
Diversifying with Few Regrets, But too Few to Mention

Zaeem Hussain
The University of Queensland

Queensland, Australia
z.hussain@uq.edu.au

Hina A. Khan
The University of Queensland

Queensland, Australia
h.khan3@uq.edu.au

Mohamed A. Sharaf
The University of Queensland

Queensland, Australia
m.sharaf@uq.edu.au

ABSTRACT
Representative data provide users with a concise overview of their
potentially large query results. Recently, diversity maximization
has been adopted as one technique to generate representative data
with high coverage and low redundancy. Orthogonally, regret min-
imization has emerged as another technique to generate represen-
tative data with high utility that satisfy the user’s preference. In re-
ality, however, users typically have some pre-specified preferences
over some dimensions of the data, while expecting good coverage
over the other dimensions. Motivated by that need, in this work
we propose a novel scheme called ReDi, which aims to generate
representative data that balance the tradeoff between regret mini-
mization and diversity maximization. ReDi is based on a hybrid
objective function that combines both regret and diversity. Addi-
tionally, it employs several algorithms that are designed to maxi-
mize that objective function. We perform extensive experimental
evaluation to measure the tradeoff between the effectiveness and
efficiency provided by the different ReDi algorithms.

1. INTRODUCTION
Apart from the prevailing query-answer paradigm for data ac-

cess, emerging data exploration platforms typically apply novel
post-processing techniques on both the queries and their respec-
tive answers to provide users with guidance and insights. Generat-
ing representative data is one such technique that aims to provide
meaningful summary of a potentially large query answer (e.g., [2,
14, 9, 1]).

Early examples of representative data generation methods in-
clude the well-studied top-k and skyline queries [13]. In top-k, the
user’s preference is captured by means of a utility function over
the different dimensions of data, whereas in skyline, that prefer-
ence is captured by applying the dominance property over those
dimensions. Recently, regret minimization has been proposed as a
practical alternative for both queries [9]. In regret minimization, a
small representative set is generated by considering the universe of
all possible utility functions. Hence, a user does not need to specify
a specific utility function, as it is the case in top-k, but are still pro-
vided with a small and concise representative set, unlike the skyline
query, in which the result can be arbitrarily large. In the absence
of preference, however, diversification methods have been recently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ExploreDB ’15, May 31-June 04, Melbourne, VIC, Australia
Copyright 2015 ACM ISBN 978-1-4503-3740-3/15/05 $15.00
DOI: http://dx.doi.org/10.1145/2795218.2795225

Table 1: Car Database
Car MPG HP Weight Height
p1 51 134 1760 52.4
p2 40 110 2945 48.8
p3 41 191 1875 54.3
p4 35 198 2050 56.3
p5 30 140 2215 50.6

employed to generate representative sets that provide high coverage
of the accessed data, while minimizing redundancy (e.g., [2, 14]).

In many applications, however, the user might have some notion
of preference associated with some dimensions of the data, while
other dimensions are neutral. In that case, it is desired to select
representatives that: 1) minimize regret over the preference dimen-
sions (i.e, high utility), and 2) maximize diversity over the neutral
dimensions (i.e., low redundancy).

For example, consider a tourist visiting downtown Melbourne
for SIGMOD and is looking for few restaurants to try during her
visit. That user might have some preference for restaurants with
low price and high rating. At the same time, she might not want
all restaurants to be cluttered in one location so that she gets to see
more of the city during her short visit.

To capture that tradeoff between preference and coverage, we
propose a novel scheme called ReDi, which aims to generate repre-
sentative data that balance the tradeoff between regret minimization
and diversity maximization. Our proposed scheme ReDi is based
on a hybrid objective function formulated as the linear weighted
combination of the diversity and regret objectives. To that end,
ReDi incorporates two alternative novel algorithms that are based
on two different algorithmic design approaches. In particular, we
propose the ReDi-Greedy algorithm, which is a constructive based
heuristic, and we also propose ReDi-SWAP, which is a local search
based algorithm. Further, we study the tradeoff those two algo-
rithms exhibit in terms of efficiency and effectiveness.

The rest of this paper is organized as follows. We provide pre-
liminaries and related work in Section 2. Next we formulate our hy-
brid objective function in Section 3, and present our ReDi scheme
in Section 4. Our evaluation testbed and results are reported in Sec-
tion 5. We conclude in Section 6.

2. PRELIMINARIES

2.1 Representative Data
In many application domains, a user is more interested in a con-

cise answer rather than a potentially large query result. That mo-
tivated the need for developing effective methods for generating
representative datasets, in which post-processing techniques are ap-
plied to select a small set of representative tuples from a rather large
query result (e.g., [2, 14, 9, 1]). Such representatives data allow

users to quickly assess the usefulness of the returned results and
their relevance to their needs

In this work, we assume a typical data exploration model, in
which a user explores a D-dimensional database by posing range
queries. Such queries retrieve a number of results, or tuples, from
the database. Database results can be generally viewed as a set of
attribute values represented as data points in a multi-dimensional
space. For instance, consider a databaseDB, which consists of a set
ofD-dimensional tuples. Each tuple pi =<pi[1], pi[2], ..., pi[D]>
is basically a point in a D-dimensional space, where the value of
pi[j] is drawn from the domain of attribute Aj .

A range query is simply represented as a multi-dimensional box,
which is also known as hyper-rectangle. Given a range queryQ, let
P = {p1, . . . , pn} be the set of data points that fall within the multi-
dimensional range specified by Q. For instance, Table 1 shows a
P subset of a Cars database, in which there are n = 5 data points,
and each data point has D = 4 dimensions. Given a query re-
sult P , data exploration platforms employ different representative
data extraction methods to retrieve a small subset S ⊆ P , which
represents the original result P .

Early examples of such methods include the well-studied top-k
(e.g., [5, 4]) and skyline (e.g., [13, 12]) queries. While both queries
provide significant advantages in preference and personalized data-
bases, their application is limited in the absence of preference pa-
rameters, which is the case in data exploration [11]. This motivates
the need for novel parameter-free methods for extracting meaning-
ful representative tuples from a query answer. In this work we focus
on two such methods, namely: diversification, and regret minimiza-
tion. In particular, data diversity has been adopted as one method
to ensure maximum coverage while minimizing redundancy in the
representative set [2, 14], whereas regret minimization has been
adopted as the method to maximize the relevance of representative
data to the posed query [9]. In the next sections, we describe those
two methods in details, and in Section 3, we define our hybrid ob-
jective function, which balances the tradeoff between minimizing
regret and maximizing diversity.

2.2 Maximizing Diversity
The aim of diversification methods is to select a small diverse

subset of a query result set. In particular, given a query result P ,
the goal is to select a subset S∗, where |S∗| = k, such that the
diversity of the results in S∗ is maximized. While the diversity
of a set can have different definitions [14], in this work we focus
on the widely used content-based definition of diversity. Content
diversity is an instance of the p-dispersion problem [3], in which
the objective is to maximize the overall dissimilarity within a set of
selected objects.

In particular, given a metric d that measures the distance between
two results, e.g., the Euclidean distance among two data points, the
diversity of a set S is measured by a diversity function f(S, d) that
captures the dissimilarity between the results in S. To that end, a
number of different diversity functions have been employed in the
literature, among which previous research has mostly focused on
measuring diversity based on either the average or the minimum of
the pairwise distances between results [2, 14]. The former is known
as max-sum diversity and the latter as max-min diversity. Without
loss of generality, in this paper we focus on max-sum diversity.
Putting it together, the diversification problem is defined as follows:
Let P be the set of results that satisfy a user query Q and k be
a positive integer such that k ≤ |P |. Let also d be a distance
metric and f a diversity function. Then, diversification is defined

as selecting a subset S∗ of P , such that:

S∗ = arg max
S⊆P
|S|=k

f(S, d)

The max-sum diversity function is defined as:

f(S, d) =
1

k(k − 1)

k∑
i=1

k∑
j>i

d(pi, pj) and pi, pj ∈ S (1)

Identifying an optimal diverse subset S∗ has been shown to be
NP-hard [3], therefore greedy-based heuristics are typically em-
ployed to select a near optimal diverse subset. For instance, in
Greedy Construction the diverse subset S is constructed iteratively,
where in each iteration t, the point with the maximum distance from
the current diverse set St is selected and added to that set, until k
points are selected [2, 14]. Further optimizations have also been
proposed to improve the efficiency of that greedy approach, includ-
ing our previous work [7, 8, 6].

2.3 Minimizing Regret
In the presence of some preference over some of the data dimen-

sions, representatives are typically selected based on those prefer-
ences. For instance, in a top-k query, the user specifies a utility
function g, such that the utility of a D-dimensional point p is given
by g(p). Hence, the top k points based on their values under that
utility function are then selected as representatives. Alternatively,
in a skyline query, any point for which there is no other point with
better values in all D dimensions is selected. However, in a top-
k query the user is required to precisely define a utility function,
which is often unknown, whereas in a skyline query there is no con-
trol on the size of the output, which can be arbitrarily large. Such
drawbacks motivated the recent regret minimization methods [9].

Particularly, the goal of regret minimization is to select a sub-
set of size k, which minimizes the maximum regret ratio for any
class of utility functions. This captures how disappointed any user
could be had they seen k representative tuples instead of the whole
database [9]. Specifically, for a certain user with a utility func-
tion g ∈ G and a subset of points S ⊆ P , the regret of that
user is maxp∈P g(p) − maxp∈Sg(p), where maxp∈P g(p) is the
maximum utility if the user saw the entire database P , whereas
maxp∈Sg(p) is the maximum utility if the user saw only the rep-
resentative set S. Accordingly, given a class of utility functions
G, the maximum regret ratio of a subset S, denoted rrP (S,G), is
defined as:

rrP (S,G) = supg∈G
maxp∈P g(p)−maxp∈Sg(p)

maxp∈P g(p)

In this work, we restrict G to be the class of linear functions
with positive weights, as in [9]. Given that restriction, consider
again the dataset of table 1 and suppose there is some notion of
preference associated with attributes MPG and HP. For simplicity,
further assume G = {g{0.2,0.8}, g{0.4,0.6}, g{0.6,0.4}, g{0.8,0.2}}
where: g{x,y}(MPG,HP) =MPG.x+HP.y If S = {p1, p2},
then rrP (S,G) = 0.29. If, however, S = {p3, p4}, rrP (S,G) =
0. However, if the goal is to select a set of 2 cars that is diverse in
weight and height, then the set S = {p1, p4} is the most diverse
under the diversity definitions formulated in the previous section.

In general, computing the value rrP (S,G) for a classG is based
on finding the “worst" point. That is, the point that contributes to
the currently perceived maximum regret ratio after S points have
been selected. Hence, that computation is achieved by running
a linear program to compute rrS∪{p}(S,G) for each p ∈ P\S
to find the one point p′ that is responsible for the current maxi-

Algorithm 1 Regret Greedy Algorithm

Input: A set of D dimensional points P = {p1, p2, ..., pn} and an
integer k for output size
Output: A subset of P of size k denoted by S
S ← {p} such that p = argmax

pi∈P
pi[1]

for i = 1 to k − 1 do
r∗ = 0
p∗ = null
for all p ∈ P \S do

if r∗ < rrS∪{p}(S) then
r∗ ← rrS∪{p}(S)
p∗ ← p

end if
end for
S ← S ∪ {p∗}

end for

mum regret ratio [9]. Hence, rrP (S,G) = rrS∪{p′}(S,G), where
rrS∪{p}(S,G) is evaluated using the following linear program [9]:

max x

s.t.
D∑
i=1

(p[i]− p′[i])v[i] ≥ x ∀p′ ∈ S

D∑
i=1

p[i]v[i] = 1

v[i] ≥ 0 ∀i ≤ D
x ≥ 0

(2)

Notice that in the linear program above, each possible utility
function is represented by a vector v inD dimensions with non neg-
ative coordinate values. Hence, the linear program finds the vector
v that maximizes the regret ratio of S relative to S ∪ p, and the
value x returned by the linear program is precisely rrS∪{p}(S,G).

Similar to maximizing diversity, the problem of regret minimiza-
tion has also been shown to be NP-hard [1]. Hence, several greedy
heuristics have been proposed to find near-optimal solutions for re-
gret minimization [9]. Those heuristics are based on the Greedy
algorithm proposed in [9], in which S is constructed iteratively,
where in each iteration, the point that contributes to the maximum
regret ratio is selected and added to S, until k points are selected.
The pseudo code for this algorithm is given in algorithm 1, where
rrS∪{p}(S) is evaluated using the above linear program.

3. COMBINING DIVERSITY AND REGRET
Clearly, the methods for diversity maximization and regret min-

imization compute different representative sets that optimize their
respective objective functions. For example, consider Figure 1a,
which shows a small data set consisting of 12 points p1, p2, ..., p12,
each with 7 dimensions A1, A2, ..., A7. For each point pi, the nor-
malized attribute value for each of its 7 attributes is shown on the y-
axis. Further, assume there is some notion of preference associated
with the first four attributes A1 to A4 (e.g., the higher the value,
the better), whereas there is no such notion defined for the remain-
ing three attributesA5 toA7. Hence, in generating a representative
set S, it is desired to select points that: i-minimize regret over the
first four dimensions (i.e, high utility), and ii-maximize diversity
over the last three dimensions (i.e., low redundancy). Figure 1b
shows a set S of size 5 points selected by the Greedy algorithm
for regret minimization (called Reg-Greedy hereafter). The figure
shows that selected points have high values under one or more of
the first four attributes (i.e., high utility), but have very similar val-
ues in the last three attributes (i.e., high redundancy). Alternatively,
Figure 1c shows the set S selected by the Greedy algorithm for di-
versity maximization (called Div-Greedy hereafter). In contrast to

0

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3 A4 A5 A6 A7

A
tt

r
ib

u
te

 V
a

lu
e

s

Attributes

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

(a) All Records

0

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3 A4 A5 A6 A7

A
tt

r
ib

u
te

 V
a

lu
e

s

Attributes

P1 P10 P3 P4 P8

(b) Regret minimized set (k=5)

0

0.2

0.4

0.6

0.8

1

1.2

A1 A2 A3 A4 A5 A6 A7

A
tt

r
ib

u
te

 V
a

lu
e

s

Attributes

P6 P2 P11 P12 P9

(c) Diverse set (k=5)
Figure 1: Impact of Regret Minimization and Diversification

Figure 1b, Figure 1c shows that the selected points have diverse val-
ues under the last three attributes (i.e., low redundancy), but miss
the user preference for higher values along the first four dimensions
(i.e., low utility). Hence, neither of the two algorithms manages to
achieve both high utility and low redundancy at the same time.

To capture the conflict illustrated in the previous example, we
utilize a hybrid function that considers both diversity and regret.
Specifically, for a subset S ⊆ P , an objective function is formu-
lated as the linear weighted combination of the scaled diversity and
regret objectives, which is defined as:

F(S,G, P, λ) = λ

∑k
i=1

∑k
j>i d(pi, pj)

max
pi,pj∈P

d(pi, pj)
+

(1− λ)k(k − 1)

2
(1− rrP (S,G))

(3)

where k = |S|, and λ is the weight parameter for balancing the
tradeoff between diversity and regret, such that 0 ≤ λ ≤ 1. Notice
that the sum of the pairwise distances is divided by the maximum

distance between any pair of points in the whole set so as to nor-
malize the value of the distances between 0 and 1. Similarly, the
regret objective is scaled up by k(k−1)

2
which is the total number of

pairs considered in the sum of the distances for diversity.
When diversity and regret are associated with different dimen-

sions, our objective function defined above is easily modified ac-
cordingly. In particular, if Vdiv ⊆ {A1, ..., AD} represents the di-
mensions designated for diversification and Vreg ⊆ {A1, ..., AD}
represents the dimensions on which regret minimization is required,
our objective function is reformulated as:

F(S,G, P, λ, Vdiv, Vreg) = λ

∑k
i=1

∑k
j>i d(pi, pj , Vdiv)

max
pi,pj∈P

d(pi, pj , Vdiv)
+

(1− λ)k(k − 1)

2
(1− rrP (S,G, Vreg))

Hence, the goal is to find a set S∗, which balances the tradeoff
between diversity and regret by maximizing the objective function
F defined above. Formally:

S∗ = argmax
S⊆D,|S|=k

F(S,G,D, λ, Vdiv, Vreg) (4)

Note that in this work we focus on the case where diversification
and regret minimization are desired on different dimensions, which
means Vdiv ∩Vreg = φ. Referring back to the sample data in table
1, assume Vdiv = {Weight,Height}, Vreg = {MPG,HP},
and it is required to select a representative set S of size 2 (i.e., k =
2). For that data, S = {p1, p3} is the the set which minimizes the
maximum regret ratio in MPG and HP, but provides very low diver-
sity in Weight and Height. On the other hand, S = {p2, p4} maxi-
mizes the diversity in Weight and Height, but has a very high max-
imum regret ratio in the first 2 dimensions. Giving equal weight to
both diversity and regret by setting λ = 0.5 in F , we find that the
subset of size k = 2 which maximizes F is S = {p1, p4}, where
the points in S provide the desired balance between minimizing
regret and maximizing diversity.

4. THE ReDi SCHEME
In this section, we present our ReDi scheme for balancing the

tradeoff between minimizing regret and maximizing diversity. In
particular, we present two algorithms that aim to achieve that goal
as it is captured by the hybrid function presented in Section 3. To-
wards this, we present two algorithms: ReDi-Greedy, and ReDi-
SWAP, and study the tradeoff they exhibit in terms of both effi-
ciency and effectiveness.

4.1 ReDi-Greedy
ReDi-Greedy follows the same general design adopted by the

class of constructive algorithms for solving different optimization
problems, including those for regret minimization, and diversity
maximization. In constructive algorithms, a final solution is achieved
incrementally in steps, where in each step a local decision is made
based on some criteria, where the choice of such criteria depends on
the target optimization problem. ReDi-Greedy also constructs the
result set S iteratively by selecting a new point in each iteration,
where the criteria for selecting such point is based on the objec-
tive function F defined in Section 3. Particularly, based on F , it
is desirable to select in each iteration a point that can potentially
contribute the most to decreasing the regret of the current set S and
also increasing its diversity. In order to locate such point, ReDi-
Greedy employs a heuristic priority function, where each point in

Algorithm 2 ReDi-Greedy
Input: A set of D dimensional points P , a set Vdiv , a set Vreg , an
integer k and λ
Output: A subset of P of size k denoted by S
S ← {p} such that p = argmax

pi∈P
pi[1]

for i = 1 to k − 1 do
maxScore = 0
p∗ = null
for all p ∈ P \S do

if maxScore < Score(p, S, , Vdiv , Vreg) then
maxScore← Score(p, S, Vdiv , Vreg)
p∗ ← p

end if
end for
S ← S ∪ {p∗}

end for

Table 2: Score() vs. F() at S = {p2}
Point p1 p3 p4 p5
Score(p) 0.99 0.96 1 0.528
F (S ∪ p) 0.627 0.726 0.724 0.395

P that is not in S is assigned a score, which is defined as follows:

Score(p, S, Vdiv, Vreg) = λ
SetDist(p, S, Vdiv)

maxpi∈P\SSetDist(pi, S, Vdiv)
+

(1− λ)
rrS∪{p}(S,G, Vreg)

rrP (S,G, Vreg)

Where SetDist(p,S), between a point p and a set of points S is de-
fined based on its distance from the points in S, as: SetDist(p, S) =
1
|S|

∑
pj∈S d(p, pj).

Thus each candidate point p is assigned a score, which is the
weighted sum of its set distance from S and the maximum regret
ratio of set S with respect to p. Both the set distance and regret
components are normalized by dividing the first term by the maxi-
mum set distance of S and the second component by the maximum
regret ratio of S with respect to the whole set P . The score of each
candidate point p thus measures the potential contribution of p in
increasing the objective function value for set S ∪ p. Therefore in
each iteration the point with maximum score is added to set S (the
pseudocode for ReDi-Greedy is presented in algorithm 2).

Although ReDi-Greedy is very efficient in practice, there is no
guarantee that the point p∗ picked in each iteration is actually the
best point (i.e., local minimum) for the objective function F given
the current representative set. This is because the point p∗ that has
the highest score may not necessarily be the one that improves the
combined function value the most. Consider again the example
in table 1 and assume that our current set S = {p2} and λ =
0.5. Table 2 lists the scores of each of the other points based on
the above scoring function as well as the actual function values
obtained by adding that particular point to the current S. As the
table shows, the highest scoring point, p4 does not yield the highest
function value when added to S, which is given by p3.

To address the limitations of ReDi-Greedy, next we present the
ReDi-SWAP heuristic, in which the selection of points is based on
the actual improvement in the value of the objective function F
instead of the expected improvement.

4.2 ReDi-SWAP
The ReDi-Greedy algorithm presented in the previous section is

of the constructive type. That is, it starts without a representative
set and incrementally constructs it by adding one point at a time. To
the contrary, ReDi-SWAP presented in this section falls under the
local search type of algorithms. In general, a local search algorithm

Algorithm 3 ReDi-SWAP Algorithm
Input: A set of D dimensional points P , a set Vdiv , a set Vreg , an
integer k and λ
Output: A subset of P of size k denoted by S
S ← regretGreedy(P, k, Vreg)
S′ ← S
for all p ∈ P \S′ do
Stemp ← S
p∗ = argmax

p∈P\S′

∑
pi∈S

d(p, pi, Vdiv)

S′ ← S′ ∪ {p∗}
for all p′ ∈ S do

if F (Stemp, G, P, λ, Vdiv , Vreg) <
F ({S\p′} ∪ p∗, G, P, λ, Vdiv , Vreg) then

Stemp = {S\p′} ∪ p∗
end if

end for
if F (Stemp, G, P, λ, Vdiv , Vreg) > F (S,G, P, λ, Vdiv , Vreg)
then
S ← Stemp

end if
end for

starts out with a complete initial solution and then attempts to find
a better solution in the neighborhood of that initial one. Like con-
structive algorithms, local search algorithms are also widely used
in solving optimization problems including generation of represen-
tative data. For instance, the SWAP local search method has been
utilized to maximize diversity [2, 14], and in this paper, we further
expand into our ReDi-SWAP method for balancing the tradeoff be-
tween regret and diversity.

The basic idea underlying ReDi-SWAP is to start with an initial
set S of size k and then iteratively modify the set S in order to im-
prove the value of the objective functionF . One of the main design
criteria in local search algorithms is the choice of the initial solu-
tion. In ReDi-SWAP, we opt to initialize S with the k points which
minimize the regret ratio as selected by the traditional Reg-Greedy
algorithm [9]. Another important criterion is the neighborhood def-
inition of local search together with the search process. Since we
initialize ReDi-SWAP with the regret minimization set, the neigh-
borhood of the local search is explored based on the second com-
ponent of our objective function (i.e., diversity). In particular, the
points in P\S are visited according to their distance from S, such
that the points with higher distance are visited first. Accordingly,
in each iteration, from the set of points that haven’t yet been vis-
ited, given by P\S′, the point with the highest distance from the
current set S is tested, denoted by p∗. This point is tested against
each point in S by removing that point p′ from S and adding p∗
to the set. After going through all the points in S one by one, the
swap that results in the highest function value is made if it also is an
improvement over the set S before the swaps were made. The in-
tuition is to replace the point in S which contributes the least to its
diversity with a point from P\S which would improve that diver-
sity while at the same time maintaining regret very close (or equal)
to that of S, which is easily captured by evaluating the hybrid ob-
jective function F .

Notice that for any candidate point p, the decision made by ReDi-
SWAP is based on evaluating the objective function F if p is se-
lected to join S. Evaluating F requires O(n) calls of the lin-
ear program to compute the maximum regret ratio and O(k2) dis-
tance computations to calculate the diversity of set S. Under ReDi-
Greedy, however, the decision on a candidate point p is based on
assigning a priority value (i.e., score) to p. For that decision, it
is enough to evaluate the regret contributed by p but not the ac-
tual regret achieved when p is added to S, which requires one
call of the linear program. Hence, in total, ReDi-Greedy performs

Table 3: Evaluation Setting.
Parameter Range Default

Number of Dimensions (D) 2–10 10
Database Size 3k 300

Representative Set Size (k) 2–10 5
Weighting Factor (λ) 0–1 0.5

Number of Regret Dimensions |Vreg| 2–8 5
Number of Diversity Dimensions |Vdiv| 2–8 5

0.1

1

10

100

1000

0 2 4 6 8 10

R
u

n
n

in
g

 ti
m

e
(m

s)

x 103

Output set size (k)

Reg-Greedy
ReDi-Greedy
ReDi-Swap

(a)

0.1

1

10

100

1000

10000

100000

500 1000 1500 2000 2500 3000

R
u

n
n

in
g

 ti
m

e
(m

s)

x 103

Input set size (n)

Reg-Greedy
ReDi-Greedy
ReDi-Swap

(b)
Figure 2: Cost of different methods in terms of running time

O(nk) calls to the linear program, whereas ReDi-SWAP performs
O(n2k). The tradeoff between the efficiency and effectiveness pro-
vided by these two algorithms is evaluated experimentally in the
next section.

5. EXPERIMENTAL EVALUATION
We perform several experiments to evaluate the performance of

the different schemes discussed in this paper, namely: i) Div-Greedy
ii) Reg-Greedy, iii) ReDi-Greedy, and iv) ReDi-SWAP. In particu-
lar, we compare those algorithms in terms of effectiveness, which
is measured in terms of the objective function F , and efficiency,
which is measured as total time spent in executing the linear pro-
gram optimization. Experiments are conducted on a simple syn-
thetic 10-dimensional dataset of size 3K tuples, in which the at-
tribute values of each dimension are generated uniformly in the
range [0–1]. Table 3 summarizes the database settings together
with the other parameters considered in our evaluation.

Figure 3a shows the impact of λ on the value of the objective
function F . As shown in the figure, ReDi-SWAP provides the
highest values for F followed by ReDi-Greedy. Meanwhile, Reg-
Greedy and Div-Greedy are both oblivious to any tradeoff between
regret and diversity, which translates into lower F values. This is
further illustrated in Figures 3b and 3c. Figure 3b shows the happi-
ness measure of a set S computed as 1-regret ratio(S). As expected,
the figure shows that Reg-Greedy provides the highest happiness,
whereas Div-Greedy provides the lowest. The figure also shows

0.3

5.3

10.3

15.3

20.3

25.3

30.3

35.3

40.3

45.3

0 0.2 0.4 0.6 0.8 1

Ƒ

Lambda (λ)

ReDi-Greedy
Reg-Greedy
Div-Greedy
ReDi-Swap

(a) Function Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1-
R

eg
re

t
ra

ti
o

Lambda (λ)

ReDi-Greedy
Reg-Greedy
Div-Greedy
ReDi-Swap

(b) Regret Ratio

0.3

5.3

10.3

15.3

20.3

25.3

30.3

35.3

0 0.2 0.4 0.6 0.8 1

D
iv

er
si

ty

Lambda (λ)

ReDi-Greedy
Reg-Greedy
Div-Greedy
ReDi-Swap

(c) Diversity
Figure 3: Impact of λ

0
1
2
3
4
5
6
7
8
9

10

2 4 6 8 10

Ƒ

Number of Regret dimensions (Vreg)

Reg-Greedy

Div-Greedy

ReDi-Greedy

Redi-Swap

Figure 4: Impact of dimensions split
that ReDi-Greedy and ReDi-SWAP provide slightly lower happi-
ness than Reg-Greedy but much higher than Div-Greedy. The same
behavior is exhibited in Figure 3c with respect to diversity.

The improvement in the F value provided by ReDi-SWAP over
ReDi-Greedy (as shown in Figure 3a) comes at the expense of in-
creasing the processing time, as shown in Figure 2, which shows
the time spent in executing the LP optimizations and distance com-
putations. This is to be expected since ReDi-SWAP has higher
complexity than ReDi-Greedy, as discussed in the previous sec-
tion.

In all the previous experiments, the 10 dimensions were split
evenly between regret and diversity (i.e., |Vreg| = 5 and |Vdiv| =
5), as in the default setting. In this experiment, we measure the im-
pact of changing that split as shown in Figure 4. The figure shows
the F value as we increase the number of dimensions considered
for regret minimization, or equivalently decreasing the number of
dimensions for diversity maximization. As the figure shows, the
overall trend for all algorithms appears to be a decrease in F value
as |Vreg| is increased. This is consistent with results in literature on
the impact of dimensions on regret minimization and diversity max-
imization. In particular, maximum regret ratio has been observed
to worsen, or increase, with the increase in dimensionality whereas
diversity increases with increase in dimensionality. Both of these
observations are consistent with the trend in figure 4, where the F
value decreases as the number of dimensions for regret increase and
those for diversity are reduced.

All the previous results indicate that ReDi-SWAP is a more ef-
fective scheme than ReDi-Greedy. However, that improvement
in effectiveness comes at the expense of a higher computational
cost. Such a high cost would be prohibitive when applying ReDi-
SWAP on large databases. Hence, from a practical standpoint,
ReDi-Greedy presents a more attractive solution due to its scala-
bility, while at the same time providing F values close to those
achieved by ReDi-SWAP.

6. CONCLUSIONS AND FUTURE WORK
We considered the problem of simultaneous regret minimization

and diversity maximization on multi-dimensional data where both
these objectives are desired on different dimensions. To that end,
we captured the tradeoff between those two objectives by means
of a hybrid function, which also forms the basis of our new ReDi
scheme. As part of our ReDi scheme, we proposed two alternative
solutions that fall under two major classes of optimization algo-
rithms, namely: local search optimization, and constructive opti-
mization. Our experimental evaluation studies the efficiency and
effectiveness of those algorithms under different parameters.

This work is an initial step towards integrating diversity maxi-
mization and regret minimization. In the future, we plan to further
investigate the role of the weighing parameter λ together with au-
tomated methods for setting it. We also plan to expand the ReDi
scheme to include the geometry-based approach for regret mini-
mization [10] towards achieving higher efficiency.
Acknowledgement: This work is partially supported by Australian
Research Council grant LP130100164.

7. REFERENCES
[1] S. Chester et al. Computing k-regret minimizing sets. VLDB, 7(5),

2014.
[2] M. Drosou and E. Pitoura. Search result diversification. SIGMOD

Record, 39(1), 2010.
[3] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of

p-dispersion heuristics. Computers & OR, 21(10), 1994.
[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms

for middleware. In PODS, 2001.
[5] I. F. Ilyas et al. A survey of top-k query processing techniques in

relational database systems. ACM Comput. Surv., 40(4), 2008.
[6] H. A. Khan, M. Drosou, and M. A. Sharaf. Scalable diversification of

multiple search results. In CIKM, 2013.
[7] H. A. Khan and M. Sharaf. Progressive diversification for

column-based data exploration platforms. In ICDE, 2015.
[8] H. A. Khan, M. A. Sharaf, and A. Albarrak. Divide: efficient

diversification for interactive data exploration. In SSDBM, 2014.
[9] D. Nanongkai et al. Regret-minimizing representative databases.

VLDB, 3(1-2):1114–1124, 2010.
[10] P. Peng and R. C.-W. Wong. Geometry approach for k-regret query.

In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on, pages 772–783. IEEE, 2014.

[11] A. D. Sarma et al. Beyond skylines and top-k queries: representative
databases and e-commerce product search. In CIKM, 2013.

[12] S.Borzsony, D.Kossmann, and K.Stocker. The skyline operator. In
ICDE, 2001.

[13] Y. Tao et al. Efficient skyline and top-k retrieval in subspaces. IEEE
Trans. Knowl. Data Eng., 19(8), 2007.

[14] M. R. Vieira et al. On query result diversification. In ICDE, 2011.

