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ABSTRACT
RDF data are traditionally accessed using structured query lan-
guages, such as SPARQL. However, this requires users to under-
stand the language as well as the RDF schema. Keyword search on
RDF data aims at relieving the user from these requirements; the
user only inputs a set of keywords and the goal is to find small RDF
subgraphs which contain all keywords. At the same time, popular
RDF knowledge bases also include spatial semantics, which opens
the road to location-based search operations. In this work, we pro-
pose and study a novel location-based keyword search query on
RDF data. The objective of top-k relevant semantic places (kSP)
retrieval is to find RDF subgraphs which contain the query key-
words and are rooted at spatial entities close to the query location.
The novelty of kSP queries is that they are location-aware and that
they do not rely on the use of structured query languages. We de-
sign a basic method for the processing of kSP queries. To further
accelerate kSP retrieval, two pruning approaches and a data pre-
processing technique are proposed. Extensive empirical studies on
two real datasets demonstrate the superior and robust performance
of our proposals compared to the basic method.

1. INTRODUCTION
With the proliferation of knowledge-sharing communities like

Wikipedia and the advances in automated information extrac-
tion from the Web, large knowledge bases like DBpedia [5] and
YAGO [12] are constructed and made available to the public. Such
knowledge bases typically adopt the Resource Description Frame-
work (RDF) data model, which represents the data as collections
of �subject ,predicate,object� triples. RDF models data as en-
tities (subjects) which are linked to other entities and/or types or
descriptions (i.e., objects could be entities, types, or literals). For
instance, triple �Montmajour_Abbey ,dedication,Saint_Peter�
models the fact that Montmajour Abbey is dedicated to Saint Peter.
Therefore, an RDF knowledge base can also be seen as a directed
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graph, where nodes are entities (or types/literals) and the edges are
predicates which describe the relationships between nodes.

The English version of DBpedia currently describes 4.5M enti-
ties, roughly including 1,4M persons, 883K places, 411K creative
works, 241K organizations, 251K species, etc. YAGO includes
more than 10M entities (like persons, organizations, cities) and
contains more than 120M facts about these entities. Data.gov [4] is
the largest open-government, data-sharing website that has more
than a thousand datasets in RDF format with a total of 6.4 bil-
lion triples to date, covering information from business, finance,
health, education, local government, etc. Many excellent applica-
tions have been developed on top of these data [32], e.g., Hospital
Compare [6], Patients Like Me [9], Alternative Fueling Station Lo-
cator [1], Crime in Chicagoland [3], SpotCrime [10].

Keyword Search on RDF Data. RDF data are traditionally
accessed with the help of a structured query language, like
SPARQL [50]. However, a standard SPARQL query over RDF
data requires query issuers to fully understand the language itself
and be aware of the data domain. Hence, SPARQL limits data ac-
cess mostly to domain experts, since it is not friendly to common
users. Given this, a keyword search model on RDF data emerged
[23, 43, 52]. This model allows users to retrieve information from
RDF knowledge bases without the direct use of SPARQL-like lan-
guages and without knowledge of the RDF data domain. RDF data
belongs to the category of linked data and can be modeled as a di-
rected graph with subjects and objects as vertices and predicates
as directed edges. For the purpose of keyword search, this graph
can be simplified [43] by eliminating outgoing edges from subjects
which connect to types or literals and by collecting all the keywords
in the URIs, types, and literals of such entities to form a unified
textual description for each vertex. A keyword query retrieves a
set of (small) subgraphs where the vertices of each subgraph col-
lectively cover all the given keywords. Specifically, each of the
retrieved subgraphs includes (i) a root node (which is central to the
subgraph), (ii) a number of keyword nodes, each containing one
of the query keywords, and (iii) the shortest paths that connect the
keyword nodes to the root. The sum of the lengths of these paths
define a looseness score for the subgraph [26, 43, 52]. Subgraphs
of low looseness are more appropriate as keyword query answers
and returned, because they represent a compact and coherent part
of the knowledge base related to the keywords. This, in analogy to
finding the smallest (tuple) subgraphs in relational keyword query
search [35] and general keyword search on graphs [31].
Example 1 Figure 1(a) shows the graph representation of sev-
eral triples extracted from DBpedia. Both circles and squares are
vertices in the RDF graph, representing entities. The edges (la-
beled by predicates) model the relationships between entities. Each
entity is associated to a textual description (document) extracted
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v1

p1
<Montmajour_Abbey>

<Category:Romanesque_architecture>

v2
< Saint_Peter>

 

v3
< Ancient_Diocese_of_Arles>

v5
< Roman_Empire>

v4
<Category:Architectural_history>

<subje
ct>

<dedication>
<diocese>

<subject>

<birthPlace>

v6

p2
<Roman_Catholic_Diocese_

of_Fréjus-Toulon>

< Mary_Magdalene>

v7
< Catholic_Church>

v8
<Anatolia>

<p
atr
on

>

<denomination>

<deathPlace>

(a) RDF graph

p1: {abbey, montmajour}
v1: {architecture, romanesque, subject}
v2: {catholic, dedication, peter, roman, saint}
v3: {ancient, arles, diocese}
v4: {architectural, history, subject}
v5: {ancient, birthplace, empire, roman}
p2: {catholic, diocese, roman}
v6: {mary, magdalene, patron}
v7: {catholic, church, denomination, history}
v8: {anatolia, ancient, deathPlace, history}

(b) RDF documents

Figure 1: RDF example

from its URI, predicates, and literals [43]. Figure 1(b) displays the
documents of all vertices in Figure 1(a) (due to space constraints,
for each document, only some of the terms are shown). Consider
an example keyword query {ancient , roman, catholic,history}.
According to [31, 43], the top-1 answer to the keyword query is
the subgraph consisting of vertices {p2, v6, v7, v8} rooted at p2, as
well as the edges among them. This subgraph is the most compact
one (i.e., it has the lowest looseness) among those whose vertices
(i.e., their documents) collectively cover all query keywords. The
looseness of the subgraph equals 3 and it is calculated as the sum
of the lengths of the shortest paths from a common root vertex (i.e.,
p2) to each matched vertex w.r.t each query keyword (i.e., p2 for
keywords {catholic, roman}, v7 for keyword {history}, and v8
for keyword {ancient}).
Spatial RDF data. Recently, RDF data have been enriched to in-
clude additional semantics. For example, YAGO2 [34] is an exten-
sion of the YAGO knowledge base that includes spatial and tem-
poral knowledge. Enriched knowledge bases open the road to ad-
ditional search and analysis operations, such as location-based re-
trieval. Indicatively, a key research direction of BBC News Lab
is: How might we use geolocation and linked data to increase rel-
evance and expose the coverage of BBC News? [2]. To fully uti-
lize spatially enriched RDF data, the GeoSPARQL standard [14],
defined by the Open Geospatial Consortium (OGC), extends RDF
and SPARQL to represent geographic information and support spa-
tial queries. RDF stores such as Virtuoso [11], Parliament [8],
Strabon [42] are developed to support GeoSPARQL features. Re-
cently, Liagouris et al. [46] extended the RDF-3X data store [48]
such that the locations of spatial entities are encoded into their IDs;
this facilitates efficient evaluation of spatial search operations in
GeoSPARQL queries. Still, all these systems share the drawback of
having to use a structured query language (SPARQL), which limits
the access of common users to RDF data, as already discussed.

kSP Queries. In this paper we propose a novel way of search-
ing spatial RDF data, namely the top-k relevant Semantic Place re-
trieval (kSP) query, which combines keyword search with location-
based retrieval. kSP queries share the same motivation as RDF key-
word queries; they are independent of the data domain and do not
rely on structured languages such as SPARQL, which makes them
friendly to ordinary users. They take a query location, a set of query
keywords, and the number k of requested places as arguments, and
they return as result the top-k Tightest Qualified Semantic Places
(TQSP) according to a ranking function that considers both the spa-
tial distance to the query location and the graph proximity of the
occurrences of keywords in the RDF graph to the places. A qual-
ified semantic place satisfies two conditions: (i) it is a tree rooted
at a place entity (i.e., a vertex of the RDF graph associated to a
spatial location, e.g., via hasGeometry predicates), (ii) the docu-
ments associated to all the vertices in the tree collectively cover all

query keywords. In accordance to existing work on RDF keyword
search [23,43,52], the looseness score of a qualified semantic place
is measured by aggregating the graph distances between the place
(root) and the occurrences of the covered keywords at the nodes of
the tree. The kSP query returns the k places with the smallest com-
bined looseness and spatial distance to the query location, based
on an aggregate function (e.g., weighted sum).
Example 2 Consider again the RDF data in Example 1 and as-
sume that the spatial coordinates of p1 and p2 in Figure 1(a) are
as shown in Figure 2. Assume an 1SP query issued by a tourist at
location q1 in Figure 2 who wants to do field research related to
keywords {ancient , roman, catholic,history}. The result would
be the semantic place consisting of vertices {p1, v1, v2, v3, v4},
rooted at p1, indicating that Montmajour Abbey (p1), is a promis-
ing site with respect to spatial distance and semantic relevance. If
the tourist was at location q2 in Figure 2, a 1SP query with the same
keywords would retrieve the semantic place consisting of vertices{p2, v6, v7, v8}, rooted at p2, i.e., Roman Catholic Diocese.

In simple words, the objective of a kSP query is to find places
that are near a given query location and they are related to a set
of search keywords. Compared to RDF keyword search, the kSP
query has the following unique features: (i) it retrieves semantic
places, i.e., only subgraphs rooted at a place entity, and (ii) it is
query-location-aware. kSP queries find many applications, besides
the one described in Example 2. For instance, they can be used by
patients who want to find nearby hospitals which offer treatment for
specific conditions, companies which want to investigate the busi-
ness environment of some potential nearby sites, journalists who
want to search for facts related to location-dependent subjects, etc.

 

 

( . , . )p 43 71 4 661

( . , . )p 43 13 5 972

.  )( , .q 43 51 4 751

.  )( , .q 43 17 5 902

Figure 2: Map of places in Figure 1(a) and query points

Data Representation and Indexing. To our knowledge, this is the
first work that proposes and studies kSP queries; therefore, no ex-
isting system and algorithm supports their evaluation. Typical RDF
stores are designed for the efficient support of SPARQL queries,
however, kSP queries require graph browsing and search opera-
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tions (e.g., breadth first search). Therefore, we opt to represent the
RDF data in their native graph form (i.e., using adjacency lists)
in memory1, as in [59]. In addition, in a preprocessing phase, we
perform the following. First, we extract the document descriptions
of all vertices and index them by an inverted file, which enables
finding fast the vertices that contain a given keyword in their doc-
uments. Second, we store in a table, for each vertex, the docu-
ment description and the spatial location (in case of a place entity),
which makes it possible to directly access the keywords and loca-
tion a vertex during graph browsing. Third, all place vertices are
spatially indexed by an R-tree [29], which facilitates incremental
nearest place retrieval from the query location.

Query Evaluation. A possible kSP query evaluation approach
would be to extend the bottom-up algorithm for keyword search on
graphs [31, 43]. For each query keyword t, the algorithm first de-
termines the set of vertices whose documents contain t. From those
vertices, it explores the graph by breadth first search and finds the
first common vertex that all the query keywords can reach. If this
common vertex is not a place vertex, the algorithm keeps running
until a common place vertex is found. This vertex together with the
shortest paths leading to vertices covering all keywords would form
a qualified semantic place. By continuing this search it is possible
to identify all TQSPs in increasing order of looseness. For each
identified place, the spatial distance can be computed and the top-
k TQSPs can be reported in the end. However, there is no obvious
way of determining the top-k TQSPs before finding all qualified se-
mantic places. Therefore, this method is expected to be slow; i.e.,
kSP queries cannot be efficiently evaluated by a straightforward
extension of keyword search approaches [31, 43].

In brief, the challenges are twofold. First, not all vertices in the
graph are candidate results since kSP queries look for spatial enti-
ties only. Second, the simple application of existing approaches on
RDF keyword search (e.g., [31, 43]) is inefficient. As an alterna-
tive, we propose a Basic Semantic Place retrieval algorithm (BSP)
that retrieves the place vertices in the RDF graph in ascending or-
der of their spatial distances to the query location using the R-tree.
For each retrieved place vertex p, BSP computes the correspond-
ing TQSP, i.e., the smallest subtree of the RDF data graph, which
is rooted at p and covers all query keywords. TQSP computation
is done by browsing the graph from p in a BFS manner until the
query keywords are covered. The top-k places are returned as the
kSP results when there is no chance for the place vertices that have
not been retrieved yet (based on lower bounds of their scores) to
outrank the top-k places so far.

BSP is also inefficient because it computes the TQSP of each
candidate place, an expensive operation for place vertices that ei-
ther cannot cover all the query keywords or have worse ranking
scores than the top-k places so far. Hence, we propose two ap-
proaches for pruning the search space. The first discards unquali-
fied places which do not have a TQSP covering all query keywords.
The second one prunes places by aborting their TQSP computation
early, based on dynamically derived bounds on their looseness. The
extension of BSP which applies the two pruning techniques is re-
ferred to as Semantic Place retrieval with Pruning (SPP). To further
improve the performance of kSP search, we introduce a data pre-
processing technique, which aggregates for each place and for sets
of nearby places the keywords covered by the vertices in their ↵-
radius neighborhoods (in the RDF data graph). By indexing the
preprocessed data, we can define pruning rules for place vertices
and for the R-tree nodes that spatially index them. We design a

1Disk-based graph representations for RDF data (e.g., [60]) can
also be used for larger-scale data.

Semantic Place retrieval algorithm (SP) which applies these rules
in addition to the pruning techniques of SPP. An extensive empir-
ical study with two real data sets confirms the effectiveness and
robustness of SP.

Outline. Section 2 introduces the definition of the kSP queries
and relevant concepts. BSP is presented in Section 3. We present
the pruning rules in Section 4 and the ↵-radius based bounds and
related pruning techniques in Section 5. Our empirical study is
reported in Section 6. Related work is reviewed in Section 7 and
we conclude in Section 8.

2. PROBLEM DEFINITION
An RDF knowledge base can be modeled as a directed graph

where each vertex vi refers to an entity and edges represent triples
that associate entities based on predicates. Some of the entities are
associated to spatial coordinates. We call such entities place ver-
tices or places for short. We use v to denote any vertex in the RDF
graph, while p is especially used to denote place vertices. Each
RDF triple corresponds to a directed edge from an entity (subject)
to another entity (object). In accordance to previous work on RDF
keyword search, we construct, for each entity, a document  from
the entity’s URI and literals. In addition, for each triple, the de-
scription of the predicate is added to the document of the object
entity. A semantic place is a sub-tree of the RDF graph rooted at
a place vertex. Given a place vertex as the root, multiple seman-
tic places can be constructed. In other words, in the RDF graph,
a place is associated to multiple semantics by being connected to
different vertices.
Example 3 In Figure 1(a), the squares are place vertices and
the circles are non-place vertices. Figure 1(b) shows (part of) the
documents attached to the vertices. The tree consisting of vertices{p1, v1, v2, v3, v4} rooted at p1 is a semantic place. The tree rooted
at p2 with vertices {p2, v6, v7, v8} is another semantic place.

A top-k relevant Semantic Place retrieval (kSP) query q consists
of three arguments: the query location q.λ, the query keywords
q. , and the number of requested semantic places k. A qualified
semantic place w.r.t. a kSP query is formally defined in Defini-
tion 1. Generally speaking, the documents of the vertices in a qual-
ified semantic place collectively cover all the query keywords.

Definition 1. Qualified Semantic Place. Given a kSP query q
and a RDF graph G = �V,E�, a qualified semantic place is a tree
Tp = �V ′,E′� rooted at place vertex p, such that V ′ ⊆ V , E′ ⊆ E,
and ∪v∈V ′v. ⊇ q. .

For the ease of presentation, in the rest of the paper, a semantic
place is also denoted by �p, (v1, v2,�)�, where p is the root and(v1, v2,�) includes all the other vertices. Given a kSP query, there
may exist multiple semantic places with the same root p but differ-
ent (v1, v2,�) sets. Following existing work on keyword search
over graphs [31, 43], we define the looseness of a qualified seman-
tic place in Definition 2.

Definition 2. Looseness. Given a qualified semantic place Tp =�V ′,E′�, let dg(p, ti) = minv∈V ′∧ti∈v. d(p, v) be the length of
the shortest path from root p to keyword ti ∈ q. , where d(p, v)
is the shortest path from p to v. The looseness of Tp is defined as
L(Tp) = 1 +∑ti∈q. dg(p, ti).

Looseness aggregates the proximity of the query keywords in
the qualified semantic place in terms of graph distance. We add 1
to the sum of the paths from p to the nearest occurrence of each
keyword for normalization purposes (as we will see later, the case
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of L(Tp) = 0 should be avoided in our raking function for kSP
results). The smaller the looseness, the more relevant the root (i.e.,
the place) is to the vertices that cover the query keywords. Thus,
given a place vertex p as the root, we seek for the Tightest Qualified
Semantic Place (TQSP) for the given query keywords, which is the
qualified semantic place rooted at p with the smallest looseness.2

Example 4 Assume that the given query keywords are q. ={ancient , roman, catholic,history}. Based on the RDF example
shown in Figure 1, multiple qualified semantic places can be found,
such as �p2, (v6, v8)�, �p2, (v6, v7, v8)�, and �p1, (v1, v2, v3, v4)�.
The looseness of �p1, (v1, v2, v3, v4)� is calculated by 1 + 1 +
1 + 2 + 1 = 6, where dg(p1,ancient) = 1, dg(p1, roman) =
1, dg(p1, catholic) = 1, dg(p1,history) = 2. There are two qual-
ified semantic places both rooted at p2, but with different loose-
ness, i.e., 5 for �p2, (v6, v8)� and 4 for �p2, (v6, v7, v8)�. Thus, the
TQSP rooted at p2 is �p2, (v6, v7, v8)�.

Definition 3. Top-k Relevant Semantic Place Retrieval.
Given a kSP query q on an RDF graph, the result of q includes
k TQSPs minimizing ranking function f(L(Tp), S(q, p)), where
S(q, p) is the spatial distance between the query location and the
root of the semantic place. Recall that each place p has a unique
TQSP, therefore it may appear at most once in a kSP result.

The kSP query aims at finding the semantic places that (i) are
spatially close to the query location, (ii) cover the query key-
words, and (iii) have a tree in which the query keywords are
closely connected. Without loss of generality, Euclidean distance
S(q, p) is used as spatial distance in this work. Ranking func-
tion f(L(Tp), S(q, p)) can be any monotonic aggregate function
which considers both L(Tp) and S(q, p), such as:

f(L(Tp), S(q, p)) = β ×L(Tp) + (1 − β) × S(q, p), (1)

f(L(Tp), S(q, p)) = L(Tp) × S(q, p). (2)

The kSP evaluation approaches proposed in this paper are indepen-
dent of how f is defined. In the rest of the paper, we use Equa-
tion (2) as the ranking function, because it is parameterless.
Example 5 Consider an example kSP query q with query lo-
cation q.λ = q1 as shown in Figure 2 and query keywords q. ={ancient , roman, catholic,history}. Places p1 and p2 are lo-
cated at (43.71,4.66) and (43.13,5.97), respectively in Figure 2.
Based on the RDF graph in Figure 1(a) and the documents in Figure
1(b), place p1 has S(q1, p1) = 0.22 and L(Tp1) = 1+1+1+2+1 =
6. f(L(Tp1), S(q1, p1)) = L(Tp1) × S(q1, p1) = 1.32. Place
p2 has S(q1, p2) = 1.28 and L(Tp2) = 0 + 0 + 1 + 2 + 1 = 4.
f(L(Tp2), S(q1, p2)) = 5.12. Therefore, p1 is returned as top-
1 and p2 ranks second for the kSP query q with q.λ = q1 and
q. = {ancient , roman, catholic,history}.

If the query location of the kSP query q is changed to q.λ = q2
and the query keywords are unchanged, then S(q2, p1) = 1.35,
L(Tp1) = 6, and f(L(Tp1), S(q2, p1)) = 8.10. S(q2, p2) = 0.08,
L(Tp2) = 4 and f(L(Tp1), S(q2, p1)) = 0.32. For the kSP query
q with q.λ = q2 and q. = {ancient , roman, catholic,history},
p2 is returned as the top-1 SP and p1 ranks second.

2If multiple trees rooted at p have the same minimum looseness,
we can: (1) break ties arbitrarily and select one of them to be the
TQSP for p or (2) keep all trees with the same minimum looseness
in a set. If we use option (2), the result of a kSP query would the
top-k qualified semantic place sets. The methods proposed in this
paper are applicable for both options. For the ease of presentation,
we adopt option (1) in the rest of the paper.

3. BASIC METHOD: BSP
The most relevant existing work to our kSP queries are the top-k

keyword queries on graphs [31,43]. Given a set of query keywords,
the objective is to retrieve the top-k sub-trees of the RDF graph,
such that the vertices of each tree collectively cover the query key-
words, ranked by the looseness of the trees. A bottom-up algorithm
is used to evaluate top-k keyword queries. For each query keyword
t, the algorithm first determines the set of vertices whose docu-
ments contain t. From those vertices, it starts to explore the graph
and finds the earliest common vertex that all the query keywords
can reach. This way, candidate trees are found and the result is fi-
nalized by choosing the top-k less-looseness trees. However, this
approach is not appropriate for our kSP queries. Firstly, we aim for
semantic places that take place vertices as roots, however, the afore-
mentioned algorithm cannot guarantee that the discovered trees are
rooted at place vertices. Secondly, the ranking score of a seman-
tic place depends on both its looseness and its spatial distance to
the query location; even if a keyword query can identify candidate
trees rooted at places, there is no obvious way of determining the
top-k semantic places before getting all candidate trees, since a tree
Tp with high L(Tp) value but small spatial distance S(p, q) to the
query location q may outrank a tree Tp′ with low L(Tp′) but large
spatial distance S(p′, q), and vice versa.

Obviously, a single TQSP computation is much more expensive
compared to a single spatial distance computation. Therefore, us-
ing keyword query (keyword-first) methods to solve our problem
would be inefficient. In view of this, we design methods that per-
form spatial search first, in order to avoid unnecessary TQSP com-
putations. In this section, we propose a basic method for evaluating
kSP queries. This method requires that we have preprocessed the
RDF graph, extracted the places from it and spatially indexed them
using an R-tree [29]. Like keyword search approaches, we also as-
sume that the documents of the vertices in RDF graph are indexed
by an inverted index [37]. Table 1 shows the inverted index for the
documents in Figure 1(b). In addition, instead of storing and in-
dexing the RDF data in a triples table format, which would enable
efficient SPARQL query evaluation, we choose to store the RDF
graph in memory in its native form (i.e., using adjacency lists, as
in [59]), which enables efficient graph browsing operations (like
BFS). Finally, we keep a table which helps to look-up fast the asso-
ciated data (document, spatial coordinates) for each vertex, so there
is no need to employ any special encoding scheme [46].

abbey: p1 church: v7 magdalene: v6
anatolia: v8 deathPlace: v8 montmajour: p1

ancient: v3, v5, v8 dedication: v2 patron: v6

architectural: v4 denomination: v7 peter: v2
architecture: v1 diocese: v3, p2 roman: v2, v5, p2

arles: v3 empire: v5 romanesque: v1
birthplace: v5 history: v4, v7, v8 saint: v2
catholic: v2, p2, v7 mary: v6 subject: v1, v4

Table 1: Inverted index of the documents in Figure 1(b)

Algorithm 1 shows the pseudo code of our Basic Semantic Place
(BSP) search method for evaluating kSP queries. Initially, a top-
k result queue Hk, which prioritizes identified semantic places by
their ranking scores, is initialized (line 1). Given a kSP query q, the
posting lists of the query keywords are loaded (lines 2–3). Then,
the basic method applies the best-first search algorithm [33] on the
R-tree to retrieve places in ascending order of their spatial distances
to the query location (line 6). For each retrieved place p from the
R-tree, BSP constructs the TQSP Tp rooted at p using function
GETSEMANTICPLACE() (line 9). Then, Tp is inserted into the re-
sult queue Hk (line 13). A threshold ✓ is set as the ranking score
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of the kth semantic place in the result queue (line 14). For the next
retrieved entry e from the R-tree (e may refer to a place or a node
in the R-tree), if its minimum spatial distance to the query location
is not smaller than the threshold, i.e., S(q, e) ≥ ✓, the top-k result
is finalized and the algorithm terminates (lines 7 and 15).
Correctness of Termination. For the next retrieved entry e, if
S(q, e) ≥ ✓, the spatial distances of all unprocessed places to the
query location are not smaller than the threshold. This means that
the ranking scores of all these places cannot be better than the cur-
rent kth candidate, given the fact that since L(Tp) ≥ 1, we have
f(L(Tp), S(q, p)) ≥ S(q, p). Hence, the current k candidates are
correctly returned as the top-k TQSPs for q. Note that the termina-
tion condition is based on Equation 2; it can be easily adjusted if
f(L(Tp), S(q, p)) is defined differently (e.g., using Equation 1).

Algorithm 1 BSP(q,R,G, I)
1: MinHeap Hk = �, ordered by f(L(Tp), S(q, p))
2: for each keyword ti in q. do
3: Load posting list pli of ti from I

4: Construct Mq. 

5: ✓ = +∞
6: while e=GETNEXT(R, q) do
7: if S(q, e) ≥ ✓ then break
8: if e refers to a place p then
9: Tp = GETSEMANTICPLACE(q. , p,G,Mq. )

10: if L(Tp) == +∞ then continue
11: Compute the ranking score f of Tp

12: if f < ✓ then
13: Hk .add(Tp, f )
14: Update ✓

15: return Hk

Example 6 Consider a 1SP query q located at q.λ = q1 in Fig-
ure 2 with query keywords q. = {ancient, roman, catholic, his-
tory}, applying on the RDF graph of Figure 1. Place p1 is firstly
retrieved from the R-tree and L(Tp1) = 6 after calling function
GETSEMANTICPLACE(). Therefore, the ranking score of Tp1 is
f = 1.32. Next, Tp1 is added into Hk as the top-1 candidate and ✓
is updated to 1.32. Similarly, place p2 is retrieved from the R-tree
with S(q1, p2) = 1.28 < ✓. The TQSP rooted at p2 is constructed
with L(Tp2) = 4 and its ranking score is f = 5.12. Finally, Tp1 ,
which has a smaller score, is returned as the top-1 result.

Before calling GETSEMANTICPLACE(), for the sake of effi-
ciency, the loaded posting lists of the query keywords are converted
into a map structure Mq. where keys are the vertices in these post-
ing lists. For each key (vertex), its value is the set of query words
appeared in the document of the vertex. Taking query keywords
q. = {ancient , roman, catholic,history} as an example, ac-
cording to the inverted index in Table 1, the content of Mq. is
shown in Table 2. Usually the number of query keywords is small,
therefore, Mq. is small and cheap to construct.

v2: {catholic, roman}
v3: {ancient}
v4: {history}
v5: {ancient, roman}
v7: {catholic, history}
v8: {ancient, history}
p2: {catholic, roman}

Table 2: Mq. of the example in Figure 1

Function GETSEMANTICPLACE() constructs the TQSP Tp

rooted at a place p w.r.t. query q. According to the definition of
TQSP, Tp contains the shortest path from the root place to each
query keyword. A naive way is to compute the shortest path from

p to every vertex in the posting list pli of keyword ti, and then
choose the vertex with the smallest shortest path distance. For ex-
ample, in Figure 1, in order to determine the shortest path from p1
to keyword ancient , we need to compute the shortest path for pairs(p1, v3), (p1, v5) and (p1, v8), and then get �p1, v3� as the short-
est path from p1 to keyword ancient . Apparently, when the RDF
data graph is large, this approach would be expensive as it would
require the computation of numerous and long shortest paths.

Instead, function GETSEMANTICPLACE() applies breadth first
search (BFS) in the RDF graph, starting from the root place p, and
checks whether each encountered vertex v contains any query key-
word t using map Mq. . Meanwhile, a keyword set B is main-
tained to record the undiscovered keywords during BFS. Algo-
rithm 2 shows the pseudocode. TQSP Tp is initialized as empty
(line 1), looseness L(Tp) is set to 1 (line 2), and set B contains all
the query keywords (line 3). BFS search starting from place p in-
crementally reports the next encounter vertex v (line 4). The query
keywords v. q associated with v can be obtained from Mq. (line
6). If B and v. q share words, this means that the shortest paths
from the root to some keywords in B have been identified (line 7).
Then, Tp and its looseness are updated (lines 8) and these keywords
are removed from B (line 9). If no more vertices are identified by
BFS and B is not empty, there is no qualified semantic place rooted
at p (line 10). As soon as B is empty (i.e., all query keywords have
been covered), Tp is successfully constructed and returned.

Algorithm 2 GETSEMANTICPLACE(q. , p,G,Mq. )
1: Tp = �
2: L(Tp) = 1
3: Set B = q. 
4: while v = BFS(G,p) and B ≠ � do
5: Add v to Tp

6: v. q =Mq. .get(v)
7: if B ∩ v. q ≠ � then
8: L(Tp)+ = �B ∩ v. q � × d(p, v)
9: B = B � v. q

10: if B ≠ � then L(Tp) = +∞ and Tp = NULL
11: return L(Tp) and Tp

Example 7 Given query keywords q. = {ancient, roman,
catholic, history}, we illustrate function GETSEMANTICPLACE()
(Algorithm 2) by constructing the TQSP for place p1 in Fig-
ure 1. BFS firstly reports p1 that is added to Tp1 . However,
B ∩ p1. q = �, which means that there is nothing to do for p1.
Next, v1 is visited by BFS, which again contains no keywords from
B. When v2 is visited, we have B ∩ v2. q = {catholic, roman}.
Therefore, L(Tp1)+ = 2 ⋅ d(p, v2) = 3, and catholic and roman
are removed from B. Similarly, after v3 and v4 have been pro-
cessed, L(Tp1) is updated to 6 and B becomes empty. Thus,
Tp1 = �p1, (v1, v2, v3, v4)� and L(Tp1) = 6 are returned.

4. IMPROVED PRUNING: SPP
In the basic method, for each retrieved place p from the R-tree,

function GETSEMANTICPLACE() is called to construct the TQSP
Tp rooted at p. The effort of a TQSP construction is wasted under
two circumstances: (i) Tp cannot cover all the query keywords,
i.e., no qualified semantic place rooted at p can be obtained and
(ii) the ranking score of Tp is no less than threshold ✓ (the ranking
score of the kth candidate). For case (i), we design a reachability-
based pruning rule that discards the places whose TQSP cannot
be constructed. Using this rule, some places are pruned without
calling function GETSEMANTICPLACE(). For case (ii), we derive
a dynamic bound on the looseness of the TQSP under construction.
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This bound is used to judge whether the unfinished TQSP has the
potential to belong to the top-k result. This rule helps reducing the
TQSP construction cost for some places that cannot enter the kSP
result. Applying the two pruning techniques, we design a Semantic
Place retrieval with Pruning algorithm (SPP).

4.1 Unqualified Place Pruning
A place p retrieved by the GETNEXT function of the basic algo-

rithm may not form a qualified semantic place. This happens if it is
not possible to reach vertices covering all query keywords by BFS
from p. For example, consider place p2 in Figure 1 and query key-
words {church,architecture}; no qualified semantic place rooted
at p2 exists, since p2 never reaches architecture. Formally:

PRUNING RULE 1. Unqualified Place Pruning. Let p � t de-
note that place p cannot reach keyword t in the RDF graph. Given
query keywords q. , place p is an unqualified place and can be
pruned if ∃t ∈ q. , p � t.
Testing whether p can reach a keyword t in the graph can be im-
plemented by reachability queries [20,39,40,53,58] that have been
well studied in the literature. TF-Label [20] is the state-of-the-art
algorithm for reachability queries, using which we can perform 1M
reachability queries in a large graph within dozens of milliseconds.
We use TF-Label as a independent component in our algorithm.

In the RDF graph, the documents of multiple vertices may share
the same keyword t (as many as the length of the corresponding
inverted list). For instance, in Figure 1(b), the documents of v3, v5,
and v8 all contain keyword ancient . Thus, in order to determine
whether a place p can reach keyword ancient , in the worst case
three reachability queries (i.e., to v3, v5, and v8) have to be issued.
In a very large data set, a huge number of reachability queries may
have to be performed, which is inefficient. To reduce the number
of reachability queries, we propose the following method. Firstly,
a vertex vt is constructed for each word t and added into the RDF
graph. Edges are added from the vertices whose documents contain
t to vt. This way, for each query keyword t, it suffices to apply a
single reachability query to vt in order to find out whether any of
the vertices whose documents contain t is reachable from the place
vertex. Therefore, the number of required reachability queries for
a place becomes at most equal to the number of query keywords.
Secondly, based on the observation that infrequent query keywords
have a high chance to make a place unqualified, we prioritize them
when issuing reachability queries.

Pruning Rule 1 is used before calling function
GETSEMANTICPLACE() (line 9 in Algorithm 1) to avoid un-
necessary TQSP computations.

4.2 Dynamic Bound based Pruning
Function GETSEMANTICPLACE() constructs the TQSP Tp

rooted at p in a BFS manner: starting from p its neighboring nodes
are incrementally explored. During this process, some of the query
keywords may be found early, while it may take time to find oth-
ers. We derive a dynamic bound for the looseness of the TQSP Tp

under construction in Lemma 1. This dynamic bound converges to
the real looseness of TQSP as more keywords are covered.

LEMMA 1. Dynamic Bound on Looseness. Given query key-
words q. = {t1, ..., tj , .., tm}, without loss of generality, suppose
that we have already discovered the first j query keywords during
the BFS exploration starting from p. Let v be the next vertex en-
countered in the BFS process with graph distance d(p, v). A lower
bound of the looseness L(Tp) is then LB(Tp) = ∑j

i=1 dg(p, ti) +
d(p, v) × (m − j).

PROOF. Trivial due to the monotonicity of L(Tp) w.r.t. the
shortest paths to the first encounters of keywords. Vertex v is
the next encountered vertex in the BFS process. Hence, all the
undiscovered keywords cannot have a shorter graph distance from
p than v does, i.e., dg(p, tn) ≥ d(p, v), j < n ≤ m. Therefore,
we can have LB(Tp) = ∑j

i=1 dg(p, ti) + d(p, v) × (m − j) ≤∑m
i=1 dg(p, ti) = L(Tp).
A TQSP Tp has a chance to be in the kSP result only if its ranking

score is less than threshold ✓. Definition 4 presents the looseness
threshold for all TQSPs that have not been computed yet.

Definition 4. Looseness Threshold. Let ✓ be the ranking score
of the kth TQSP found so far. The looseness threshold of any TQSP
Tp is defined as Lw(Tp) = ✓�S(q, p). If a TQSP has looseness no
smaller than its Lw(Tp), it cannot be in the kSP result.

Based on Lemma 1 and Definition 4, we introduce the dynamic
bound based pruning rule in Pruning Rule 2.

PRUNING RULE 2. Dynamic Bound based Pruning. For
place p, as soon as LB(Tp) ≥ Lw(Tp), the TQSP rooted at place
p cannot be in the kSP result, and thus p can be pruned.

PROOF. For the TQSP Tp rooted at p, if its best possible loose-
ness LB(Tp) is no smaller than its looseness threshold Lw(Tp),
meaning that the ranking score of Tp must be no smaller than the
current kth candidate, then Tp cannot be in the result.

By applying the two pruning rules, we can design algorithm
SPP (Semantic Place search with Pruning), which is an exten-
sion of BSP. Algorithm 3 shows an improved version of function
GETSEMANTICPLACE() (Algorithm 2) used in SPP. Algorithm 3
differs from Algorithm 2 in line 4 that computes the looseness
threshold of the Tp to be constructed, line 7 that computes the dy-
namic bound on the looseness of Tp each time when BFS reports
new vertex, and lines 8–9 that apply Pruning Rule 2 to prune places.
Having Pruning Rules 1 and 2, SPP is Algorithm 1 with the follow-
ing change. The looseness threshold in Definition 4 and Pruning
Rule 2 guarantee that any place survived to the point when to be
added to Hk must be ranked at least the kth position. Therefore,
the if clause at line 12 of Algorithm 1 is not needed anymore.

Algorithm 3 GETSEMANTICPLACEP(q. , p,G,Mq. )
1: Tp = �
2: LB(Tp) = 1
3: Set B = q. 
4: Compute the looseness threshold Lw(Tp)
5: while v = BFS(G,p) and B ≠ � do
6: Add v to Tp

7: Compute the dynamic bound LB(Tp)
8: if LB(Tp) ≥ Lw(Tp) then ▷ Pruning Rule 2
9: return +∞ and Tp = NULL

10: v. =Mq. .get(v)
11: if B ∩ v. ≠ � then
12: B = B � v. 
13: if B ≠ � then L(Tp) = +∞ and Tp = NULL
14: return LB(Tp) and Tp

Example 8 Consider a kSP query q located at q.λ = q1 in Fig-
ure 2 with keywords q. = {ancient, roman, catholic, history},
requesting the top-1 TQSP in the RDF graph of Figure 1. Place
p1 is firstly retrieved from the R-tree. After applying Pruning
Rule 1, we find that p1 can reach all the query keywords and can-
not be pruned. Then TQSP Tp1 rooted at p1 is constructed and
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regarded as the top-1 candidate with ranking score 1.32. Thresh-
old ✓ is set to 1.32. Next, place p2 is retrieved from the R-tree,
which again cannot be eliminated by Pruning Rule 1. Then, func-
tion GETSEMANTICPLACEP() is called to construct TQSP Tp2

rooted at p2. The looseness threshold for Tp2 is calculated as
Lw(Tp2) = ✓�S(q1, p2) = 1.32�1.28 = 1.03. BFS starts to explore
the graph starting from p2; in the meanwhile, the dynamic bound
on the looseness of Tp2 is computed. Initially, LB(Tp2)=1. After
p2 is visited by BFS, d(p2, p2) = 0. By Lemma 1, LB(Tp2) =
1 + d(p2, p2) × �B� = 1. Since LB(Tp2) = 1 < Lw(Tp2), p2 can-
not be eliminated by Pruning Rule 2. Then, {catholic, roman}
are removed from B since they are contained in p2 itself. After
v6 is visited by BFS, d(p2, v6) = 1, and therefore, by Lemma 1,
LB(Tp2) is increased by �B�×d(p2, v6) and becomes 3. According
to Pruning Rule 2, LB(Tp2) = 3 > 1.03 = Lw(Tp2) and Tp2 can-
not be the top-1 result. Hence, function GETSEMANTICPLACEP()
returns NULL before finishing the construction of Tp2 and is more
efficient than function GETSEMANTICPLACE() in Algorithm 2.

5. ↵-RADIUS BASED BOUNDS
The pruning rules proposed in the previous section help discard-

ing unqualified places and the places whose TQSPs cannot enter
the kSP result. In this section, we propose new bounds on both the
looseness and the ranking scores, for pruning not only individual
places but also sets of places, i.e., R-tree entries and the correspond-
ing sub-trees. We firstly introduce the ↵-radius word neighborhood
in Definition 5, which is used for deriving the bounds.

Definition 5. ↵-radius word neighborhood of place. For place
p, its ↵-radius word neighborhood WN (p) contains the set of
word-distance pairs {(ti, dg(p, ti))} where the shortest graph dis-
tance from p to each word ti is no larger than ↵, i.e., dg(p, ti) ≤ ↵.

Based on the ↵-radius word neighborhood of individual places, we
define the ↵-radius word neighborhoods of a set of places, i.e., a
node in the R-tree, in Definition 6.

Definition 6. ↵-radius word neighborhood of node. For a
set of places {pj} enclosed in a node N of the R-tree, the ↵-
radius word neighborhood WN (N ) of N contains the set of word-
distance pairs {(ti, dg(N, ti)} where the words in WN (N ) is the
union of the words in WN (pj ) of all places enclosed in N , and
for each word ti, dg(N, ti) = minpj∈N dg(pj , ti). Obviously,
dg(N, ti) ≤ ↵.

Construction of ↵-radius word neighborhood. In a pre-
processing phase, the ↵-radius word neighborhoods of all places
are computed first. For each place p, we explore the RDF graph in
a breadth-first manner starting from p. Neighborhood WN (p) is
initialized as empty. When encountering a vertex v in the graph,
for each word t appearing in v’s document, if no corresponding
pair for t is already in WN (p), a new pair (t, d(p, v)) is added to
WN (p). After the ↵-radius word neighborhoods of all places have
been constructed, the ↵-radius word neighborhoods of the nodes in
the R-tree are computed in a bottom-up fashion from the leaf level
to the root level. For each node N , let {ei} be the set of entries
enclosed, where ei refers to either a place or a node. Neighbor-
hood WN (N ) is initialized as empty. For each pair (t, dg(ei, t))
in each WN (ei), if no corresponding pair for t is in WN (N ),(t, dg(ei, t)) is added to WN (N ) as (t, dg(N, t)); otherwise,
dg(N, t) is updated as min{dg(N, t), dg(ei, t)}.
Example 9 For ↵ = 1, part of the ↵-radius word neighborhoods
of places p1 and p2 in Figure 1(a) are displayed in the first two rows
of Table 3. ‘-’ indicates that the place cannot reach the keyword

within ↵-radius. Assuming that an R-tree node N contains p1 and
p2, the ↵-radius WN (N ) is shown in the last row of the table.

q. abbey . . . ancient catholic roman history . . .
dg(p1, ti) 0 . . . 1 1 1 - . . .
dg(p2, ti) - . . . - 0 0 1 . . .
dg(N, ti) 0 . . . 1 0 0 1 . . .

Table 3: Example: 1-radius word neighborhoods

Based on the ↵-radius word neighborhoods of places, we derive
bounds of the looseness and the ranking scores of TQSPs based on
Lemmas 2 and 3. Lemmas 4 and 5 extend these bounds for sets of
places rooted under R-tree nodes.

LEMMA 2. ↵-bound on the looseness of a place. Let WN (p)
be the ↵-radius word neighborhood of place p. Given query key-
words q. = {t1, . . . , tj , . . . , tm}, without loss of generality, as-
sume that the first j keywords have corresponding pairs in WN (p).
The ↵-bound of the looseness of TQSP Tp rooted at p is L↵

B(Tp) =∑j
i=1 dg(p, ti) + (↵ + 1) × (m − j) and L↵

B(Tp) ≤ L(Tp).
LEMMA 3. ↵-bound on the ranking score for places. Let

L↵
B(Tp) be the ↵-bound on the looseness of the TQSP Tp rooted at

p. Given a kSP query q, the ↵-bound on the ranking score of Tp is
f↵
B(p) = L↵

B(Tp) × S(q, p) and f↵
B(p) ≤ f(L(Tp), S(q, p)).

LEMMA 4. ↵-bound on the looseness for nodes. Let WN (N)
be the ↵-radius word neighborhood of node N . Given query
keywords q. = {t1, . . . , tj , . . . , tm}, without loss of general-
ity, assume that the first j keywords have corresponding pairs in
WN (N). The ↵-bound on the looseness of all the TQSPs Tp

rooted at p enclosed in N is L↵
B(TN) = ∑j

i=1 dg(N, ti) + (↵ +
1) × (m − j) and ∀pi ∈ N,L↵

B(TN) ≤ L(Tpi).
LEMMA 5. ↵-bound on the ranking score for nodes. Let

L↵
B(TN) be the ↵-bound on the looseness of the TQSPs Tp rooted

at places p enclosed in N . Given a kSP query q, the ↵-bound on the
ranking score of all the Tp rooted at p enclosed in N is f↵

B(N) =
L↵

B(TN) × S(q,N), where S(q,N) is the minimum spatial dis-
tance between q and N . ∀pi ∈ N,f↵

B(N) ≤ f(L(Tpi), S(q, pi)).
The proofs of Lemmas 2, 3, 4, and 5 are omitted for the interest

of space. We proceed to introduce a pruning rule for places using
Lemma 3 and a pruning rule for nodes using Lemma 5.

PRUNING RULE 3. Place pruning. Given a kSP query q, let
✓ be the ranking score of the kth candidate TQSP and f↵

B(p) be
the ↵-bound on the ranking score of the TQSP Tp rooted at p. If
f↵
B(p) ≥ ✓, Tp cannot be the kSP result and p is pruned.

PRUNING RULE 4. R-tree node pruning. Given a kSP query
q, let ✓ be the ranking score of the kth candidate TQSP and f↵

B(N)
be the ↵-bound on the ranking score of the TQSPs Tp rooted at
places p enclosed in N . If f↵

B(N) ≥ ✓, the TQSP rooted at any
place enclosed in N cannot be the result and N is pruned.

Example 10 Consider an R-tree node N formed by places p1
and p2 in Figure 1(a). For query keywords q. = {ancient, roman,
catholic, history}, based on Table 3 and Lemma 4, L↵

B(TN) =
1 + 0 + 0 + 1 + 1 = 3. Assuming the minimum spatial distance
from N to a query location q.λ is 2, by Lemma 5, f↵

B(N) = 6. If
✓ = 5, according to Pruning Rule 4, f↵

B(N) > ✓ which means all
the places under N , i.e., p1 and p2 in this example, can be pruned.
Storage. The ↵-radius word neighborhoods of places and nodes
can be modeled as vectors. They are indexed by an inverted file.
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For a kSP query, part of the neighborhoods relevant to the query
keywords, i.e., the posting lists of the query keywords, are loaded
in the beginning query processing, to facilitate the computation of
↵-based bounds and the application of Pruning Rules 3 and 4.
Algorithm. By integrating the ↵-radius based bounds with the SPP
algorithm, we design a Semantic Place retrieval algorithm (SP) for
the processing of kSP queries, as described by Algorithm 4. SP has
the following differences compared to SPP: (i) entries (referring to
places and nodes) in the R-tree are processed in ascending order
of their ↵-bounds on the ranking score rather than their spatial dis-
tance to the query location (lines 8 and 22), (ii) Pruning Rules 3 and
4 are used to discard places having no potential to be the result (line
21), and (iii) the termination condition is based on the ↵-bound on
the ranking score rather than the spatial distance, which can be sat-
isfied earlier (line 9).

Algorithm 4 SP(q,R,G, I, I↵)
1: MinHeap Hk = �, ordered by f(L(Tp), S(q, p))
2: for each keyword ti in q. do
3: Load posting list pli of ti from I
4: Load posting list of ti from I↵

5: Construct Mq. 

6: ✓ = +∞
7: Queue Q = (root)
8: while e=GETNEXT(Q,R, q) do
9: if f↵

B(e) ≥ ✓ then break
10: if e refers to a place p then
11: if e is Unqualified then continue ▷ Pruning Rule 1
12: Tp = GETSEMANTICPLACEP(q. , p,G,Mq. )
13: if L(Tp) == +∞ then continue
14: Compute the ranking score f of Tp

15: Hk .add(Tp, f )
16: Update ✓
17: else ▷ e refers to a node N
18: for each entry e in N do
19: Compute ↵-bound on the looseness L↵

B(Te) for e
20: Compute ↵-bound on the ranking score f↵

B(e) for e
21: if f↵

B(e) < ✓ then ▷ Pruning Rules 3 and 4
22: Add (e, f↵

B(e)) to Q

23: return Hk

6. EXPERIMENTS
To evaluate the performance of methods BSP (Section 3), SPP

(Section 4), and SP (Section 5), we conducted an empirical study
using real datasets, under various settings.

6.1 Settings
Datasets. We extracted the data used in our experiments from well-
known real RDF knowledge bases, namely DBpedia and Yago (ver-
sion 2.5). In DBpedia, there are 8,099,955 vertices and 72,193,833
edges in the directed RDF graph, with a dictionary of 2,927,026
unique words. The documents of all vertices are organized by an in-
verted index. The average posting list length is 56.46, which means
on average, a word appears in the documents of 56.46 vertices in
the graph. Among all vertices, 883,665 are places with coordi-
nates. In Yago, there are 8,091,179 vertices and 50,415,307 edges
in the directed RDF graph, with a dictionary of 3,778,457 distinct
words. The documents of all vertices are organized by an inverted
index with average posting list length 7.83. Among all the vertices,
4,774,796 vertices are places with coordinates. The original DB-
pedia and Yago data graphs are highly connected, with many edges
representing “sameAs” “linksTo” and “redirectTo” relationships,
which introduce semantically meaningless paths. In the datasets

we use, such edges are removed. As a result, DBpedia consists of
a huge weak connected component (WCC) with 8,099,624 vertices
and 145 tiny WCCs with less than 10 vertices each. Similarly, the
resulting Yago graph has a huge WCC with 8,091,094 vertices and
4 tiny WCCs with average size around 20.
Queries. Generating kSP query locations and keywords totally at
random reduces the probability of obtaining any results. Therefore,
we tried to generate meaningful kSP queries, by following the spa-
tial and keyword distribution of the datasets. For each generated
query, we randomly select a place p in the RDF graph and then
randomly select the query location from a large range around this
place. From p, we explore the RDF graph in BFS manner and ran-
domly select at least �q. ��2 and at most �q. �× factor vertices that
are reachable from p (factor ≥ 1). If there are less than �q. ��2 ver-
tices reachable from p, p is discarded to avoid the case that the sub-
graph around the query location is too limited. In this case, we ran-
domly select another place and repeat the whole process. Among
the selected [�q. ��2, �q. �⋅factor] vertices, we randomly choose at
most �q. � vertices, and �q. � keywords are extracted from the doc-
uments of these vertices as the query keywords. We set factor = 2
which gives flexibility with respect to �q. � and is large enough to
obtain many connected vertices from p, but not too large to obtain
faraway vertices, which are less semantically relevant to p.
Parameter settings. Performance is evaluated by varying the num-
ber of requested TQSPs k, the number of query keywords �q. �, ↵
of the ↵-radius based bounds, and also the data size for scalability
evaluation. By default, k = 5, �q. � = 5,↵ = 3. We vary one param-
eter while fixing the other two. Specifically, we report the result
when parameter k varies in {1,3,5,8,10,15,20}, �q. � varies in{1,3,5,8,10}, and ↵ varies in {1,3,5}. For each setting, we run
100 queries and measure the average runtime, number of TQSP
computations, and number of R-tree nodes accessed.
Platform. All methods were implemented in Java and evaluated
on a 3.4 GHz quad-core machine running Ubuntu 12.04 with 16
GBytes memory. For the two datasets, the sizes of the R-trees, the
RDF graphs, and the inverted indexes are shown in Table 4. The
R-tree and the RDF graph are assumed to be memory-resident. Al-
though the inverted indexes used can also fit the main memory, we
choose to follow the setting of commercial search engines, where
the inverted index is disk-resident. The reason is that for each
query, only a small portion of the inverted index is relevant and
needs be kept in main memory. Besides, such a design is scalable
when more textual data added to the RDF knowledge base.
Preprocessing costs. The time costs of constructing the indexes
and the data structures used for pruning are shown in Table 5. To
construct the R-tree, we inserted the places in it one-by-one, in or-
der to achieve better quality. The cost can be drastically reduced
if bulk loading was used [45]. The inverted index for the docu-
ments of all the vertices in the RDF graph takes a few minutes
only to construct. The TFlabel index [20] for reachability queries,
which facilitates Pruning Rule 1, is also constructed within reason-
able time. The DBpedia data are richer in terms of text, therefore
the times to build the corresponding inverted and TFlabel indices
are higher compared to those for Yago. For alpha-radius prepro-
cessing, there are two dominant cost factors: (i) the computation
of ↵-radius Word Neighborhood (WN) for each place and R-tree
node, and (ii) building the inverted index of the ↵-radius WNs. For
DBpedia, the average keyword frequency is 56.46, which renders
the ↵-radius WNs of DBpedia to be larger than 32GB. To build
the inverted index for so large data without exceeding the available
memory, we had to create inverted indexes for parts of the data and
merge them together in the end, which explains the high cost of
constructing the inverted index for DBpedia.
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(a) runtime (b) number of TQSP computations (c) number of R-tree nodes accessed

Figure 3: Varying k on DBpedia.

(a) runtime (b) number of TQSP computations (c) number of R-tree nodes accessed

Figure 4: Varying k on Yago.

Table 4: Storage Cost
Data R-tree RDF graph Inverted index

DBpedia 50.54MB 607.95MB 1307.98MB
Yago 273.17MB 454.81MB 231.91MB

Table 5: Preprocessing and indexing time (minutes)
Dataset R-tree Inverted index TFlabel index ↵(= 3)-radius
DBpedia 3.17 4.61 22.60 1192.01
Yago 31.90 1.00 6.09 101.61

6.2 Efficiency Evaluation
BSP takes too long to finish for some queries because (i) the

termination condition (line 7 of Algorithm 1) only uses spatial dis-
tance as a (very loose) lower bound, (ii) function GETSEMANTIC-
PLACE wastes computational cost for places that are not qualified
semantic places, and (iii) function GETSEMANTICPLACE wastes
time on the construction of the TQSPs that cannot be part of the
kSP result. Hence, in our experiments, we set the maximum run-
time for the queries using BSP to 120 seconds and abort those that
take longer time.

6.2.1 Varying k.
Figures 3 and 4 show the cost of all methods on dataset DBpedia

and Yago, respectively. As expected, the runtime, the number of
TQSP computations, and the number of R-tree nodes accessed all
increase as k increases, since a larger number of requested semantic
places requires exploring a larger search space.

On dataset DBpedia (Figure 3), SP is 240-1865 times faster than
BSP and 2-5 times faster than SPP for all k. The performance
gap is maintained as k increases. The runtime of SP stays under
500ms for all values of k. For all the methods, the cost of con-
structing TQSPs dominates the runtime (shown as the “semantic

time” in Figure 3(a)). SPP includes other costs (i.e., “other time”
in Figure 3(a)), which are mainly due to the reachability queries
used in Pruning Rule 1. SP is the most efficient method in terms
of both semantic time and other time, confirming the effectiveness
of the proposed ↵-radius based bounds and Pruning Rules 3 and 4.
SPP outperforms BSP because of Pruning Rules 1 and 2. As Fig-
ure 3(b) shows, SP only needs to compute the TQSPs for around
2-30 candidate places and accesses around 6 R-tree nodes on av-
erage, while SPP needs to compute tens of thousands TQSPs and
access hundreds of R-tree nodes. Note that the numbers of TQSP
computations and R-tree node accesses by BSP are smaller than the
corresponding numbers by SPP, due to the 120 second time limit on
BSP that that forces many queries to be terminated before finish-
ing; this means that fewer places are processed in BSP compared
to SPP, however, BSP may fail to return an answer, while SPP al-
ways computes the correct result. Furthermore, the runtime of SPP
is much lower than that of BSP, which indicates that SPP takes less
time to process more places than BSP does.

The results are similar on dataset Yago (Figure 4). Compared to
DBpedia, the runtime gap between SPP and BSP decreases. How-
ever, the “semantic time” of SPP is 75-314 times less than the “se-
mantic time” of BSP, which indicates that the pruning techniques
in Section 4 reduce cost for TQSP computations significantly, but
at the cost of performing reachability queries (i.e., the “other time”
in Figure 4(a)). Yago contains more than 4.77M places, while DB-
pedia has 887K places. Therefore more reachability queries are
issued on Yago compared to DBpedia, which leads to only a minor
improvement of SPP over BSP on Yago. On the other hand, SP is
robust in pruning a lot of places and nodes and achieves excellent
performance on this large spatial RDF dataset.

6.2.2 Varying �q. �.
Figure 5 compares the runtimes of all methods on DBpedia and

Yago. In this and the subsequent experiments, we do not show the
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number of TQSP computations and the number of R-tree nodes ac-
cessed by the methods for the interest of space and because they
do not give different insights compared to the previous experiment.
Generally, the runtimes of all methods increase with the number of
query keywords �q. �, since more vertices in RDF graph need to
be explored to discover TQSPs covering all the query keywords in�q. �. Again, SP is significantly faster than the other methods and
the performance gap widens with �q. �. Due to the larger number
of places in Yago, which require more reachability queries pro-
cessed in SPP, the runtime gap between SPP and BSP on Yago is
smaller than that on DBpedia. However, recall that BSP is termi-
nated after 2 minutes, so it fails to produce results for a number
of queries, while SPP is always correct. SPP has much lower “se-
mantic time” than BSP, however, it performs numerous reachability
queries, which eventually dominate its runtime cost.

(a) DBpedia (b) Yago

Figure 5: Varying �q. �
6.2.3 Tuning ↵

In the next experiment, we evaluate the effect of parameter ↵ in
SP. Table 6 displays the total space that the ↵-radius word neigh-
borhoods occupy, for the two datasets and different values of ↵. As
expected, the space increases with ↵. On both datasets, the space
is moderate when ↵ = 1,2,3, but increases rapidly to 204.70GB on
DBpedia and 30.63GB on Yago when ↵ = 5.

↵ 1 2 3 5
DBpedia (GB) 3.56 24.33 32.53 204.70
Yago (GB) 1.07 3.61 12.37 30.63

Table 6: ↵-radius word neighborhood size

We evaluate the performance of SP with k = 1,3,5,8,10,15,20
when varying ↵ from 1 to 5 on DBpedia and Yago (Figure 6). The
number of query keywords is fixed to �q. � = 5. Note that with
a larger ↵, the exploring direction of SP is more biased to TQSP
looseness than spatial distance (Lemmas 2 and 4). On DBpedia
data, when changing ↵ from 1 to 5, the runtime of SP decreases,
since large ↵ values enable tighter bound derivations and facilitate
the pruning of more pruned places and nodes. We also observed
that the number of TQSP computations and the number of R-tree
nodes accessed significantly decrease when changing ↵ from 1 to
3, but remain stable when changing ↵ from 3 to 5.

Yago has keyword frequency 7.83, which is much smaller than
that of DBpedia (56.46), meaning that it is generally more difficult
to find a query keyword that can be reached from a place candidate
to construct TQSPs. Recall that TQSP computation takes too much
time and the exploration direction is biased to it; thus, a larger ↵
may increase rather than decrease the runtime of kSP queries. This
is confirmed by the findings shown in Figure 6(b). When chang-
ing ↵ from 1 to 3, the runtime of SP decreases significantly; the
larger ↵ value enables tighter bound derivations and more pruned
places. However, the runtime increases when changing ↵ from 3
to 5. Overall, based on the evaluation of different ↵ values on the
two datasets, we conclude that ↵ = 3 is a good choice w.r.t., both

performance gains and the ↵-radius word neighborhood size (i.e.,
index size).

(a) DBpedia (b) Yago

Figure 6: Varying ↵

6.2.4 Scalability
In this section, we evaluate the performance of the three methods

on datasets of different sizes. We adopt the random jump sampling
method [44] with probability c = 0.15 on the Yago dataset to gen-
erate RDF graphs of different sizes (described in Table 7). The
associated documents of the selected vertices are also included in
each generated dataset.

Figure 7 shows the performance of all methods as a function of
the graph size. To be consistent, we generate queries using the
smallest dataset and apply the generated queries on all datasets.
The runtime of BSP and SPP generally increases but not dramat-
ically with the graph size. On the other hand, the runtime of SP
slightly decreases as the graph becomes larger. The reason be-
hind this behavior, as we found out by analyzing the results, is that
with more edges (larger graph), the connectivity is better, which
can make it easier to find good TQSPs without exploring too many
places. This is especially true for SP, which takes advantage of the
pruning rules and the ↵-radius bounds to prune places that are not
associated with the keywords early.

# of vertices # of edges # of places
2,000,000 11,659,509 1,144,705
4,000,000 24,174,226 2,317,671
6,000,000 36,966,773 3,507,942
8,091,179 50,415,307 4,774,796

Table 7: Datasets extracted from Yago by Random Jump

(a) runtime (b) R-tree node accessed

Figure 7: Varying graph size by random jump sampling (Yago).

6.2.5 Results with Large Looseness
In order to evaluate the robustness of SP for (hard) queries having

results of large looseness, we conducted a set of experiments, in
which the generated queries have these characteristics. For this
purpose, we generated two types of queries: Small distance large
looseness (SDLL) kSP queries have as results places that are near
the query location and have large looseness; Large distance large
looseness (LDLL) kSP queries have as results places that are quite
far from the query location and have large looseness. To generate
SDLL and LDLL queries, we followed a similar methodology as
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the one described in Section 6.1, with the following differences.
First, in SDLL (LDLL) queries the query location is chosen to be
near (far) from the place p = (x, y) used to generate the query
keywords. Specifically, in LDLL queries, the query location is a
distant point location (x, y + 90), increasing p’s longitude by 90
degrees. Second, for both SDLL and LDLL queries, we choose
infrequent words (with term frequency < 100) beyond 4 hops from
p in the RDF graph as the query keywords. Due to (i) the low
frequency of the selected words and (ii) the fact that similar places
tend to be collocated [17,18], the generated queries are anticipated
to have as results places in the spatial neighborhood of p and with
similar looseness as p (i.e., large looseness).

In order to confirm the correctness of our SDLL and LDLL query
generators, we generated 100 queries in each of the two classes as
well as 100 queries using the original query generator (Section 6.1).
Then, for each query class (SDLL, LDLL, and O for our original
generator), we averaged the spatial distance and the looseness of
their top-k results, as shown in Figure 8. Observe, that the statis-
tics are consistent with the intent of the generators. The results
of SDLL and LDLL queries have smaller and larger, respectively,
spatial distance compared to the results of O queries. At the same
time, both SDLL and LDLL queries return results of much larger
looseness compared to O queries.

(a) Spatial Distance (DBpedia) (b) Looseness (DBpedia)

(c) Spatial Distance (Yago) (d) Looseness (Yago)

Figure 8: Average spatial distance and average looseness of the
results by three classes of queries.

Figure 9 shows the runtime of BSP, SPP, SP for SDLL and LDLL
kSP queries as a function of k. The relative performance of the al-
gorithms is consistent with the previous experiments; SP is superior
to SPP and outperforms BSP significantly. SDLL have similar cost
as LDLL queries (slightly lower), which indicates that the domi-
nant cost factor is not the spatial distance of the results, but their
looseness. This can be also confirmed by comparing Figure 9 with
Figure 3, which shows the evaluation cost of the original queries.
For example, SP is 5-11 times slower on SDLL and LDLL queries
compared to O queries. Still, SP achieves sub-second runtimes for
k=5 even for these harder query classes and outperforms BSP by
orders of magnitude.

6.2.6 Comparison with top-k aggregation
BSP and its optimized versions (SPP and SP) examine places

in increasing spatial distance from the query location and compute
their looseness as necessary, until the top-k places are confirmed.
It is also possible to evaluate kSP queries by a hybrid approach that

(a) SDLL queries (b) LDLL queries

Figure 9: Runtime of large-looseness queries (DBpedia).

combines two ranked lists of places: one that has qualified semantic
places in increasing order of their looseness and one that has places
in increasing order of their spatial distance to the query location.
The first list can be incrementally generated by the extending the
bottom-up RDF keyword search approach [43] (described in the In-
troduction) and the second by spatial nearest neighbor search. The
two lists can be combined fast using the classic threshold algorithm
(TA) of [25]: each time the next place is found by keyword search,
its spatial distance is computed on-the-fly to complete its score;
each time the next spatially nearest place is accessed, whether it
is a qualifying semantic place (and its looseness) is computed by
calling Algorithm 2. The algorithm terminates if the top-k TQSPs
found so far cannot be outranked by the best possible place not
found yet, according to the last incrementally computed spatial dis-
tance and looseness; i.e., the termination threshold of TA can ob-
tained by applying f on these two values.

We implemented TA and compared it with our methods in Fig-
ure 10 for queries with various numbers of keywords �q. �. On
DBpedia, only when �q. � = 1 TA performs better than BSP while
being 8 times slower than SP. When �q. � ≥ 3, the runtime of TA in-
creases significantly and TA becomes even slower than BSP. When�q. � ≥ 3, in order to find the semantic places in increasing loose-
ness order, TA needs to start exploration from all the vertices con-
taining any of the keywords and maintains �q. � queues to decide
which vertex to explore next. TA also book-keeps for each vertex
all the query keywords that have reached it (if a place has been
reached by all query keywords, it becomes a semantic place and
its looseness is calculated). These operations dominate the cost of
TA, which spends a long time to rank the places by looseness. The
results on Yago are similar to the DBpedia results. In addition, note
that TA is slower than BSP for �q. � ≥ 3 for any value of k.

In summary, while it is extremely cheap to compute spatial dis-
tances and conduct spatial nearest neighbor search, it is expensive
to conduct graph browsing and incremental ranking of places by
looseness. This imbalance between the costs of computing spa-
tial distance and looseness motivated the design of our algorithms,
which prioritize the examination of places based on their spatial
distances in order to minimize graph traversal operations.

(a) DBpedia (b) Yago

Figure 10: Comparison with top-k aggregation (TA)
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7. RELATED WORK
Keyword search on graph data. Due to its user-friendly query
interface, keyword search is not only the de facto information re-
trieval method for the WWW data but also a popular querying
mechanism for XML documents [21, 28], relational databases [13,
36], and graph data [22, 31, 41]. Traditional graph search algo-
rithms convert queries into search over feature spaces, such as
paths [51], frequent-patterns [57], and sequences [38], which fo-
cus more on the structure of the graph rather than the semantic
content of the graph. Nevertheless, keyword search over graph
data [13,21,22,28,31,36,41] determines a group of densely linked
nodes in the graph by making use of both the content and the link-
age structure. The overall quality of the results can be improved
thanks to the re-enforcement between these two sources of infor-
mation. Moreover, unexpected and interesting answers that are of-
ten difficult to be obtained via rigidly-formatted structured queries
may be discovered by the keyword search. A recent survey about
keyword search on schema graphs (e.g., relational data and XML
documents) and schema-free graphs can be found in [56].
Keyword search on RDF data. RDF data are a special type of
graph data, traditionally queried using structured query languages,
like SPARQL. Recently, there has been increasing interest in key-
word queries over RDF data. SPARQL queries are augmented with
keywords for ranked retrieval of RDF data [24]. A keyword-based
retrieval model over RDF graphs [23] identifies a set of maximal
subgraphs whose vertices contain the query keywords. These sub-
graphs are ranked based on statistical language models (LMs) [49].
Top-k exploration of query candidates over RDF [52] first con-
structs a set of k query subgraphs based on the query keywords, and
then let users choose the appropriate query graph. Query evaluation
is performed using the underlying database engine. For the scalable
and efficient processing of keyword queries on large RDF graphs, a
summarization algorithm with pruning mechanisms on exploratory
keyword search and its results is proposed [43]. Both [52] and [43]
follow the definition of BLINKS [31] for the result subgraphs. k-
nearest keyword (k-NK) search on RDF graphs [47] finds the k
closest pairs of vertices, (vi , ui) that contain two given keywords
q and w, respectively. SemDIS [30] demonstrates a system, where
semantic associations are discovered in a large semantic metabase
represented in RDF. Keyword query interpretation [26] personal-
izes the interpretation of a new query on RDF databases by a se-
quence of structured queries that correspond to the interpretations
of keyword queries in the query history. Personalized keyword
search on RDF [27] can personalize ranks based on the Rank-
ing SVM approach that trains ranking functions with RDF-specific
training features and utilizes historical user feedback. Diversified
keyword search on RDF graphs [15] diversifies results by consid-
ering both the content and the structure of the results, as well as
the RDF schema. A path-oriented RDF index for keyword search
query [19] captures associations across RDF paths for improving
the query execution performance.
Spatial RDF stores. Recently, there are many efforts toward the
efficient storage and indexing of spatial RDF data. Parliament [8]
is an implementation of GeoSPARQL. Strabon [42] employs a
column-store approach to manage the RDF data in PostGIS, im-
plementing two SO and OS indices for each property table, and
uses spatial indexes on top of them. Brodt et al. [16] adopts a two-
stage algorithm that either processes the non-spatial query compo-
nents first and then verifies the spatial ones or the other way around
to support spatial querying on RDF data. Geo-Store [54] uses a
Hilbert space-filling curve to index the space and supports spatial
range queries and NN search. S-Store [55] primarily indexes spatial
RDF data based on their structure and uses their spatial locations

to prune triples during search. In addition, several commercial sys-
tems, such as Oracle, Virtuoso [11], and OWLIM-SE [7], support
spatial RDF data management, however, details about their inter-
nal design are not available. Recently, a spatial encoding scheme
for RDF stores that supports efficient spatial data management was
proposed in Liagouris et al. [46]. To our knowledge, no previous
work on spatial RDF data management supports queries that com-
bine spatial and keyword search.
Discussion. Our work differs significantly from existing work.
Firstly, the kSP queries studied are schema-free; thus, query pro-
cessing and optimization techniques in traditional RDF stores are
inapplicable. Secondly, although keyword search on RDF data
(i.e., one aspect of a kSP query) has been investigated in the liter-
ature, there is no direct way of extending the existing algorithms
to process kSP queries. In fact, extensions are expected to be
highly inefficient because they do not guide search based on the
query location, as discussed in the beginning of Section 3. Thirdly,
kSP queries enable users to search nearby places that semantically
match their preferences (expressed by keywords). Such a function-
ality finds important and useful applications as discussed in Sec-
tion 1, and cannot be achieved by other forms of queries in the lit-
erature. Fourthly, the query evaluation algorithms proposed in this
paper are orthogonal to indexing and storage techniques for graph
data, which can be applied to further improve the performance of
kSP search on very large RDF data.

8. CONCLUSION
In this paper, we proposed a top-k relevant semantic place re-

trieval (kSP) query that takes as input a query location q.λ and a
set of query keywords q. , and returns the top-k tightest qualified
semantic places ranked by their spatial distance to q.λ and their
semantic looseness to q. over the RDF graph. kSP queries do
not require the use of any structured query languages, thus they are
user-friendly and do not rely on the knowledge of the RDF schema.
Compared to existing keyword search, kSP queries are spatial-
aware and support spatial-personalized search. After suggesting a
baseline algorithm (BSP), we propose two pruning techniques that
reduce the cost of computing the semantic relevance of each place
to the query keywords; namely (i) an unqualified place pruning ap-
proach that discards places which do not cover the query keywords
without computing their TQSPs, and (ii) a dynamic bound based
pruning approach that early terminates the TQSP computation of
a place if the place cannot enter the kSP result. To further boost
efficiency, in Section 5, we introduce the concept of ↵-radius word
neighborhood and propose ↵-radius bounds on both the looseness
and the ranking scores that can be applied to prune not only indi-
vidual places but also sets of places (i.e. R-tree nodes). The pro-
posed techniques are evaluated on two large real RDF data sets, i.e.,
DBpedia and Yago. The results show that applying all techniques
enables processing kSP in less than a second for most settings and
outperforms the basic method by orders of magnitude.

In this paper, the RDF graph data assumed to be memory-
resident. In the future, we plan to integrate and extend existing
indexing and storage techniques for disk-resident graph data to de-
velop a scalable solution. Our kSP definition follows directly from
previous work of RDF keyword search [26, 31, 43, 52], where only
incoming paths from keywords to the root node of a result subgraph
are considered. In the future, we also plan to qualitatively evaluate
an alternative definition of semantic places, where the keywords in
outgoing paths from them are also considered (i.e., edge directions
are disregarded).
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