memory-optimized oltp engine. In SIGMOD, 2013.

[22] B. Ding, L. Kot, A. Demers, and J. Gehrke. Centiman:
Elastic, high performance optimistic concurrency control by
watermarking. In SoCC, 2015.

[23] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database
system. Communications of the ACM, 19(11), 1976.

[24] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. In VLDB, 2015.

[25] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation

of transactions in database systems. In SIGMOD, 2014.
[26] H. Garcia-Molina. Using semantic knowledge for transaction

processing in a distributed database. TODS, 8(2), 1983.
[27] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD, 1987.
[28] M. Herlihy. Apologizing versus asking permission:

Optimistic concurrency control for abstract data types.
TODS, 15(1), 1990.

[29] T. Horikawa. Latch-free data structures for dbms: design,
implementation, and evaluation. In SIGMOD, 2013.

[30] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-mt: A scalable storage manager for the
multicore era. In EDBT, 2009.

[31] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A
scalable lock manager for multicores. In SIGMOD, 2013.

[32] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: A
high-performance, distributed main memory transaction
processing system. In VLDB, 2008.

[33] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory
snapshots. In ICDE, 2011.

[34] H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. TODS, 6(2), 1981.

[35] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. In VLDB,
2011.

[36] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and
R. Wang. Multi-version range concurrency control in
deuteronomy. In VLDB, 2015.

[37] J. J. Levandoski, P.-A. Larson, and R. Stoica. Identifying hot
and cold data in main-memory databases. In ICDE, 2013.

[38] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P.
Stevenson. Si-tm: reducing transactional memory abort rates
through snapshot isolation. In ASPLOS, 2014.

[39] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. In EuroSys, 2012.

[40] C. Mohan. Aries/kvl: A key-value locking method for
concurrency control of multiaction transactions operating on
b-tree indexes. In VLDB, 1990.

[41] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In OSDI,
2014.

[42] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In
OSDI, 2014.

[43] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. In VLDB, 2010.

[44] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: page
latch-free shared-everything oltp. In VLDB, 2011.

[45] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel oltp
systems. In SIGMOD, 2012.

[46] K. Ramachandra, R. Guravannavar, and S. Sudarshan.
Program analysis and transformation for holistic
optimization of database applications. In SOAP, 2012.

[47] H. E. Ramadan, C. J. Rossbach, and E. Witchel.
Dependence-aware transactional memory for increased
concurrency. In MICRO, 2008.

[48] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking

1701

for main memory database systems. In VLDB, 2012.
[49] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez.

Transaction chopping: Algorithms and performance studies.
TODS, 20(3), 1995.

[50] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, 2007.

[51] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. TODS,
4(2), 1979.

[52] A. Thomasian. Distributed optimistic concurrency control
methods for high-performance transaction processing.
TKDE, 10(1), 1998.

[53] A. Thomson and D. J. Abadi. The case for determinism in
database systems. In VLDB, 2010.

[54] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In SIGMOD, 2012.

[55] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
SOSP, 2013.

[56] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory
database. In EuroSys, 2014.

[57] Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction healing:
Scaling optimistic concurrency control on multicores
(extended version). In CoRR, 2016.

[58] Y. Wu, W. Guo, C.-Y. Chan, and K.-L. Tan. Parallel database
recovery for multicore main-memory databases. In CoRR,
2016.

[59] C. Yao, D. Agrawal, P. Chang, G. Chen, B. C. Ooi, W.-F.
Wong, and M. Zhang. Dgcc: A new dependency graph based
concurrency control protocol for multicore database systems.
In CoRR, 2015.

[60] P. S. Yu and D. M. Dias. Analysis of hybrid concurrency
control schemes for a high data contention environment.
TSE, 18(2), 1992.

[61] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.
Staring into the abyss: An evaluation of concurrency control
with one thousand cores. In VLDB, 2014.

[62] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In SOSP, 2013.

APPENDIX
A. BENCHMARKS

In our experimental study, we use two benchmarks, namely,
TPC-C and Smallbank, to evaluate the system performance. We
briefly describe these benchmarks here.

TPC-C. This benchmark is a widely-recognized industry stan-
dard for evaluating the performance of OLTP workloads. It con-
tains nine tables and simulates a warehouse-centric order process-
ing application. Three out of the five stored procedures, namely,
NewOrder, Delivery, and Payment, contain write operations.
The workload contention is controlled by the number of ware-
houses, and smaller number of warehouses indicates higher level
of contention. The ratio of cross-partition transactions is controlled
by changing the probability of accessing remote warehouses in the
NewOrder transactions.

Smallbank. The Smallbank benchmark models a simple bank-
ing application containing three tables and six stored procedures.

Transactions in this benchmark perform simple read and update op-
erations on customers’ accounts. Only a small number of items are
involved in each transaction. The workload contention is controlled
by a parameter θ, which indicates the skewness of the Zipfian dis-
tribution.

B. PROGRAM DEPENDENCY GRAPH
Figure 15a and Figure 15b respectively show the program depen-

dency graphs for NewOrder transactions and Delivery trans-
actions. In these two figures, solid lines represent key depen-
dencies, while dashed lines represent value dependencies. Com-
pared with NewOrder transactions, Delivery transactions ac-
cess more data records, and the dependency relations among oper-
ations are more complicated. Therefore, healing the inconsisten-
cies that are detected in Delivery transactions can require more
efforts compared to NewOrder transactions.

at most 15 orderlines

read Item

read Stock

at most 15 items

at most 15 stocks

write Stock

read Warehouse

read District

write District

read Customer

insert NewOrder

insert Order

insert OrderLine

(a) NewOrder transactions.

read NewOrder delete NewOrder

read OrderLineread Order write Order write OrderLine

read Customer

write Customer

at most 15 orderlines at most 15 orderlines

at most 10 districts

(b) Delivery transactions.

Figure 15: Program dependency graphs.

C. DURABILITY
This section first discusses how THEDB achieves system dura-

bility with minimum runtime overhead, and then demonstrates the
efficiency of the adopted mechanisms through careful experiments.

C.1 Design
THEDB employs both checkpointing and value-logging during

transaction execution to avoid loss of committed transaction up-
dates in the event of machine failure or power outage. THEDB pe-
riodically checkpoints its in-memory database states to bound the
maximum failure-recovery time. Meanwhile, all the update effects
along with their timestamps are logged to the persistent storage,
as is described in Section 4.3. In particular, transactions assigned
with the same epoch number are persisted together, reducing the
overhead that is caused by frequent storage access. Query result
generated by a transaction is returned to the client only until the
transaction’s write effects have already been dumped to the under-
lying storage. Once machine failure occurs, THEDB reloads the
most recent transaction-consistent checkpoint from the persistent
storage. The reloading time is correlated to the checkpoint size
and storage access speed, and parallelism can be achieved by using
multiple storage devices or other new hardware. THEDB’s logging
mechanism ensures that log-recovery can be performed in parallel.

1702

After reloading the corresponding log file to its local workspace,
each thread re-instates the values of committed records concur-
rently. Specifically, each record in the database is attached with
a timestamp indicating its last updater. When attempting to update
a record with timestamp t1, the write effect will be ignored if the
updater’s timestamp t2 is smaller than t1. The correctness of this
approach is guaranteed by the Thomas write rule [51].

C.2 Experiments
This subsection evaluates the effectiveness of THEDB’s durabil-

ity. While the logging mechanism in a database system is largely
influenced by the throughput of the underlying persistent storage,
we focus on investigating whether the proposed commit protocol
in transaction healing can bring any bottleneck that can bound
the system performance. Figure 16 shows the logging overhead
in THEDB when processing the TPC-C benchmark. Each thread
directly dumps its logging data to an in-memory data structure,
therefore, the generated result will not be influenced by the hard-
ware (of the persistent devices like disk, SSD) throughput. As
shown in the figure, the adopted value-logging mechanism yields
similar transaction rate compared with command logging, indicat-
ing that the commit protocol in transaction healing is scalable. In
fact, without considering the hardware throughput, the major over-
head in THEDB’s logging mechanism is memory allocation and
string serialization, which can be addressed with sophisticated im-
plementation. This result confirms that the logging mechanism in
THEDB will not become a system bottleneck if provided with high-
throughput persistent devices.

0

200

400

600

800

1,000

1 6 12 18 24 30 36 42 46

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

Number of cores

no logging command logging value logging

Figure 16: Transaction rate with different logging mechanisms.
The number of warehouses is set to 12.

D. SYSTEM COMPARISON
In our experimental study, all the systems in comparison share

exactly the same underlying framework. Therefore, the fairness of
our experiments are guaranteed.

0

200

400

600

800

1,000

1,200

1,400

2 6 12 18 24 30 36 42 48

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

Number of warehouses

THEDB-SILO Silo

Figure 17: Performance comparison between THEDB-SILO and
Silo. The number of cores is set to 46.

We adopted a self-implemented THEDB to compare transac-
tion healing with the concurrency-control protocol that is proposed
by Silo [55]. To confirm that our own implementation can pre-
cisely capture the behavior of Silo, we show the transaction rate
of THEDB and the open-sourced version of Silo [3] in Figure 17.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1 6 12 18 24 30 36 42 46

T
ra

n
s
a

c
ti
o

n
 r

a
te

 (
K

 t
p

s
)

Number of warehouses

THEDB-DT H-Store

Figure 18: Performance comparison between THEDB-DT and H-
Store. The number of cores is set to 46.

In this experiment, we set the number of cores to 46, and vary the
number of warehouses to change the workload contention. As the
result indicates, neither of these two systems can achieve a satis-
factory performance when processing highly contended workloads.
Meanwhile, the transaction rates of both systems scale smoothly
with the decrease of workload contention. When the number of
warehouses is set to 48, THEDB-SILO achieves around 10% higher
transaction rate compared to Silo. This result confirms that our
implementation of THEDB-SILO is efficient, and the runtime be-
havior of Silo’s concurrency-control protocol can be precisely cap-
tured.

Next, we show a performance comparison between THEDB-DT
and H-Store [32], which is a deterministic database that resorts
to coarse-grained partition-level locking for achieving high perfor-
mance. THEDB-DT faithfully follows the design of H-Store, and
is specifically optimized for multicore architecture. In our experi-
mental study, we did not directly use H-Store to measure the per-
formance of deterministic databases. This is because H-Store can-
not achieve satisfactory performance on multicore machines, and it
suffers from additional performance penalty from network commu-
nication. Figure 18 shows a comparison between THEDB-DT and
the open-sourced version of H-Store [2]. In this experiment, the ra-
tio of cross-partition transactions is set to 0. That is, the workload
can be perfectly partitioned. By varying the number of warehouses
from 1 to 46, the transaction rate of THEDB-DT increases linearly.
However, H-Store only achieves around 4.8 K tps regardless of the
number of warehouses. This is because the performance of H-Store
is strictly bounded by the network client. Therefore, we adopt the
self-implemented THEDB-DT in our study.

E. TRANSACTION LATENCY
In this section, we analyze the transaction latency of THEDB

when processing low-contention workloads. Table 5 shows
the transaction latencies of different systems when processing
NewOrder and Delivery transactions.

Similar with the results achieved when processing high-
contention workloads, THEDB still yields a shorter latency
compared with THEDB-OCC, THEDB-SILO, and THEDB-2PL.
Specifically, around 95% of NewOrder and Delivery trans-
actions processed by THEDB are committed within 80 ns and
640 ns, respectively. While the generated latency is much shorter
than that achieved under high-contention workloads (see Section
5.2.2), THEDB-OCC, THEDB-SILO, and THEDB-2PL yet can-
not maintain a stable transaction latency, and the produced latency
can range from less than 20 ns to over 640 ns. In fact, the re-
ported result generated by THEDB is very close to that achieved
by THEDB-OCC and THEDB-SILO with the validation phase dis-
abled (denoted as THEDB-OCC− and THEDB-SILO−). This re-
sult confirms that THEDB can achieve high performance when pro-
cessing low-contention workloads.

1703

Transaction type Latency (µs) THEDB THEDB-OCC THEDB-SILO THEDB-2PL THEDB-OCC− THEDB-SILO−

NewOrder 10 - 20 0.9% 2.0% 9.0% 4.4% 2.1% 9.8%
20 - 40 42.4% 37.4% 47.9% 38.6% 50.2% 53.7%
40 - 80 54.2% 47.3% 36.9% 44.2% 45.3% 35.2%
80 - 160 2.4% 12.2% 4.9% 11.9% 1.9% 1.2%

160 - 320 0% 1.0% 1.3% 0.7% 0.2% 0%
320 - 640 0% 0% 0% 0% 0.1% 0%
640 - INF 0% 0% 0% 0.1% 0% 0%

Delivery 10 - 80 0% 1.5% 1.3% 4.2% 0% 0%
80 - 160 0% 0% 0% 0% 0.7% 0.5%

160 - 320 65.7% 28.2% 54.9% 40.3% 83.3% 74.3%
320 - 640 29.0% 50.7% 29.8% 49.6% 14.9% 24.9%
640 - 1280 5.2% 18.3% 13.4% 3.7% 0.8% 0.3%

1280 - 2560 0% 0.5% 0.5% 2.2% 0.3% 0%
2560 - 5120 0% 0.8% 0% 0% 0% 0%
5120 - INF 0% 0% 0% 0% 0% 0%

Table 5: Transaction latency for TPC-C benchmark. The number of warehouses is set to 24, and the number of cores is set to 46.

F. RUNTIME BREAKDOWN
Figure 19 depicts the time breakdown of THEDB and

THEDB-OCC using the TPC-C benchmark. In this set of exper-
iments, we set the number of warehouses to 4 in order to generate
contended workloads.

As shown in Figure 19a, THEDB-OCC spends respectively over
60% and 20% of its runtime in executing the read and write phases
when the number of cores is set to 1. However, with 46 cores uti-
lized in processing the workload, over 40% of the time is taken by
the execution of the validation phase. This is because, under highly
contended workloads, more transactions fail the validation phase
due to inconsistent reads, and consequently much time is wasted in
performing resource cleanups, such as lock releasing and memory
deallocation. As a result, the transaction rate (i.e., the proportion of
transactions that successfully completed the write phase) is reduced
as contention increases.

Figure 19b shows the runtime breakdown of THEDB using the
same workload configurations. As the number of cores increases,
the proportion of time spent on the healing phase also increases.
However, the percentage of time spent on the write phase is still
maintained at around 20%, as most of the transactions that pass the
validation phase can be committed. This result confirms the effec-
tiveness of transaction healing when processing highly contended
workloads.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 6 12 18 24 30 36 42 46

P
e

rc
e

n
ta

g
e

 (
x
1

0
0

%
)

Number of cores

READ VALIDATE WRITE

(a) THEDB-OCC.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 6 12 18 24 30 36 42 46

P
e

rc
e

n
ta

g
e

 (
x
1

0
0

%
)

Number of cores

READ VALIDATE HEALING WRITE

(b) THEDB.

Figure 19: Breakdown of transaction processing time using the
TPC-C benchmark.

G. ABORT RATE
he following experiment exploits the performance improvement

brought by validation-order rearrangement using the TPC-C bench-
mark. While we can hardly control the likelihood of deadlock oc-
currence, we can measure the worst case scenario where validation-
order rearrangement is disabled. To construct such a scenario,

we directly reverse the validation order. That is, instead of val-
idating the consistency of the records following the table order:
Warehouse→ District→ Customer→ ... (shown in Fig-
ure 7, as is done when validation-order rearrangement is enabled),
THEDB validates the consistency of the accessed records in a re-
versed order: ...→ Customer→ District→ Warehouse.
This is essentially the worst case, as once any update to the read-
/write set’s membership occurs, the healing phase is more likely to
trigger transaction abort for the prevention of deadlocks. Figure 20
shows the result. Even under the worst case (see THEDB-W),
THEDB still achieves 2X higher transaction rate compared to
THEDB-OCC, especially when the workload is highly contended.
With validation-order rearrangement enabled, THEDB’s perfor-
mance is improved by around 25%. This result confirms the effec-
tiveness of order rearrangement. Moreover, the performance bene-
fits brought by transaction healing is further confirmed.

0

100

200

300

400

500

600

700

800

1 6 12 18 24 30 36 42 46

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
K

 t
p
s
)

Number of cores

THEDB THEDB-W THEDB-OCC

Figure 20: Performance improvement brought by rearranging vali-
dation orders.

Table 6 exhibits the abort rate caused by deadlock-prevention
strategy in the transaction healing protocol. With order rearrange-
ment disabled, in the worst case, the abort rate in THEDB can raise
to 0.16 with the number of cores set to 46. However, with order
rearrangement enabled, the abort rate is drastically dropped to less
than 0.01 even under highly contended workloads. This result fur-
ther confirms the effectiveness of validation-order rearrangement.

#cores 8 16 24 32 40 46
THEDB 0.0009 0.0017 0.0019 0.0021 0.0023 0.0024

THEDB-W 0.01 0.03 0.09 0.11 0.14 0.16

Table 6: Transaction abort rate caused by deadlock prevention.

1704

