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ABSTRACT
State-of-the-art classical influence maximization (im) tech-
niques are “competition-unaware” as they assume that a
group (company) finds seeds (users) in a network indepen-
dent of other groups who are also simultaneously interested
in finding such seeds in the same network. However, in real-
ity several groups often compete for the same market (e.g.,
Samsung, HTC, and Apple for the smart phone market) and
hence may attempt to select seeds in the same network. This
has led to increasing body of research in devising im tech-
niques for competitive networks. Despite the considerable
progress made by these efforts toward finding seeds in a more
realistic settings, unfortunately, they still make several un-
realistic assumptions (e.g., a new company being aware of a
rival’s strategy, alternate seed selection, etc.) making their
deployment impractical in real-world networks. In this pa-
per, we propose a novel framework based on game theory to
provide a more realistic solution to the im problem in com-
petitive networks by jettisoning these unrealistic assump-
tions. Specifically, we seek to find the “best” im strategy (an
algorithm or a mixture of algorithms) a group should adopt
in the presence of rivals so that it can maximize its influ-
ence. As each group adopts some strategy, we model the
problem as a game with each group as competitors and the
expected influences under the strategies as payoffs. We pro-
pose a novel algorithm called GetReal to find each group’s
best solution by leveraging the competition between differ-
ent groups. Specifically, it seeks to find whether there exist
a Nash Equilibrium (ne) in a game, which guarantees that
there exist an “optimal” strategy for each group. Our ex-
perimental study on real-world networks demonstrates the
superiority of our solution in a more realistic environment.
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1. INTRODUCTION
Given a social network as well as an influence propagation

(or cascade) model, the problem of influence maximization
(im) is to find a set of initial users of size k (referred to as
seeds) so that they eventually influence the largest number
of individuals (referred to as influence spread) in the net-
work [18]. Kempe et al. [18] proved that this problem is
np-hard and presented a greedy approximate algorithm and
guarantee that the influence spread is within (1 − 1/e) of
the optimal influence spread. Since then a long stream of
greedy and heuristic-based techniques [8,12,13,19–21] have
been proposed to improve efficiency and scalability of the im
problem.

Despite the significant progress made by state-of-the-art
im approaches, they inevitably suffer from a key drawback
primarily due to the unrealistic assumption of the social net-
work to be non-competitive in nature. Specifically, these
techniques are effective for a network where only one com-
pany (i.e., group)1 is maximizing the influence of a prod-
uct irrespective of the absence or presence of other com-
petitors. Unfortunately, this scenario rarely occurs in the
real world as competition for market between rivals is ubiq-
uitous. Given a market of a particular product category
(e.g., mobile phone market), there exist several rival groups
(e.g., Apple, Samsung, HTC ) attempting to maximize their
influences2. A common concern of these groups is the sce-
nario where their rivals may take precedence in the market.

1
In the sequel, we shall use the terms “company” and “group” inter-

changeably.
2
In this paper, we do not consider a market which is heavily monop-

olized by a certain group where users have no other choice but to
buy their product(s). For such monopoly market the most important
problem is not im but price setting.
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As a result, competitive new products from rival compa-
nies are often promoted during the same period3. For ex-
ample, HTC and Samsung promoted HTC One and Sam-
sung Galaxy S4, respectively, almost simultaneously. Con-
sequently, these companies also desire to maximize the in-
fluence of their products in the market at the same time.
Unfortunately, the aforementioned im techniques generate
unsatisfactory results when deployed over such competitive
networks (detailed in Section 6). Several groups in the com-
petition may adopt the same or similar im algorithms, lead-
ing to poor estimations of influence spreads.

1.1 Motivating Example
Consider the social network in Figure 1(a). In order to

maximize the influence of a new mobile phone model, as-
sume that Samsung adopts a state-of-the-art im algorithm
to select two users (k = 2) whom it wishes to provide free
samples of the phone. Suppose Samsung decided to choose
Ada and Bob as candidate seeds based on the output of the
algorithm. These users eventually influence nine persons
in the network. Now consider Figure 1(b). Assume that
Samsung has a rival in the mobile phone market, namely
HTC. Similar to Samsung, HTC also wants to maximize
the influence of their new mobile phone which is released
almost simultaneously. Thus, HTC may also adopt a state-
of-the-art im algorithm to select the candidate seeds. It is
indeed possible for HTC to select the same candidate seeds
as Samsung (Ada and Bob) based on the output of the cho-
sen im algorithm. However, in reality, Ada or Bob may
adopt only one mobile phone model (which they prefer) to
recommend to their friends. For instance, Ada may adopt
Samsung whereas Bob may adopt HTC. Note that users who
are influenced by both Ada and Bob (persons in brown color
in Figure 1(b)), will rarely buy both phones. Instead, they
may need to make a choice between these two phones. Con-
sequently, in reality both companies may not eventually in-
fluence a large number of users as expected, especially when
both of them adopt im algorithms that recommend similar
candidate seeds. Clearly, this will lead to inferior influence
spread quality.

Now consider the case where we assume that Samsung and
HTC adopt different im algorithms. In this case, it is pos-
sible to have lesser degree of overlap between the candidate
seed sets. However, existing im techniques still estimate the
seed set of one group disregarding the impact of the influ-
ence spread of the other group. In this paper, we propose
a novel framework to study the im problem under competi-
tive networks where more than one competing groups want
to maximize their influence.

1.2 IM Research in Competitive Networks
Due to the aforementioned limitations, there have been

increasing research efforts to address the im problem in com-
petitive networks [1–3, 5, 15, 29, 31] (detailed in Section 2).
Although these efforts assume the existence of competing
groups in a network, they suffer from two key limitations
that may impede their adoption in real-world settings. First,
they assume that a company A, who has already selected the
seeds, is unaware of the existence of their new competitor B
(e.g., Samsung is unaware of HTC ). However, this is highly
unlikely in reality as a company is typically aware of their

3
For simplicity, we assume that the companies promote their own

products without seeking any aid from a third-party for promotion.
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(b) Competitive

Figure 1: [Best viewed in color] Influence propagation in
different networks.

potential rivals. Note that due to this unrealistic assump-
tion, a company A may fail to adapt their im strategy to one
that is suitable for a competitive network (in the presence of
the rival B) in order to maximize influence. In this paper,
an im strategy refers to an im algorithm or a mixture of im

algorithms that a group adopts to maximize their influence.
Second, they assume that the new company B is aware of its
rival A’s strategy and selected seeds (target users) to whom
free samples of a product have been provided. Clearly, this
is highly unlikely to happen as majority of these companies
who are promoting their products in social networks (e.g.,
Twitter) do not own these networks to track rivals’ strate-
gies or seeds.

More recently, game theory is leveraged to investigate the
im problem in competitive networks [10, 11, 26, 32]. Specif-
ically, the efforts in [10, 26] assume that each individual is
able to alternate their choices at arbitrary time step, which
deviates from traditional settings of the im problem. In real
applications, especially in viral marketing, whenever a user
buys a product she is viewed as being influenced. Conse-
quently, as the user is already influenced by a product, it
is highly unlikely that she is going to be influenced by any
other products. In [11] and [32], the authors investigate the
im problem between non-cooperative companies who select
the seeds alternately. However, the assumption of “alternate
seed selection” is unrealistic in may real-world applications
as it is extremely difficult for companies to select targets
alternatively (like playing chess).

1.3 Overview
In this paper, we take an important step towards recon-

sidering the im problem in a competitive network under
more realistic settings. Specifically, we jettison the afore-
mentioned assumptions (e.g., a new company being aware
of a rival’s strategy, competing companies may select seeds
alternatively) made by state-of-the-art im techniques. In-
stead, we make the following more realistic assumptions to
address the im problem in competitive networks.

• Firstly, given r different groups Ψ = {p1, . . . , pr} who
are maximizing their influences in a competitive net-
work G, each group pi may independently select k seeds
under some strategy (algorithm). Note that different
groups may or may not select seeds simultaneously.

• Secondly, we assume that each group pi is aware of the
existence of their rivals p1, . . . , pi−1, pi+1, . . . , pr but is
unaware of the im strategies adopted by them.

• Thirdly, as motivated in Section 1.1, we assume that
during influence propagation once a node in G is influ-
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enced by some group pi, it cannot be affected by any
other groups.

Based on the above assumptions, we seek to find the“best”
im strategy (strategy for brevity) for each group in Ψ ei-
ther by maximizing its influence or by minimizing its rivals’,
or both. Specifically, we provide an answer to the follow-
ing question: which existing im strategy a company should
adopt in the presence of rivals so that it can maximize its
influence?

Towards this goal, we model the im problem in a com-
petitive network as a game with each group as competitors
and the expected influences under the strategies as payoffs.
Consequently, we reformulate the im task in such networks
as the optimal im strategy selection problem in a game (de-
tailed in Section 3). By leveraging game theory, we first
show that pure andmixed strategies may achieve Nash Equi-
librium (ne) [16] (i.e., a state in which none of the groups in
the competition can influence more users by changing their
strategies) and then discuss how to select the“best” im strat-
egy by finding the existence of ne (Section 4). To realize this
solution, in Section 5 we propose a novel algorithm called
GetReal

4 (GamE Theory-based REalistic MAximization
of InfLuence) that seeks to find whether there exist a ne

and returns both pure and mixed strategies for ne in a com-
petitive network with r players and z strategies. Note that
finding the existence of ne is particularly important as it
guarantees that there exist an “optimal” strategy (strategy
that exhibits the most expected influence in comparison with
other strategies for all scenarios) for each group despite it be-
ing oblivious to their competitors’ seeds. We experimentally
demonstrate that GetReal enables us to obtain superior
quality influence spread in a competitive network compared
to state-of-the-art im techniques. We also show that this is
primarily due to the fact that it can find the best strategy
for a group in a competitive network attempting to maxi-
mize its influence against its rivals. In summary, we make
the following contributions in this paper.

• We reformulate the im problem in a competitive net-
work where several companies are competing to influ-
ence the users over the same product almost simulta-
neously under more realistic settings compared to the
state-of-the-art.

• We conduct a series of game theoretic analysis over the
combinations of im strategies by different companies in
the competition. Based on our analysis, we propose a
novel and generic algorithm called GetReal to gen-
erate optimal solutions for these companies by finding
the Nash Equilibrium (ne) under different conditions.
Note that our solution ensures that GetReal is not
tightly coupled to any specific influence propagation
model. This enhances its generality as well as porta-
bility as it can be easily realized over several popular
models such as the independent cascade (ic) model and
the linear threshold (lt) model.

• By applying GetReal to real-world datasets under
more realistic assumptions, we show its effectiveness
and superiority over state-of-the-art methods.

4
The name is inspired by an award-winning television programme in

Singapore called Get Rea! (pronounced as “get real”) that takes a
“fresh and hard look” at real-world issues related to life and living in
Singapore. Similarly, in this paper we take a fresh and hard look at
the real-world assumptions made by state-of-the-art im techniques.

Table 1: Key notations used in this paper.

Symbol Definition

G(V, E) A social network graph
n number of vertices in G
m number of edges in G
Ψ = {p1, . . . , pr} r different groups competing for influence
Φ = {φ1, . . . , φz} z different im algorithms each group may

choose from
φi
j pi adopts φj

Si the initial seeds selected by pi

A
j
i the nodes eventually activated by pi in j-

th round, thus A0
i is the initial seeds that

are eventually activated by pi
σ(·) expected number of influenced node
σ0(·) expected number of influenced node in sin-

gleton form, without competition
σi(φt1, . . . , φtr) the expected influence of pi with p1, . . . , pr

adopting strategies φt1, . . . , φtr, respec-
tively

Σ(Ψr ,Φr) expected influence in competitive network
with groups Ψ, each of which can choose a
strategy from Φ

R number of rounds of simulation
Eφt1...φtr

(σ(·)) expected σ(·) when pi adopts φti, ∀i =
1, . . . , r

The rest of this paper is organized as follows. We review
related work in Section 2. In Section 3, we formally define a
more realistic setting of the im problem in competitive net-
works. We propose a game theory-driven method to solve
the problem of selecting best im strategies for groups in a
competitive network in Section 4. In Section 5, we present
the GetReal algorithm to identify the “best” im strategies
involving r groups and z strategies. We present the exper-
imental results in Section 6. Finally, the last section con-
cludes this paper. The key notations used in this paper are
given in Table 1.

2. RELATED WORK
2.1 IM in Non-competitive Networks

Kempe et al. [18] proved that the im problem is np-hard.
Hence, they proposed an approximate greedy algorithm based
on the fact that if a greedy maximization algorithm of a
submodular function f returns the result Agreedy, then the
following holds f(Agreedy) ≥ (1 − 1/e)max|A|≤k f(A) [24].
That is, a greedy algorithm can give near optimal solu-
tion to the problem of maximization of a submodular func-
tion. Since then a large body of greedy [8,12,18,20–22] and
heuristic-based [6–9, 13, 17, 19] im techniques are reported
in the literature to improve efficiency, scalability, and in-
fluence spread quality. However, as discussed in Section 1,
these techniques are suitable for maximizing influence in a
non-competitive network. In reality, competition is ubiqui-
tous. Consequently, if all competitors in a particular prod-
uct market adopt the aforementioned approaches to influ-
ence the most number of users, then the initial seeds deter-
mined by these approaches may be shared by many com-
petitors. Given that a user may eventually be influenced by
a single competitor’s product among many alternative op-
tions, existing im approaches naturally fail to influence the
expected number of users in a competitive network.

2.2 IM in Competitive Networks
Carnes et al. [5] and Bharathi et al. [1] are among the

first to investigate the im problem in competitive networks.
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They proved that maximizing the influence of a competing
group with the prior knowledge of rival side’s initial seeds
is np-hard and submodular. Thus, they proposed a pair of
hill-climbing algorithms to maximize the influence with prior
knowledge of rival side’s choice. Borodin et al. [2] studied
similar problem under the lt model and further extended
the solution to general threshold model [18]. The efforts
in [3,15,31] investigate the problem of limiting the spread of
a given campaign, which shares similarity with the im prob-
lem in competitive networks. More recently, [29] proposed
to solve the same problem with a minimal number of seeds
selected by a latter group, who is maximizing its influence,
given that another group have already influenced a num-
ber of users. However, as remarked in Section 1, these ap-
proaches suffer from several limitations stemming primarily
from unrealistic assumptions. This limits their deployment
in competitive networks.

Clark and Poovendran [10] and Pathak et al. [26] assumed
that each individual is able to alternate their choice at ar-
bitrary time step in a competitive influence maximization
environment. However, in viral marketing, whenever a user
buys a product she is viewed as being influenced. Conse-
quently, once a user is influenced, she may not be influenced
by other products subsequently. Recently, Fazeli et al. [11]
and Tzoumas et al. [32] have investigated the im problem
between non-cooperative companies who select seeds alter-
nately using game theory. They assume that a pair of com-
panies select the seeds alternately in sequence, until both
companies have selected k seeds. Unfortunately, in the real
world it is highly unlikely that a competitor of a company is
aware (or informed) every time the latter selects a seed. Fur-
thermore, these techniques attempt to maximize the overall
influence of both companies by leveraging a third party asso-
ciation. However, such scenario may not happen frequently
in practice as many companies tend to maximize their own
influence while minimizing their competitors’. They typi-
cally adopt their own strategies without knowing their com-
petitors’. In contrast, GetReal assumes that each individ-
ual company is unaware of the choices of their competitors.

Goyal and Kearns [14] jettisoned the aforementioned un-
realistic assumptions and similar to our proposed technique
assume that each group is unaware of their competitors’
choices. However, this approach has the following draw-
backs. Firstly, for the initial seeds which are simultaneously
selected by both groups, namely p1 and p2, they assume
that each node is infected by p1 and p2 with a probability
proportional to the number of initial adopters of p1 and p2.
However, this strategy may run into a dilemma as the num-
ber of initial adopters of p1 and p2 cannot be determined in
reality before all the initial seeds for each group p1 and p2
are identified. In contrast, in our work a seed is activated
by both groups with equal chance. Secondly, they defined a
novel cascade model where the probability of a node to be
activated is proportional to the fraction of active nodes in
its neighborhood. However, in popular cascade models for
the im problem (e.g., ic, wc) the probability of a node to
be activated is affected by the exponential of the number of
activated neighbors. Hence, the aforementioned technique
has a limited applicability whereas, as we shall see later, our
method can be applied to any cascade models. Thirdly, ac-
cording to their model, the neighbors of a node v attempt
to activate v at the same time. Hence, if v is not infected by
its neighbors, it cannot be considered as a candidate seed.

However, in ic, wc and lt models, if a node v is not af-
fected by some neighbor, it is indeed possible to be affected
by other neighbors at some step later.

Additionally, the work in [11,14,32] theoretically analyzed
the existence of ne and the expected payoffs of competitors
within the game without proposing any method to search for
the ne. Furthermore, no simulation or experimental study
has been undertaken on real-world networks to validate the
approaches. In contrast, we not only analyze the existence
of ne but also propose an algorithm that searches for ne

given the group space and strategy space. Furthermore, we
demonstrate its effectiveness with simulation on several real-
world networks.

In [27], Prakash et al. theoretically showed winner takes
all in the context of epidemic propagation problem, where a
node i can be infected by a particular virus with probability
β and cured with probability δ. Then when β/δ ≥ τ = λ1,A

(i.e., the largest eigenvalue of adjacency matrix A) the epi-
demic survives, otherwise it dies out. im problem is com-
pletely different as it only assumes that a node can transmit
from inactive to active mode but not vice versa. Hence, in-
fluence cannot die out as long as it activates some nodes.
Furthermore, the authors argued that even if two viruses
both satisfy the epidemic threshold τ , one will dominate
over the other. This is because a node can transmit from
“infected by virus v1” to “cured” and then to “infected by
virus v2”. Such scenario does not happen in the im problem
setting.

3. PROBLEM DESCRIPTION
In this section, we formally define the problem of im strat-

egy selection in competitive networks. We begin by formally
defining the notion of im strategy. To facilitate our discus-
sion, we focus on the Independent Cascade (ic) andWeighted
Cascade (wc) models as these are the most popular cascade
models [7, 8, 18–20]. However, our proposed technique is
orthogonal to any specific cascade model as it provides a
general solution to the proposed problem.

3.1 IM Strategy
We model a social network as directed graph G = (V,E),

where nodes in V represent individuals in the network and
edges in E represent relationships between them. In contrast
to classical im techniques, influence diffusion in a competi-
tive network does not happen in a “singleton” form. Instead,
multiple pieces of influence diffuse simultaneously from com-
petitive groups in the network. Each competing group aims
to maximize their own influence considering the fact that
some nodes may not be influenced if they have already been
influenced by another group. Moreover, each group may
adopt different im strategies. Formally, an im strategy is
defined as follows.

Definition 1. Given a network G(V,E) and a cascade
model C, a strategy is an algorithm or a mixture of al-
gorithms that a group adopts to maximize their influence
subject to a budget k. All algorithms ( e.g., Hill-climb algo-
rithms, Heuristic algorithms, etc.) that a group may adopt
form a strategy space and is denoted by Φ = {φ1, . . . , φz}. If
a single algorithm is adopted, it is called a pure strategy.
Otherwise, we refer to it as a mixed strategy. We denote a
mixed strategy as φ∗ = {ρ1φ1, . . . , ρzφz} where

∑z

i=1 ρi = 1.
That is, φ∗ is a mixture of Φ, namely, each player selecting
seeds using φi with a probability ρi.
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Figure 2: The seeds in a competitive network (r = 2,z = 2).

3.2 IM Strategy Selection Problem
Clearly, im algorithms for non-competitive networks are

unsuitable to provide superior solution to the im problem in
competitive networks. On the other hand, existing im al-
gorithms for competitive networks make several unrealistic
assumptions. Hence, we revisit the im problem in compet-
itive networks under relatively more realistic settings and
cast it to the problem of optimal selection of im strategies
in a competitive network. In the sequel, we refer to this
reformulation of the im problem in competitive networks as
influence maximization with competition (imc), which is for-
mally defined below.

Definition 2. Let Ψ = {p1, p2, . . . , pr} be the set of groups,
each of which is maximizing their influence in a network
G(V,E). Let Φ = {φ1, . . . , φz} be a set of im strategies
that pi ∈ Ψ can choose from. Assume that each v ∈ V
can be activated by at most one pi ∈ Ψ and pi is unaware
of the strategies and seeds of other groups in Ψ. Given a
specific cascade model C and a budget number k, the influ-
ence maximization with competition (IMC) problem
is to choose φj ∈ Φ for each pi ∈ Ψ that finds a seed set Si

in G where |Si| = k such that the expected number of nodes
that are influenced by Si, σ(Si), is the largest. That is,

Si = argmax
S′

i
⊆V,|S′

i
|=k

σ(S′
i).

Remark. It is worth noting that the goal of the above
problem is not to propose yet another new im technique that
leverages local adoption dynamics and competition during
the diffusion process to generate superior influence spreads.
Instead, it selects the best existing im strategy from Φ for
each competing group in Ψ in a competitive network5. Since
there are already an array of im algorithms for non-competitive
networks, in this paper we explore how a group can leverage
them by choosing the “best” algorithm(s) (strategy) from
this existing collection to maximize influence in a competi-
tive network.

5
Similar to [14], we assume groups have the same budget k. Our

technique can be easily extended to arbitrary budgets for different
groups.

Recall that a common concern of each group in the compe-
tition is that their rivals may take precedence in the market.
As a result, competitive new products from rival companies
are often promoted at similar times. To this end, in our
model each group in a competitive network simultaneously
selects the seed set and triggers off the diffusion process.
Consider the simplest case where there is only one group.
Then the selected seed nodes are eventually initiated by the
group, which we refer to as initiators of the group. That is,
the initiators and seeds are the same in a non-competitive im
problem. However, this may not be the case when there are
multiple groups. In this case, each group may select their
own seed set, which may overlap with one another. Without
loss of generality, let Si be the seeds selected by pi and A0

i

be the set of initiators of pi. As depicted in Figure 2, S1 and
S2 represent the seeds selected by p1 and p2, respectively.
Observe that some of the seeds are selected by both p1 and
p2. However, in reality they can only act as seeds of only
one group (p1 or p2). Hence we can consider the nodes that
eventually act as seeds of p1 as initiators (denoted as A0

1).
Obviously, A0

1 comprises of two parts: the nodes in S1 \ S2,
which definitely act as seeds of p1; the nodes in S1 ∩ S2,
which act as seeds of p1 with certain probabilities.

Let S = {S1, S2, . . . Sr} be the seed sets of Ψ =
{p1, p2, . . . , pr} in G(V,E). A node selected by pi can also
be selected as a seed by other groups. Hence, we can use
a bitmap B = {0, 1}r to denote whether a seed of pi is
also selected by other groups. Specifically, if a seed of pi
is also a seed of pj , we set bj = 1. Hence, all seeds of pi
can be matched to 2r−1 different bitmaps where bi = 1.
These seeds can be classified into two groups according to
their bitmaps. The first group of seeds corresponds to the
sequence B = b1 . . . br where bi = 1, bj 6= 1 for ∀j 6= i. Note
that these seeds are selected by pi exclusively and definitely
belong to the initiators of pi, A

0
i . The second group of seeds

corresponds to the sequences B = b1 . . . br where bi = 1 and
∃j1, . . . , js 6= i such that bjh = 1 for h = 1, . . . , s (i.e., these
seeds are selected by not only pi but also some other groups
pj1, . . . , pjs). These seeds will be eventually initiating the
influence propagation of only one group with equal proba-
bility 1

s+1
. Obviously, there are 2r−1 − 1 bitmaps belonging

to the second group. Seeds corresponding to each of these
2r−1 − 1 bitmaps form a fuzzy set Q, for each seed v ∈ Q,
it belongs to A0

i with probability 1
|{j|bv

j
=1}|

where bvj is j-th

bit in v’s bitmap Bv = bv1b
v
2 . . . b

v
i−11b

v
i+1 . . . b

v
r .

Therefore, based on the pigeonhole principle, the expected
size of A0

i should be less than or equal to k.
The example depicted in Figure 2 illustrates the relation-

ship between A0
i and Si. Let p1 (e.g., Samsung) adopts

a strategy φi which returns the seeds S1; p2 (e.g., HTC )
adopts a strategy φj which returns the seeds S2 (|S1| =
|S2| = k = 5). Observe that there are three nodes in S1∩S2,
which are eventually influenced by one group, either p1 or
p2. Let us assume that two out of these three nodes in
S1 ∩ S2 are eventually influenced by p1. Hence, these two
nodes along with the other two nodes v ∈ S1 \ S2 are the
initiators of p1, denoted as A0

1.

Extension of Cascade Models. We now extend the ic

and wc models to competitive networks describing how mul-
tiple influences diffuse simultaneously in a given network.
Note that according to the ic model, if there are t neigh-
bors of v that are in Ai, then v ∈ Ai+1 with probability
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p2
φ1 φ2

p1
φ1 (λg, λg) (αg, βh)
φ2 (βh, αg) (γh, γh)

Table 2: Expected influence under Ψ× Φ.

1 − (1 − p)t. Hence, ic model in competitive networks can
be defined as follows.

Let Ai
j be the set of nodes that are influenced by pj in the

i-th round and |A0
j | ≤ k. If there are tj neighbors of v that

are in Ai
j , then v ∈ Ai+1

j with probability:

tj
∑r

j=1 tj
(1− (1− p)

∑r
j=1

tj ).

Similarly, in the wc model for competitive networks, v
belongs to Ai+1

j with the following probability:

tj
∑r

j=1 tj
(1− (1− 1/v.degree)

∑r
j=1

tj ).

In the following section, we propose a game theoretic strat-
egy to investigate the solutions for groups maximizing their
influences in a competitive network under these two models.

4. FINDING BEST STRATEGIES
As discussed in the preceding section, the goal of imc

problem is to select the best im strategy from Φ for each
competing group in Ψ in a competitive network such that
the influence of each group is maximized under a specified
cascade model. To this end, in this section we propose a
novel method using game theory to find the best solution for
groups that are competing for influence scope with a set of
rivals. We first describe the strategies that each group may
adopt. As remarked earlier, each strategy is correlated to
seed selection according to a specific im algorithm or even
a mixture of algorithms. With each group adopting some
strategy, a game can be formed with each group as com-
petitors and the expected influence under the strategies as
payoffs. Hence, we can seek ne within the game, from which
the best strategy for each group is obtained.

To simplify our discussion, we assume the competitive net-
work involves two groups and two strategies. That is, r = 2
(i.e., Ψ = {p1, p2}) and z = 2 (i.e., Φ = {φ1, φ2}) (e.g.,
Figure 2). It is worth noting that although it is widely ac-
knowledged that game between 2 or 3 competitive players
is prevalent in many real markets (e.g., Samsung vs. Apple
in smartphone; AMD vs. Intel in desktop cpus; Verizon,
Sprint and AT&T in US mobile service market) [25], the
solution proposed in this paper is not limited to this setting.
Particularly, it is applicable to more complex competitive
networks with more than two groups and two strategies.

Let g and h be the expected influence using strategies
φ1 and φ2, respectively. Clearly, in a competitive network
with Ψ = {p1, p2}, the expected influence of p1 and p2 both
adopting the same strategy φ1 (resp., φ2) should be equal
to each other. Let us denote it as λg (resp., γh). In the case
where p1 adopts φ1 and p2 adopts φ2, the expected influence
of p1 and p2 can be represented as αg and βh, respectively.
Similarly, in the symmetric case where p1 adopts φ2 while
p2 adopts φ1, the expected influence of p1 and p2 are βh
and αg, respectively. Thus, we have the matrix in Table 2

showing the expected influences under all combinations in
Ψ× Φ.

Definition 3. Let Ψ and Φ be the group space and strat-
egy space, respectively. Then a r-order strategy can be
denoted as Φr , and an instance of r-order strategy Φr

j =
(φj1, . . . , φjr) ∈ Φr refers to the case where pi adopts φji

for i = 1, . . . , r, respectively.

Definition 4. Let Ψ and Φ be the group space and strat-
egy space, respectively. The expected influence over all
groups for a r-order strategy Φr is defined as Σ : Φr 7→
R

r. Let σi(Φ
r
j ) be the expected influence of a r-order strategy

Φr
j . Then the expected influence over all r-order strategies

is given as follows:

Σ(Φr) = ((σ1(φ1, . . . , φ1), . . . , σr(φ1, . . . , φ1)),

(σ1(φ1, . . . , φ1), . . . , σr−1(φ1, . . . , φ1),

σr(φ1, . . . , φ1, φ2)),

...

(σ1(φz−1, φz, . . . , φz), σ2(φz−1, φz, . . . , φz),

. . . , σr(φz−1, φz, . . . , φz)),

(σ1(φz, . . . , φz), . . . , σr(φz, . . . , φz))).

Obviously, the number of element |Σ(Φ)| = zr, each of which
is a vector in R

r space.

Table 2 shows the expected influences of 2-order strategies
in a competitive network with r = 2, z = 2. By transferring
the expected influence for 2-order strategies into such a ta-
ble, the imc problem can be reformulated as a Nash Equi-
librium (ne) existence problem in the field of game theory.
For the sake of completeness, we first briefly introduce the
notion of Nash Equilibrium.

Nash Equilibrium (NE). In game theory, the Nash Equi-
librium is a solution concept of a non-cooperative game in-
volving two or more players, in which each player is assumed
to know the equilibrium strategies of the other players, and
no player has anything to gain by changing only his own
strategy unilaterally [16, 23]. If each player has chosen a
strategy and no player can benefit by changing strategies
while the other players keep theirs unchanged, then the cur-
rent set of strategy choices and the corresponding payoffs
constitute a ne. Stated simply, p1 and p2 are in ne if p1 is
making the best decision she can, taking into account p2’s
decision, and p2 is making the best decision he can, taking
into account p1’s decision. Likewise, a group of players are
in ne if each one is making the best decision that he or she
can, taking into account the decisions of the others. In the
following, we discuss the solution to the ne from the param-
eters in Table 2. In particular, in contrast to [11,14,32], we
present a generalized technique, which is applicable to any
existing cascade model, for finding the existence of ne.

4.1 The Values of γ, λ, α and β

Solving the ne within the expected influence of r-order
strategies shown in Table 2 requires detailed comparison
over the adjacent entries in the table. We now discuss the
entries in the expected influence of r-order strategy table.
Through the discussion, we are able to show how the ex-
pected influence of strategies affect the existence of ne. In
the next section, we shall propose an algorithm for solving
the problem in more general case.
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Theorem 1. Let g, h be the expected influence for strate-
gies φ1, φ2 with seeds set size k, respectively, in a network
without competition. The expectation for the expected in-
fluence of 2-order strategy when both groups adopt the same
strategy in a competitive network ( i.e., (σ1(φ1, φ1), σ2(φ1, φ1))
and (σ1(φ2, φ2), σ2(φ2, φ2))) can be represented as (λg, λg)
and (γh, γh), respectively. Moreover, the following holds λ ∈
[ 1
2
, 1− ǫ1

2g
] and γ ∈ [ 1

2
, 1− ǫ2

2h
] where ǫi = Eφi

(σ(S1 ∩ S2)).
6

Proof. Let σ0(S) be the expected number of influenced
nodes with initial seeds set S in a network without com-
petition. As S is generated from a randomized algorithm
φi, we use Eφi

(σ0(S)) to denote the expected σ0(S) that is
computed over φi. Then Eφ1

(σ0(S)) = g when we adopt φ1

strategy. Hence, Eφ1
(σ0(S1)) = Eφ1

(σ0(S2)) = g.
On one hand, as σ0(·) is monotonically increasing [18], the

following holds: g = Eφ1
(σ0(S1)) ≤ Eφ1

(σ0(S1∪S2)). Also,
S1 ∪ S2 = A0

1 ∪ A
0
2 and A0

1 ∩A
0
2 = ∅. Thus,

Eφ1
(σ0(S1 ∪ S2)) = Eφ1

(σ(S1 ∪ S2)) = Eφ1
(σ(A0

1 ∪A
0
2)).

As there is no overlap between A∞
1 and A∞

2 , then the fol-
lowing holds:

Eφ1
(σ(A0

1 ∪A
0
2)) = Eφ1

(|A∞
1 |) + Eφ1

(|A∞
2 |)

= λg + λg = 2λg.

Thus, g ≤ 2λg which indicates λ ≥ 1
2
.

Similarly, h ≤ 2γh under strategy φ2. Thus, γ ≥ 1
2
.

On the other hand, as σ0(·) is submodular [18]7, the fol-
lowing holds under strategy φ1:

σ0(S1 ∪ S2)− σ0(S1) = σ0(S1 ∪ (S2 \ S1))− σ0(S1)

≤ σ0((S1 ∩ S2) ∪ (S2 \ S1))

−σ0(S1 ∩ S2).

In fact, Eφ1
(σ0(S1 ∪ S2)) = E(|A∞

1 |) + E(|A∞
2 |) = 2λg and

Eφ1
(σ0((S1 ∩ S2) ∪ (S2 \ S1))) = Eφ1

(σ0(S2))

= Eφ1
(σ0(S1)) = g.

If we represent Eφ1
(σ0(S1∩S2)) as ǫ1, then 2λg−g ≤ g−ǫ1

which indicates λ ≤ 1− ǫ1
2g
.

Similarly, 2γh − h ≤ h − ǫ. Hence, γ ≤ 1 − ǫ2
2h

where

ǫ2 = Eφ2
(σ0(S1 ∩ S2)).

Corollary 1. Let g, h be the expected influences for strate-
gies φ1, φ2, respectively, in a network without competition.
The expectation for the expected influence of 2-order strat-
egy where both groups adopt different strategies in a compet-
itive network ( i.e., (σ1(φ1, φ2), σ2(φ1, φ2)) and (σ1(φ2, φ1),
σ2(φ2, φ1))) can be represented as (αg, βh) and (βh, αg), re-
spectively. Moreover, the following holds α+β ∈ [1, 1+ g−ǫ

h
]

where

ǫ = Eφ1φ2
(σ(S1 ∩ S2)) = Eφ2φ1

(σ(S1 ∩ S2)).

Proof. Similar to the proof for Theorem 1, the following
holds:

g + h− ǫ ≥ αg + βh ≥ g.
6
Note that as all greedy im algorithms are in fact based on sampling

method, the seeds selected by the same algorithm may not be exactly
the same.
7
Note that σ0(S) is the expected number of influenced nodes with

initial seeds set S in a network without competition and therefore
satisfies submodularity. Hence, we do not need to know whether σ(S),
the competitive version, is submodular or not.

On the other hand, according to the result in [8], g ≥ h.
Thus,

(α+ β)h ≤ αg + βh ≤ (α+ β)g.

Combining both sets of inequalities together, we can gener-
ate the following inequalities:

{

(α+ β)h ≤ g + h− ǫ

(α+ β)g ≥ g

Hence,






α+ β ≤ 1 +
g − ǫ

h

α+ β ≥ 1

In fact, the values of γ, λ, α and β are affected by the
degree of overlap between the seeds generated from differ-
ent algorithms, which is eventually decided by the topologi-
cal characteristics of the network and the adopted influence
cascade model. For instance, if a network always generates
the same initial seeds according to a specific algorithm, the
values of λ and γ are 1

2
. Otherwise, if a network generates

different initial seeds according to the same algorithm, the
values of λ and γ are close to the upper bound. Note that α
and β are also affected by the topological characteristics of
networks in the same way. Experimental results in Section 6
shall justify our conclusion.

4.2 Pure Strategy Nash Equilibrium
Next we show in detail the ne that can be found from the

expected influence table of 2-order strategy. We begin by
formally defining ne in the context of the imc problem.

Definition 5. A r-order strategy Φr
j = (φt1, . . . , φtr) is

an equilibrium for ps if ∀φ′
ts ∈ Φ and φ′

ts 6= φts, the fol-
lowing holds: σs(φt1, . . . , φt(s−1), φts, φt(s+1), . . . , φtr) ≥
σs(φt1, . . . , φt(s−1), φ

′
ts, φt(s+1), . . . , φtr). If a r-order strat-

egy Φr
j is an equilibrium for all groups pi ∈ Ψ, then it is a

Nash Equilibrium8.

Let (φi, φj) be the 2-order strategy where p1 adopts φi

while p2 adopts φj . We iteratively examine each 2-order
strategies in Table 2. If a 2-order strategy dominates the
others with respect to the expected influence for both groups
p1 and p2, it is a pure strategy ne.

If λg ≥ βh and αg ≥ γh, the 2-order strategy (φ1, φ1) is
the ne. It can be explained as follows. In case p2 adopts φ1,
φ1 is superior to φ2 for p1 as the following holds

σ1(φ1, φ1) = λg ≥ βh = σ1(φ2, φ1).

In the other case when p2 adopts φ2, φ1 is also superior to
φ2 for p1, as

σ1(φ1, φ2) = λg ≥ βh = σ1(φ2, φ2).

Thus, no matter whichever strategy p2 adopts, p1 has to
adopt φ1. Similarly, it is easy to see that p2 has to adopt φ1

in both cases (i.e., p1 adopts φ1 or φ2).

8
We only consider dominant strategy nash equilibrium. The strategy

of every player (i.e., p1, p2, . . .) in this equilibrium always dominates
other strategies no matter how other players choose their strategies.
This is consistent with our problem settings where companies are un-
aware of each other’s strategy and aim to maximize their own benefits
while not dominated by any other groups.
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Similarly, If λg ≤ βh and αg ≤ γh, the 2-order strategy
(φ2, φ2) is the ne. Particularly, Nash [23] has proved that in
a symmetric game where the players are commutative with
each other, if there is a ne, it exists when all the players
adopt the same strategy (i.e., (φ1, φ1) or (φ2, φ2))

9.

4.3 Mixed Strategy Nash Equilibrium
Observe that when none of the 2-order strategy dominates

all the other ones, there does not exist a ne based on pure
strategy. However, there exists another type of solution,
namely mixed strategy, where players choose a probability
distribution over possible strategies. Nash [23] has proved
for a game with finite set of actions (i.e., strategies), at least
one mixed strategy ne must exist in such a game.

Definition 6. A r-order mixed strategy is a r-order
strategy Φr

j = (φ∗
1, . . . , φ

∗
r) where φ

∗
i is a probabilistic strategy

that pi adopts φ1, . . . , φz with probability ρi1, . . . , ρiz
(
∑z

j=1 ρij = 1), respectively.

Hence, in a network with r = 2, z = 2, the expectation for
p1 adopting φ1 can be given as follows.

E[ρσ1(φ1, φ1) + (1− ρ)σ1(φ1, φ2)] = ρλg + (1− ρ)αg. (1)

On the other hand, the expectation for p1 adopting φ2 is
given as:

E[ρσ1(φ2, φ1) + (1− ρ)σ1(φ2, φ2)] = ρβh+ (1− ρ)γh. (2)

Nash [23] proved that the mixed strategy exists when both
equations equal to each other. Specifically, all the players in
a symmetric game where the players are commutative with
each other, will adopt the same mixed strategy : φ∗

1 = · · · =
φ∗
r . Hence, let ρλg + (1− ρ)αg = ρβh+ (1− ρ)γh. Then a

mixed strategy ne can be found when the following holds.

ρ =
γh− αg

γh− αg + λg − βh
(3)

That is, in a problem where pure strategy ne does not exist,
the best solution for each group (i.e., p1, p2) is to adopt a
mixed strategy by adopting φ1, φ2 with the following prob-
abilities, respectively.

γh− αg

γh− αg + λg − βh
(4)

λg − βh

γh− αg + λg − βh
(5)

Next, we propose a framework to solve the imc problem by
exploiting ne in the expected influence for r-order strategy.

5. THE GETREAL ALGORITHM
In the preceding section, we have formally defined r-order

strategy as well as the corresponding expected influence (Def-
initions 3 and 4). Using the r-order strategy, we reformulate
the imc problem as a ne existence problem. By investigating
the simplest case, namely the existence of pure ne in imc

problem with r = 2, z = 2 (Theorem 1 and Corollary 1),
we describe a method to find the pure ne in general imc

9
We do not consider the asymmetric nash equilibrium, where an equi-

librium is formed by groups adopting different pure strategy. In this
case, there is at least one group dominated by the others in any nash
equilibrium, and thus that group will reject the nash. In our algo-
rithm, we tackle this using a randomized mixed strategy ne.

Algorithm 1: The GetReal Algorithm.

Input: network G(V, E), group space Ψ = {p1, . . . , pr},
seeds sets S1, . . . , Sz generated by strategies
φ1, . . . , φz, respectively; the expected influence
function σi(St1, . . . , Str) under a given influence
cascade model.

Output: the best strategy φ∗ = {ρ1φ1, . . . , ρzφz} for
each group, where

∑z

i=1 ρi = 1.
1 begin
2 foreach ψ = (φt1, . . . , φtr) ∈ ψ(Φr) do
3 foreach pi ∈ Ψ do
4 compute σi(ψ) = σi(St1, . . . , Str);

5 foreach φi ∈ Φ do
6 if ∀ps ∈ Ψ and φs

j 6= φi, σs(φi, . . . , φi) ≥

σs(φ
1
i , . . . , φ

s−1
i , φs

j , φ
s+1
i , . . . , φr

i ) then
7 return φ∗ = {φi} /* the pure strategy */;

8 Solve the equation set
∑

~ℓ∈L

~ρ⊙ ~ℓσ1(φ1, φ−1(~ℓ)) =
∑

~ℓ∈L

~ρ⊙ ~ℓσ1(φ2, φ−1(~ℓ));

9 = · · · =
∑

~ℓ∈L

~ρ⊙ ~ℓσ1(φz, φ−1(~ℓ));

10 return φ∗ = {ρ1φ1, . . . , ρzφz} where (ρ1, . . . , ρz) = ~ρ
11 /* the mixed strategy */;

problem with r ≥ 2, z ≥ 2 in Section 4.2. In case there is no
pure strategy, we additionally show how to find the mixed
ne in general imc problem with r ≥ 2, z ≥ 2 in Section 4.3.
Hence we now have all the machinery in place to present the
GetReal algorithm.

The main idea of the algorithm is as follows. Given a com-
petitive network G(V, E) with group space Ψ = {p1, . . . , pr}
and strategy space Φ = {φ1, . . . , φz}, let f : Ψ 7→ Φ be
a function that maps every element of Ψ to an element in
Φ. Hence, each function f corresponds to a specific case
in the game where each group adopts a specific strategy.
We compute the expected influence of each group under
each function. If there exist any strategy which exhibits
the most expected influence under all functions, it is output
as a pure strategy that is correlated to a pure ne. Otherwise,
we need to find the mixed strategy by searching for mixed
ne solution as follows. Let σi(φj , φ−i) be the expected in-
fluence of pi while pi adopts φj and other groups adopt a
combination over all the strategies, namely φ−i. Clearly,
φ−i contains zr−1 cases. For instance, φ−1 contains the
cases (φ1

2, . . . , φ
1
r), (φ

1
2, . . . , φ

1
r−1, φ

2
r), . . . , (φ

z
2, . . . , φ

z
r). That

is, the number of remaining r−1 users adopting an arbitrary
strategy φi follows a distribution L = (ℓ1, . . . , ℓz) subject to
∑z

i=1 ℓi = r − 1, where ℓi indicates the number of play-
ers adopting φi. Let φ−i(L) denote the case where players
other than ψi adopt strategies according to the distribution
L. Hence, φ−1 contains all the possible distributions of L
which contains zr−1 cases. Generally, given that φ−1 fol-
lows a distribution L = (ℓ1, . . . , ℓz) and for each player φi

occurs with probability ρi, then L occurs with a probabil-

ity
∏r

i=1 ρ
ℓi
i . Formally, we denote

∏r

i=1 ρ
ℓi
i as ~ρ ⊙ ~ℓ where

~ρ = (ρ1, . . . , ρr) and ~ℓ = (ℓ1, . . . , ℓr). We now present the
GetReal algorithm to find the best solution.

Algorithm 1 outlines the GetReal algorithm. Firstly, for
each instance of r-order strategy in Φr, the algorithm com-
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Table 3: Description of real-world networks.

Network No. of nodes No. of edges

Phy 37,154 231,584
Hep 15,233 58,891
Wiki-talk 2,394,385 5,021,410

putes the expected influence for each group pi ∈ Ψ using
σ(Φr) (Lines 2-4). Obviously, there are zr instances in r-
order strategy set Φr. For each instance, the algorithm com-
putes the expected influence for r different groups. Next, it
tests whether there exist any pure strategy ne as described
in Definition 5 (Lines 5-7). Note that we have also shown in
Section 4.3, if there is a ne in a symmetric game where the
players are commutative with each other, it exist when all
players adopt the same strategy. Hence, we examine only z
instances in the r-order strategy space, namely, (φi, . . . , φi)
for all i = 1, . . . , z (Lines 5). For each of these instances,
namely (φi, . . . , φi), the algorithm checks whether there is
an increase in the expected influence of ps for all s = 1, . . . , r
when ps changes its strategy (Lines 6). If there is any in-
crease, the r-order strategy (φi, . . . , φi) is rejected and we
turn on to (φi+1, . . . , φi+1). Otherwise, the pure strategy ne

happens when each group adopts φi (Lines 7). Recall that
we only aim to find symmetric pure strategy where ne hap-
pens when all groups adopt the same strategy. We do not
consider the asymmetric ne where an equilibrium is formed
by groups adopting different pure strategy. For this case,
the best strategy is to adopt a randomized mixed strategy
ne which is guaranteed to exist in finite action games [23].
Specifically, it exists when all the z expectations of the pay-
off (i.e., expected influence) for ps adopting each strategy
equal to each other. Thus, GetReal finds the solution (i.e.,
ρ1, . . . , ρz) towards the equation set with z equations (Lines
8-10) based on our discussion in Section 4.3. Note that it has
been proven that finding the mixed equilibrium in a game
with r players (i.e., groups) and z actions (i.e., strategies) is
np-complete [28]. Hence, it works effectively in games where
z, r ≤ 3, which represents many real-world scenarios [25].
Observe that GetReal can easily be extended (by replac-
ing Lines 8-10 with a state-of-the-art approximate approach
in game theory [4, 28]) to handle more complex networks
(i.e., z, r ≥ 4) by solving ne in complex games10.

6. PERFORMANCE STUDY
GetReal is implemented in C++. We ran all exper-

iments on 3.2GHz Quad-Core Intel i5 machines with 8gb
ram, running Windows 7. Note that there is no existing im

algorithm for competitive networks which we can compare
with GetReal. This is because, in addition to the unre-
alistic assumptions, the efforts in [11,14,32] do not provide
solutions for finding ne as they focus on theoretical study of
the existence of ne.

6.1 Experimental Setup
Table 3 summarizes the three real-world social network

graphs used in our experiments. Phy and Hep are two aca-
demic collaboration networks11 which are also used in sev-
eral prior studies such as [7, 8, 13, 18, 20]. The Wiki-talk12

10
Pure ne can be found in polynomial time and is not the main chal-

lenge in such complex game.
11

Hep and Phy are downloaded from http://research.microsoft.com/
enus/people/weic/graphdata.zip.

12
Downloaded from http://snap.stanford.edu/data/wiki-Talk.html.

is a large network containing millions of nodes representing
all the users and discussions in Wikipedia from its inception
to January 2008. Nodes in the network represent Wikipedia
users and edges represent talk page editing relationship.

Recall that the goal of this work is to choose an optimal
existing im strategy for each group so that each group can
maximize influence. Hence, we report the following experi-
ments under different cascade models. Recall from Section 4,
2-player game is the most classic game in many real appli-
cations [25]. Hence, we focus our experimental study on 2-
order strategies. Note that the qualitative results on 3-order
strategies are similar and we do not report them here due to
space constraints (requires 27 graphs for a single dataset).

• Firstly, we show the optimal 2-order strategy that is
selected by our framework and compare it with the
other two 2-order strategies under each model (ic and
wc). Hence, there are six different 2-order strategies
as listed below.

• Secondly, we show the impact of our realistic assump-
tions on the im problem by comparing GetReal with
some of the state-of-the-art algorithms designed for
non-competitive networks.

• Thirdly, for the case when pure ne does not exist, we
show the 2-order mixed strategy found by our frame-
work and compare it with other 2-order strategies as
well as the random strategy.

We denote the strategies involved in these experiments as
follows:

• “ddic-mgic”: 2-order strategy (DegreeDiscountIC, Mix-
GreedyIC [8]).

• “mgic-mgic”: 2-order strategy (MixGreedyIC,
MixGreedyIC ).

• “ddic-ddic”: 2-order strategy (DegreeDiscountIC, De-
greeDiscountIC ).

• “sdwc-mgwc”: 2-order strategy (SingleDiscount, Mix-
GreedyWC [8]).

• “mgwc-mgwc”: 2-order strategy (MixGreedyWC,Mix-
GreedyWC ).

• “sdwc-sdwc”: 2-order strategy (SingleDiscount, Sin-
gleDiscount).

• “s-mgic”: running MixGreedyIC in non-competitive
network.

• “s-mgwc”: running MixGreedyWC in non-competitive
network.

• “Mixed Str.”: 2-order strategy (φ∗ = ρφ1, (1 − ρ)φ2)
with both p1 and p2 adopt φ1, φ2 with probability ρ, 1−
ρ, respectively.

• “Random”: both p1 and p2 adopt φ1, φ2 randomly.

Observe that we chose the popular im techniques in [8] as
representative strategies. However, our strategy space is not
limited to these selected algorithms. Particularly, GetReal

is orthogonal to any specific choice of im techniques. Other
im techniques such as [7,19] can be chosen as well.
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Figure 3: Overlap between S1 and S2 (ic model).
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Figure 4: Overlap between S1 and S2 (wc model).

6.2 Experimental Results
Similarity Between the Selected Seeds Sets. We ran
a series of 2-order strategies with φ1 =MixGreedy (ic) and
φ2 =DegreeDiscount (ic). Before comparing the influence
spread, we compare the selected seeds in the three different
2-order strategies, namely, “ddic-mgic”, “mgic-mgic” and
“ddic-ddic”. We compute the jaccard similarity between
S1 and S2 under each 2-order strategy, which is computed
as follows:

Sim(S1, S2) =
|S1 ∩ S2|

|S1 ∪ S2|
.

Note that it can also be computed as follows.

Sim(S1, S2) =
2k − (|A0

1|+ |A0
2|)

|A0
1|+ |A0

2|
.

Figure 3 plots Sim(S1, S2) by varying k = 10, . . . , 50 for
the three datasets. Obviously, the 2-order strategies “ddic-
ddic” and “mgic-mgic” exhibit higher similarity than the
strategy “mgic-ddic”. Specifically, the seeds selected by the
same im algorithms have larger overlap and is consistent with
our discussion in Section 1. We also evaluated the jaccard
similarities when φ1 =MixGreedy (wc) and φ2 =SingleDiscount.
The results are reported in Figures 3(b), 3(c), and 4. All
these cases show similar behavior as Figure 3(a).

The Pure Strategy Solutions. The aim of this set of ex-
periments is to find the best pure strategy a group should
choose, given all the possible pure strategies their competi-
tors may choose from. Based on the seeds selected by dif-
ferent algorithms under three r-order strategies under ic

model, we compute the expected influence for groups p1 and
p2. Based on Algorithm 1, we find the pure strategy ne so-
lution towards Hep dataset as “mgic-mgic”. That is, the
best solution for p1 to maximize their influence is to choose
MixGreedy (ic model) to select the seeds, no matter which
strategy p2 adopts (MixGreedy or DegreeDiscount). In fact,
p2 will also select MixGreedy (ic) for the same reason as
p1. Figures 5(a) and 5(b) justify our conclusion. In both
figures we plot the expected influence of p1 by fixing the
strategy of p2. The curve “mgic” (resp., “ddic”) means p1
adopts MixGreedy (resp., DegreeDiscount). In Figure 5(a)
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Figure 8: Comparison between mixed (ρ = 0.582) and ran-
dom strategies (Hep under wc model).

we fix p2 to adopt “mgic” and vary the approaches for p1.
Clearly, “mgic” dominates “ddic”. That is, p1 should adopt
“mgic” when p2 adopts “mgic”. In Figure 5(b) we fix p2 to
adopt “ddic” and vary the approaches for p1. Again “mgic”
dominates “ddic”. That is, p1 should adopt “mgic” when
p2 adopts “ddic”. Thus, p1 should adopt “mgic” no mat-
ter whichever strategy p2 adopts (“mgic” or “ddic”). Simi-
larly, p2 should also select “mgic” as p2 and p1 is symmetric.
Likewise, we can also find pure strategy ne in the other
four scenarios, namely, Phy and Wiki datasets under both
ic and wc models. These are reported in Figures 6 and 7,
respectively.

The Mixed Strategy Solutions. In all the datasets and
cascade scenarios discussed above, there exist one case where
we cannot find a pure strategy solution: Hep under wc

model (Figures 5(c) and 5(d)). Hence, we search for mixed
strategy (Lines 8-10 in Algorithm 1). Executing GetReal

on this scenario computes the value of ρ as 0.582. That is,
the mixed strategy for p1 (resp., p2) is to adopt MixGreedy
and SingleDiscount with probabilities 0.582 and 0.418, re-
spectively.

In order to test the performance of mixed strategy ne, we
simulate the influence propagation for R = 50 rounds by
choosing each 2-order strategy pair according to ρ. Specif-
ically, “mgwc-sdwc” and “sdwc-mgwc” are adopted with
probability 0.582 × 0.418 = 0.243, respectively. “mgwc-

mgwc” and “sdwc-sdwc” are adopted with probabilities
0.5822 = 0.339 and 0.4182 = 0.175, respectively. The his-
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Figure 5: [Best viewed in color] Influence spread in competitive network (z = 2, r = 2, Hep dataset).
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Figure 6: [Best viewed in color] Influence spread in a competitive network (z = 2, r = 2, Phy dataset).

100

200

300

400

500

600

700

Ex
pe

ct
ed

 In
flu

en
ce

 S
pr

ea
d 

(p
1) SDWC-SDWC

SDWC-MGWC
MGWC-MGWC
MGWC-SDWC

Mixed Str.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Ex
pe

ct
ed

 In
flu

en
ce

 S
pr

ea
d 

(p
2)

k

SDWC-SDWC
SDWC-MGWC

MGWC-MGWC
MGWC-SDWC

Mixed Str.

Figure 9: Average influence under different 2-order strate-
gies (Hep under wc model).

tograms in Figure 9 show the average influence spread of
different 2-order pure strategies for p1 and p2. The horizon-
tal lines in the figure represent the average number of even-
tually influenced nodes under 2-order mixed strategy with
ρ = 0.582 over all 50 rounds for each group. Obviously,
there does not exist a histogram, namely 2-order strategy,
which dominates others for both p1 and p2. Thus, there
does not exist a pure strategy ne. In this case, p1 or p2
has no idea which strategy they should adopt. Hence, we
propose to use mixed strategy, the performance of which is
shown by the horizontal lines. The optimal mixed strategy
with ρ = 0.582 outperforms the influence spread of “mgwc-

mgwc” and “sdwc-sdwc” by 20% and 9%, respectively. On
the other hand, the area under each horizontal line is larger
than the area covered by all the histograms for each k.
In other words, the expectation of the mixed strategy at
ρ = 0.582 is superior to the strategy which randomly select
a 2-order strategy with equal probability 0.25. This result
is shown in Figure 8. For both p1 and p2, mixed strategy is
better than random selection by 7%. Observe that the de-

Table 4: Response Times.

network Hep Phy Wiki-talk
model ic wc ic wc ic wc

(r = z = 2) 0.022s 0.034s 0.024s 0.024s 0.023s 0.03s
(r = z = 3) 0.043s 0.083s 0.044s 0.092s 0.098s 0.44s

gree of improvement over random selection depends on the
difference between the expected influence of pure strategy,
as the expected influence under mixed strategy is bounded
by the minimum and maximum of that under a particular
pure strategy within the strategy space. In the above case,
the difference between the expected influences of p1 adopt-
ing mgwc and sdwc is small. Hence, the expected influence
of mixed strategy of p1 is limited. In fact, regardless of the
existence of pure strategy ne, randomly selecting seeds over
strategy space is not the optimal solution.

Response times. Table 4 reports the response time of find-
ing ne (Lines 5-11 in Algorithm 1) when there are 2 (resp.
3) players and 2 (resp. 3) strategies. Observe that, given
the expected influence of different strategies for each group,
it is able to return the ne less in than a second.

Values of γ, λ, α, β. Finally, we evaluate the values of γ, λ, α, β.
For both ic and wc models, we compute the values from
the results generated under three 2-order strategies. Fig-
ures 10(a)-(b) plot the values for different k = 10, . . . , 50 in
Hep. In both figures, λ and γ are within the range [0.5,0.59],
which supports Theorem 1. Moreover, both λ and γ are close
to 0.5, which indicates that the summation over the influence
of p1 and p2 is close to that of the influence in regular form
without competition. In other words, it can be interpreted
as follows. By adopting the same strategy (i.e., MixGreedy
or DegreeDiscount), p1 and p2 select almost the same seeds

(i.e., | |S
1∩S2|

|S1∪S2|
− 1| < ǫ). As p1 and p2 are symmetric in

the competition, the expectation over the seeds initially ac-
tivated by them is the same (i.e., E(|A0

1|) = E(|A0
2|)). The

summation over them equals to the total number of seeds
activated, which in this case is close to k. Hence, both of
E(|A0

1|) and E(|A0
2|) are close to k/2. In both figures, (α+β)
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Figure 7: [Best viewed in color] Influence spread in a competitive network (z = 2, r = 2, Wiki dataset).
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Figure 10: [Best viewed in color] Values of γ, λ, α, β.

values are within the range [1.08,1.16] (resp., [1.2,1.29]) un-
der ic model (resp., wc model), which justifies our discus-
sion in Corollary 1.

Observe that the values of γ, λ, α, and β do not vary sig-
nificantly. However, they are different in the two models.
For instance, λ ranges from 0.56 to 0.59 in the ic model.
However, it is between 0.51 and 0.52 in the wc model. This
phenomenon indicates that γ, λ, α, and β are unaffected by
k. Instead they are influenced by the cascade models and
network topology. This is consistent with our discussion in
Section 4.1. The values of γ, λ, α, and β for Wiki and Phy
under these two models are reported in Figures 10(c)-(f) and
also show similar characteristics as above.

7. CONCLUSIONS & FUTURE WORK
State-of-the-art im techniques for non-competitive networks

can seldom be deployed in real-world applications as they
ignore competitions between rival companies to maximize
influence of a product. That is, they are not suitable for
the case where multiple groups are maximizing their in-

fluence simultaneously in a network. Our work reported
here contributes towards the goal of enhancing usefulness of
im techniques by designing a pragmatic im solution that is
competition-aware and is grounded on several realistic as-
sumptions. In particular, we study the setting where each
group is aware of the existence of their rivals but is un-
aware of the strategies adopted by their rivals. We propose
a framework that finds the best solution for each group, who
are maximizing their influences, based on game theory. To
this end, we propose a novel algorithm called GetReal that
seeks to find whether there exists a Nash Equilibrium (ne)
(i.e., whether there exists an optimal strategy that will ex-
hibit the most influence spread in comparison with other
strategies for all scenarios). Specifically, it can find either
pure strategy ne or mixed strategy ne in a network with
competition. Experimental results demonstrate that it can
find the optimal strategy for each group no matter which
strategy their rivals adopt.

Despite considering more realistic assumptions compared
to the state-of-the-art techniques for the im problem, com-
plex social behaviors of users and groups in a competitive
network may engender some special scenarios where some of
these assumptions may not hold. For instance, a user may
buy a product of a company p1 and then change her mind
to buy another product from a rival p2. In this case, the
assumption that once a user is influenced by some group,
it cannot be affected by any other groups, does not hold.
Furthermore, under certain scenarios the game may become
a biased one. For example, two groups p1 and p2 may col-
lude with each other secretly to compete with p3. In this
case, p1 and p2 not only know each other’s strategy, but
also can design a cooperative strategy to minimize the influ-
ence of p3. Therefore, p1 and p2 can be viewed as a special
company which selects 2k seeds in the game. It may also
happen that p1 and p2 may explicitly form an alliance (e.g.,
buying either product leads to customer services from both
companies). In this case the influence probability for p1 and
p2 may increase. Hence, as part of future work, we plan to
investigate such biased competition where groups exhibit dif-
ferent cascade models and explore efficient methods to solve
the imc problem in a more complex competitive networks.
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