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ABSTRACT
We present ZipG, a distributed memory-efficient graph store for
serving interactive graph queries. ZipG achieves memory effi-
ciency by storing the input graph data using a compressed rep-
resentation. What differentiates ZipG from other graph stores is
its ability to execute a wide range of graph queries directly on
this compressed representation. ZipG can thus execute a larger
fraction of queries in main memory, achieving query interactivity.

ZipG exposes a minimal API that is functionally rich enough
to implement published functionalities from several industrial
graph stores. We demonstrate this by implementing and evaluat-
ing graph queries from Facebook TAO, LinkBench, Graph Search
and several other workloads on top of ZipG. On a single server
with 244GB memory, ZipG executes tens of thousands of queries
from these workloads for raw graph data over half a TB; this
leads to an order of magnitude (sometimes as much as 23×)
higher throughput than Neo4j and Titan. We get similar gains in
distributed settings compared to Titan.

1. INTRODUCTION
Large graphs are becoming increasingly prevalent across a

wide range of applications including social networks, biological
networks, knowledge graphs and cryptocurrency. Many of these
applications store, in addition to the graph structure (nodes and
edges), a set of attributes or properties associated with each node
and edge in the graph [11,15,18,24,29]. Many recent industrial
studies [12, 24, 29] report that the overall size of these graphs
(including both the structure and the properties) could easily
lead to terabytes or even petabytes of graph data. Consequently,
it is becoming increasingly hard to fit the entire graph data into
the memory of a single server [11,29,54].

How does one operate on graph data distributed between
memory and secondary storage, potentially across multiple
servers? This question has attracted a lot of attention in re-
cent years for offline graph analytics, e.g., recent systems like
GraphLab [48], GraphX [38], GraphChi [43] and Trinity [54].
These systems now enable efficient “batch processing” of graph
data for applications that often run at the scale of minutes.
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Achieving high performance for interactive user-facing queries
on large graphs, however, remains a challenging problem.
For such interactive queries, the goal is not only to achieve
millisecond-level latency, but also high throughput [24, 29, 35].
When the graph data is distributed between memory and sec-
ondary storage, potentially across multiple servers, achieving
these goals is particularly hard. For instance, consider the query:
“Find friends of Alice who live in Ithaca”. One possible way to
execute this query is to execute two sub-queries — find friends
of Alice, and, find people who live in Ithaca — and compute the
final result using a join or an intersection of results from two
sub-queries. Such joins may be complex1, and may incur high
computational and bandwidth2 overheads [3].

Another interesting possibility to execute the above query is to
first find friends of Alice, and then for each friend, check whether
or not the friend lives in Ithaca. Executing the query in this man-
ner alleviates the overheads of join operation, but requires ran-
dom access into the “location” property of each friend of Alice.
The well-known problem here is that typical graph queries ex-
hibit little or no locality — the query may touch arbitrary parts of
the graph, potentially across multiple servers, some of which may
be in memory and some of which may be on secondary storage.
Unless the data for each of Alice’s friends is stored in memory, the
query latency and system throughput suffers. Thus, intuitively, to
achieve high system performance, graph stores should store as
large a fraction of graph data as possible in memory.

One way to store a larger fraction of graph data in memory
is to use compression. However, traditional block compression
techniques (e.g., gzip) are inefficient for graph queries precisely
due to lack of locality — since queries may touch arbitrary parts
of the graph, each query may require decompressing a large
number of blocks (e.g., all blocks that contain Alice’s friends
in the above example). Thus, designing compression techniques
specialized to graphs has been an active area of research for the
better part of last two decades [27,28,32,37,39,40,49,52,56].
Many of these techniques even support executing queries on
compressed graphs [28,32,37,39,40,49,52]. However, existing
techniques ignore node and edge properties and are limited to a
small subset of queries on graph structure (e.g., extracting edges
incident on a node, or subgraph matching). Contemporary appli-
cations require executing far more complex queries [2,3,8,29],
often involving node and edge properties.

1Graph search queries (such as the ones that we evaluate later
in §5) when implemented using traditional RDBMS may require
complex joins are referred to as “Join Bomb” by one of the state-
of-the-art graph serving companies [3].
2The cardinality of results for the two sub-queries may be orders
of magnitude larger than the final result cardinality.
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We present ZipG — a memory-efficient, distributed graph
store for efficiently serving interactive graph queries. ZipG
achieves memory efficiency by storing the input graph data
(nodes, edges and the associated properties) using a compressed
representation, and consequently stores a larger fraction of
graph data in memory when compared to existing graph stores.
What differentiates ZipG from existing graph stores is its ability
to execute a wide range of queries directly on this compressed
representation — ZipG exposes a minimal API that is rich enough
to implement functionalities from several graph stores including
those from Facebook [29], LinkedIn [58] and Twitter [7]. We
demonstrate this by implementing and evaluating the published
graph queries from Facebook TAO, LinkBench, Graph Search and
several other workloads on top of ZipG. Using a single server
with 244GB memory, ZipG executes tens of thousands of TAO,
LinkBench and graph search queries for raw graph data over half
a Terabyte.

ZipG builds upon Succinct [21], a distributed data store that
supports random access and arbitrary substring search directly
on compressed unstructured data and key-value pairs. ZipG uses
a new simple and intuitive graph layout that transforms the input
graph data into a flat unstructured file (§3). This layout admits
memory-efficient representation using compression techniques
from Succinct [21]. In addition, this layout carefully stores small
amount of metadata along with the original input graph data
in a manner that the two primitives of Succinct (random access
and substring search) can be extended to efficiently implement
interactive graph queries as expressive as those in Facebook TAO,
LinkBench and Graph Search workloads directly on compressed
representation of ZipG.

There are two challenges associated with storing data using a
compressed representation. The first challenge is to support high
write rates. The traditional approach to resolving this challenge
is to use a log-structured approach [21, 42] — updates are ap-
pended into a log; these logs are periodically compressed into
an immutable representation, after which the new updates are
written into a new log. However, naïvely using a log-structured
approach in graph stores results in nodes and edges having their
data “fragmented” across multiple logs; without any additional
data structures, each query now requires touching all the logs re-
sulting in reduced throughput (§3.5). ZipG uses log-structured
approach, but avoids touching all logs using the idea of fanned
updates. Specifically, each server in ZipG stores a set of update
pointers that ensure that during query execution, ZipG touches
exactly those logs (and bytes within the logs) that are neces-
sary for query execution. The second challenge with compressed
representation is in providing strong consistency guarantees and
transactions. ZipG currently does not attempt to resolve this chal-
lenge. While several graph stores used in production [7, 29, 58]
make a similar design choice, extending ZipG to provide such
guarantees is an interesting future direction.

We evaluate ZipG against Neo4j [11] and Titan [18], two pop-
ular open-source graph stores. All our experiments run on a set
of commodity Amazon EC2 machines, and use five workloads —
Facebook TAO [29], LinkBench [24], Graph Search [8], Regular
Path Queries [25] and simple graph traversals. We use graphs
from the real-world (annotated with node and edge properties
using TAO distribution) as well as LinkBench generated graphs
containing millions of nodes and billions of edges. Our evalua-
tion shows that ZipG significantly outperforms Neo4j and Titan
in terms of system throughput, usually by an order of magnitude
but sometimes by as much as 23×.

2. DATA MODEL AND INTERFACE
We start by outlining ZipG graph data model (§2.1) and the

interface exposed to the applications (§2.2).

2.1 ZipG Data Model
ZipG uses the property graph model [11, 15, 18, 29], with

graph data comprising of nodes, edges, and their associated
properties.

Nodes and Edges. ZipG uses usual definitions of nodes and
edges. Edges in ZipG could be directed or undirected. To model
applications where graphs may have different “types” of edges
(e.g., comments, likes, relationships) [29], ZipG represents each
edge using a 3-tuple comprising of sourceID, destinationID
and an EdgeType, where the latter identifies the type of the edge.
Each edge may potentially have a different EdgeType and may
optionally have a Timestamp. The precise representation is de-
scribed in §3.

Node and Edge Properties. Each node and edge in ZipG may
have multiple properties, represented by PropertyList. Each
PropertyList is a collection of (PropertyID, PropertyValue) pairs;
e.g., the PropertyList for a node may be {(age, 20), (location,
Ithaca), (zipcode, 14853)}. Each PropertyList in ZipG may have
arbitrarily many properties.

2.2 ZipG Interface
ZipG exposes a minimal, yet functionally rich, interface that

abstracts away the internal graph data representation details
(e.g., compression). Applications interact with ZipG as if they
were working on original graph data. In this section, we outline
this interface. We start with some definitions:

• EdgeRecord: An EdgeRecord holds a reference to all the
edges of a particular EdgeType incident on a node and to the
data corresponding to these edges (timestamps, destinationID,
PropertyList, etc.).

• TimeOrder: EdgeRecord can be used to efficiently implement
queries on edges. Many queries, however, also require a notion
of time (e.g., find all comments since last login). To efficiently
execute such queries, ZipG uses TimeOrder — for each node,
the incident edges of the same type are logically sorted using
timestamps. TimeOrder of an edge represents the order (e.g.
i-th) of the edge within this sorted list.

• EdgeData: Given the TimeOrder within an EdgeRecord, the
EdgeData stores the triplet (destinationID, timestamp, Prop-
ertyList) for the corresponding edge.

Table 1 outlines the interface exposed by ZipG, along with some
examples. Applications submit the graph, represented using the
property model in §2.1, to ZipG and generate a memory-efficient
representation using compress(graph). Applications can then
invoke powerful primitives (Table 1) as if the input graph was
stored in an uncompressed manner; ZipG internally executes
queries efficiently directly on the compressed representation.
Most queries in Table 1 are self-explanatory; we discuss some
of the interesting aspects below, and return to details on query
implementation in §4.2.

Wildcards. ZipG queries admit wildcard as an argument for
PropertyID, edgeType, tLo, tHi and timeOrder. ZipG in-
terprets wildcards as admitting any possible value. For instance,
get_node_property(nodeID,*) returns all properties for the
node, and get_edge_record(nodeID,*) returns all edgeRe-
cords for the node (and not just of a particular edgeType).
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Table 1: ZipG’s API and an example for each API. See §2.2 for definitions and detailed discussion.

API Example

g = compress(graph) Compress graph.

List<String> g.get_node_property(nodeID, propertyIDs) Get Alice’s age and location.

List<NodeID> g.get_node_ids(propertyList) Find people in Ithaca who like Music.

List<NodeID> g.get_neighbor_ids(nodeID, edgeType, propertyList) Find Alice’s friends who live in Boston.

EdgeRecord g.get_edge_record(nodeID, edgeType) Get all information on Alice’s friends.

Pair<TimeOrder> g.get_edge_range(edgeRecord, tLo, tHi) §2.2; tLo and tHi are timestamps (to define a time range).

EdgeData g.get_edge_data(edgeRecord, timeOrder) Find Alice’s most recent friend.

g.append(nodeID, PropertyList) Append new node for Alice.

g.append(nodeID, edgeType, edgeRecord) Append new edges for Alice.

g.delete(nodeID) Delete Alice from the graph.

g.delete(nodeID, edgeType, destinationID) Delete Bob from Alice’s friends list.

Node-based queries. Consider again the query “Find friends
of Alice who live in Ithaca”. Letting Alice to be the
NodeID and assuming friends have edgeType 0, the query
get_neighbor_ids(Alice,0,{Location, Ithaca}) returns
the desired results. Internally, ZipG implements this query by
first finding Alice’s friends, and then checking for each of the
friends, whether or not the friend lives in Ithaca (that is,
ZipG avoids joins to whatever extent possible). Applications
that have knowledge about the structure of the graph and/or
queries can also execute the same query using a join-based
implementation — using get_neighbor_ids(Alice,0,?) ∩
g.get_node_ids(Location, Ithaca), where the former re-
turns all friends of Alice and the latter returns all people who
live in Ithaca. We compare the performance of executing queries
with and without joins in Appendix B.3.

Edge-based queries and Updates. ZipG allows applications to
get random access to any EdgeRecord using get_edge_record,
and, into the data for any specific edge in EdgeRecord us-
ing get_edge_data. If edges contain timestamps, ZipG also al-
lows applications to access edges based on timestamps using
get_edge_range. Finally, applications can insert EdgeRecords
using append, delete existing EdgeRecords using delete, and
update an EdgeRecord using a delete followed by an append.

3. ZipG DESIGN
In this section, we present ZipG’s design and implementation.

We start with a brief description of Succinct [21].

3.1 Succinct Background
Succinct [21] is a data store that supports a wide range of

queries directly on a compressed representation of the input
data. Succinct exposes several interfaces to the applications: a
flat file interface for executing queries on unstructured data, and
a key-value (KV) interface for queries on semi-structured data.
Two queries from Succinct that will be of use for ZipG are:

• Random access via extract(offset, len) query on flat
files, that returns len many characters starting at arbitrary
offset; and via get(recordID) query for KV interface, that
returns the corresponding record.

• Search via search(val) query on flat files that returns offsets
where the flat file contains string “val”; for KV interface, keys
whose value contain string “val” are returned.

Internally, Succinct implements the above two queries using
three main data structures. The first two data structures are a

suffix array [17,50] and an inverse-suffix array [21], that enable
the search and the random access functionalities, respectively.
As such, both of these data structures have size n log(n) for a
flat file with n characters. Succinct achieves compression using
sampling — only a few sampled values (e.g., for sampling rate
α, value at indexes 0,α,2α, ..) from the two data structures are
stored. The third data structure allows computing the unsam-
pled values during query execution. This third data structure has
an interesting structure and admits an extremely small memory
footprint. Overall, for a sampling rate of α, Succinct’s storage
requirement are roughly 2ndlogne/α and the latency for com-
puting each unsampled value is roughly α.

More details on data structures and query algorithms used in
Succinct are not required to keep the paper self-contained; we
refer the reader to [21].

3.2 ZipG overview
ZipG builds on top of Succinct, but has to resolve a number

of challenges to achieve the desired expressivity, scalability and
performance. We outline some of these challenges below, and
provide a brief overview of how ZipG resolves these challenges.

Storing graphs. One of the fundamental challenges that ZipG
has to resolve is to design an efficient layout for storing
graph data using the underlying data store. This is akin to
GraphChi [43] and Ligra [55], that design new layouts for using
the underlying storage system for efficient batch processing of
graphs. ZipG’s layout should not only admit a memory-efficient
representation when using Succinct, but should also enable effi-
cient implementation of interactive graph queries using the ran-
dom access and search primitives of Succinct.

ZipG’s graph layout uses two flat unstructured files:

• NodeFile stores all NodeIDs and corresponding properties.
ZipG NodeFile adds a small amount of metadata to the list of
(NodeID, nodeProperties) before invoking compression; this
allows ZipG to tradeoff storage (in uncompressed representa-
tion) for efficient random access into node properties.

• EdgeFile stores all the EdgeRecords. By adding metadata and
by converting variable length data into fixed length data be-
fore invoking compression, ZipG EdgeFile trades off storage
(in uncompressed representation) to optimize random access
into EdgeRecords and more complex operations like binary
search over timestamps.

We discuss design of ZipG NodeFile and EdgeFile, and associated
tradeoffs in §3.3.
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NodeID PropertyList
Alice nickname: Ally, age: 42, location: Ithaca
Bob nickname: Bobby, location: Princeton
Eve age: 24, nickname: Cat

PropertyID
(Order,
Delimiter)

age (0, •)
location (1, †)

nickname (2, ?)

NodeID offset
Alice 0
Bob 21
Eve 42

284•42†Ithaca?Ally‡

095•†Princeton?Bobby‡

203•24†?Cat‡

+ +

Figure 1: An example for describing the layout of NodeFile. See description in §3.3.

$S1#EdgeType1,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM
$S1#EdgeType2,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM

...
$Sf#EdgeTypek,Metadata,T0,...,TM,D0,...,DM,PropertyList0,...,PropertyListM

•EdgeCount?Tlength†DLength Figure 2: EdgeFile Layout in ZipG (§3.3). Each row
is an EdgeRecord for a (sourceID, edgeType) pair.
Each EdgeRecord contains, from left to right, meta-
data such as edge count and width of different edge
data fields, sorted timestamps, destination IDs, and edge
PropertyLists.

Updating graphs. Another challenge for ZipG is to support high
write rates over compressed graphs. Traditional data stores typi-
cally resolve this challenge using log-structured storage [21,42]
— updates are appended into a log; these logs are periodically
compressed into an immutable representation, after which the
new updates are written into a new log. However, naïvely us-
ing a log-structured approach in graph stores results in nodes
and edges having their data “fragmented” across multiple logs
and each query will now need to touch all the data, resulting
in reduced throughput. ZipG avoids this problem using the idea
of fanned updates — each server in ZipG stores a set of update
pointers that ensure that during query execution, ZipG touches
exactly those logs (and bytes within the logs) that are necessary
for query execution. We describe fanned updates in §3.5.

3.3 Graph Representation
Existing graph stores use layouts that expose a hard tradeoff

between flexibility and scalability. On the one hand, systems like
Neo4j [11] heavily use pointers to store both the structure of the
graph and the properties for nodes and edges. While flexible in
representation, a pointer-based approach suffers from scalability
issues when the entire graph data does not fit into the memory
of a single server3. Systems like Titan [18], on the other hand,
scale well by using a layout that can be mapped to a key-value
(KV) store abstraction. However, KV abstraction is not very well
suited for interactive graph queries [29] — by enforcing values
to be stored as a “single opaque object”, KV abstraction limits
the flexibility of graph stores. Specifically, storing all the node
properties (or, set of incident edges) as a single opaque object
precludes these systems from fine-grained access into individual
node properties (or, individual edges).

ZipG uses a new graph layout that, while simple and intuitive,
provides both the scalability and flexibility by operating on flat
unstructured files. ZipG uses two flat unstructured files, which
we describe next.

NodeFile
NodeFile stores all the NodeIDs and associated properties, and is
optimized for two kind of queries on nodes: (1) given a (NodeID,
List<propertyID>) pair, extract the corresponding propertyVal-
ues; and (2) given a PropertyList, find all NodeIDs whose prop-
erties match the propertyList.

3Pointer chasing during query execution requires multiple ac-
cesses to secondary storage and/or different servers, leading to
undesired bottlenecks.

NodeFile consists of three data structures (see Figure 1). First,
each propertyID in the graph is assigned a unique delimiter4 and
stored as a PropertyID→ (order, delimiter) map, where order
is lexicographic ranking of the propertyID among all propertyIDs.

The second data structure is a flat unstructured file that stores
PropertyLists along with some metadata as described next. The
propertyValues are prepended by their propertyID’s delimiter
and then written in the flat file in sorted order of propertyIDs;
if a propertyID has a null propertyValue, we simply write down
the delimiter. An end-of-record delimiter is appended to the end
of the serialized propertyList of each node. For instance, Al-
ice’s propertyList in Figure 1 is serialized into •42†Ithaca?Ally‡,
where ‡ is the end-of-record delimiter.

The metadata in the second data structure exposes a space-
latency tradeoff. Specifically, the size of propertyValues within a
node’s propertyList vary significantly in real-world datasets (e.g.,
Alice’s age 42 and location Ithaca in above example) [29]. Us-
ing the largest size of PropertyValues (8bytes for Alice) as a fixed
size representation for each propertyValue enables efficient ran-
dom access but at the cost of space inefficiency. On the other
hand, naïvely using a space-efficient variable size representation
(2bytes for age, 8bytes for location, etc.) without any additional
information leads to inefficient random access — Alice may put
her age, name, nickname, location, status, workplace, etc. and
accessing status may require extracting many more bytes than
necessary. To that end, ZipG uses variable size representation for
propertyValues but also explicitly stores the length of each prop-
ertyValue into the metadata for each propertyList. The lengths of
propertyValues are encoded using a global fixed size len, since
they tend to be short and of nearly similar size. In the exam-
ple of Figure 1, the propertyList for Alice is thus encoded as
284•42†Ithaca?Ally‡.

The third data structure stored in NodeFile is a simple two-
dimensional array that stores a sorted list of NodeIDs and the
offset of node’s PropertyList in NodeFile.

EdgeFile
EdgeFile stores the set of edges and their properties. Re-
call from §2 that each edge is uniquely identified by the
3-tuple (sourceNodeID,destinationNodeID,EdgeType) and
may have an associated timestamp and a list of properties. See
Figure 2 for an illustration.

4Graphs usually have a small number of propertyIDs across all
nodes and edges; ZipG uses one byte non-printable characters
as delimiters (for up to 25 propertyIDs) and two byte delimiters
(for up to 625 propertyIDs).
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(1,0) ... 2,1 ...

...

Shard#1

(1,0) • •

Update Pointers

... (1,0) ... 5,3 ...

...

Shard#k

(NodeID,EdgeType) ... Timestamps ...

... (1,0) ... 10 ...

...

Shard#n

Read Request for (1,0)

Figure 3: Update Pointers for the EdgeFile (§3.5).

Each EdgeRecord in the EdgeFile corresponds to the set
of edges of a particular EdgeType incident on a NodeID.
The EdgeRecord for (NodeID, EdgeType) pair starts with
$NodeID#EdgeType, where $ and # are two delimiters. Next,
the EdgeFile stores certain metadata that we describe below. Fol-
lowing the metadata, the EdgeFile stores the TimeStamps for all
edges, followed by destinationIDs for all edges, finally followed
by the PropertyLists of all edges. We describe below the design
decisions made for each of these individually.

Edge Timestamps. Edge timestamps are often used to impose
ordering (e.g., return results sorted by timestamps, or find new
comments since last login time [29]). Efficiently executing such
queries requires performing binary search on timestamps. ZipG
stores timestamps in each EdgeRecord in sorted order. To aid bi-
nary search, ZipG also stores the number of edges in the EdgeRe-
cord within the metadata (denoted by EdgeCount in Figure 2).

There are several approaches for storing individual timestamp
values. At one extreme are variable length encoding and delta
encoding. In the former, each timestamp can be stored using
minimum number of bytes required to represent that timestamp
along with some additional bytes (delimiters and/or length) to
mark boundaries of timestamp values. While space-efficient, this
representation complicates random access on timestamps since
extracting a timestamp requires extracting all the timestamps be-
fore it. Storing timestamps using delta encoding [53] also leads
to a similar tradeoff. The other extreme is fixed length represen-
tation for all edge timestamps (e.g., 64 bits) that enables efficient
random access at the cost of increased storage.

ZipG uses a middle-ground: it uses a fixed length represen-
tation but rather than using a globally fixed length, it uses the
maximum length required across edges within an EdgeRecord.
Since this length varies across EdgeRecords, ZipG stores the
fixed length for each EdgeRecord in the corresponding metadata
(TLength in Figure 2).

DestinationIDs. A natural choice for storing the destination-
IDs is to order them according to edge timestamps, such that
the ith timestamp and ith destinationID correspond to the same
edge. Such an ordering avoids the need to maintain an explicit
mapping between edge timestamps and corresponding desti-
nationIDs, enabling efficient random access. ZipG uses a fixed
length representation similar to timestamps for destinationIDs
and stores this length in the metadata (DLength in Figure 2).

Edge Properties. As with destinationIDs, edge propertyLists are
ordered such that ith timestamp and ith propertyList correspond
to the same edge. The edge properties are encoded similar to
node properties, since the layout design criteria and tradeoffs for
both are identical. Specifically, the lengths of all the propertyLists
are stored, followed by delimiter separated propertyValues (sim-
ilar to NodeFile). ZipG currently does not support search on edge
propertyLists, but can be trivially extended to do so using ideas
similar to NodeFile.

3.4 ZipG Query Execution
We now describe how ZipG uses the graph layout from §3.3 to

efficiently execute queries from Table 1.

Implementing node-based queries. It is easy to see that
the NodeFile design allows implementing get_node_property
query using two array lookups (one for property delimiter and
one for ProperList offset), and one extra byte (for accessing prop-
ertyValue length) in addition to extracting the PropertyValue it-
self (using random access primitive from §3.1). Implementing
get_node_ids is more interesting; we explain this using an ex-
ample. Suppose the query specifies {“nickname” = “Ally”} as
the propertyList. Then, ZipG first finds the delimiter of the speci-
fied PropertyID (?, for nickname) and the next lexicographically
larger PropertyID (in this case, ‡ for end-of-record delimiter). It
then prepends and appends Ally by ? and ‡, respectively and
uses the search primitive from §3.1. This returns the offsets into
the flat file where this string occurs, which are then translated
into NodeIDs using binary search over the offsets in the two-
dimensional array.

Implementing edge-based queries. The get_edge_record op-
eration returns the EdgeRecord for a given (sourceID, edgeType)
pair and is implemented using search($sourceID#edgeType)
on the EdgeFile. This returns the offset for the EdgeRecord
within the EdgeFile. Using the metadata in the EdgeRecord,
ZipG can efficiently perform binary searches on the timestamps
(get_time_range) and random access into the destination IDs
and edge properties (get_edge_data).

3.5 Fanned Updates
As outlined in the introduction (§1), while storing data in a

compressed form leads to performance benefits when the un-
compressed data does not fit in faster storage, it also leads
to the challenge of handling high write rates. Specifically, the
overheads of decompressing and re-compressing data upon new
writes need to be amortized over time, while maintaining low
memory and computational overheads and while minimizing in-
terference with ongoing queries on existing data. The traditional
approach to achieve this is to use log-structured storage; within
this high-level approach, there are two possible techniques that
expose different tradeoffs.

The first technique is to maintain a log-structured store (Log-
Store), per shard or for all shards on a server, and periodically
merge the LogStore data with the compressed data. To avoid
scanning the entire LogStore during query execution (to locate
the data needed to answer the query), additional nodeID →
LogStore-offset pointers can be stored that allow random ac-
cess for each node’s data. The benefit of this approach is that
all the data for any graph node remains “local”. The problem
however is that such an approach requires over-provisioning of
memory for LogStore at each server, which reduces the overall
memory efficiency of the system. Moreover, periodically merging
the LogStore data with compressed data interferes with ongoing
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aggregator

shard-1 ... shard-n

Friends of
Alice in Ithaca?

aggregator

shard-1 ... shard-n

aggregator

shard-1 ... shard-n

...
aggregator

shard-1 ... shard-n

Friends of Alice?
Bob’s city?

Carol & Dan’s cities?

Figure 4: Function Shipping in ZipG. See §4.1 for discussion.

queries (as does copying the data to background processes for
merging process). Finally, this approach requires using concur-
rent data structures to resolve read-write conflicts at each server
(for concurrent reads and writes over LogStore data).

ZipG instead uses a single LogStore for the entire system —
all write queries are directed to a query-optimized (rather than
memory-optimized) LogStore. Once the size of the LogStore
crosses a certain threshold, the LogStore is compressed into a
memory-efficient representation and a new LogStore is instanti-
ated. A single LogStore in ZipG offers three advantages. First,
ZipG does not require decompressing and re-compressing the
previously compressed data, and thus observes minimal interfer-
ence on queries being executed on previously compressed data.
Second, a single LogStore in ZipG also achieves higher memory
efficiency than the first technique discussed above — rather than
over-provisioning each server for a LogStore, ZipG requires just
one dedicated LogStore server which can be optimized for query
efficiency rather than memory efficiency. Finally, a single Log-
Store in ZipG avoids complicated data structures for concurrent
reads and writes at each server, making the entire system simpler.

For unstructured and semi-structured data, where records are
usually modeled as disjoint entities, a single LogStore leads to
benefits compared to per-server LogStores [21,23,31,42]. How-
ever, for graph structured data, using a single LogStore leads to
a new challenge — fragmented storage. In the absence of decom-
pression and re-compression, as new edges are added on a node,
the EdgeRecord of the node will be fragmented across multiple
shards. For instance, suppose at time t = 0 we upload the graph
data to ZipG and create a single LogStore `. Consider a node
u that has some data in the originally uploaded data to ZipG.
Suppose that multiple updates happen between time t = 0 and
t = t1 such that: (1) the size of ` crosses the threshold at time
t1; and (2) some of these updates are on node u. Then, at time
t1, we convert ` into ZipG’s memory-efficient representation and
create a new LogStore `′. Then, for all updates on node u after
time t1, the data belonging to node u will now be fragmented
across at least three shards: the original one that had the data
for node u in pre-loaded graph data, the shard corresponding
to the old LogStore ` and the new LogStore `′. Depending on
the update rates and on the skew in update queries, any node in
the graph may thus have data fragmented across multiple shards
over time (we evaluate the fragmentation over time and across
nodes in Appendix A). We thus need some additional techniques
to efficiently exploit all the benefits of having a single LogStore.

One way to handle fragmented data is to send each query to all
shards, and retrieve the corresponding results. This is extremely
inefficient — as our results in Appendix A suggest, most queries
can be answered by touching an extremely small fraction of the
shards (less than 10% for 99.9% of the nodes); executing each
query at all shards would thus have high unnecessary CPU over-
head. ZipG instead uses the idea of Fanned Updates. Consider
a static graph, that is, a graph that has never been updated since

the initial upload to ZipG. The sharding scheme used in ZipG
(described in §4.1) ensures that most ZipG queries are first for-
warded to a single shard5. At a high-level, Fanned Updates avoid
touching all shards using a set of update pointers that logically
chain together data correspond to the same node or edge. As
shown in Figure 3, these pointers store a reference to offsets of
NodeFile and/or EdgeFile at other shards that store the updated
data. ZipG stores these update pointers only at the shard where
the node/edge first occurs; that is, in our example above, only
the shard containing the data for node u in pre-loaded graph
will store the update pointers for all occurrences in shards corre-
sponding to `, `′ and any other future shards. We describe below
how ZipG uses fanned updates to optimize query execution. As
the graph is updated or is fragmented over time, these update
pointers are updated as well. For workloads where updates form
a small fraction of all queries [8,24,29], the overhead of storing
and updating these pointers is minimal. ZipG, thus, keeps these
pointers uncompressed.

ZipG query execution for updates. Fanned Updates require
minimal extension to ZipG query execution for static graphs. In
addition to executing query as in a static graph, the ZipG servers
also forward the query to the precise servers that store updated
data by following the update pointers, and collect the additional
query results while avoiding touching all servers. Note that since
most nodes and edges are unlikely to be updated frequently in
real-world graph workloads, a majority of read queries would
be confined to a single server. ZipG implements deletes as lazy
deletes with a bitmap indicating whether or not a node or an
edge has been deleted; finally, updating a previously written
record in ZipG is implemented as deletes followed by an append.

4. ZipG IMPLEMENTATION
We have implemented ZipG on top of Succinct using roughly

4000 lines of C++ code, as well as a package running atop
Apache Spark in Scala. We start this section by outlining some of
the system implementation details (§4.1). We then show how
ZipG API can be used to implement published functionalities
from a variety of graph stores (§4.2).

4.1 System Implementation
We now outline the key aspects of ZipG implementation.

Graph Partitioning (Sharding). Several previous studies have
established that efficient partitioning of social graphs is a hard
problem [22,45,46]. Similar to existing graph stores [18], ZipG
uses a simple hash-partitioning scheme — it creates a num-
ber of shards, default being one per core, and hash partitions

5Most ZipG queries in Table 1 are node-based and are first for-
warded to the shard that stores queried node’s data. Some of
these queries may then be forwarded to shards that store node’s
neighbors’s data. The only exception is get_node_ids that re-
quires touching all shards.
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the NodeIDs on to these shards. All the data corresponding to
NodeID (PropertyList and edge information of edges incident on
NodeID) are then stored in that shard. This ensures that all node
and edge data associated with a node is co-located on the same
shard, enabling efficient execution of neighborhood queries. Fi-
nally, each of the shards is transformed into the ZipG layout (§3).

Fault Tolerance and Load Balancing. ZipG currently uses tra-
ditional replication-based techniques for fault tolerance; an ap-
plication can specify the desired number of replicas per shard.
Queries are load balanced evenly across multiple replicas. While
orthogonal to ZipG design, extending current implementation
to incorporate storage-efficient fault tolerance and skew-tolerant
load balancing techniques [34,42] is an interesting direction.

Data Persistence and Caching. To achieve data persistence,
ZipG stores NodeFiles, EdgeFiles, newly added data on LogStore
and the update pointers on secondary storage as serialized flat
files. ZipG maps these files to virtual memory using the mmap sys-
tem call, and all writes to them are propagated to the secondary
storage before the operation is considered complete.

Query Execution via Function Shipping (Figure 4). Graph
queries often require exploring the neighborhood of the queried
node (e.g., “friends of Alice who live in Ithaca”). To minimize
network roundtrips and bandwidth utilization in a distributed
setting, ZipG pushes computation closer to the data via function
shipping [5, 57]. Each ZipG server hosts an aggregator process
that maintains a pool of local threads for executing queries on
the server. When an aggregator receives a query that requires
executing subqueries on other servers, it ships the subqueries to
the corresponding servers, each of which execute the subquery
locally. Once all the subquery results are returned, the aggregator
computes the final result. Indeed, ZipG also supports multi-level
function shipping; that is, a subquery may be further decom-
posed into sub-subqueries and forwarded to respective servers.

Concurrency Control. Having a log-store for data updates
significantly simplifies concurrency control in ZipG. The com-
pressed data structures are immutable (except periodic garbage
collection) and see only read queries; locks are only required at
uncompressed update pointers and deletion bitmaps (§3.5), that
are fast enough and do not become system bottleneck.

4.2 ZipG Expressiveness
ZipG design and interface is rich enough to implement pub-

lished functionalities from several industrial graph stores. To
demonstrate this, we have implemented all the published queries
from Facebook TAO [29], LinkBench [24], Graph Search [8]
as well as more complex graph queries such as regular path
queries [26] and graph traversal queries [1] on top of ZipG.
We now discuss these implementations and associated trade-
offs. Table 2 outlines the implementation for TAO and LinkBench
queries6, and Table 3 outlines the implementation of Graph
Search queries using ZipG API.

Facebook TAO queries are of two types. First, those that do
not operate on Timestamps (obj_get and assoc_count in Ta-
ble 2). These queries translate to obtaining all properties for
a NodeID and counting edges of a particular type incident
on a given NodeID. These are easily mapped to ZipG API —
get_node_property(id, *) and the EdgeCount metadata us-
ing get_edge_record, respectively.

6The nodes and edges in ZipG are equivalent to objects and as-
sociations in TAO and LinkBench.

Table 2: Queries in TAO [29] and LinkBench [24] workloads.

Query Execution in ZipG TAO % LinkBench %

assoc_range Algorithm 1 40.8 50.6
obj_get get_node_property 28.8 12.9
assoc_get Algorithm 2 15.7 0.52
assoc_count get_edge_record 11.7 4.9

assoc_time_range Algorithm 3 2.8 0.15
assoc_add append 0.1 9.0
obj_update delete, append 0.04 7.4
obj_add append 0.03 2.6
assoc_del delete 0.02 3.0
obj_del delete < 0.01 1.0

assoc_update delete, append < 0.01 8.0

Table 3: The Graph Search Workload and implementation using ZipG
API; p1 and p2 are node properties, id and type are NodeID and
EdgeType. All queries occur in equal proportion in the workload.

QID Example Execution in ZipG

GS1 All friends of Alice get_neighbor_ids(id,*,*)

GS2 Alice’s friends in Ithaca get_neighbor_ids(id,*,{p1})

GS3 Musicians in Ithaca get_node_ids({p1,p2})

GS4 Close friends of Alice get_neighbor_ids(id,type,*)

GS5 All data on Alice’s friends assoc_range(id,type,0,*)

Algorithm 1 assoc_range(id, atype, idx, limit)
Obtain at most limit edges with source node id and edge type atype
ordered by timestamps, starting at index idx.

1: rec← get_edge_record(id, atype)

2: results←;
3: for i← idx to idx+limit do
4: edgeEntry← get_edge_data(rec, i)

5: Add edgeEntry to results

6: end for
7: return results

Algorithm 2 assoc_get(id1, atype, id2set, hi, lo)
Obtain all edges with source node id1, edge type atype, timestamp in
the range [hi,lo), and destination ∈ id2set.

1: rec← get_edge_record(id1, atype)

2: (beg, end)← get_time_range(rec, hi, lo)

3: results←;
4: for i← beg to end do
5: edgeEntry← get_edge_data(rec, i)

6: Add edgeEntry to results if destination ∈ id2set

7: end for
8: return results

Algorithm 3 assoc_time_range(id, atype, hi, lo, limit)
Obtain at most limit edges with source node id, edge type atype and
timestamps in the range [hi,lo).

1: rec← get_edge_record(id, atype)

2: (beg, end)← get_time_range(rec, hi, lo)

3: results←;
4: for i← beg to min(beg+limit, end) do
5: edgeEntry← get_edge_data(rec, i)

6: Add edgeEntry to results

7: end for
8: return results
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The second type of queries are based on Timestamps. For in-
stance, consider the following query: “find all comments from Al-
ice between SIGMOD abstract and paper submission deadlines”.
ZipG is particularly efficient for such queries due to its ability to
efficiently perform binary search on timestamps (§3) and return
corresponding edges and their properties. Algorithms 1, 2 and 3
show that these fairly complicated Facebook TAO queries can be
implemented in ZipG using less than 10 lines of code.

LinkBench models Facebook’s database workload for social
graph queries. Note that TAO and LinkBench have the same set
of queries, but vary significantly in terms of query distribution
(LinkBench is much more write-heavy). Thus, ZipG implements
LinkBench queries similar to TAO queries, as outlined above.

Facebook Graph Search originally supported interesting, and
complex, queries on graphs [8]. Implementing graph search
queries is even simpler in ZipG since most queries directly map
to ZipG API, as shown in Table 3.

Regular path queries and graph traversals differ significantly
from the above queries. In particular, while the queries discussed
above usually require information from the immediate neigh-
borhood of a single node, path queries and traversals exam-
ine the structure for larger subgraphs. However, both of these
classes of queries can be implemented in a recursive manner
where each step requires access to the set of edges incident
on a subset of nodes (and the corresponding neighbor nodes).
In ZipG, this translates to sequences of get_neighbor_ids,
get_edge_record and get_edge_data operations.

5. EVALUATION
We evaluate ZipG against popular open-source graph stores

across graphs of varying sizes, real-world and benchmark query
workloads, and varying cluster sizes.

Compared Systems. We compare ZipG against two open-source
graph stores. Neo4j [11] is a single machine graph store and
does not support distributed implementations. Our preliminary
results for Neo4j were not satisfactory. We worked with Neo4j
engineers for over a month to tune Neo4j and made several im-
provements in Neo4j query execution engine. Along with the
original version (Neo4j), we also present the results for this im-
proved version (Neo4j-Tuned).

We also compare ZipG against Titan, a distributed graph store
that requires a separate storage backend. We use Titan version
0.5.4 [18] with Cassandra 2.2.1 [44] as the storage backend. We
also experimented with DynamoDB 0.5.4 for Titan but found it
to be performing worse. Titan supports compression. We present
results for both uncompressed (Titan) and compressed (Titan-
compressed) representations.

Experimental Setup. All our experiments run on Amazon EC2.
To compare against Neo4j, we perform single machine experi-
ments over an r3.8xlarge instance with 244GB of RAM and 32
virtual cores. Our distributed experiments use 10 m3.2xlarge in-
stances each with 30GB of RAM and 8 virtual cores. Note that
all instances were backed by local SSDs and not hard drives. We
warm up each system for 15 minutes prior to running experi-
ments to cache as much data as possible. To make results consis-
tent (Neo4j does not support graph partitioning across servers),
we configured all systems to run without replication.

Workloads. Our evaluation employs a wide variety of graph
workloads. We use TAO and Linkbench workloads from Face-
book (with original query distributions, Table 2), and a synthetic

Table 4: Datasets used in our evaluation.

Dataset #nodes & #edges Type On-disk Size
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uk [28] ∼ 105M & ∼ 3.7B web 636 GB
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ch small ∼ 32.3M & ∼ 141.7M social 20 GB

medium ∼ 403.6M & ∼ 1.76B social 250 GB
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Figure 5: ZipG’s storage footprint (§5.1) is 1.8−4× lower than Neo4j
and 1.8−2× lower than Titan. DNF denotes that the experiment did not
finish after 48 hours of data loading.

Graph Search workload (Table 3). We also evaluate more com-
plex workloads such as regular path queries [6] and graph traver-
sal queries [1]. In addition, we evaluate the performance for each
workload’s component queries in isolation to build in-depth in-
sights on the performance of the three systems. We discuss the
results for TAO, Linkbench and Graph Search workloads in this
section, and the results for other workloads in Appendix B.

Datasets. Table 4 shows the datasets used in our evaluation. For
real-world datasets, we used the node and edge property distri-
bution from Facebook TAO paper [29]. Each node has an aver-
age propertyList of 640 bytes distributed across 40 propertyIDs.
Each edge is randomly assigned one of 5 distinct EdgeTypes,
a POSIX timestamp drawn from a span of 50 days, and a 128-
byte long edge property. For LinkBench datasets, we directly use
the LinkBench benchmark tools [9] to generate three datasets:
small, medium and large. These datasets mimic the Orkut,
Twitter and UK graphs in terms of their total on-disk size.
LinkBench assigns a single property to each node and edge in the
graph, with the properties having a median size of 128 bytes.

5.1 Storage Footprint
Figure 5 shows the ratio of total data representation size

and raw input size for each system. We note that ZipG can
put 1.7−4× larger graphs in main memory compared to Neo4j
and Titan uncompressed (which, as we show later, leads to de-
graded performance7). The main reason is the secondary indexes
stored by Neo4j and Titan to support various queries efficiently;
ZipG, on the other hand, executes queries efficiently directly on
a memory-efficient representation of the input graph.

7Intuitively, Titan uses delta encoding for edge destinationN-
odeIDs, and variable length encoding for node and edge at-
tributes [19] which leads to high CPU overhead during query
execution. Moreover, enabling LZ4 compression for Cassandra’s
SSTables reduces the storage footprint for Titan, but required
data decompression for query execution.
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Figure 6: Single server throughput for the TAO workload, and its top 5 component queries in isolation. DNF indicates that that the experiment did
not finish after 48 hours of data loading. Note that the figures have different y-scales.

Table 5: Summary of which datasets fit completely in memory.

Dataset Neo4j Titan-C Titan ZipG

orkut / linkbench-small � � � �
twitter / linkbench-medium � �

uk / linkbench-large

Since LinkBench assigns synthetically generated properties to
nodes and edges, LinkBench datasets have lower compressibility
compared to the real-world datasets. Accordingly, ZipG’s com-
pression factor is roughly 15% lower for the LinkBench datasets
than the corresponding real-world datasets. The storage over-
heads for Neo4j and Titan, on the other hand, are lower for the
LinkBench datasets, since they have to maintain much smaller
secondary indexes for a single node property. As such, ZipG’s
storage footprint is 1.8−2× smaller than Neo4j and Titan un-
compressed, while being comparable to Titan-Compressed.

Table 5 summarizes which datasets fit completely in memory
for different systems our experiments.

5.2 Single Machine (Figure 6, 7, 8)
We now analyze the performance of different graph stores

on a single server with 244GB of RAM and 32 CPU cores. We
note that across all experiments, Neo4j-Tuned achieves strictly
better performance than Neo4j. Similarly, Titan uncompressed
achieves strictly better performance Titan compressed (for rea-
sons discussed in Footnote 7). The discussion thus focuses on
Neo4j-Tuned, Titan uncompressed and ZipG.

TAO Workload (Figure 6)

We start by observing that when the dataset fits in memory (e.g.,
Orkut), all systems achieve comparable performance. There are
two reasons for ZipG achieving slightly better performance than
Neo4j and Titan. First, ZipG is optimized for random access on
node PropertyList while Neo4j and Titan are not — Neo4j re-
quires following a set of pointers on NodeTable, while Titan
needs to first extract the corresponding (key, value) pair from

Cassandra and then scan the value to extract node properties.
The second reason ZipG performance is slightly better is that
ZipG extracts all edges of a particular edgeType directly, while
other systems have to scan the entire set of edges and filter out
the relevant results.

For the Twitter dataset, Neo4j can no longer keep the entire
dataset in memory; Titan, however, retains most of the working
set in memory due to its lower storage overhead than Neo4j and
also because TAO queries do not operate on edge PropertyList.
Neo4j observes significant impact in throughput for a reason that
highlights the limitations of pointer-based data model of Neo4j
— since pointer-based approaches are “sequential” by nature, a
single application query leads to multiple SSD lookups leading
to significantly degraded throughput. Titan, on the other hand,
maintains its throughput for all queries. This is both because Ti-
tan has to do fewer SSD lookups (once the key-value pair is ex-
tracted, it can be scanned in memory) and also because Titan
essentially caches most of the working dataset in memory.

For the UK dataset, none of the systems can fit the data in
memory (Neo4j cannot even scale to this dataset size). Titan now
starts experiencing significant performance degradation due to
a large fraction of queries being executed off secondary stor-
age (similar to the performance degradation of Neo4j in Twit-
ter dataset). ZipG also observes performance degradation but
of much lesser magnitude than other systems because of two
reasons. First, ZipG is able to execute a much larger fraction of
queries in memory due to its lower storage overhead; and sec-
ond, even when executing queries off secondary storage, ZipG
has significantly lower I/O since it requires a single SSD lookup
for all queries unlike Titan and Neo4j.

Individual TAO queries (Figure 6(a)-6(e)). Analyzing the per-
formance of the top 5 TAO queries for the Orkut dataset,
node-based queries involving random access (obj_get, Fig-
ure 6(b)) perform better for ZipG than Neo4j and Titan
due to reasons cited earlier. Similarly, for the edge-based
queries (e.g., assoc_get, Figure 6(c)), ZipG achieves higher
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Figure 7: Single server throughput for the LinkBench workload, and its top 5 component queries in isolation. DNF denotes that the experiment
did not finish after 48 hours of data loading. Note that the figures have different y-scales.

throughput by avoiding the overheads of scans employed by
other systems. When queries have a limit on the result car-
dinality, other systems can stop scanning earlier and thus
achieve relatively improved performance, e.g., assoc_range and
assoc_time_range in Figures 6(a) and 6(e) respectively. For
larger datasets, while compared systems fail to keep their data
in memory, ZipG achieves considerably higher throughput for all
the individual queries, since its lower storage footprint permits
execution of most queries in memory.

LinkBench Workload (Figure 7)

Despite having the same set of queries as TAO, the absolute
throughput for the LinkBench workload is distinctly lower for
all systems. This is due to two main reasons: first, a much larger
fraction of the queries (see Table 2) are either write, update or
delete operations, requiring modification of graph elements. This
leads to overheads due to data persistence, as well as lock-based
synchronization for atomicity and correctness of graph muta-
tions in all compared systems. Second, most of the queries per-
form filters on node neighborhoods, with their accesses being
skewed towards nodes with more neighbors [24]— as a result,
the average number of edges accessed per query is much larger
than in the TAO workload, leading to lower query throughput.

Also observe that Neo4j and Titan observe much lower
throughput than ZipG for all datasets. While Neo4j is relatively
efficient in executing read-only queries, write queries become a
significant performance bottleneck, since they require modifica-
tions at multiple random locations due to Neo4j’s pointer based-
approach. Titan, on the other hand, is able to support write and
update operations at relatively higher throughput due to Cassan-
dra’s write-optimized design. However, the throughput for edge-
based operations is significantly lower because Cassandra is not
optimized for range queries.

ZipG avoids both of the above issues for the small and medium
datasets. In particular, all graph mutations are isolated to a write-
optimized LogStore through Fanned Updates (§3.5), while edge-
based operations do not need to scan the entire neighborhood

to filter the required edges (§3.3). However, ZipG’s throughput
drops for the large dataset; this is due to the relatively lower
compressibility of LinkBench generated graphs, which prevents
crucial data-structures in the underlying Succinct representation
for the NodeFile from fitting in memory.

Individual LinkBench Queries (Figures 7(a)-7(e)). Note that
the top 5 queries in the LinkBench workload differ from the
TAO workload. The performance trends for the assoc_range
(Figure 7(a)) and obj_get (Figire 7(b)) queries are similar
to the corresponding TAO queries, except for a few key differ-
ences. First, Titan observes significantly worse performance for
assoc_get query in the LinkBench workload. This is because the
average number of neighbors for each node in the LinkBench
dataset is much larger than the TAO workload, and is heavily
skewed, i.e., some nodes have very large neighborhoods, while
most others have relatively few neighbors. Titan’s performance
drops significantly due to range queries over large neighbor-
hoods, since Cassandra is not optimized for such queries, result-
ing in reduced throughput. Second, Neo4j observes better perfor-
mance for obj_get query in the LinkBench workload, because
of the workload’s query skew. Since the accesses to the nodes for
obj_get query are heavily skewed, Neo4j is able to cache the
most frequently accessed nodes, leading to higher throughput.
Finally, for the large dataset, ZipG is unable to keep one of Suc-
cinct’s component data structures in memory that is responsible
for answering node-based queries, leading to a reduced through-
put for the obj_get query.

Finally, we note that ZipG outperforms compared systems
for write-based queries including assoc_add (Figure 7(c)),
assoc_update (Figure 7(d)) and obj_update (Figure 7(e)). As
discussed above, Neo4j’s write performance suffers since each
write incurs updates at multiple random locations in its graph
representation. Titan achieves a relatively better performance
due to Cassandra’s write-optimized design. ZipG, on the other
hand, is able to maintain a high write throughput due to its write
optimized LogStore and Fanned Updates approach.
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Figure 8: Single server throughput for the Graph Search workload, and its component queries in isolation. DNF indicates that that the experiment
did not finish after 48 hours of data loading. Note that the figures have different y-scales.
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Figure 9: Throughput for TAO, LinkBench and Graph Search workloads for the distributed cluster.

Graph Search Workload (Figure 8)

We designed the graph search workload for two reasons. First,
while TAO and LinkBench workloads are mostly random ac-
cess based, graph search workload mixes random access (GS1,
GS4, GS5) and search (GS2, GS3) queries. Second, this work-
load highlights both the power and overheads of ZipG. In partic-
ular, as shown in Table 3, ZipG’s powerful API enables simple im-
plementation of queries that are far more complex than the TAO
and LinkBench queries. Indeed, most of the graph search queries
can be implemented using a couple of lines of code on top of ZipG
API. On the flip side, the graph search workload also highlights
the overheads of executing queries on compressed graphs. We
discuss the latter below.

The results for the graph search workload follow a very simi-
lar pattern as for TAO workload (Figure 6, left), with two main
differences. First, as with the LinkBench workload, the overall
throughput reduces for all systems. This is rather intuitive —
search queries are usually far more complex than random access
queries, and hence have higher overheads. Second, when the un-
compressed graph fits entirely in memory, Neo4j-Tuned achieves
better performance than ZipG. The latter highlights ZipG over-

heads. In particular, for the Orkut dataset, both Neo4j-Tuned and
ZipG fit the entire data in memory. However, in graph search
workload, Neo4j could use its indexes to answer search queries
(and avoid heavy-weight neighborhood scans). As a result, for
the Orkut dataset, Neo4j starts observing roughly 1.23× higher
throughput than ZipG as opposed to lower throughput for TAO
queries, which is attributed to ZipG executing queries on com-
pressed graphs. Of course, as the graph size increases, the over-
head of executing queries off secondary storage becomes higher
than executing queries on compressed graphs, leading to ZipG
achieving 3× higher throughput than Neo4j-Tuned.

The second overhead of ZipG is for search-based queries like
“Find musicians in Ithaca”. For such a query, ZipG’s partitioning
scheme requires ZipG touching all partitions. Neo4j and Titan,
on the other hand, use global indexes and thus require touching
no more than two partitions. Thus, for small datasets, ZipG ob-
serves significantly lower throughput for this query than Neo4j
and Titan. As earlier, for larger graph sizes, this overhead be-
comes smaller than the overhead of executing queries off sec-
ondary storage and ZipG achieves higher throughput.

Individual Graph Search Queries (Figure 8(a)-8(e)). Most
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Graph Search queries follow trends similar to the TAO workload
since they are random-access intensive. In particular, queries GS1
(Figure 8(a)), GS4 (Figure 8(d)) and GS5 (Figure 8(e)) perform
random-access on edge data, while query GS2 (Figure 8(b)) per-
forms random access on both edge and node data. For all such
queries, Neo4j-Tuned achieves high throughput for the orkut
dataset since all the data fits in memory, but as the datasets no
longer fit in memory the performance drops drastically due to
Neo4j’s pointer-based approach, similar to the TAO workload. Ti-
tan, on the other hand, extracts the data corresponding to nodes
and edges as key value pairs and scans the value component to
obtain the relevant data (node or edge properties), resulting in
lower throughput, which drops even lower when the datasets
no longer fit in memory. ZipG, on the other hand, exploits its
random-access friendly layout to achieve high throughput for all
such queries, with little degradation on increasing the dataset
size due to its memory-efficient graph representation.

Finally, query GS3 (Figure 8(c)) is unique, in that, it performs
search queries on node attributes. As discussed before, ZipG’s
performance for this query is comparable or worse than the
compared systems for the orkut dataset, since it touches multi-
ple partitions to evaluate search results while other systems use
global indexes. However, as the dataset sizes grow larger, the
compared systems observe much lower throughput since these
indexes no longer fit in memory, resulting in expensive accesses
to secondary-storage.

We note that while ZipG supports joins for executing graph
queries if required, it avoids joins in executing queries GS2 and
GS3 due to performance considerations. We provide performance
comparisons for these queries executed with and without joins
in ZipG in Appendix B.3.

5.3 Distributed Cluster (Figure 9)
Neo4j does not have a distributed implementation. We there-

fore restrict our discussion to the performance of ZipG and Titan
on a distributed cluster of 10 servers, with a total of 300GB of
RAM and 80 CPU cores across the cluster.

TAO Workload (Figure 9(a))

We make two observations. First, Titan can now fit the entire
Twitter dataset in memory leading to 2× higher throughput
compared to single server setting, despite the increased over-
head of inter-server communication (similar remarks for UK
dataset). The second observation is that ZipG achieves roughly
2.5× higher throughput in distributed settings compared to sin-
gle server setting. Note that our distributed servers have 10×8
cores, 2.5× of the single beefy server that has 32 cores. ZipG
thus achieves throughput increase proportional to the increase
in number of cores in the system, an ideal scenario.

LinkBench Workload (Figure 9(b))

These results allow us to make an interesting observation — un-
like single machine setting, ZipG is able to cache a much larger
fraction of crucial Succinct data-structures, leading to almost
negligible performance degradation on going from the medium
to the large dataset. Second, unlike the TAO workload, ZipG is
unable to achieve throughput increase proportional to the num-
ber of cores. This is because the access pattern for edge-based
queries in LinkBench is skewed towards nodes that have larger
neighborhoods. As a consequence, a small set of servers that
store nodes with large neighborhoods remain bottlenecked due
to higher query volume and computational overheads.

Graph Search Workload (Figure 9(c))

Again, most performance trends for the Graph Search workload
are similar for the distributed cluster and single server settings.
We note that Titan’s performance for the Graph Search work-
load scales better than ZipG’s performance when the number
of servers is increased. This is due to the contribution of search
based queries, i.e., query GS3. As discussed in §5.2, the difference
in performance for such queries lie in the choice of partitioning
scheme for the two systems. While ZipG touches all partitions,
and therefore all servers in the cluster for search-based queries,
Titan’s global index approach confines such queries to a single
server for most situations, allowing the query performance to
scale better. However, Titan’s global index approach suffers in
performance when the index grows too large to fit in memory.

6. RELATED WORK
Graph Stores. In contrast to graph batch processing systems [38,
43, 48, 55], graph stores [4, 10, 11, 14, 16, 18, 29, 35, 51, 54]
usually focus on queries that are user-facing. Consequently, the
goal in design of these stores is to achieve millisecond-level
query latency and high throughput. We already compared the
performance of ZipG against Neo4j and Titan, two popular
open-sourced graph stores. Other systems, e.g., Virtuoso [20],
GraphView [10] and Sparksee [16] that use secondary indexes
for efficiently executing graph traversals suffer from storage
overhead problems similar or to Neo4j (high latency and low
throughput due to queries executing off secondary storage).

Graph Compression. Traditional block compression techniques
(e.g., gzip) are inefficient for graphs due to lack of locality
— each query may require decompressing many blocks. Sev-
eral graph compression techniques have focused on support-
ing queries on compressed graphs [27, 28, 32, 37, 39, 40, 49, 52,
56]. However, these techniques are limited in expressiveness to
queries like extracting adjacency list of a node, or matching sub-
graphs. Graph serving often requires executing much more com-
plex queries [3, 8, 29, 58] involving node and edge attributes.
ZipG achieves compression without compromising expressive-
ness, and is able to execute all published queries from Facebook
TAO [29], LinkBench [24] and graph search [8].

7. CONCLUSION
We have presented ZipG, a distributed memory-efficient graph

store that supports a wide range of interactive graph queries
on compressed graphs. ZipG exposes a minimal but function-
ally rich API, which we have used to implement all the published
queries from Facebook TAO, LinkBench, and Graph Search work-
loads, along with complex regular path queries and graph traver-
sals. Our results show that ZipG can executes tens of thousands
of queries from these workloads for a graph with over half a
TB of data on a single 244GB server. This leads to as much as
23× higher throughput than Neo4j and Titan, with similar gains
in distributed settings where ZipG achieves up to 20× higher
throughput than Titan.

Acknowledgments
This research is supported in part by DHS Award HSHQDC-16-
3-00083, NSF CISE Expeditions Award CCF-1139158, and gifts
from Ant Financial, Amazon Web Services, CapitalOne, Ericsson,
GE, Google, Huawei, Intel, IBM, Microsoft and VMware.

1160



8. REFERENCES
[1] Breadth First Search.

https://en.wikipedia.org/wiki/Breadth-first_search.
[2] Building a follower model from scratch.

https://engineering.pinterest.com/blog/

building-follower-model-scratch.
[3] Demining the “Join Bomb” with graph queries.

http://neo4j.com/blog/

demining-the-join-bomb-with-graph-queries/.
[4] FlockDB. https://github.com/twitter/flockdb.
[5] Function Shipping: Separating Logical and Physical Tiers.

https://docs.oracle.com/cd/A87860_01/doc/appdev.817/

a86030/adx16nt4.htm.
[6] gMark Queries for LDBC Social Network Benchmark.

https://github.com/graphMark/gmark/tree/master/demo/

social/social-translated.
[7] Introducing FlockDB.

https://blog.twitter.com/2010/introducing-flockdb.
[8] Introducing Graph Search Beta. http://newsroom.fb.com/

news/2013/01/introducing-graph-search-beta/.
[9] LinkBench.

https://github.com/facebookarchive/linkbench.
[10] Microsoft GraphView.

https://github.com/facebookarchive/linkbench.
[11] Neo4j. http://neo4j.com/.
[12] Neo4j Pushes Graph DB Limits Past a Quadrillion Nodes.

https://www.datanami.com/2016/04/26/

neo4j-pushes-graph-db-limits-past-quadrillion-nodes/.
[13] openCypher. http://www.opencypher.org.
[14] OrientDB. http://orientdb.com/.
[15] Property Graph Model. https://github.com/tinkerpop/

blueprints/wiki/Property-Graph-Model.
[16] Sparksee by Sparsity Technologies.

http://www.sparsity-technologies.com.
[17] Suffix Array.

http://en.wikipedia.org/wiki/Suffix_array.
[18] Titan. http://thinkaurelius.github.io/titan/.
[19] Titan Data Model. http://s3.thinkaurelius.com/docs/

titan/current/data-model.html.
[20] Virtuoso Universal Server.

http://virtuoso.openlinksw.com.
[21] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct:

Enabling Queries on Compressed Data. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[22] A. Ahmed, N. Shervashidze, S. Narayanamurthy,
V. Josifovski, and A. J. Smola. Distributed Large-scale
Natural Graph Factorization. In ACM International
Conference on World Wide Web (WWW), 2013.

[23] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and
S. Nath. Cheap and large cams for high performance
data-intensive networked systems. In NSDI, 2010.

[24] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. Linkbench: A database benchmark based
on the facebook social graph. In ACM International
Conference on Management of Data (SIGMOD), 2013.

[25] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher,
A. Lemay, and N. Advokaat. Generating flexible workloads
for graph databases. Proceedings of the VLDB Endowment
(PVLDB), 9(13):1457–1460, 2016.

[26] P. Barceló Baeza. Querying graph databases. In ACM

Symposium on Principles of Database Systems (PODS),
pages 175–188, 2013.

[27] Bharat, Krishna and Broder, Andrei and Henzinger,
Monika and Kumar, Puneet and Venkatasubramanian,
Suresh. The connectivity server: Fast access to linkage
information on the web. Computer networks and ISDN
Systems, 30, 1998.

[28] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In International Conference on
World Wide Web (WWW), 2004.

[29] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li, et al.
TAO: Facebook’s Distributed Data Store for the Social
Graph. In USENIX Annual Technical Conference (ATC),
2013.

[30] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Rewriting of regular expressions and regular path
queries. In ACM Symposium on Principles of Database
Systems (PODS), pages 194–204, 1999.

[31] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems
(TOCS), 26(2):4, 2008.

[32] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On Compressing Social
Networks. In ACM International Conference on Knowledge
Discovery and Data Mining (KDD), 2009.

[33] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical
query language supporting recursion. In ACM
International Conference on Management of Data
(SIGMOD), pages 323–330, 1987.

[34] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
Workload-Driven Approach to Database Replication and
Partitioning. Proceedings of the VLDB Endowment, 2010.

[35] A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer. Weaver: A
High-Performance, Transactional Graph Store Based on
Refinable Timestamps. CoRR, abs/1509.08443, 2015.

[36] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz. The ldbc
social network benchmark: Interactive workload. In ACM
International Conference on Management of Data
(SIGMOD), pages 619–630, 2015.

[37] W. Fan, J. Li, X. Wang, and Y. Wu. Query Preserving Graph
Compression. In ACM International Conference on
Management of Data (SIGMOD), 2012.

[38] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph Processing in a
Distributed Dataflow Framework. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2014.

[39] C. Hernández and G. Navarro. Compression of Web and
Social Graphs supporting Neighbor and Community
Queries. In ACM Workshop on Social Network mining and
Analysis (SNAKDD), 2011.

[40] C. Hernández and G. Navarro. Compressed
Representations for Web and Social Graphs. Knowledge
and Information Systems, 40(2), 2014.

[41] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
Large Network Dataset Collection.
http://snap.stanford.edu/data, 2014.

[42] A. Khandelwal, R. Agarwal, and I. Stoica. BlowFish:

1161

https://en.wikipedia.org/wiki/Breadth-first_search
https://engineering.pinterest.com/blog/building-follower-model-scratch
https://engineering.pinterest.com/blog/building-follower-model-scratch
http://neo4j.com/blog/demining-the-join-bomb-with-graph-queries/
http://neo4j.com/blog/demining-the-join-bomb-with-graph-queries/
https://github.com/twitter/flockdb
https://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030/adx16nt4.htm
https://docs.oracle.com/cd/A87860_01/doc/appdev.817/a86030/adx16nt4.htm
https://github.com/graphMark/gmark/tree/master/demo/social/social-translated
https://github.com/graphMark/gmark/tree/master/demo/social/social-translated
https://blog.twitter.com/2010/introducing-flockdb
http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/
http://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/
https://github.com/facebookarchive/linkbench
https://github.com/facebookarchive/linkbench
http://neo4j.com/
https://www.datanami.com/2016/04/26/neo4j-pushes-graph-db-limits-past-quadrillion-nodes/
https://www.datanami.com/2016/04/26/neo4j-pushes-graph-db-limits-past-quadrillion-nodes/
http://www.opencypher.org
http://orientdb.com/
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://www.sparsity-technologies.com
http://en.wikipedia.org/wiki/Suffix_array
http://thinkaurelius.github.io/titan/
http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://s3.thinkaurelius.com/docs/titan/current/data-model.html
http://virtuoso.openlinksw.com
http://snap.stanford.edu/data


Dynamic Storage-Performance Tradeoff in Data Stores. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2016.

[43] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC. In USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[44] Lakshman, Avinash and Malik, Prashant. Cassandra: A
Decentralized Structured Storage System. ACM SIGOPS
Operating Systems Review, 44, 2010.

[45] K. Lang. Finding good nearly balanced cuts in power law
graphs. Preprint, 2004.

[46] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community Structure in Large Networks: Natural Cluster
Sizes and the Absence of Large Well-Defined Clusters.
Internet Mathematics, 2009.
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APPENDIX
A. DATA FRAGMENTATION

We discussed the problem of data fragmentation in §3.5. We
now provide more insights on how data fragments over time and
across nodes. We start with the LinkBench large dataset (from
Table 4) and partition is across 40 shards (with same settings as
in §5). We then execute LinkBench queries for a varying amount
of time over a running system — we start with a single LogStore
and when the size of the LogStore crosses 8GB threshold, we
compress the LogStore data into a new shard and create a new
LogStore. We then take snapshots of the system every time the
system has executed 100 Million LinkBench queries. Using these
snapshots, we can evaluate the data fragmentation.

Figure 10 shows the CDF (across all nodes) for the fraction of
shards (among all shards at the time of the snapshot) that a par-
ticular node’s data is fragmented across for three snapshots — af-
ter the system has executed 0.5,1 and 2 Billion queries. We make
two observations. First, for more than 99% of the nodes, their
data is fragmented across a very small albeit non-trivial number
of shards (< 10% of the shards in the system). This is precisely
the case where update pointers help — ZipG needs to touch more
than a single server, but touching all servers for query execution
has significantly higher overheads than using update pointers.
Moreover, as more queries are executed, data gets fragmented
across a larger number of shards (also shown in Figure 11).

B. PATH QUERIES, TRAVERSALS
& JOINS

We now present evaluation results of ZipG and Neo4j-tuned

for three set of queries that are significantly different from
the ones evaluated in §5 — regular path queries from [25],
graph traversal queries (breadth first search), and graph search
queries [8] when implemented using joins8.

B.1 Regular Path Queries
General regular path queries [30, 33, 47] identify paths

in graphs through regular expressions over the edge labels
(edgeTypes in ZipG terminology) of the graph. Their results
are collections of paths, where the concatenation of consecutive
edge labels in each path satisfy the regular expression.

Implementation. We implemented unions of conjunctive regular
path queries (UCRPQs) [26] in ZipG by executing regular expres-
sions over edge labels on ZipG layout, translating them into se-
quences of operations from ZipG’s API. In fact, ZipG is able to
execute all regular path queries generated by the gMark bench-
mark tool [25].

The execution of regular path queries in ZipG begins by ob-
taining all EdgeRecords corresponding to the first edge in the
path expression using get_edge_record(*,edgeType). Subse-
quently, ZipG identifies the neighbor nodes in these EdgeRecords
using get_edge_data, and iteratively searches for non-empty
EdgeRecords corresponding to the neighbor nodes and the subse-
quent edge labels in the path expression. To minimize communi-
cation overheads, ZipG ships the get_edge_record requests to
the shards that hold the data for the particular node using func-
tion shipping (§4.1). ZipG supports recursion in path queries via
the Kleene-star (“*”) operator by computing the transitive clo-
sure of the set of paths identified by the path expression under
the Kleene-star. Currently, the transitive closure computation re-
quires collecting all the paths at an aggregator and employs a
serial algorithm; this can be further optimized using careful mod-
ifications in the underlying data structures and query execution.

Performance. In order to evaluate the performance of regular
path queries, we used the gMark [25] benchmark tool to gen-
erate both the graph datasets and the path queries. We used
gMark’s encoding of the schema provided with the LDBC Social
Network Benchmark [36], which models user activity in a typical
social network. gMark generates 50 queries of widely varying na-
ture [6], ranging from linear path traversals, to branched traver-
sals and highly recursive queries; these can be easily mapped to
their Cypher representations [13]. We ran our benchmarks for
datasets with varying number of nodes and edges for ZipG and
Neo4j; Figure 12 shows results for graphs with 2 million nodes
on a single machine setup9.

Note that given the dataset size, both systems are able to fit
their entire data completely in memory. For most queries, ZipG’s
performance is either comparable to or better than Neo4j. The
queries where ZipG outperforms Neo4j by a large margin (e.g.,
q18, q25, q38, q48, q49, etc) are typically branched or long lin-
ear path traversals, with little or no recursion in them. On the
other hand, Neo4j outperforms ZipG for queries that are heavy
8ZipG does support joins, but favors executing many join queries
using random access instead as discussed in the introduction
(§1). The results in §5 present results for the non-join version;
here we present results when the same queries are implemented
using joins.
9Due to the complexity of the queries, both systems timed out
(with a time limit of 10 minutes) in executing most queries
on graphs with more than 2 million nodes on a single 8 core
machine. Moreover, despite significant effort, we could not run
these queries on Titan even for smaller graphs due to some bug
in the Titan release that supports regular path queries.
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When the entire graph data fits in memory (orkut), Neo4j performs better
than ZipG. However, when the data does not fit in memory for Neo4j,
ZipG outperforms Neo4j for graph traversal queries.

on recursion, or where computing the transitive closure becomes
a bottleneck in ZipG (e.g., q4, q15, q21, q29, q30, etc.). This is
precisely due to the communication and serial bottlenecks in ex-
ecuting transitive closure in ZipG, as discussed above.

B.2 Graph Traversal
We now compare the performance for breadth first traversal of

graphs for Neo4j and ZipG on a single machine. The traversals
were performed starting at 100 randomly selected nodes, and
the average traversal latencies for the two systems are shown in
Figure 13. We bound the traversal depth to 5 for the datasets —
unbounded depth led to timeouts for Neo4j for the larger dataset
(that does not fit in memory).

For the orkut dataset, the graph fits completely in memory for
both systems. For this case, Neo4j achieves lower latency. This
is because ZipG has overheads to execute queries on the com-
pressed representation; in addition, ZipG stores its graph data
across multiple shards, and incurs some aggregation overheads
in combining results from different shards. However, for the twit-
ter dataset, Neo4j is no longer able to fit its data in memory,
and incurs significantly higher latency for breadth first traver-
sals. This is because even the data for a single node not fitting
in memory requires Neo4j to access the slower storage, signifi-
cantly slowing down the overall graph traversal query. ZipG, on
the other hand, is able to maintain its data in memory, and thus
achieves lower query latency compared to Neo4j.

B.3 Graph Queries with Joins
ZipG implementation for most queries outlined so far avoids

joins due to performance considerations (as discussed in the in-
troduction). However, ZipG does support joins and can be used to
implement graph queries that necessitate joins. To illustrate this,
we execute queries GS2 and GS3 from the Graph Search workload
using joins. In particular, a GS2 query of the form “Find Alice’s
friends in Ithaca” (Table 3), can be executed both with joins (a
join over all of Alice’s friends and all people living in Ithaca) and
without joins (find all of Alice’s friends, and then checks if they
live in Ithaca). The same holds true for a GS3 query.

Figure 14 shows the performance for the two execution al-
ternatives in ZipG on a single machine. Clearly, the alternative
that avoids joins yields higher throughput across different graph
datasets. Intuitively, this is because Alice is likely to have much
fewer friends than the people living in Ithaca, and checking if
Alice’s friends is more efficient than performing a join between
her friends and the people living in Ithaca. Moreover, joins ad-
ditionally have added communication overheads in distributed
settings.
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