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ABSTRACT
Database consistency and recoverability require guarantee-
ing write atomicity for one or more pages. However, con-
temporary database systems consider write operations non-
atomic. Thus, many database storage engines have tra-
ditionally relied on either journaling or copy-on-write ap-
proaches for atomic propagation of updated pages to the
storage. This reliance achieves write atomicity at the cost of
various write amplifications such as redundant writes, tree-
wandering, and compaction. This write amplification results
in reduced performance and, for flash storage, accelerates
device wear-out. In this paper, we propose a flash stor-
age interface, SHARE. Being able to explicitly remap the
address mapping inside flash storage using SHARE inter-
face enables host-side database storage engines to achieve
write atomicity without causing write amplification. We
have implemented SHARE on a real SSD board, OpenSSD,
and modified MySQL/InnoDB and Couchbase NoSQL stor-
age engines to make them compatible with the extended
SHARE interface. Our experimental results show that this
SHARE-based MySQL/InnoDB and Couchbase configura-
tions can significantly boost database performance. In par-
ticular, the inevitable and costly Couchbase compaction pro-
cess can complete without copying any data pages.

1. INTRODUCTION
In the era of all-flash cloud computing data cen-

ters, it is urgent to flash-optimize open source database
engines, including traditional relational DBMSs (e.g.,
MySQL/InnoDB) and emerging NoSQL storage engines
(e.g., Couchbase). Considering the intrinsically asymmet-
ric performance between flash storage read and write oper-
ations, optimizing flash-based database write efficiency is a
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practical and critical problem that should be immediately
addressed.

When considering that data consistency is a uncompro-
misable database requirement, optimizing reliable writes can
be an intrinsic problem. With Hard Disk Drives (HDDs),
a database update action may involve multiple pages, each
in turn usually consisting of multiple disk sectors. A sector
write requires a slow mechanical process and is susceptible
to power failures. If a power failure occurs in the middle of a
sector write, the sector might be only partially updated. So,
a sector write operation is considered non-atomic by most
contemporary database systems [3, 24].

To guarantee write atomicity, which is critical for database
consistency, many database storage engines have assumed
HDDs as their main storage media and resorted to either
copy-on-write or journaling. With a journaling approach,
each updated page’s before or after image is redundantly
stored in a dedicated journal area. Many database engines
such as MySQL/InnoDB, PostgreSQL, SQLite, and Sybase
SQL Anywhere rely on a journaling approach [3, 4, 6, 31]. In
contrast, a copy-on-write approach, inspired by the shadow
paging technique [21], does not update data pages in place,
but instead writes all updated pages to other persistent stor-
age locations, while the original pages remain immutable
and become stale. Consequently, copy-on-write needs to re-
claim stale pages periodically. It should be noted that these
two techniques for guaranteeing atomic write are heavily
used - not only in enterprise database applications but also
in modern file systems [13, 22] and mobile databases [17].

These out-of-place write schemes for achieving atomicity,
however, suffer from write amplification. The journaling
approach requires writing one logical page redundantly to
the storage. With the copy-on-write approach, the costly
compaction process (a form of garbage collection) should be
carried out [7]. The wandering-tree problem is additionally
encountered in a tree-structured NoSQL storage engine and
file system metadata [32]. This type of logical write amplifi-
cation at the host layers is often cited as a primary cause of
tardy performance and also aggravates flash storage wear-
out [16, 17].

Meanwhile, because flash memory does not allow over-
writing any page in place, a flash storage page update is
commonly carried out by writing the new content into a
clean flash page at another location, leaving the original
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page untouched [9, 20]. Due to this out-of-place strategy,
flash storage devices are equipped with a firmware module
called the FTL (flash translation layer), whose main role is
to maintain the mapping between kernel block layer logical
addresses and flash memory chip physical addresses. And,
mainly for performance reasons, most contemporary flash
storage devices have adopted fine-grained page unit map-
ping [23]. Fortunately, this indirection of logical to physi-
cal address mapping, which has been necessarily adopted to
overcome flash memory’s no-overwrite limitation provides
an excellent opportunity in obviating the write amplifica-
tion overhead data write reliability requires.

In this paper, we present the SHARE interface. This in-
terface exposes an abstraction that allows host applications
to explicitly change the address mapping inside flash storage.
With SHARE, two different logical pages can share one phys-
ical page. This simple interface allows the host applications
using either a journal or copy-on-write approach to achieve
write atomicity without incurring write amplification. It
also allows NoSQL storage engines, including Couchbase, to
carry out a compaction process without copying data. The
key contributions of this work are summarized as follows.

• SHARE provides an abstraction which allows host ap-
plications to change the address mapping table which
has traditionally been managed internally only by
FTL. Many database engines and file systems can eas-
ily exploit SHARE to achieve write atomicity with-
out causing write amplification. In addition to atomic
writes, SHARE can also make other numerous write-
heavy cases almost cost free. This includes the NoSQL
compaction process and file copy operations that can
occur almost without copying data.

• We have implemented SHARE on an open SSD de-
velopment hardware platform called OpenSSD by en-
hancing its FTL code with the SHARE features this
paper presents. We have demonstrated both relational
and NoSQL storage engines can easily exploit SHARE
with only minimal code changes.

SHARE resembles the well-known TRIM command [30].
Both SHARE and TRIM allow upper-layer applications to
provide useful information to flash storage devices, thus en-
abling them to achieve better performance. The TRIM com-
mand is successfully established as a new standard flash stor-
age interface because it effectively improves the flash storage
garbage collection process by informing flash storage devices
which data blocks are no longer valid. We believe that the
SHARE command could be incorporated into operating sys-
tem kernel as easily as the TRIM command, and its perfor-
mance benefit would be no less than the TRIM command’s.
Also, as is contrasted in Section 6, to our best knowledge,
SHARE is the first work on ameliorating write amplifica-
tions for database engines utilizing the out-of-place update
strategy.

The rest of the paper is organized as follows. Section 2
describes the I/O inefficiency for guaranteeing data write re-
liability in database engines and presents the motivation for
our work. Section 3 presents the architecture of SHARE and
its abstraction, and discusses its advantages for database
storage engines. Section 4 gives the implementation de-
tails of SHARE architecture. In Section 5, we evaluate
the performance impact of SHARE on MySQL/InnoDB and

Couchbase storage engines using LinkBench benchmark and
YCSB benchmark, respectively. Section 6 compares our
work with the existing flash storage write optimization tech-
niques. Lastly, Section 7 summarizes this paper’s contribu-
tions and suggests future work.

2. MOTIVATION
A crucial assumption for database consistency and recov-

ery is that each individual page is atomically written to stor-
age. However, secondary storage devices such as spinning
disks and flash memory SSDs do not generally guarantee
page write atomicity. Hence, when a system crashes when a
page write is in progress, the on-disk copy of the page may
contain a mix of old and new data after system reboots.
Such a torn page, however, cannot be completely restored -
even with Aries-style write ahead logging (WAL) schemes [6,
24]. Therefore, for better recoverability, database systems
should be armed with a mechanism to guarantee the atomic
propagation of updated pages, which is orthogonal to the
Aries-like recovery protocol. And, as solutions to achieve
the write atomicity in databases and file systems, there have
been two popular approaches: journaling and copy-on-write.
However, the high write amplification these two approaches
cause becomes a major obstacle to achieving scalable, con-
sistent performance for normal read and write operations.

In this section, we explain how these two techniques
are used in real database storage engines such as the
MySQL/InnoDB server and the Couchbase storage engine.
Then, we describe the definition of the problem this paper
addresses and the opportunity flash storages provide.

2.1 Redundant Writes in MySQL/InnoDB
The MySQL/InnoDB storage engine takes a variant of

journaling, called double-write [4], to deal with the partial
page write problem. As shown in Figure 1(a), when a up-
dated page is evicted from the buffer cache, prior to over-
writing the old copy in its original database location, the
InnoDB engine first appends its new copy (i.e., after-image)
to a separate journal area, double-write-buffer. And when
the write to the journal area is forcefully completed (using
fsync call), InnoDB writes the page to its original location.
When the system recovers from a crash, InnoDB can always
find a consistent page copy either in the database or in DWB.

The PostgreSQL server is also taking a redundant jour-
naling approach to guarantee write atomicity. Specifically,
when the server runs by default with the full_page_write

option on, whenever a page is updated first after the last
checkpoint, the before-image of the page is saved in the WAL
log. It is also well known that SQLite, a popular embedded
database system, provides two journaling modes, rollback
and write-ahead log, to guarantee atomic page write, and the
overhead of journaling either before-image or after-image of
every updated page is very expensive [17].

This journaling-based redundant write paradigm has also
been widely adopted in modern file systems such as ext4 and
XFS so as to guarantee the consistency of data and metadata
despite the torn page problem [22]. However, because jour-
naling both data and metadata pages (i.e., full journaling
mode) is too expensive, those file systems are by default con-
figured to journal only metadata (i.e., ordered journaling
mode) so that the consistency of file system structure is at
least preserved.
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(a) Double Write Buffer in MySQL/InnoDB (b) Copy-On-Write in Couchbase

Figure 1: MySQL/InnoDB and Couchbase Journaling and Copy-on-Write

2.2 Copy-on-Write in Couchbase
Couchbase is a document-oriented NoSQL database sys-

tem. Its storage engine is based on the append-only B+-
tree that takes a copy-on-write strategy for updating docu-
ment(s) atomically: rather than overwriting the existing old
document copy in place, it appends its new copy at the end
of the database file. As is illustrated in Figure 1(b), when a
document is updated, its new copy is written to the end of
a database file while its old copy is left intact, but marked
as stale. One undesirable consequence of this append-only
update policy is that all tree nodes on a path from a leaf
pointing to the document to the root should be updated
and written in a cascaded way, where each node update also
takes a copy-on-write strategy. The Couchbase storage en-
gine relies on the so-called wandering-tree [32] scheme. A
tree may be called a wandering tree if an tree node up-
date requires updating its parent nodes up to the root due
to inability to perform in-place updates. Consequently, the
wandering-tree scheme amplifies the data to be written with
N index node pages, where N is the height of B+-tree.

Despite the high write amplification, Couchbase deliber-
ately adopted this copy-on-write and wandering-tree com-
bination mainly for two purposes: 1. as modern storage
devices do not support an atomic write feature, the copy-
on-write strategy has been adopted as an implementation
method to support atomic writes [21]. 2. Couchbase has
opted for the sequential write pattern of the copy-on-write
strategy over the random write pattern of the update-in-
place strategy. In particular, because spinning disk write
latency is mainly dominated by the mechanical arm move-
ment(e.g., disk seek time), the write strategy Couchbase
adopted can provide better write throughput than the tra-
ditional update-in-place policy.

As more documents are updated or newly-inserted under
the copy-on-write and wandering-tree scheme, the percent-
age of stale database file pages increases. When the ratio
of stale data reaches a configured database file threshold,
the costly compaction operation is necessarily invoked to re-
claim the unused space the stale data occupies. For this, the
compaction task typically reads all non-stale documents and
index nodes from the current database file and copies them
to a new file. This incurs significant I/O overhead and write
amplification. The current database file is later deleted when
no longer accessed by any reader. Other NoSQL database
systems, such as BigTable [11], Cassandra [19], and Mon-
goDB [1] that adopt a Log-Structured Merge (LSM) tree [25]
as their underlying storage engines have the similar issue.

2.3 Problem Statement
As aforementioned, journaling and copy-on-write com-

monly implement a two-phase write scheme to avoid the
torn-write problem: perform a first write for recording up-
dates (e.g., double-write-buffer in the case of InnoDB and
copy-on-write in the case of Couchbase) and perform a sec-
ond write for applying the recorded writes to live data (e.g.,
in-place update in the case of MySQL/InnoDB and com-
paction in the case of Couchbase). As a result, these systems
double storage update write and thus the effective available
user bandwidth is halved.

In particular, when database systems run on flash storage
devices rather than on hard disks, the performance effect
of this write amplification becomes more serious. A NAND
flash page can be written only when it is in clean, empty
state. Once it is written, it must be erased before it is rewrit-
ten. However, online erasure is impractical due to its several
millisecond long erase time. Instead, SSD employs FTL that
allows logical address to map to different physical locations,
deferring page erasures. However, the stale pages eventually
require a later clean up process. This garbage collection op-
eration generates additional internal traffic (i.e., read and
write amplification) to relocate valid pages, causing a signif-
icant IO operations jitter. This paper refers to this activity
as copyback. The more update data is written, the more
garbage collection is required. That is, user writes are fur-
ther amplified when the storage system uses SSD devices.
Further, this undesirable write amplification shortens flash
storage device lifespan.

Whether intended or not, the net effect of the copy-on-
write operation inside flash storages remarkably resembles
what database storage engine’s out-of-place write schemes
achieve. This provides an excellent opportunity to achieve
the write atomicity almost at no cost of redundant writes,
the tree wandering, and the compaction process. Based on
this observation, we aim to develop a simple, but powerful
abstraction at the flash storage level that allows database
storage engines to avoid write amplification across storage
systems and storage devices. Specifically, this interface al-
lows host-side applications to explicitly change the address
mapping inside flash storage.

3. SHARE INTERFACE
In this section, we present a new solution called SHARE

that supports the atomic page writes at the flash storage
layer, so that upper layers such as database and NoSQL
engines can be freed from the burden of write amplifications.
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Figure 2: SHARE Architecture

The architecture, the interface, and the benefits of SHARE
will be explained in turn.

3.1 SHARE Architecture
The solution discussed in this paper is based on the holis-

tic understanding of problems across the layers of applica-
tion, OS, and storage device. The FTL’s page-grained in-
direction of logical-to-physical addressing mapping provides
an excellent opportunity for solving the write amplification
problem occurring in both the journaling and copy-on-write
approaches. Let us first illustrate how we can, by exploiting
the unique FTL page-level address mapping feature, avoid
the Couchbase write amplification without compromising
atomic write semantics. As is shown in Figure 2, when a
new copy of document D2, denoted as D2’, is written to flash
storage media, each of two document copies, D2 and D2’, has
its own logical and physical address. Now, what if the log-
ical address of D2 in FTL can be remapped to point to the
physical address of D2’? The new D2’ copy can be reached
through D2’s LPN. Hence, unlike the original Couchbase,
all index nodes along the path from the corresponding leaf
node to the root node need not to be copied-on-write. That
is, the write amplification due to Couchbase’s wandering-
tree scheme can be totally avoided while still preserving the
atomic write semantics required to update document D2.
Similarly, with MySQL/InnoDB double-write-buffer, the re-
dundant write of an updated page to the original location in
the primary database can be avoided simply by FTL chang-
ing the logical address of its original location to point to the
physical addresses of new copy written in the double-write-
buffer, without losing the atomic write property.

From the examples described above, we know that write
amplification can be completely avoided by providing upper-
layer storage engines with an adequate abstraction (or API)
which allows changing the logical-to-physical page mapping
table flash storage devices internally manage.

3.2 SHARE Interface
The remaining issue is, then, how upper-layer applications

can inform FTLs to enable two LPNs to share one physi-
cal address. For this purpose, we propose a new interface
called SHARE(LPN1, LPN2) for flash storage. Upon receiving
a SHARE command with a first LPN (LPN1) and a second
LPN (LPN2) for an update, wherein the first LPN maps to a

first PPN and the second LPN maps to a second PPN, FTL
atomically remaps the first LPN so that the first LPN maps
to the second PPN, trimming a mapping of the first LPN
to the first PPN [30]. Since there is no matching command
in current storage interface such as SATA, the share com-
mand has been added as a SATA vendor unique command
as summarized below.

share(LPN1, LPN2, length) This is a new, added
SATA command. When host issues a SHARE com-
mand, FTL changes the physical address mapped to
LPN1 to the physical address currently mapped to LPN2

so both logical addresses share one physical data ad-
dress. The third argument, length, is optionally used
when the length of data to be shared is longer than the
FTL mapping granularity. The length must be a mul-
tiple of mapping unit size. When the length is larger
than 1, the range between LPN1 and LPN1+length
cannot be overlapped with the range between LPN2
and LPN2+length.

Since the SATA command set is not always available to
database storage engines and other applications that access
files through a file system, we exploited the ioctl infrastruc-
ture so that the SHARE command can pass through the file
system to the storage device, instead of invoking the SATA
command directly from applications.

Even though our description so far assumes a SHARE
command associated with a single pair of LPNs, this con-
cept can be naturally extended to multiple LPN pairs in
a batch. In this case, FTL should be able to support the
atomic address remapping for the given set of LPN pairs
upon a system crash or power-off failure. In this regard, the
idea of SHARE resembles the shadow page technique [21],
but it offloads the shadow paging overhead to the flash stor-
age firmware, where the transactional atomicity can be im-
plemented much more efficiently. Section 4 will describe
one way to implement the SHARE command atomically.
This batch SHARE operation can reduce the non-negligible
round-trip overhead in the IO stack of issuing the command
via ioctl [10]. In addition, this batch can reduce the num-
ber of potential flash writes to persist the updated mapping
information.

3.3 SHARE Advantages
To the best of our knowledge, SHARE is the first work

which exposes the existence of address mapping table inside
flash storage to host applications, allowing them to explic-
itly change the mapping for their own purposes. The ad-
vantages of SHARE are threefold. First, SHARE exploits
the address mapping mechanism every flash-based storage
device uses [9], so that upper layer applications can com-
plete the costly operations such as transactional atomicity
and compaction at low cost with minimal writes. Second,
since SHARE command semantics are simple and clear, it
is easy to incorporate them into the existing storage inter-
face frameworks (e.g., using the vendor specific command)
and does not require involving intermediate layers such as
the kernel block layer. So standards such as SATA, SAS,
NVMe, and FC (Fiber Channel) can incorporate the SHARE
abstraction with minimal changes. Third, upper layer ap-
plications including MySQL/InnoDB and Couchbase stor-
age engines can use the SHARE service with marginal code
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changes, and further those changes are limited to modules
interacting flash storage via the SHARE command.

Our SHARE scheme is novel in that it attempts to con-
vert a flash memory weakness (i.e., being unable to up-
date in place and thus maintaining another level of address
mapping) into a strength (i.e., atomic write without write
amplification and zero-copy compaction). This enables ap-
plications with strict atomic write requirements to achieve
low-cost transactional support as well as minimal write am-
plification. Moreover, reducing flash storage write prolongs
a flash storage device’s life span.

Compaction by SHARE
Let us explain how the SHARE interface can be effectively
used in mitigating the costly compaction overhead in Couch-
base. First, the compaction operation is less frequently
triggered in Couchbase. Because the SHARE interface re-
places the cascaded updates of index nodes with a simple
host interface command, write amplification caused by the
wandering tree in the original Couchbase can be avoided.
Hence, the database file is filled with invalid pages at slower
pace by the SHARE-assisted Couchbase than by the original
Couchbase. Second, and more importantly, the SHARE in-
terface can boost the compaction process itself. Given that
all write transactions in most key-value stores slow down
during database compaction, it is crucial to complete com-
paction as fast as possible.

When a compaction operation is triggered in the origi-
nal Couchbase, it creates a new database file and copies all
valid documents from the old database file to the new file.
In contrast, with the SHARE interface, as depicted in Fig-
ure 3, compaction can proceed without copying any valid
documents. That is, after creating a new file, it first allo-
cates new address space for the new database file (i.e., us-
ing fallocate() system call) and then invokes the SHARE
command to make the valid document pages in the old file
shared by the new LPN addresses in the new file. After
the SHARE command is successfully completed, the only
remaining thing is to build up tree index nodes for new
database file.

Other Applications of SHARE
Though the benefit of SHARE will be, throughout
this paper, demonstrated with two database systems,
MySQL/InnoDB and Couchbase, we believe that the idea of
SHARE is easily and generically applicable to other database
systems such as PostgreSQL and SQLite. For example,
if SQLite is minimally modified to run on SHARE, it can
achieve the atomic propagation of updated pages in a trans-
action without using the costly journaling of either rollback
or write-ahead log mode. Instead, it can simply turn them
off, because SHARE supports transactional atomicity and
durability at the storage level. Also, SHARE can be lever-
aged in journaling or copy-on-write file systems [13, 22] suf-
fering from redundant write and tree-wandering problems.

4. IMPLEMENTATION
This section details the SHARE architecture and its pro-

totype implementation. Most of the SHARE architecture is
implemented as an OpenSSD development board firmware
extension. New commands for the SHARE features are pro-
totyped via vendor unique commands. A user-level library
that implements a protocol for the new commands via the

Figure 3: Couchbase Compaction with SHARE

ioctl system call supports applications and SSDs. This ap-
proach not only allows quickly prototyping the concept in
development environments, i.e., Linux with ext4 file system,
but also to make the prototype portable to most file sys-
tems. Please note that application changes to leverage the
SHARE features are minimal - a few tens of lines of codes
in Couchbase and MySQL/InnoDB total.

4.1 OpenSSD
OpenSSD is the first open development platform for

SSD hardware/software. Its primary intent is to promote
academia research [2, 17]. The first generation was intro-
duced in 2011, and its third generation has been available
since late 2014. This paper relies on the first generation, and
the discussion in this section is limited to the first genera-
tion. Newer generation details are available at OpenSSD’s
project web site [2]. Since the WAF problem this paper
discusses is independent of SSD performance, even though
the actual performance observed by the end user can be in-
fluenced, this paper’s claims are valid regardless of storage
devices.

The first OpenSSD generation employs the barefoot con-
troller and Samsung K9LCG08U1M NAND flash chips. The
barefoot controller is a commercial product developed by In-
dilinx which was acquired by OCZ which was acquired by
Toshiba Corporation. The controller is based on a 87.5MHz
ARM processor and has a 96KB SRAM for the firmware
and a 64MB Mobile SDRAM for metadata such as map-
ping tables. The type of NAND Flash is MLC (Multiple
Level Cell) which contains two bits per cell. For flash mem-
ory management, a simple page mapping scheme is adopted,
which is the most common management scheme used in con-
temporary SSD products and eMMC flash memory cards.
We discuss more about FTL (Flash Translation Layer) and
page mapping in the next section. The OpenSSD board is
connected to the host system through a SATA interface.

4.2 Firmware Extension

4.2.1 SHARE command
A SSD FTL implements an indirection layer between a

logical address space the host system sees and physical ad-
dress space the FTL uses to store data on flash media. The
most popular scheme is a page mapping which implements
a mapping table that maps a logical NAND page (LPN) to
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a physical NAND page (PPN). When NAND Flash media
page data is updated, the new content is written to a new
physical NAND page and the mapping entry for the logical
NAND page is updated to point to the new physical NAND
page. We call this forward mapping or L2P (logical page to
physical page) mapping in this paper.

The SHARE leverages this existing indirection. Instead of
writing identical content twice for data consistency - as im-
plemented in Couchbase compaction, InnoDB double write,
and ext4 journaling - SHARE makes two logical NAND
pages linked to the same physical NAND page, avoiding the
second write.

This simple high-level description, however, imposes sev-
eral technical challenges on firmware design and develop-
ment. First, to preserve data consistency in the presence of
failure, the sharing operation must be atomic. That is, the
logical page must point to the old physical page if the opera-
tion fails, or to the new physical page if it succeeds. Second,
a physical page can be accessed by two logical pages, com-
plicating the SSD garbage collection process. A physical
page can be recycled only when it is not referenced by any
logical page. A simple solution to this problem is to main-
tain reverse mapping information for each physical page. If a
physical page has a valid P2L (physical page to logical page)
mapping and the logical page referenced by the mapping has
a valid L2P mapping to the physical page, the physical page
is valid. Therefore, each physical page needs to maintain
multiple reverse mappings when using SHARE. Third, these
extra data structures may compete with a normal mapping
table for SSD memory space and this can have performance
implications. The internal DRAM capacity of modern SSDs
is proportional to the NAND capacity: roughly 1MB DRAM
per 1GB NAND is available. Most of the DRAM space is
used by the forward mapping table and the remaining space
is used for I/O buffers and cache. To minimize the perfor-
mance impact, we trade a portion of cache space for the
reverse mapping and the size of reverse mapping table is
empirically determined for the OpenSSD platform while the
entire forward mapping table is kept in DRAM. The size
of the P2L reverse mapping table is determined by several
factors: the amount of available memory, the frequency of
SHARE operations, and the lifespan of shared pages. The
current implementation maintains only a small number of
entries: 250 entries (4KB) or 500 entries (8KB).

4.2.2 Atomicity
As discussed in previous sections, double writes or jour-

naling implement atomic data updates. Therefore, SHARE
command must atomically update both the normal L2P
mapping and the reverse P2L mapping. Furthermore, when
such an update spans over multiple NAND pages, a SHARE
operation for the update also applies to multiple pages. As
such, a SHARE operation must be transactional and pre-
vent any partial mapping updates in order to emulate the
database semantics.

The FTL in modern SSDs maintains the consistency of
the mapping table by logging mapping table state changes -
called a Delta in this paper, since a reliably persistent ver-
sion, i.e., a base mapping table, was created [18]. When a
page is updated, the page is first written to a physical page
and the mapping table entry in memory is updated. Then,
a mapping table entry for the L2P is written to a log. Once
a log entry is created, the update is deemed persisted. If an

Figure 4: Atomicity in SHARE

SSD has an emergency power capacitor, the creation of an
in-memory log entry guarantees persistency. Otherwise, the
log entry must be flushed to flash. The modified portion of
mapping table is flushed to flash and the log is truncated
regularly to balance the update performance and the recov-
ery overhead.

For SHARE, the first step of writing to the physical page
is skipped. Instead, the delta that includes the changes of
reverse mapping is written to the log in a form of (LPN,
old PPN, new PPN). Figure 4 summarizes the procedure of
SHARE operation. First, when a SHARE (LPN1, LPN2) com-
mand is received, the FTL updates the PPN entry for LPN2
in the L2P mapping table with the PPN1 for the LPN1.
Then it generates a Delta, (LPN2, PPN2, PPN1), and writes
it to a log. If a SHARE command is associated with mul-
tiple pages, a series of deltas are logged after updating all
the mapping table entries. Thereafter, the share command
is considered completed atomically and persistently. The
maximum size of Deltas cannot exceed the mapping page
size because only a page is written atomically to flash for
most SSDs [16]. The SHARE command returns after log-
ging finishes.

4.3 Application Extension
This section describes the changes we made in

MySQL/InnoDB and Couchbase to enable them to run on
the SHARE interface. As will be described below, the
changes in both databases are minimal.

Changes made in MySQL/InnoDB
In the original MySQL/InnoDB, as explained in Section 2,
when evicting a set of dirty victim pages from the buffer
cache, each page is written to its original location after force-
fully writing another copy in the double-write-buffer area.

In contrast, when MySQL/InnoDB runs on SHARE, it
simply calls the share command with the LPN pair(s) (the
database file LPN and the double write buffer LPN) after
the victim page set is successfully written in the double-
write-buffer area, instead of writing each page redundantly
at its original location. When the share call terminates
normally, it is guaranteed that each page is propagated to
its original location in its entirety. On a system reboot after
system crashes, because the address remapping between a
dirty page in the double-write-buffer area and its original
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location is atomically guaranteed at the storage level, the
modified MySQL/InnoDB server can find a consistent copy
of the page in either the database or the double-write buffer
area. The code changes made in InnoDB storage engine were
minimal - less than 200 lines of new code were added to just
two modules of buffer and file.

Changes made in Couchbase
Even though the Couchbase was designed to minimize un-
necessary storage writes, write amplification caused by its
tree wandering problem is inevitable. When a document is
updated in the Couchbase storage engine, its new version
is appended and a leaf node pointing to the old version is
updated to point to the new version. This leaf node update
triggers the cascading updates of parents nodes that incurs
high write amplification. We have adapted the Couchbase
storage’s commit API to use SHARE interface to avoid a leaf
node update for each document, which consequently pre-
vents the cascading parent node updates.

For the database recovery, if Couchbase terminates abnor-
mally without failing the entire system, its original recovery
process is applicable since the Couchbase storage engine only
appends a new document at the end of the database file. In
case of the entire system failure (e.g., by a power outage),
the original recovery process can be still performed as the
SSD page mapping changes are persisted in an atomic way
(Section 4.2.2).

In addition, Couchbase performs the background com-
paction to reclaim stale pages by reading all active docu-
ments from the old file and writing them to the new file. To
avoid this heavy read/write I/O overhead, we have adapted
the Couchbase storage’s compact API, so that the LPNs of
the documents in the old file and the new LPNs of the doc-
uments in the new file can be passed to the SSD FTL layer
via the SHARE interface. Upon crashing during this com-
paction, the partially compacted new file is deleted and the
whole compaction process restarts at system reboot. Couch-
base’s SHARE integration required quite small code changes
- less than 500 line of new codes were added to commit and
compact APIs.

5. PERFORMANCE EVALUATION
In this section, we present performance evaluation results

to analyze the impact of the SHARE interface on relational
and NoSQL storage engines.

5.1 Experimental Setup
The experiments were performed on a Linux platform with

the 3.13.0 kernel running on an Intel Core i3-3220 3.3GHz
processor equipped with 8GB DRAM. The host machine
had one 4GB OpenSSD drive and one Samsung PM853T
240GB SSD. The OpenSSD drive was used as the main
storage device implementing the SHARE interface. In the
case of MySQL/InnoDB benchmark, the Samsung PM853T
SSD was used as a database log device. Both the OpenSSD
drive and Samsung PM853T SSD connected to the host us-
ing SATA interfaces.

We used the ext4 file system in the ordered mode for
metadata journaling. The direct I/O option(O DIRECT)
was enabled to avoid the effect of file system page caching.
The benchmarking clients were run along with the database
processes on the same hardware to exclude network latency
in evaluation results. For more realistic experimental en-

vironment, an aging operation of the OpenSSD drive was
pre-run so that the overhead of garbage collections was re-
flected in the result.

5.2 Workloads
For relational database systems, we used LinkBench

workload [8] to conduct the performance evaluations on
MySQL/InnoDB under the two configurations (i.e., double
write buffer enabled, SHARE with double write buffer dis-
abled). We included a NoSQL benchmark (YCSB bench-
mark [14]) to evaluate the impact of SHARE on the per-
formance of a Couchbase NoSQL system in normal writes
as well as compaction operations. As benchmark workloads,
transactions of LinkBench and YCSB are much smaller than
a traditional TPC-C workload. On the other hand, they
are quite similar to a TPC-C workload in that both bench-
mark tools generate a large number of small random reads
and writes. Below are described the characteristics of two
benchmarks, LinkBench and YCSB.

LinkBench LinkBench is a configurable open-source
database benchmark for a large-scale social graph [8].
This benchmark tool reflects the characteristics of
Facebook social graph data where the majority of read
requests are served by a caching layer. This reduces the
temporal and spatial locality of read requests reach-
ing the underlying database servers [19]. However, the
overall workload reaching the database servers is still
read-intensive with approximately 30% writes. The
force index option was turned on to avoid additional
I/O operations required for query optimization. Also,
the buffer flush neighbors option, which flushes any
neighbor pages together for a dirty victim page, was
turned off to reduce unnecessary write overhead.

YCSB Yahoo! Cloud Serving Benchmark (YCSB) is a
benchmark framework created for evaluating cloud
systems [14]. YCSB consists of six workload types
and mimics web applications running a huge num-
ber of simple queries, each of which touches a single
record. Since all the workloads except for workload-
A and workload-F are read-intensive, workload-A and
workload-F were used to evaluate the performance im-
pact of SHARE.

5.3 Run-Time Performance
This section demonstrates the effectiveness of SHARE

by comparing the performance of MySQL/InnoDB using
LinkBench with and without SHARE. Similarly, the per-
formance of Couchbase NoSQL system was tested using two
YCSB workloads with and without SHARE. Each perfor-
mance measurement in this section was an average of three
runs.

5.3.1 MySQL/InnoDB for LinkBench
The version of MySQL/InnoDB used in the experiments

was the most recent 5.7.5-m15 development release. We cre-
ated three LinkBench databases of 1.5GB with page sizes
of 4KB, 8KB, and 16KB to compare the effect of differ-
ent page sizes. Throughout all the LinkBench experiments,
16 client threads were concurrently run. For steady perfor-
mance measurement, the LinkBench was pre-run for a 300
second warm-up time to fill the InnoDB buffer cache. A to-
tal of 160,000 transactions (10,000 per client) were run in
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Figure 5: LinkBench throughput on MySQL/InnoDB
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Figure 6: IO activities inside OpenSSD (50MB buffer cache, 4KB page)

each experiment. We use the DWB-On and SHARE symbol to
denote MySQL/InnoDB execution in its default mode with
the double-write-buffer on and in the SHARE mode with
the double write buffer off, respectively.

The Effect of SHARE on Throughput
Two sets of experiments were conducted to evaluate the ef-
fect of SHARE on database throughput. In the first set,
we ran the MySQL server with three LinkBench databases
created with different page sizes when the buffer pool size
was fixed to 50MB. For the second set, we ran the MySQL
server by varying the buffer pool size from 50MB to 150MB
when the LinkBench database page size was fixed to 4KB.

Figure 5 presents the results of measured transaction
throughput. As clearly shown in Figure 5(a) and Fig-
ure 5(b), the SHARE consistently helped MySQL process
LinkBench transactions much faster than the DWB-On mode
by more than two times over all tested configurations re-
gardless of buffer size and page size.

For all the experiments, we also measured the transaction
throughput while running the MySQL server in the DWB-Off
mode to compare the performance differences between three
different modes. Interestingly, for all six configurations, al-
though omitted from Figure 5 for clarity, the performance
gaps between DWB-Off and SHARE modes were less than one
percent. Recalling that the DWB-Off mode also avoids re-
dundant writes, it is obvious that two modes generate the
same IO traffic except the share commands issued in SHARE

mode. This comparison derives two interesting points. One
is that SHARE can achieve the write atomicity at almost no

performance cost. The other is that the run-time overhead
of our share implementation is very marginal.

The Effect of SHARE on IO Activities
This considerable performance gain of SHARE, which is
shown in Figure 5, was a direct reflection of reducing the
number of written pages. This is confirmed by the num-
ber of page writes requested by the host when running the
same set of experiments for Figure 5(b). As is shown in
Figure 6(a), the SHARE-based implementation reduced the
number of requested page writes to the SSD by 45% com-
pared to the original MySQL/InnoDB. The reduction ratio
is less than 50% because the traffic includes file system meta-
data page write requests as well as MySQL data page write
requests.

To understand how the input traffic reduction influences
internal SSD behavior, we measured the number of garbage
collection events and the number of valid pages copied-back
due to garbage collection. As shown in Figure 6(b) and Fig-
ure 6(c), the SHARE-based implementation exacts much less
SSD burden than the original MySQL/InnoDB. Regardless
of buffer size, the garbage collection operations decreased by
55% while the number of copyback pages decreased by 75%.

It is interesting to observe the trend between the num-
ber of OS page writes, the number of SSD garbage collec-
tions, and the number of SSD copyback pages. SHARE con-
tributed to 45% reduction of OS page writes, which led to
55% reduction of garbage collection events, and then ended
up with 75% reduction of copybacks. By avoiding the re-
dundant writes of pages, SHARE halves the number of page
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Transactions DWB-On SHARE

I/O Type Name Mean P25 P50 P75 P99 Max Mean P25 P50 P75 P99 Max

Read

Get Node 51.4 4 12 28 600 1363.3 23.9 5 10 23 300 901.1
Count Link 32.8 2 5 15 600 1244.4 14.4 2 5 17 200 747.4

Multiget Link 40.7 0.3 5 19 500 1573.5 15.2 0.8 6 17 200 313.3
Get Link List 39.4 0.3 5 18 500 17467.4 17.2 0.3 5 17 200 6140.7

Write

ADD Node 6.3 0.3 0.4 0.4 200 1521.0 1.5 0.3 0.3 0.4 24 554.6
Update Node 64.0 5 15 42 700 2071.4 28.3 5 14 27 300 823.8
Delete Node 62.6 5 13 40 600 1104.6 26.3 5 12 25 300 596.7
Add Link 119.3 17 40 200 1000 2248.2 49.7 14 27 57 400 730.4
Delete Link 70.5 4 16 55 800 1417.6 30.3 4 14 30 300 1132.8
Update Link 114.9 16 38 200 1000 2270.5 49.4 13 26 54 400 1102.5

Table 1: Distribution of LinkBench transaction latency (in millisec)
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Figure 7: YCSB throughput on Couchbase: Workload-F

writes to the storage and thus triggers less garbage collec-
tions (i.e., 10% less GCs). Further, this let a single block
survive probabilistically 2x longer before it becomes a GC
victim. As a result, data pages in each data block will have
more chances to be invalidated before the data blocks are
reclaimed for garbage collection. Therefore, in SHARE, a
victim block likely has less valid data pages at GC time (i.e.,
roughly a half copybacks per each victim block and quater
copybacks in total). This implies that the SHARE interface
can provide longer device lifespan while less garbage collec-
tion events provide more consistent IO performance with
less performance jitter.

As is mentioned in Section 2, to guarantee write atomicity,
PostgreSQL takes a similar approach to MySQL. In order
to evaluate the performance impact of the full_page_write
feature in the PostgreSQL server, we carried out a sepa-
rate experiment using the pgbench benchmark [5]. In the
experiment, when the full_page_write option was turned
off, the transaction throughput approximately doubled and
the amount of WAL log data reduction was roughly same
as the total amount of data pages written to the database
tables. This indicates that a PostgreSQL server also can ex-
pect significant performance gains by leveraging the SHARE
interface as a mechanism to guarantee the atomicity of page
writes.

The Effect of SHARE on Tail Tolerance
High tail latency poses serious challenges for online service
providers since even small increase may result in reduced
traffic and revenue [15]. In order to evaluate the impact
of SHARE on read and write transactions latencies, we
also measured the latencies while running LinkBench with a
50MB buffer cache and 4KB page size. The latency statis-
tics were reported by the LinkBench script at the end of
each benchmark run, and are summarized in Table 1.

Table 1 compares two modes of MySQL/InnoDB, DWB ON

and SHARE, in terms of latencies at 25, 50, 75 and 99 per-
centiles as well as the average and maximum latencies for
ten different types of read and write transactions. It is clear
from this table that the SHARE interface significantly re-
duced the latency in all measurements. Specifically, the av-
erage latency was reduced by a factor of 2.1 to 4.2, while
the maximum latency was reduced by a factor of 1.2 to 3.4.
More importantly, the 99 percentile latency was also reduced
by a factor of 2.0 to 8.3. Once again, this is clear evidence
that SHARE reduces the tail latencies, contributing greatly
to tail tolerance.

Another observation made from Table 1 is that SHARE
could considerably lower the latency of read transactions as
well as that of write transactions. One main reason is that
faster write request completion by avoiding redundant writes
can shorten the response time of read requests blocked by
preceding writes on a page miss [16].
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5.3.2 Couchbase for YCSB
To analyze the effect of SHARE on NoSQL workloads, we

ran a Couchbase system against workload-F and workload-

A of YCSB benchmark with a 1GB database consisting of
250,000 key-value records. The average size of key-value
records in YCSB was 4KB. The workload-A consists of 50%
read and 50% update operations by default. The workload-F
consists of 100% read-modify-write operations by default.

The Couchbase throughput was measured in operations
per second (OPS), where an operation is like a RDBMS
system transaction. All the experiments were done in a sin-
gle thread mode. The average index tree depth was three,
and the size of each tree node was 4KB. Thus, the average
amount of each update operation was about 16KB includ-
ing the tree nodes and a document update. Couchbase can
adjust the fsync frequency in order to trade durability for
performance by changing the value of a batch-size param-
eter. If the batch-size is set to a positive integer, say k, a
fsync call is executed every k updates.

Effect of SHARE on Workload-F
Figure 7 shows the experiment results in workload-F mea-
sured under different configurations created by changing the
batch size from one to 256 and using SHARE. As Figure 7(a)
clearly shows, the SHARE interface helped Couchbase pro-
cess operations much faster than the original Couchbase by
a factor of 1.96 (batch size 256) to 3.45 (batch size 1).

And Figure 7(b) demonstrates that the considerable per-
formance gain reflected the reduction of the amount of the
written pages. Recall that with SHARE interface, Couch-
base does not update all tree nodes on a path from the root
to a leaf pointing to an updated document. For this reason,
the amount of written data with the SHARE interface is al-
most constant regardless of batch-size. On the other hand,
the original Couchbase experiences less write amplification
due to tree-wandering as the batch-size increases. Thus, the
gap in the written data amount between the original and
the SHARE-based Couchbase became much narrower from
a factor of 7.86 to 1.64 by changing the batch-size from 1 to
256.

Reducing Couchbase’s write amplification is crucial be-
cause NoSQL systems usually manage huge data volumes of
mobile and web applications. In addition, less write amplifi-
cation gives Couchbase various performance benefits, such as
reduced compaction frequency, providing a consistent per-
formance for normal operations, and prolonging the SSD
lifespan.

Effect of SHARE on Workload-A

Similarly, in order to also evaluate the effect of SHARE on
a mixed workload, we ran YCSB’s workload-A. The experi-
ments were conducted with the same configurations for the
workload-F. Figure 8 shows that SHARE-based Couchbase
outperformed its original version by a factor of 1.61 (batch-
size 256) to 2.23 (batch-size 1).

Effect of SHARE on Compaction

In order to evaluate the effect of SHARE on compactions,
we measured the elapsed times of compaction with the orig-
inal and the SHARE-based Couchbase. As shown in Ta-
ble 2, compared to the original Couchbase, the SHARE-
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Elapsed Time Written Bytes
(sec) (MB)

Original 277.52 1126.4
SHARE 88.38 150.6

Table 2: Effect of SHARE on compaction

based compaction completed faster by a factor of 3.1 and
also reduced the amount of written data by a factor of
7.5. Though quite impressive, the improvement ratio in
total elapsed time is less than the reduction ratio in total
amount of written data. And the reason is that even with
the SHARE-based compaction, the header page of each valid
document in the old file should be read from the old database
file so as to check the length of the document, which is re-
quired in the share command.

6. RELATEDWORK
Three types of existing work are closely related to

SHARE: atomic write in flash storage [26, 27, 29], transac-
tional FTL [17], and address remapping technique [12]. All
these techniques exploit the copy-on-write approach used
in FTL in order to provide host-side applications in place,
page write atomicity. In contrast, with SHARE, host-side
applications employ an out-of-place update approach and
call the SHARE command to avoid the redundant write for
the atomic writes. Now, let us briefly explain each work and
compare it with SHARE.

6.1 Atomic Write in Flash Storage
Recently, several interesting suggestions have been made

to efficiently support atomic updates on flash-based storage
devices, mainly from the storage and file system communi-
ties [26, 27, 29]. These FTL approaches have focused more
on ensuring the atomicity of a fixed set of pages, predeter-
mined at write time.

To the best of our knowledge, the atomic write FTL by
Park et al. [27] is the first study for supporting multiple
flash storage page atomic writes by exploiting flash storage
out-of-place update characteristics. This work only focuses
on supporting multiple page atomic writes to be written in a
single write request like write(p1,..,pn). Upon receiving
the write command, the FTL first writes all the pages into
the flash chip media in a synchronous way, then leaves the
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commit record. If a crash occurs during the data page write
or before writing the commit record, the FTL, upon reboot-
ing, undoes all the page writes when the commit record is not
found for the transaction. Recently, this approach was ap-
plied to FusionIO Atomic Write Extension, (the only device
available in the market that supports page write atomicity
at the storage level) [26]. And, Ouyan et al. [26] showed
that it can be used to replace the double buffer area in
MySQL/InnoDB, whose goal is to support the atomic data
page writes. Similarly, Prabhakaran et al. [29] proposed an
FTL called txFlash, which supports atomic writes semantics
tailored for file system journaling.

While these existing approaches focus on supporting the
atomic propagation of one or more pages written in an
update-in-place manner inside flash storage, the SHARE
scheme can efficiently support the atomic write of data pages
in host applications without write amplification using the
out-of-place update approach. And, unlike the existing ap-
proaches, our SHARE scheme does not require flushing the
whole page set at once. Instead, with SHARE, applications
can write any data page at any time and call the SHARE
command against a set of pages at an appropriate time.

In this respect, SHARE more flexibly supports atomic-
ity semantics. Moreover, SHARE can support the Couch-
base compaction process, which is not possible with existing
atomic write approaches.

6.2 Transactional FTLs
To support the transactional atomicity semantics

database applications require, a transactional FTL called
X-FTL [17] recently was proposed. It is more flexible than
the FTLs described above in that X-FTL allows writing any
data page at any time while still supporting atomicity of
any group of pages belonging to a transaction. By also ex-
ploiting the flash storage copy-on-write mechanism, X-FTL
can efficiently guarantee that, without resorting to ampli-
fied writes, all pages any transaction updates are success-
fully propagated or no pages are written upon a failure. In
other words, it implements flash storage transactional atom-
icity, which is similar to the shadow paging technique [21].
With X-FTL, database applications such as SQLite are re-
lieved from the burden of implementing their own propri-
etary transactional semantics and also benefit from better
performance [17].

A common X-FTL and SHARE benefit is that they can
guarantee transactional atomicity. However, SHARE is de-
veloped to support applications taking the out-of-place up-
date approach for atomic write while X-FTL supports appli-
cations using update-in-place. Of course, X-FTL, like other
related works, cannot be used to support the Couchbase
compaction process either.

6.3 Address Remapping in JFTL
Regarding SHARE, other interesting flash storage work on

and FTL community is JFTL [12]. Under the full journaling
mode of a journaling file system [28], for higher file system
consistency, the same data page in a file is redundantly writ-
ten to both the journal area and the original file. To avoid
redundant writes, JFTL (i.e., FTL for journal mode) up-
dates the mapping table instead of copying pages from the
journal area to the original file. After writing a set of pages
such as data pages and the file system’s metadata (e.g., in-
odes and superblocks) in the journal area, the journaling file

system informs the flash storage of the list of the journaled
data pages using a new interface. Upon receiving the list,
the JFTL simply remaps the logical-to-physical mapping in-
formation of each data page in the list to the corresponding
pre-written page in the journal area, thus avoiding writing
the data pages redundantly. In this respect, JFTL is the
closest approach to SHARE. However, unlike JFTL which
is tailored to journaling file system and thus is based on a
proprietary interface between OS kernel thread and FTL,
SHARE is an explicit interface which any application can
use. Also, SHARE is more flexible in that it supports the
Couchbase compaction process.

7. CONCLUSION
Many database storage engines, as well as file systems, uti-

lize a redundant write or copy-on-write approach for atomic
writes. Consequent write amplification at the software level
adversely impacts both performance and flash storage de-
vice lifespans. This paper proposes a novel interface for flash
storage called SHARE, which allows the applications to ex-
plicitly change the FTL indirection address mapping, thus
relieving costly write amplification from those applications
without compromising atomic write properties.

We have implemented SHARE on an SSD development
platform called OpenSSD by enhancing its FTL code with
SHARE features. We have modified MySQL/InnoDB and
Couchbase storage engine to exploit SHARE with only min-
imal code changes. Using a set of popular workloads for re-
lational and NoSQL databases, we have demonstrated that
SHARE achieves a significant performance improvement.

There are numerous applications that can benefit from
the SHARE interface, including database systems such as
PostgreSQL and SQLite and file systems such as Ext4 and
BTRFS. As a future work,we will modify those systems to
exploit the SHARE interface and evaluate its impact using
various synthetic and real workloads.
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