
Job Scheduling with Minimizing Data Communication
Costs

[Extended Abstract]

Trevor Clinkenbeard∗

David R. Cheriton School of Computer Science
Faculty of Mathematics, University of Waterloo

tclinken@uwaterloo.ca

Anisoara Nica
SAP SE

Waterloo, Ontario, Canada
Anisoara.Nica@sap.com

ABSTRACT
The research presented in this paper analyzes different algo-
rithms for scheduling a set of potentially interdependent jobs
in order to minimize the total runtime, or makespan, when
data communication costs are considered. On distributed
file systems, such as the HDFS, files are spread across a clus-
ter of machines. Once a request, such as a query, having as
input the data in these files is translated into a set of jobs,
these jobs must be scheduled across machines in the cluster.
Jobs consume input files stored in the distributed file system
or in cluster nodes, and produce output which is potentially
consumed by future jobs. If a job needs a particular file as
input, the job must either be executed on the same machine,
or it must incur a time penalty to copy the file, increasing
latency for the job. At the same time, independent jobs are
ideally scheduled at the same time on different machines,
in order to take advantage of parallelism. Both minimizing
communication costs and maximizing parallelism serve to
minimize the total runtime of a set of jobs. Furthermore,
the problem gets more complex when certain jobs must wait
for previous jobs to provide input, as is frequently the case
when a set of jobs represents the steps of a query on a dis-
tributed database.

Keywords
Distributed databases; Job scheduling

1. INTRODUCTION
Previous research has studied specific cases of minimizing

data communication costs. Golab et al. [2] used the theory
of graph partitioning to find a near-optimal algorithm to
place files in a distributed file system in order to minimize
data communication cost given an a known workload. In
contrast, the goal of this paper is not merely to minimize
data communication cost, but to consider the cost of data

∗The student author and the adviser Dr. Anisoara Nica
worked on this project during Fall 2014 co-op term at SAP
Waterloo, Canada.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage, and that copies bear this notice and the full ci-
tation on the f rst page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’15,May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2764943.

communication in order to minimize the total runtime of a
set of dynamic jobs. We also assume that input files may
already reside in some cluster nodes, and our solutions at-
tempt to schedule new jobs considering the current state of
distributed filesystem.

Apache Spark is a popular distributed processing paradigm
which implements the efficient Sparrow scheduler [4]. The
Sparrow scheduler is designed to efficiently schedule jobs
with processing times on the order of 100ms. Thus, Spar-
row relies on randomness and unsophisticated heuristics, in
order to schedule jobs in real time with very low latency. In
contrast, here we aim to design a dynamic scheduler for a
set of heterogeneous, including both large and small, jobs.
Our algorithms take significantly longer to schedule jobs, but
produce more optimal scheduling, a trade-off which favors
scheduling jobs with relatively long processing times.

The inputs to our problem are a set M of machines, a
set J of atomic jobs, and a set D of data files. Each job
ji ∈ J has an estimated processing time ri, a set of input
files Ii ⊂ D, and an output file oi ∈ D. Each file di ∈ D has
a (possibly estimated) size ti. Some jobs in J are already
scheduled on a machine in M. Let the set of unscheduled
jobs be uJ (e.g., the set of jobs of currently unscheduled
requests). Our goal is to output a function m : uJ → M,
mapping each unscheduled job to a machine on which it is
to be executed. In the case where jobs are interdependent,
i.e. oi ∈ Ik for some jobs ji, jk ∈ J , we must also produce
an order in which to process jobs on each machine. The goal
of the output is to minimize total runtime.

The first step in developing our scheduling algorithms was
to interpret the set of jobs, files, and dependencies as a
directed acyclical graph. Vertices represent files and jobs,
while dependencies are represented by arcs. All jobs depend
on their input files, and all output files depend on the jobs
which produce them. A job’s processing time, ri, provides
the weight of the arc to the job’s output file. The file sizes,
ti, along with the average network communication speed,
give potential weights for the rest of the arcs (these weights
are only assigned if the input file is not already stored on
the same machine as the job is executed on).

Based on this general outline for a graph, the first algo-
rithm implemented was a greedy algorithm based on the
well-known critical path method [3]. Using the arc weights
assigned, repeatedly select the job with the longest weighted
chain of dependents (i.e. the job at the head of the critical
path). Greedily schedule this job on a machine which min-
imizes the current makespan and ideally balances the load

2071



between different machines. Repeat this process until all
jobs are scheduled.
This algorithm is much more efficient than arbitrary or

random scheduling algorithms in all our experiments. How-
ever, it is very greedy, and does not fully consider the struc-
ture of the directed acyclical graph. Other algorithms ex-
plored used linear programming, implemented using SAP Sci-

Plex software.
In the linear programming algorithms, variables are used

to represent the projected finish time of each machine. The
obvious objective is to minimize the maximum of these ma-
chine finish times, the makespan. This works optimally for
scheduling just one set of jobs. However, if we wish to sched-
ule more jobs in the future, it is also important to balance
the load across machines. For example, consider a multi-
node cluster in which a large number of jobs are already
scheduled to run on machine m. Now assume we wish to
schedule a new, smaller, set of independent jobs. If the only
objective is to minimize makespan, these jobs can be sched-
uled anywhere on the cluster except on machine m, since
the makespan depends only on m’s finish time. However,
we would prefer to balance these jobs effectively across the
other machines which cannot be achieved if only makespan
is minimized. Thus, we experimented with different objec-
tive functions, such as minimizing a weighted sum of the
makespan and some other linear functions based on the load
balance. Unfortunately, we are restricted to using linear
functions. The greedy algorithm has no such restrictions, so
it can use a more effective load balancing objective function.
The first linear programming algorithm implemented ig-

nored the possibility of inter-job dependencies. In this case,
the ordering of jobs on a particular machine is irrelevant. By
using boolean variables xik representing job i being sched-
uled on machine k, and introducing the appropriate con-
straints, it is possible to find a completely optimal solution.
Introducing inter-job dependencies complicates the prob-

lem significantly. It is no longer feasible to find a completely
optimal solution. Instead, we split the graph of jobs into
“layers.” We repeatedly select a set S of unscheduled jobs
which don’t depend on any other unscheduled jobs. These
jobs can be scheduled in a nearly optimal way using linear
programming, once constraints are added to ensure that a
new job cannot start on a particular machine until that ma-
chine is finished executing the jobs already scheduled there.
While breaking the jobs into “layers” greatly simplifies the

problem, and the above algorithm performs well in most
cases, inter-job dependencies introduce an important tech-
nicality. A machine may be starved as its next scheduled
job waits for data from another machine. However, in the
meantime, the machine can load other data necessary for
its waiting jobs. This is difficult to represent using linear
programming, because we had previously been adding all
load times to the runtime of a job. With this consideration
in mind, though, a job could potentially load an input file
from another machine, without causing any additional delay
to later jobs scheduled on the machine. By adding additional
constraints to find the order of jobs on a machine, this prob-
lem can be avoided with a more expensive but slightly more
optimal linear programming solution.

2. RESULTS AND DISCUSSIONS
To test the algorithms, nine machines were used. 75 files of

size 100MB were generated and placed on the HDFS initially.

Table 1: Average Total Runtimes (in seconds): (1)
first n1 jobs are randomly scheduled; (2) n2 jobs are
scheduled with one of the scheduling algorithms Ran-

dom, Greedy, and Linear Programming given the state
of the cluster having n1 jobs already scheduled.

n1 n2 Random Greedy Linear Programming

0 20 362.6 162.0 167.5

0 40 415.1 270.3 275.6

20 20 421.2 254.8 327.2

A set of random jobs and dependencies were randomly gen-
erated, using random graph generation techniques inspired
by Cordeiro et al. [1]. Jobs are created with a randomly as-
signed constant processing time, uniformly distributed be-
tween 30 and 60 seconds. Each job produces a 100MB out-
put file. On average, a given job consumes a given file with
probability 0.1, but jobs are ordered to prevent any cyclical
dependencies.

Table 1 contains preliminary testing results, giving the
average total runtime in seconds. The first n1 jobs are ran-
domly scheduled, then an additional n2 jobs are scheduled,
considering the state of the cluster with the already sched-
uled n1 jobs. In general, the linear programming algorithm
and the greedy algorithm perform similarly for smaller sets
of jobs. Both algorithms are much better than a random
scheduling. The greedy algorithm is better for load balanc-
ing, though, as seen in the case where half of the jobs are
already scheduled arbitrarily. These scheduled jobs are likely
to be scheduled unevenly across machines, so the greedy al-
gorithm is favored due to its load balancing capabilities.

In the future, we plan to run more extensive tests on larger
sets of jobs. The linear programming algorithms are promis-
ing, in that they can be less greedy than the other algorithm
tested. However, utilizing linear programming to effectively
balance jobs across many machines is still an open prob-
lem. Lastly, certain real life complications were ignored in
this study. In practice, machines have memory constraints,
and they can get rid of unused files to free up space. Fur-
thermore, we have made the assumption that each job has
constant processing time, regardless of the machine it is run
on. In reality, some machines are faster than others, so it
is not always this simple. These issues further complicate
the scheduling problem, and can be the subject of further
research.

3. REFERENCES
[1] D. Cordeiro, G. Mounie, S. Perarnau, D. Trystram,

J.-M. Vincent, and F. Wagner. Random graph
generation for scheduling simulations. In SIMUTools,
Torremolinos, Malaga, Spain, March 2010.

[2] L. Golab, M. Hadijeleftheriou, H. Karloff, and B. Saha.
Distributed data placement to minimize communication
costs via graph partitioning. In SSDBM, Aalborg,
Denmark, June 2014.

[3] J. Kelley and M. Walker. Critical-path planning and
scheduling. In Proceedings of the Eastern Joint

Computer Conference, 1959.

[4] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: Scalable scheduling for sub-second parallel
jobs. Technical Report UCB/EECS-2013-29, U.C.
Berkeley, April 2013.

2072




