
Palette: Enabling Scalable Analytics for
Big-Memory, Multicore Machines

Fei Chen, Tere Gonzalez, Jun Li, Manish Marwah, Jim Pruyne,
Krishnamurthy Viswanathan, Mijung Kim

HP Labs

ABSTRACT
Hadoop and its variants have been widely used for processing
large scale analytics tasks in a cluster environment. How-
ever, use of a commodity cluster for analytics tasks needs to
be reconsidered based on two key observations: (1) in recent
years, large memory, multicore machines have become more
affordable; and (2) recent studies show that most analytics
tasks in practice are smaller than 100 GB. Thus, replacing
a commodity cluster with a large memory, multicore ma-
chine can enable in-memory analytics at an affordable cost.
However programming on a big-memory, multicore machine
is a challenge. Multi-threaded programming is notoriously
difficult. Further, the memory design of most large memory
servers follows non-uniform memory access (NUMA) archi-
tecture. While NUMA-aware programming often leads to
high efficiency in analytics tasks, it is usually done in an ad
hoc manner.
In this demo, we present Palette, an analytics framework

that exploits large memory to trade space for time while
also addressing the challenges of multi-threaded, NUMA-
aware programming. Palette manages multiple, index-like
data representations for input datasets. An operator may
have multiple implementations, each of which uses a dif-
ferent data representation. Palette uses a cost-based ap-
proach to automatically select the fastest one on a given
dataset. Palette addresses challenges of multi-threaded and
NUMA-aware programming by adapting Hadoop for a sin-
gle multicore machine and modifying it by considering the
characteristics of modern NUMA hardware. Users can write
programs using exactly the same APIs as those used in tra-
ditional Hadoop, while transparently benefiting from multi-
threaded and NUMA-aware infrastructure.
We have developed a research prototype of Palette. Specif-

ically, at SIGMOD we will demonstrate how to (1) create an
operator, such as time series similarity search, on Palette, (2)
execute the operator with Palette’s automatic implementa-
tion selection feature, and (3) monitor and compare different
operator implementations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594509.

1. INTRODUCTION
Distributed computation platforms such as MapReduce-

based Hadoop have become widely popular. These platforms
execute massive data parallel computations on clusters of
commodity machines. Although these distributed platforms
are very appealing to petabyte-scale applications, they need
to be reevaluated in light of recent advances in hardware
and improved understanding of analytics applications.

Hardware has evolved since MapReduce was introduced
in 2004 [5]. In particular, cost of memory and CPU has re-
duced significantly. In 2004, a single MapReduce node typ-
ically had two single-core processors and 2-4 GB of mem-
ory [5]. Today, a server with 16 cores and 256 GB RAM
costs less than $10,000 USD1. Thus, a single server, with
CPU resources equivalent to that of a small cluster in 2004,
can be equipped, at a reasonable cost, with a much larger
memory than the aggregate memory of that cluster. With
consolidation to a single machine, network communication
is eliminated while the disk I/O costs are substantially re-
duced, because most of the data can be kept in memory. In
fact, in most cases it might be possible to keep all the data
in memory, given that multiple recent studies have reported
small analytics job sizes in practice. For example, 90% of
analytics tasks in a production system have input sizes un-
der 100 GB [11]. Similar studies have reported a median
task size of only 14 GB [2].

Building general analytics platforms on shared-memory
multicore machines presents two challenges. The first chal-
lenge is how to provide easy programming on such machines,
given that multi-threaded programming is notoriously diffi-
cult. Existing frameworks such as OpenMP2 provide low
level APIs, which are hard to use. Furthermore, the trend
in hardware has been towards non-uniform memory access
(NUMA), where each process can access both its own mem-
ory and memory associated with the other processors (re-
mote memory) coherently. However, it is faster to access
local memory. While NUMA-aware programming is impor-
tant in achieving high efficiency in analytics tasks [3], it is
done in an ad hoc manner today, where users have to fig-
ure out how to localize memory access of each thread and
reduce remote memory access as much as possible for each
analytics task. The second challenge is to adequately ex-
ploit large memory for efficient analytics processing. The
abundant memory sometimes can hold more than raw in-
put data. How can we fully leverage additional available
memory to speed up processing?

1
http://www8.hp.com/us/en/products/proliant-servers/product-

detail.html?oid=5211699
2
http://www.openmp.org/

705

Palette Web Console

Task

Coordinator

Datasets Catalog

Monitor

1.Requested

Operator/Inputs

4. Hadoop

Job

6. Status/Results

Time Series

Similarity Search

…

IE over

Evolving Text
3. Selected

Implementation

In-Memory NUMA Aware Hadoop

Big-Memory Multicore Machine

Operator Catalog

5.Progress/workload

2. Operator and

Dataset Statistics

Optimizer

Figure 1: Palette architecture.

To address the two challenges, we have developed Palette,
an analytics framework providing ease of programming and
efficient execution on big-memory, multicore machines. In
order for users to easily develop their analytics operators on
Palette, we modify Hadoop so that it runs in-memory on
a single shared-memory multicore machine and is NUMA-
aware. The modified version of Hadoop is compatible with
the original Hadoop in its APIs. This allows users to run
their existing Hadoop JARs on Palette without any changes.
Thus, users can transparently take advantage of multicore
and NUMA memory without worrying about painful multi-
thread and NUMA-aware programming.
Palette exploits large memory by trading space (mem-

ory) for time. Each analytics operator, implemented in
Palette, materializes and manages multiple, large, index-like
auxiliary data representations in order to speed-up its exe-
cution. An operator may have multiple implementations,
each with different data representations, providing different
space-speed trade-offs. Palette uses a cost-based approach
to automatically select the fastest implementation of an op-
erator on a given input data instance.
Palette users can easily construct analytics operators that

exploit multicore NUMA architecture. They can also easily
port existing Hadoop code to Palette with minimal effort.
Further, users can construct complex analytics applications
by composing existing Palette operators and can share them
with other Palette users.

2. PALETTE ARCHITECTURE
The architecture of the Palette system is described in Fig-

ure 1. We describe the system components below.
Operator and Dataset Catalog: A single, logical an-

alytics operator in Palette may have multiple implementa-
tions, each with a different performance curve and utilizing
different representations. We refer to such a logical operator
as an “operator family.” This is analogous to a DBMS join
operator (equivalent to a Palette operator family), which
may be implemented as an index-based join, a hash join or
a sort-merge join (equivalent to multiple implementations).
Palette’s operator catalog maintains the list of operator fam-
ilies, their implementations, and the metadata for the oper-
ator families and implementations (e.g., cost models). The
dataset catalog consists of data definitions and materialized
data representations. For illustration purposes, we demon-
strate two operator families, but users can easily add others
as we will show in Section 3.1.
A.Time Series Top-k Similarity Search: This operator

searches a time series database to retrieve the k-most sim-
ilar segments to a query segment. The candidate segments

are the sub-segments of the time series in the database. We
implement four variants of this operator with different per-
formance characteristics. (1) Näıve: This implementation
compares the query segment against every time series sub-
segment in the database, while abandoning computations on
segments when it becomes apparent that they are not among
the k most similar segments. The running time of this im-
plementation depends on both the time series dataset size as
well as the query segment length. (2) FFT-based : The sec-
ond implementation utilizes a Fast Fourier Transform (FFT)
on the time series dataset to rapidly compare every sub-
segment of each time series in the database with the query
segment. This requires pre-computation and materialization
of the FFT values, but the execution time is independent of
the length of the input query segment. (3) Locality sensitive
hashing (LSH)-based, and (4) Angular hashing-based : These
implementations build a similarity-search index on the can-
didate sub-segments using LSH [1] and angular hashing [8]
techniques respectively. These indices occupy much larger
space than both the original database and FFT, but they
enable fast retrieval of a small subset of candidate segments
with probabilistic guarantees.

B. Information Extraction (IE) over Evolving Text : This
operator is based on our previous work [4]. Given an evolv-
ing text corpus (such as versioned documents in a content
management system), this operator performs IE (e.g. ex-
tracting named entities) using Conditional Random Fields
(CRFs). We have two implementations. (1) Näıve: This im-
plementation reruns the CRF on each snapshot of the evolv-
ing corpus. (2) Incremental : This implementation applies
the CRF over changed text segments between consecutive
snapshots. The incremental implementation is much faster
than the näıve one when the corpus is only modified slightly
between snapshots. It also requires storing by-products of
runs and thus significantly larger memory.

Optimizer: When users invoke an operator family on
an input dataset, the optimizer performs a cost-based opti-
mization to select the fastest implementation on the given
dataset. The cost models are provided by users when they
add new operators or implementations. The optimizer in-
spects the catalogs, enumerates all possible implementations,
and estimates their costs (runtime). The estimation is done
by instantiating the cost models associated with the imple-
mentations based on input data characteristics. Different
implementations may require different data representations,
and therefore the optimizer must either ensure that the nec-
essary representations are materialized, or determine what
materialization steps need to be scheduled prior to invoking
the implementations. In the latter case, the optimizer also
adds the cost of materialization to the total cost. By auto-
matically performing this cost-based optimization, Palette
hides the space-speed trade-offs complexity from the users.

Task Coordinator: This component orchestrates work-
flows in Palette. For example, once the optimizer selects the
fastest implementation, the task coordinator translates the
steps required to execute the selected implementation and
to materialize any missing data representations into Hadoop
jobs, and submits them to the execution engine. Upon com-
pletion of the jobs, it presents the results to the users.

In-memory NUMA-aware Hadoop: The unique ex-
ecution engine of Palette is an in-memory Hadoop engine.
We modify the Apache Hadoop code base (our current im-
plementation is based on version 1.1.2) to extend its pseudo
distributed mode that is originally designed to support only
one HDFS data node and one MapReduce task tracker node,

706

1

2

Figure 2: Creating a Palette operator.
so that the entire machine can now support a configurable
number of HDFS data nodes and MapReduce task tracker
nodes. Each HDFS data node or MapReduce task tracker
node is bound to a collection of CPU cores. A Map or Re-
duce task instance launched from a task tracker node will
be bound to the same collection of CPU cores. Such a CPU
binding policy is realized through NUMA utilities [10] sup-
ported by the underlying operating system. To exploit the
available large memory, the local data store of each HDFS
data node is bound to a RAM-based file system such as
tmpfs, RamDisk or RamFs.
Note that the cluster version of Hadoop looks closely at

where the HDFS data blocks are located, and tries to sched-
ule the computation as close to the data as possible. By
binding an HDFS data node to a collection of cores us-
ing NUMA utilities, in-memory Hadoop is able to preserve
Hadoop’s data-locality-aware policy, such that Map or Re-
duce task execution on CPU cores will access data stored
at local memory as much as possible. To execute a job, no
changes are required to the users’ Hadoop code, the Hadoop
client utilities or its web-based monitoring tool.
Monitor: Palette includes a monitoring mechanism that

tracks the progress, the execution steps, and the resource
workload and reports the status to the users. The system
also records real-time statistics such as CPU utilization and
memory consumption to understand processing patterns.
Putting It All Together: We consider creating and

executing an analytics operator on Palette. When users cre-
ate a new operator family via the Web console (see Sec-
tion 3.1), the task coordinator adds the operator family, its
implementations and their meta data to the operator and
dataset catalogs. When users invoke an existing operator
family on input data via the Web console (see Section 3.2),
the task coordinator passes the invoked operator family and
its parameters (e.g., the input dataset) to the optimizer.
The optimizer then consults the operator and dataset cata-
logs to select the fastest implementation, as discussed above.
The task coordinator translates the execution steps of the
selected implementation and any necessary materialization
into Hadoop jobs and submits it to the in-memory Hadoop
engine. While the jobs are executed, the job monitor keeps
track of their progress and CPU core utilization. The run-
time monitoring information is saved and can be used later
for comparing the performance of different implementations.
Finally, once the jobs are completed, the task coordinator
returns the results and job status to users.

3. DEMONSTRATION SETTING
In this section, we describe the three aspects of Palette we

propose to demonstrate using time series search operator.

3.1 Creating an Operator Family
We will demonstrate (1) the ease of developing an operator

which takes advantages of many cores and NUMA architec-
ture on Palette, and (2) the procedure to create multiple
operator implementations and materializations on Palette.

Ease of Programming: To create an operator family,
users need to implement the Hadoop JARs for all the op-
erator implementations and materialization methods. We
will show the Hadoop source code of one of the time se-
ries implementations to illustrate how to program using the
traditional Hadoop APIs.

Creating Operator Implementations and Materi-
alizations: Once we implement the JAR packages, we need
to declare the implementations, their metadata and depen-
dencies. We will demonstrate the step-by-step procedure for
declaring them. Palette provides a sequence of wizards for
such declarations. The first wizard allows users to declare
the operator family, including its name and parameters. For
the time series operator, the parameters include the input
database, the query, the number of results to be returned
and output file. The next wizard allows users to declare the
different implementations and materializations.

Figure 2 illustrates the UI for declaring the FFT imple-
mentation and materialization. In the FFT implementation
declaration wizard, we need to define its name, its depen-
dency on the time series operator family, its parameters,
cost model and JAR package (which has been developed
in the previous step). Most of its parameters are inherited
from the operator family. It also takes one additional pa-
rameter, which is the FFT of the time series in the original
database. The next wizard (see the sub-figure 2 in Figure 2)
allows users to declare the FFT materialization method. It is
very similar to the implementation declaration wizard. No-
tice that it has its own cost model and JAR package. The
Palette optimizer is able to take into account the cost of
materializing FFT along with the cost of invoking the FFT
implementation if the FFT has not been materialized.

Palette captures the dependency and metadata associated
with the operator family, implementations and materializa-
tions, and stores them in the catalogs. It then uses the cap-
tured dependency and metadata to automatically manage
materializations (e.g. checking if FFT on a given time series
database instance has been materialized) and automatically
pick the fastest implementation.

3.2 Executing an Operator Family
We will demonstrate (1) how to execute a Palette operator

family, (2) Palette’s ability to manage materializations and
automatically select the fastest implementations, and (3)
Palette’s in-memory Hadoop compatibility with JAR codes
written for the cluster version of Hadoop.

Executing an Operator Family: Palette provides a
step-wise wizard (see Figure 3.(a)) to execute an operator.
First, the user selects the operator family to execute, and
fill in the parameters (e.g., the input). Furthermore, the
“Target Execution Environment” choice in the wizard allows
users to choose between a cluster and a multicore computing
environment to execute the operator.

Managing Materializations and Automatic Opti-
mization: Once the user clicks on the “Estimate” button,
the optimizer evaluates different implementations of the time
series operator family and recommends the fastest imple-

707

1
2

(a) (b) (c)

Figure 3: (a) Executing an operator, (b) Monitoring CPU core utilizations (showing core 10-25), and (c)
Comparing performance.

mentation. Along with the recommendation, if an imple-
mentation uses auxiliary data representations other than the
input dataset, Palette also shows whether they are material-
ized (see the sub-figure 2 in Figure 3.(a)). Next, the user in-
vokes one of the implementations. When the selected imple-
mentation is executed, Palette visualizes the progress of the
Hadoop job and the CPU core utilization (see Figure 3.(b)).
To show why we need multiple implementations, we will

provide input datasets with different characteristics (e.g.,
varying length of time series queries) so that a different im-
plementation is faster for each input. This will demonstrate
that the optimizer automatically chooses the fastest one.
In-memory Hadoop Compatibility: We will provide

two computing environments at SIGMOD. One is a small
cluster of eight nodes, each with four cores and 16 GB mem-
ory. The other is a multicore big-memory machine with 32
cores and 1 TB memory. The cluster version of Hadoop and
in-memory Hadoop are installed on the computing platforms
respectively. When invoking an implementation, SIGMOD
attendees can choose between these two computing environ-
ments. In the backend, the same JAR file will be executed.

3.3 Comparing the Speed and Space
Palette provides tracking features that record history of

runtime execution and monitoring. The SIGMOD attendees
can select from different implementations which have been
executed and compare their execution time and space. Fig-
ure 3.(c) shows the query times and memory consumed for
three time series search implementations (naive, FFT-based
and LSH-based) for a given query and time series database.
The LSH implementation is the fastest and consumes the
largest space. This exemplifies the space-speed trade-offs
that Palette aims to achieve.

4. RELATED WORK
Recently, there has been interest in in-memory comput-

ing in DBMS [7, 6] and analytics platforms [14]. Some of
these focus on moving MapReduce based platforms to mem-
ory. However, most of them [14, 12] still target cluster based
distributed memory computing environments. In contrast,
Palette targets single machine shared-memory computing
environments, which is complementary to these works. Ex-
isting research on shared-memory MapReduce platforms [13,

9, 2] do not consider either NUMA architecture or fully lever-
aging available memory to speed up execution.

5. CONCLUSION
We have presented Palette, a framework for developing

scalable analytics operators for big-memory multicore ma-
chines. It enables easy multithreaded, NUMA-aware pro-
gramming by using in-memory NUMA-aware Hadoop as its
execution engine. It enables space-speed tradeoffs by man-
aging auxiliary data representations for multiple operator
implementations and using a cost-based optimizer to choose
the fastest one, thus fully exploiting large memory.

6. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. CACM,
51(1), 2008.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron. Scale-up vs scale-out for Hadoop: Time to
rethink. SOCC-13.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.
Multi-core, main-memory joins: Sort vs. hash revisited.
PVLDB-13.

[4] F. Chen, X. Feng, C. Ré, and M. Wang. Optimizing statistical
information extraction programs over evolving text. ICDE-12.

[5] J. Dean and S. Ghemawat. MapReduce: Simplied data
processing on large clusters. OSDI-04.

[6] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
server’s memory-optimized OLTP engine. SIGMOD-13.

[7] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner. SAP HANA database: Data management for
modern business applications. SIGMOD Record, 40(4), 2012.

[8] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik. Angular
quantization-based binary codes for fast similarity search.
NIPS-12.

[9] K. A. Kumar, J. Gluck, A. Deshpande, and J. Lin. Hone:
Scaling down Hadoop on shared-memory systems. VLDB-13.

[10] C. Lameter. An overview of non-uniform memory access.
CACM, 56(9), 2013.

[11] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and
A. Douglas. Nobody ever got fired for using Hadoop on a
cluster. HotCDP-12.

[12] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta. M3R:
Increased performance for in-memory Hadoop jobs. VLDB-12.

[13] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory system.
IISWC-09.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets.
HotCloud-10.

708

