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ABSTRACT
In theory, database transactions protect application data from cor-
ruption and integrity violations. In practice, database transactions
frequently execute under weak isolation that exposes programs to
a range of concurrency anomalies, and programmers may fail to
correctly employ transactions. While low transaction volumes mask
many potential concurrency-related errors under normal operation,
determined adversaries can exploit them programmatically for fun
and profit. In this paper, we formalize a new kind of attack on
database-backed applications called an ACIDRain attack, in which
an adversary systematically exploits concurrency-related vulnerabil-
ities via programmatically accessible APIs. These attacks are not
theoretical: ACIDRain attacks have already occurred in a handful
of applications in the wild, including one attack which bankrupted
a popular Bitcoin exchange. To proactively detect the potential for
ACIDRain attacks, we extend the theory of weak isolation to analyze
latent potential for non-serializable behavior under concurrent web
API calls. We introduce a language-agnostic method for detecting
potential isolation anomalies in web applications, called Abstract
Anomaly Detection (2AD), that uses dynamic traces of database
accesses to efficiently reason about the space of possible concurrent
interleavings. We apply a prototype 2AD analysis tool to 12 popular
self-hosted eCommerce applications written in four languages and
deployed on over 2M websites. We identify and verify 22 critical
ACIDRain attacks that allow attackers to corrupt store inventory,
over-spend gift cards, and steal inventory.

1. INTRODUCTION
For decades, database systems have been tasked with maintaining

application integrity despite concurrent access to shared state [39].
The serializable transaction concept dictates that, if programmers
correctly group their application operations into transactions, appli-
cation integrity will be preserved [34]. This concept has formed the
cornerstone of decades of database research and design and has led
to at least one Turing award [2, 40].

In practice, the picture is less clear-cut. Some databases, in-
cluding Oracle’s flagship offering and SAP HANA, do not offer
serializability as an option at all. Other databases allow applications
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1 def withdraw(amt, user_id): (a)
2 bal = readBalance(user_id)
3 if (bal >= amt):
4 writeBalance(bal − amt, user_id)

1 def withdraw(amt, user_id): (b)
2 beginTxn()
3 bal = readBalance(user_id)
4 if (bal >= amt):
5 writeBalance(bal − amt, user_id)
6 commit()

Figure 1: (a) A simplified example of code that is vulnerable to
an ACIDRain attack allowing overdraft under concurrent ac-
cess. Two concurrent instances of the withdraw function could
both read balance $100, check that $100≥ $99, and each allow
$99 to be withdrawn, resulting $198 total withdrawals. (b) Ex-
ample of how transactions could be inserted to address this er-
ror. However, even this code is vulnerable to attack at isolation
levels at or below Read Committed, unless explicit locking such
as SELECT FOR UPDATE is used. While this scenario closely re-
sembles textbook examples of improper transaction use, in this
paper, we show that widely-deployed eCommerce applications
are similarly vulnerable to such ACIDRain attacks, allowing
corruption of application state and theft of assets.

to configure the database isolation level but often default to non-
serializable levels [17, 19] that may corrupt application state [45].
Moreover, we are unaware of any systematic study that examines
whether programmers correctly utilize transactions.

For many applications, this state of affairs is apparently satisfac-
tory. That is, some applications do not require serializable transac-
tions and are resilient to concurrency-related anomalies [18, 26, 48].
More prevalently, many applications do not experience concurrency-
related data corruption because their typical workloads are not highly
concurrent [21]. For example, for many businesses, even a few trans-
actions per second may represent enormous sales volume.

However, the rise of the web-facing interface (i.e., API) leads
to the possibility of increased concurrency—and the deliberate ex-
ploitation of concurrency-related errors. Specifically, given a public
API, a third party can programmatically trigger database-backed
behavior at a much higher rate than normal. This highly concur-
rent workload can trigger latent programming errors resulting from
incorrect transaction usage and/or incorrect use of weak isolation
levels. Subsequently, a determined adversary can systematically
exploit these errors, both to induce data corruption and induce un-
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desirable application behavior. For example, the code in Figure 1
demonstrates a simple withdrawal function that checks whether a
user has sufficient funds in their bank account. In Figure 1a, the
code could exhibit anomalous behavior under concurrent execution,
allowing the account to be overdrawn. Moreover, even after adding
transaction logic as in Figure 1b, concurrent execution could elicit
the same behavior under weak isolation.

These latent programming errors represent a potential security
vulnerability, and the threat of systematic exploit is not theoretical:
on March 2nd, 2014, the Flexcoin Bitcoin exchange was subject to
such a concurrency-related attack:

The attacker. . . successfully exploited a flaw in the code
which allows transfers between Flexcoin users. By
sending thousands of simultaneous requests, the at-
tacker was able to “move” coins from one user account
to another until the sending account was overdrawn,
before balances were updated. This was then repeated
through multiple accounts, snowballing the amount,
until the attacker withdrew the coins [1].

As a result of this attack, all Bitcoins stored in the Flexcoin exchange
were stolen, all users lost their stored Bitcoins, and the exchange
was forced to shut down. This type of incident is not isolated; we are
aware of several additional reports of malicious concurrency-related
attacks, largely targeting Bitcoin and cryptocurrency exchanges [51,
55]. As web applications increasingly host valuable and sensitive
data, attacks such as these may even become more common.

In this paper, we investigate the causes, detection, and prevalence
of concurrency-related attacks on database-backed web applications,
which we collectively title ACIDRain attacks.1 We more formally
define ACIDRain attacks, develop an analysis technique for de-
tecting vulnerabilities to ACIDRain attacks, and apply this tech-
nique to a set of self-hosted eCommerce applications, identifying
22 vulnerabilities spanning over 2M websites. All 22 vulnerabilities
manifest under the default isolation guarantees of popular transac-
tional databases including Oracle 12c, and 17 vulnerabilities—due
to incorrect transaction usage—manifest even under the strongest
transactional guarantees offered by these databases.

To begin, we define a threat model for ACIDRain attacks. We
consider attacks that trigger two kinds of anomalies, or behaviors
that could not have arisen in a serial execution. First, if the da-
tabase does not provide the application with serializable isolation
(either because the database is not configured to do so or the da-
tabase does not support serializability), then concurrently-issued
transactions may lead to non-serializable behavior. We call these
races due to database-level isolation level settings level-based isola-
tion anomalies. Second, if the application does not correctly scope,
or encapsulate, its logic using transactions, concurrent requests to
the application may lead to behavior that would not have arisen
sequentially. We call these races due to application-level transaction
specification scoping isolation anomalies. The the impact of each
of these types of anomalies is application-dependent. As a result,
we examine a specific class of applications in this paper: popular
eCommerce platforms, such as OpenCart [7], Spree Commerce [15],
and WooCommerce [16].

We use this threat model to develop a cross-language analysis
methodology to detect potential ACIDRain attacks. Web applica-
tions are written in a variety of languages and using a variety of
1Like acid rain in the Earth’s atmosphere, ACIDRain attacks may be difficult
to detect; an ACIDRain attack manifests in the form of regular API calls
and resulting application and database activity, albeit at elevated levels of
concurrency. This elevated concurrency triggers vulnerabilities resulting
from incorrect use of ACID transactional databases, leading to corrupted
data and/or more serious application compromise (e.g., stolen goods).

programming frameworks (e.g. Ruby on Rails). As a result, an anal-
ysis tool that operates on a per-language basis will have inherently
limited applicability. Instead, we exploit the fact that our target
applications are all web-based and database-backed. We analyze
actual SQL traces (i.e., logs) using a new approach called Abstract
Anomaly Detection (2AD). 2AD efficiently identifies potential level-
based and scope-based anomalies that could arise from concurrently
(re-)executing a set of API calls appearing in a given trace. This
search space is enormous. Therefore, to enable efficient search, we
extend the theory of weak isolation [17] to reason about both API
calls and about re-executions. 2AD uses this theory to construct
an abstract history that can be efficiently checked, representing the
infinite space of concurrent schedules in a finite data structure.

Using 2AD analysis, we perform an audit of 12 popular self-
hosted eCommerce platform applications, several of which are com-
mercially supported, written in four languages using four different
frameworks. We explore three attacks targeting invariants common
to most eCommerce applications: attacks that allow users to steal
items during checkout, to reuse gift cards to receive free items, and
to corrupt store inventory ledgers. Using 2AD, we detect 22 new
ACIDRain attacks. For example, in Magento [6], OpenCart [7], and
Oscar [8], users can buy a single gift card, then spend it an unlimited
number of times by concurrently issuing checkout requests. The
total scope of the vulnerabilities we discover spans approximately
2M websites that use this software today, representing over 50% of
all eCommerce websites (Section 4.2.1).

We subsequently discuss strategies for remediating these attacks
and discuss our experiences reporting these vulnerabilities to de-
velopers, who have confirmed several thus far. We evaluate which
databases provide sufficiently strong isolation guarantees to prevent
these attacks. Of the 22 vulnerabilities, 17 occur due to incorrect
transaction usage and are therefore not preventable without substan-
tial code modification. We investigate common program behavior
among vulnerable and non-vulnerable code paths and present con-
structive strategies for preventing attacks.

The remainder of this paper proceeds as follows. Section 2 defines
ACIDRain attacks. In Section 3, we develop and formally motivate
the 2AD analysis theory. Section 4 describes our experiences detect-
ing and exploiting real vulnerabilities in eCommerce applications.
Section 5 discusses related work, and Section 6 concludes.

2. ACIDRain ATTACKS
In this section, we define ACIDRain attacks more precisely and

describe the threat model we consider in this paper.

Target Environment. We focus on attacks on web applications—
applications that expose functionality to third-parties via program-
matically accessible APIs, both over the Internet and via related
protocols such as HTTP and REST. This applies to every website
on the Internet. Our primary property of interest is that it must be
possible to programmatically trigger API calls.

We are specifically interested in web applications that use databases
to mediate concurrent access to state. A web application that ex-
ecutes requests serially is not subject to the attacks we consider
here; however, concurrent request processing is common among
web servers including Apache and Nginx. We consider transactional
databases that allow users to group their operations into transactions
consisting of ordered sequences of operations [43]. The database in
turn provides varying isolation guarantees regarding the admissible
interleavings of operations across transactions [17].

Attack Definition. We define an ACIDRain attack on a database-
backed web application as an exploit allowing an attacker to elicit
undesirable application behavior by issuing concurrent requests to
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trigger non-serializable access to database-managed state. There
are several salient characteristics of this formulation. First, we are
interested in errors arising from access to database-managed state;
we do not consider vulnerabilities that may arise due to access to
state that is unknown to the database (e.g., a local file). Furthermore,
we are interested in errors arising from concurrent access; we do
not consider vulnerabilities that may arise during sequential access
(e.g., failure to check permissions). Finally, the severity of an attack
is application-specific; some concurrent behaviors may be benign,
while others may be catastrophic. These characteristics shaped our
problem formulation below. An application is vulnerable to an
ACIDRain attack if two conditions are met:

C1: Anomalies possible. Under concurrent API access, the appli-
cation may exhibit behaviors (i.e., anomalies) that could not have
arisen under a serial execution.

A concurrency-related attack arises in the presence of behaviors
that could not have occurred under a serial execution. These be-
haviors are effectively race conditions across concurrent operations,
or, in the parlance of transaction processing, anomalies [17]. We
consider two kinds of anomalies:

First, a transaction issued by a web application may exhibit non-
serializable behavior during concurrent API calls. That is, while
the gold standard of transaction isolation (serializable isolation)
guarantees equivalence to some serial execution of transactions, not
all databases will enforce serializability. Some databases do not
provide serializability as an option at all, while others allow appli-
cations to select a weaker isolation mode [17, 19]. Under weaker
isolation levels, transactions are subject to an array of behaviors that
cannot occur under serial execution, the exact set of which depends
on the particular isolation level and database [17]. We call these
conventional isolation anomalies level-based isolation anomalies
as they arise due to the database executing under non-serializable
isolation levels.

Second, independent of the isolation level used, the transaction
programming model requires the application to correctly encap-
sulate its logic within transactions. In the absence of explicit
BEGIN TRANSACTION and COMMIT/ABORT commands, by default,
many databases such as MySQL and PostgreSQL automatically
execute each SQL operation as a separate transaction. As a result,
if a web application performs multiple database operations with-
out using transactions while servicing a single API request, then
concurrent API requests may result in behavior that could not have
arisen during a serial execution of API calls. We call these isolation
anomalies arising from a lack of transactional encapsulation scope-
based isolation anomalies. In this paper, we consider scoping at the
level of individual API calls.

Given a set of isolation anomalies, we must determine whether
any of these anomalies result in significant application behavior:

C2: Sensitive invariants. The anomalies arising from concurrent
access lead to violations of application invariants.

In general, per Kung and Papadimitriou [45], every anomaly is
problematic for some application; however, for a given application,
is a given anomaly problematic? Again borrowing from the classical
transaction processing literature, we capture key application proper-
ties via invariants, or logical predicates capturing an application’s
consistency criteria [34]. For example, an application might have
an invariant that user IDs within a database are unique. Another
application might specify that total revenue equals the sum of total
orders placed. Each invariant is susceptible to violation under a
particular set of anomalies.

SELECT stock FROM 
product WHERE 
item_id=2; 2 SELECT
amt FROM cart_items 
WHERE cart_id=14 AND 
item_id=2; INSERT INTO  

1: PUT /api/add
2: GET /api/total
3: PUT /api/checkout
1: PUT /api/add
3: PUT /api/add

1: PUT /api/add
3: PUT /api/checkout
2: PUT /api/add

!"# 6. ACIDRain attack (§4)

3. Abstract history
generation

(§3.1.2)

2. SQL logging
(§3.1.1)

5. Witness refinement
(§3.1.4) 4. Witness generation

(§3.1.3)

1. Public API calls

Transactional
Database

Application
API
Server

Figure 2: 2AD workflow to discover ACIDRain attacks.

To detect an application’s vulnerability to ACIDRain attacks, we
must identify potential anomalies, then determine whether applica-
tion invariants are susceptible to the anomalies. Towards the former
task, in the next section, we present a cross-platform methodology
(based on analysis of traces of live database activity) that automati-
cally identifies potential isolation anomalies. Determining invariants
is more complicated, requiring either user interaction, invariant min-
ing, or program analysis [32, 33]. As a result, in this paper we
focus on a specific, concrete set of invariants found in eCommerce
applications and examine a set of popular eCommerce applications
to determine their susceptibility to attacks on these key invariants.

Threat model. We assume that an attacker can only access the
web application via concurrent requests against publicly-accessible
APIs (e.g., HTTP, REST). That is, to perform an ACIDRain attack,
the attacker does not require access to the application server, data-
base server, execution environment, or logs. Our proposed analysis
techniques (Section 3) use full knowledge of the database schema
and SQL logs, but, once identified, an attacker can exploit the vul-
nerabilities we consider here using only programmatic APIs.2 This
threat model applies to most Internet sites today.

3. 2AD: DETECTING ANOMALIES
ACIDRain attacks stem from anomalies that occur during con-

current execution. Detecting these anomalies is challenging. Many
potential anomalies are never triggered under normal operation due
to limited concurrency, rendering simple observation ineffective.
We could use static analysis tools [50] to analyze an application’s
susceptibility to attacks. However, web applications are written
using a variety of frameworks and languages. As a result, static
analysis tools would necessarily have limited applicability.

To address these challenges, we developed a new, cross-platform
methodology for detecting potential level-based and scope-based
anomalies in web applications by analyzing logs of typical database
activity. We call this approach Abstract Anomaly Detection (2AD).
Figure 2 shows an overview of the 2AD workflow.

Overview. The core idea behind 2AD is to execute API calls
against a live application and database to generate a (possibly se-
quential) trace of database activity, then analyze the trace for po-
tential anomalies that could arise under concurrent execution. This
approach leverages the facts that our target applications all i.) expose
API endpoints (e.g., via HTTP) that can be triggered programmati-

2That is, to efficiently identify vulnerabilities, our analysis makes use of
non-public information in the form of database logs (e.g. SQL traces) and
database schemas. However, the vulnerabilities themselves can be exploited
without this private knowledge.
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cally and ii.) are backed by a SQL database, allowing a common log-
ging environment. The analysis determines whether (re-)executing
API requests concurrently might yield anomalies, subsequently re-
porting the database tables and API calls that are susceptible to
anomalies and that could be used in an ACIDRain attack.

While conceptually simple, this dynamic analysis, which we de-
scribe in detail in the remainder of this section, requires considerable
work to achieve for two primary reasons:

First, existing models for database isolation reason about anoma-
lies in a particular concurrent execution (i.e., a history [17, 25]). In
contrast, we want to know whether anomalies are possible under
any potential concurrent execution of a group of transactions gener-
ated by (possibly serial) API calls. Thus, we must generalize from
concrete traces (Section 3.1.1) to possible concurrent interleavings
of the operations in those traces, which we call trace expansions.
Expansions allow API calls to be repeated, possibly with differ-
ent inputs; thus, the set of expansions is infinite. We develop a
new approach to simultaneously reason about all possible expan-
sions. We introduce the concept of an abstract history, a finite graph
representing all expansions of a given trace (Section 3.1.2). We
provide a mechanism to “lift” a concrete trace to its corresponding
abstract history and prove the equivalence of anomaly detection over
the lifted abstract history and over the entire space of expansions
(Section 3.1.3).

Second, to detect scope-based anomalies, we need to reason
about behavior across transactions within the same API call. To do
so, we extend Adya’s theory of transaction isolation [17] to allow
reasoning about API calls (Section 3.1.3). Roughly, this corresponds
to adding API “supernodes” to the transaction conflict graph and
our abstract history. We subsequently extend Adya’s theory of weak
transaction isolation to allow refinement of possible anomalies in
abstract histories, including API calls (Section 3.1.4).

As we discuss in Section 3.1.3, 2AD is complete with respect
to the trace: if there is a potential anomaly in a trace expansion,
2AD will find it. 2AD will also provide a corresponding witness, or
concrete trace, demonstrating non-serializable behavior. However,
depending on the isolation level of the database and execution envi-
ronment of the application (e.g., due to application-level locking),
some anomalies are impossible to trigger. Thus, 2AD leverages an
witness refinement step (Section 3.1.4) to reduce false positives.

In the remainder of this section, we provide intuition and algo-
rithms for performing 2AD. We provide a detailed formalism for
2AD (including proofs) in Appendix A. We describe trace generation
in Section 3.1.1, abstract history lifting in Section 3.1.2, anomaly
detection in Section 3.1.3, witness refinement in Section 3.1.4, and
the benefits and limitations of the 2AD approach in Section 3.2.

3.1 2AD Concepts and Procedures

3.1.1 Trace Generation
2AD uses traces of normal application behavior to identify po-

tential non-serializable expansions. Given that web applications
are written in a number of languages and frameworks, we gather
traces (logs) from the database rather than the application. These
logs can be generated from normal activity, or generated for the
explicit purpose of anomaly detection. For example, to check for
anomalies in the checkout process of an eCommerce application,
a 2AD penetration tester could add items to the store cart, provide
address and payment details, then place an order.

From the database logs, we extract the sequence of transactions
generated by each API call. At a high level, each transaction consists
of a sequence of read and write operations in the database; we
extract this sequence as well as the variables (e.g., columns) upon

1 def add_employee(first , last ) : (a)
2 beginTxn()
3 count = readCount(’employee’)
4 .whereFirstName(first ) .whereLastName(last)
5 if count == 0:
6 write ( ’employee’, first , last , 0)
7 commit()

8 def raise_salary (amt):
9 write ( ’employee’) . incrementSalary(amt)

10 beginTxn()
11 count = readCount(’employee’)
12 write ( ’ salary ’ ) .updateTotal(count ∗ amt)
13 commit()

1 BEGIN TRANSACTION (b)
2 SELECT COUNT(∗) FROM employees WHERE

first_name=’John’ AND last_name=’Doe’
3 INSERT INTO employees (first_name, last_name,

salary) VALUES (’John’, ’Doe’, 50000)
4 COMMIT
5 UPDATE employees SET salary=salary+1000
6 BEGIN TRANSACTION
7 SELECT COUNT(∗) FROM employees
8 UPDATE salary SET total=total+3000
9 COMMIT

Figure 3: (a) Simplified code corresponding to two functions:
one to add a new employee if the first and last names are unique
(add_employee, lines 1-7) and one to give a raise to all employ-
ees and record the new total cost of all salaries. (raise_salary,
lines 8-13). (b) A sample SQL database log from using the func-
tions in (a) to add a third employee, “John Doe,” to the database
and then give all employees a raise of 1000.

which each read and write operation acts.3 In the next section, we
describe how to use this trace as a “seed” for, in effect, simulating
the execution of all possible concurrent API calls.

In practice, logs may contain commands interleaved from con-
current API calls. Thus, we require that each command logged be
associated with the specific API call that generated it. This asso-
ciation can be obtained in a variety of ways; one of the simplest
approaches is to match the timestamp of the log with the timestamp
of the API call.

Figure 3a shows a simple example payroll application implement-
ing functionality to add an employee (who has a first name, last
name, and yearly salary) to a database, along with functionality
for giving a raise to all employees and recording the new total cost
of all employee salaries. We will use this as our running example
throughout this section. Figure 3b shows logs that could result from
executing these two functions serially. While simple, this example
highlights similar problems to those we have encountered in the
more complex applications that we discuss in Section 4.

3.1.2 Abstract History Generation
Given a concrete trace generated by API calls, we determine

whether concurrently executing a set of calls to the same APIs might
result in non-serializable behavior. The primary challenge here

3As we are interested in database traces in SQL, we must reason about
operations over sets of database records. Adya [17] provides a detailed
discussion of predicate-based operations that operate over sets; we adopt
his formalism by modeling predicate-based read and write operations that
pertain to multiple records as single operations.
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5 w(employees) 7 r(employees) 8 w(salary)

2 r(employees) 3 w(employees)

r
w r

w

w w

add_employee

raise_salary

Figure 4: The abstract history corresponding to the trace in Figure 3b. Solid ellipses correspond to operations, dashed rectangles
to transactions, and dotted rectangles to API calls. Edges are labeled with the type of conflict, and operations are labeled with the
corresponding line from the trace in Figure 3b. There is no edge between node 5 and nodes 2 and 7 because these COUNT queries do
not conflict with the update in 5. Per Theorem 1, each non-trivial cycle in the abstract history corresponds to a potential anomaly.

1 a1∗: UPDATE employees SET salary=salary+1000
2 a2: BEGIN TRANSACTION
3 a2: SELECT COUNT(∗) FROM employees WHERE

first_name=’John’ AND last_name=’Doe’
4 a2: INSERT INTO employees (first_name, last_name,

salary) VALUES (’John’, ’Doe’, 0)
5 a2: COMMIT
6 a1: BEGIN TRANSACTION
7 a1∗: SELECT COUNT(∗) FROM employees
8 a1: UPDATE salary SET total=total+3000
9 a1: COMMIT

Figure 5: Example non-serializable witness generated from the
abstract history in Figure 4. The asterisks mark the operations
used as the seed pair to find the cycle. The labels on the left
correspond to the API call that generated the operation. This
trace represents the scenario in which a new employee named
“John Doe,” who will be the third employee, is added to the
database concurrently with salaries being raised by 1000.

is that existing theories of isolation pertain to concrete traces, or
histories, of transactions [17, 25]. These theories can tell us whether
a given execution obeys a given isolation level. However, we would
like to reason about the infinite space of concurrent executions.

Thus, instead of reasoning about concrete histories directly, we
introduce a concept that we call an abstract history. The abstract
history is a finite multigraph (i.e., allows multiple edges between the
same pair of nodes) that represents the set of all possible expansions
of a given trace. We show how to detect whether an anomalous
expansion of the trace exists and generate example expansions via a
series of short walks over this abstract history graph:

An abstract history consists of three types of nodes—operation
nodes, transaction nodes, and API nodes—and two types of edges—
write edges and read edges. Transaction nodes are supernodes
encapsulating each operation in the transaction, while API nodes
are supernodes encapsulating all transactions in the API call. Undi-
rected edges link two operation nodes and induce edges between
the corresponding supernodes. For example, given operation o1 in
transaction t1 and API call a1 along with operation o2 in transaction
t2 and API call a2, a write edge between o1 and o2 induces a write
edge between t1 and t2 as well as a1 and a2. As the abstract history
is a multigraph, two nodes are allowed to have multiple edges be-
tween them; this occurs only between transaction nodes and API
nodes, not operation nodes.

Given a trace consisting of a set of API calls, each containing a

set of transactions, along with each transaction’s sequence of read
and write operations, we construct an abstract history as follows:
first, create an operation node for each operation, a transaction node
for each transaction, and an API node for each API call. Group the
operations by transaction and the transactions by API call.

We say that two operations conflict if they access the same data
items (i.e., columns or logical variables, not values) and at least one
operation is a modification (i.e., write). (Note that in SQL, predicate-
and set-based constructs such as COUNT and UPDATE conflict accord-
ing to the predicates involved for each statement [17].) For each
pair of conflicting operations, add an undirected read edge between
them if one is a read and an undirected write edge between them
if both are writes. As described above, these edges induce edges
between the corresponding transaction and API nodes. Moreover,
all types of nodes are allowed to have self-loops. Figure 4 shows
the abstract history generated from Figure 3b.

When constructing the abstract history, we only record the tables
and columns accessed, not the exact values in the operations. This
allows us to collapse multiple instances of the same API call with
the same access pattern into one API node, reducing the size of the
abstract history and improving search speeds. In contrast, multiple
calls to the same logical API function that result in different access
patterns (e.g., because one call encountered invalid input) would be
represented by different API nodes in the abstract history.

In summary, the abstract history is represented by a multigraph,
with nodes for each operation, supernodes of operations for each
transaction, and supernodes of transactions for each API call. Undi-
rected write and read edges capture interactions between pairs of
writes and pairs of reads and writes, respectively. Intuitively, the
abstract history captures all possible concurrent interleavings of the
API calls. We can use it to check for potential anomalies without
enumerating all interleavings (Section 3.1.3).

3.1.3 Witness Generation
We can simultaneously find both level-based and scope-based

non-serializable expansions of the original trace (i.e., witnesses)
using the abstract history. Just as cycles among transactions indicate
anomalies in traditional formalism for reasoning about concrete his-
tories [17,25], cycles of API nodes in the abstract history correspond
to potentially anomalous behavior in API calls.

However, simply checking for undirected cycles in the abstract
history is insufficient. For example, concurrently executing an API
call containing a single transaction T1 : w(x1) never results in non-
serializable behavior, but the corresponding abstract history contains
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a cycle. We say this cycle is trivial because it only contains one
operation per API node. In Figure 4, the cycle formed by the write
self edge on operation 3 is also trivial. In contrast, we are interested
in non-trivial abstract cycles, or cycles of edges between API nodes
that contain edges induced by two or more distinct operations re-
siding within a single API node. (Note that this definition does not
preclude repetition of API nodes.) For example, the two self edges
on operations 5 and 8 in Figure 4 form a non-trivial abstract cycle.

Searching for these non-trivial abstract cycles is sufficient to
detect the presence of anomalous expansions. Specifically:

Theorem 1. (Informal) For a given trace T , there exists an expan-
sion of the trace that results in anomalous behavior if and only if
there is a non-trivial abstract cycle in the abstract history between
API nodes corresponding to T .

Theorem 1 implies we can simply walk the abstract history graph
and search for cycles to find anomalies. Remarkably, non-trivial
cycle detection in this lifted form captures any and all possible
anomalous expansions of a given concrete history. That is, this
theorem states that this method is complete with respect to the
trace—if a non-serializable expansion exists, 2AD will find it.

The soundness property implied by this theorem (i.e., that there
exists an anomalous expansion for each cycle) assumes that all
anomalous expansions (witnesses) are in fact achievable via some
concurrent re-execution of the API calls. However, if the database
provides any isolation guarantees, or if programs perform complex
control flow or perform concurrency control external to the data-
base, 2AD as currently stated will report false positives. Thus, we
introduce a “witness refinement” step in in Section 3.1.4.

Appendix A provides a formal statement and proof of this the-
orem as well as a more detailed description of how to generate
witness traces from a given non-trivial abstract cycle. Finally, recall
that Theorem 1 refers to the soundness and completeness of 2AD as
a method of detecting potential anomalies in a given trace of transac-
tion and API call activity. Thus, 2AD reasons about observed traces
of an application’s behavior and potential re-execution of API calls
that produced those traces, not the safety of the entire application
(e.g., changing values or control flow that does not appear in the
trace itself; see also Section 3.2).

Witness-Finding Algorithm. Given our goal of finding non-trivial
abstract cycles, 2AD starts by selecting a pair of operations in the
same API call (o1 in transaction t1 and API call a1, o2 in transaction
t2 and API call a1, o1 precedes o2 in the serial ordering of a1).
We search for non-trivial abstract cycles among the API nodes,
constraining the first edge in the cycle to have o1 as an endpoint
and the last edge in the cycle to have o2 as an endpoint. To find
level-based anomalies, we examine only pairs where t1 = t2. To find
scope-based anomalies, we look at pairs where t1 6= t2.

Each of these connectivity queries can be answered via simple
depth-first search (DFS). Moreover, each cyclic path found can be
used to build a witness trace of the potentially anomalous execution.
Informally, we construct a witness by walking the cycle from oi
to o j and recording all operations that we encounter, then add the
remaining operations of the API nodes used in the cycle such that
the final history respects the ordering of operations within each API
call (Appendix A, Lemma 4). The full witness finding algorithm
analyzes all pairs of operations within the same API call.

Example. There are several non-trivial cycles in Figure 4. The path
including operations 5, 3, and 7 forms a cycle between the two API
nodes corresponding to an anomaly which results in an employee
being counted in the raised total salary amount but not receiving a
raise. Figure 5 shows a witness to this anomaly. Operations 5 and 7
are in different transactions, making this is a scope-based anomaly.

The self-loop cycle on API call add_employee between opera-
tions 2 and 3 corresponds to a violation of the uniqueness property
on employee names. However, since these operations are in the same
transaction, we must consider the isolation level of the database, as
discussed in the next section.

Runtime. Given a trace containing p operations, the abstract
history contains O(p) operation nodes and O(p2) edges, so DFS
requires O(p2) time. Analyzing all pairs of operations requires
O(p4) time. However, this worst case runtime is rarely reached. If
we divide the operations into pr reads and pw writes, then there
are at most p2

w + pw pr edges, since each edge requires at least one
endpoint to be a write. If pw � pr, this is approximately pw pr,
or O(p2 pw pr). For the applications we analyze in Section 4, the
number of edges is roughly O(p), not O(p2). Furthermore, it is
often unnecessary to examine all pairs of operations for anomalous
behavior. We can leverage user-provided input to focus the search
on anomalies involving specific tables and columns and achieve
interactive runtimes (Section 4.2.3). With this optimization, our
prototype 2AD analysis tool implemented in Python completed
within 10 seconds for every application we analyzed.

3.1.4 Witness Refinement
Thus far, our 2AD analysis has operated under the assumption

that all expansions of traces can be achieved via concurrent execu-
tion of the corresponding API requests. In effect, this corresponds
to an application that i.) executes under a database with no isolation,
ii.) can execute API calls with arbitrary (well-typed) values, and
iii.) is able to reliably generate the exact same read-write transac-
tion activity from concurrent API calls as in the input trace. In
practice, these properties may not hold. First, databases provide
weak isolation guarantees that do not guarantee serializable execu-
tion but nevertheless restricts allowable concurrent executions [17].
Second, 2AD’s use of traces treats applications as black-box transac-
tion generators: while some applications can reliably (re-)generate
concurrent transactions, others may have more complex read-write
logic and/or application-level concurrency control mechanisms that
restrict the space of achievable schedules. As a result, 2AD’s cycle
generation may produce false positives, or anomalous witness traces
that are not actually possible to produce under concurrent execution.

To reduce these false positives, thereby improving the soundness
of 2AD analysis, we introduce an optional witness refinement step.
In this step, we encode additional knowledge about the space of
achievable histories in the form of restrictions on witnesses. There
are two main sources of knowledge we consider:

1.) Isolation-Based Refinement. Different isolation levels allow
different types of anomalies. For example, Read Uncommitted iso-
lation disallows witnesses consisting only of write-write conflicts.
Therefore, if the database operates under Read Uncommitted isola-
tion, we can modify the 2AD cycle generation protocol to ignore
cycles consisting only of undirected write edges. We can in fact cap-
ture the entire theory of weak isolation including common models
such as Snapshot Isolation [17] via witness refinement by encoding
the corresponding restrictions on the witness histories. To avoid enu-
merating all cycles (potentially exponential in number), we modify
the DFS to memoize refinement information.

As a concrete example of isolation-based refinement, again con-
sider Figure 4 and the cycle in API call add_employee between
operations 2 and 3. Since these operations are in the same transac-
tion, we must consider the isolation level of the database. Operation
2 is a predicate read, thus this anomaly will still be possible un-
der Read Uncommitted, Read Committed, and Repeatable Read
isolation levels. Serializable isolation would disallow this anomaly.
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Performing refinement of this type requires knowledge of the
isolation level at which the application will be run, as well as data-
base schema information. The schema information allows 2AD to
distinguish reads on unique keys from predicate reads (as the two
are treated differently under RR and SI).

2.) Application-Level Refinement. We can also perform witness
refinement given information about the application and execution
environment. For example, if we know that the application is de-
ployed in an environment that limits the number of concurrent API
requests to N (e.g., due to web server configuration such as process
pool size), we can ensure that cycles in 2AD witnesses span at most
N API calls. In addition, 2AD’s abstract histories are value-agnostic
and do not account for control flow within a program; in effect,
2AD’s abstract history construction process assumes that each vari-
able read and written can assume arbitrary values. However, there
are often dependencies (e.g., y = x+ 1) between the values that
variables assume. In general, analyzing and encoding all program
logic into the 2AD refinement step is highly challenging, and, in the
limit, requires static analysis of the source program.

In our experimental study, it was faster to attempt to trigger a
reported anomaly and then find the associated program logic prevent-
ing the vulnerability than to preemptively add refinements. For the
web applications we seek here—many of which have simple Create-
Read-Update-Destroy (CRUD) semantics—complex application-
level refinement was not necessary to detect our target anomalies.

3.2 2AD Overview and Discussion
Benefits. In the parlance of programming languages, 2AD is a
dynamic analysis [50], in that it uses traces from live applications
as the basis of analysis. This is a natural fit for database-backed
applications: it is a simple engineering exercise to collect query
logs, and a relatively straightforward task to correlate log entries
with API calls for many of the frameworks we study. Database
schema information is similarly easy to collect. Although we have
performed our analyses in a test environment (Section 4.2.1), 2AD
is amenable to execution over production traces as well.

2AD is both language agnostic—allowing it to analyze many
different applications, and database agnostic—requiring only that
the database allow for command logging and support a SQL-like
query language. This has proved useful in practice (Section 4).

Soundness and Completeness. As discussed in Section 3.1.3,
2AD is complete with respect to the trace. 2AD is as sound as its
refinements; it will only report false positives based on isolation or
application information it does not know about. As described in
Section 4.2.5, a basic 2AD implementation was sufficiently sound
to assist in finding vulnerabilities in real applications.

Limitations. 2AD analysis has several fundamental limitations.
As 2AD only operates over database logs, it does not account for
any program logic that enforces serializability or expansions un-
achievable due to constraints on values. As a result, 2AD may result
in false positives; for example, a developer could use a global vari-
able to lock a critical section of code instead of wrapping it in a
transaction. To avoid this false positive, we would have to encode
this information during trace refinement (e.g., via static analysis).

Moreover, 2AD analysis is only as thorough as the provided traces.
If a given API call is not in the input trace, 2AD cannot check for
anomalies involving the call. 2AD does not account for program
behavior such as internal control flow that is not observable from
traces. Thus, 2AD is well-suited to finding latent errors in common-
case application behavior, but it will miss anomalies corresponding
to rare or exceptional behavior not found in input logs.

In addition, 2AD only finds anomalies, not vulnerabilities. It is
up to the programmer or an additional tool to ascertain whether a
given anomaly may result in an ACIDRain attack. We discuss this
process at length in the next section.

Extensions. There are a number of promising extensions to 2AD
that we believe can capture more sophisticated transaction usage
patterns. For example, under mixed isolation modes (e.g., one
transaction running at Read Committed and another at Snapshot
Isolation), we can annotate transaction nodes with allowable isola-
tion guarantees, then propagate these labels during trace refinement
(e.g., a transaction allowed to execute in SI but not RC will disallow
Lost Update phenomena). In addition, by adding “sub-transaction”
nodes (similar to nesting transaction nodes inside of API nodes) and
modifying the detection procedure, we can extend 2AD to nested
transactional (and, respectively, nested API call) models.

Summary. 2AD is a cross-language dynamic analysis that uses
database traces to search for potential level and scoping anomalies
under concurrent execution. Our choice to focus on database traces
was motivated by our desire for a portable, lightweight tool that can
analyze database-backed applications written in arbitrary languages.
The decision to focus on database-level activity also allowed us
to adapt decades of theory on weak isolation in detecting anoma-
lies. Developing automated techniques for incorporating additional
knowledge of application structure into trace refinement will allow
more fine-grained analysis and is a worthwhile area for future work.
However, despite its limitations, 2AD has proven a useful tool in
analyzing real applications—the subject of the next section.

4. ACIDRain IN THE WILD
Having described how to use database traces to identify possible

anomalies, in this section we describe how to use these this approach
to detect vulnerabilities and subsequently perform ACIDRain at-
tacks. We apply a prototype 2AD analysis tool to a suite of 12
eCommerce applications, identifying 22 new ACIDRain attacks.
Section 4.1 describes how to produce vulnerabilities from anoma-
lies, and Section 4.2 details our experience finding vulnerabilities in
self-hosted eCommerce applications.

4.1 From Anomalies to Vulnerabilities
Isolation guarantees are a means towards protecting application

integrity, or invariants over data. Provided transactions (resp. API
calls) maintain application invariants in a serial execution, a serial-
izable execution will also preserve those invariants. However, an
anomalous execution could violate invariants and corrupt application
state. When does this corruption actually occur?

For a given anomaly, there exists some application for which the
anomaly violates an invariant [45]. Intuitively, if anomaly a occurs
in a history H, we can create a new application whose transactions
are the same as those in H and whose sole invariant is that “anomaly
a never occurs.” However, for a given application, the anomaly may
or may not influence the application invariants. Thus, to use 2AD in
an ACIDRain attack, we must establish a correspondence between
potential anomalies and invariant violations for a given applica-
tion. This is challenging to do in general: for example, describing
all program invariants is notoriously difficult and burdensome for
programmers [33].

Shifting from the theoretical to the practical, identifying security-
related invariants is less onerous than it may immediately seem. An
attacker will likely target particular data records of value such as
bank account balances, store inventory, tax records, and/or access
control policies. Therefore, a security officer’s role is to identify
and ensure adequate protection of these critical assets. Thus, 2AD’s
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ability to highlight anomalies that affect particular data items (e.g., a
table containing account balances) and determine the API calls that
may trigger them (e.g., two concurrent withdrawal requests) allows
users to determine which anomalies affect key program invariants.
In the next section, we describe this attack process for three critical
invariants found in popular eCommerce applications.

4.2 Attacking Self-Hosted eCommerce
To understand the prevalence of ACIDRain attack vulnerabilities

across a range of applications, we turned to self-hosted eCommerce
platforms (i.e., eCommerce platforms users deploy on their own
servers, in contrast to hosted offerings like Shopify). Over 60%
of the top 1M eCommerce sites are backed by these platforms [4].
Moreover, analyzing a particular class of application (eCommerce)
allowed us to check the same invariants across a range of codebases,
helping identify trends in vulnerability and prevention patterns.

4.2.1 Target Application Corpus
We selected a set of 12 eCommerce applications written in four

languages based on popularity measures including GitHub stars and
references in popular articles (Table 1). Stores use these applica-
tions by building a custom front end for customers while relying on
the application for tasks such as catalog management and payment
integration. This is similar to how a WordPress user might create a
blog (and, indeed, our most popular application, WooCommerce, is
actually a plugin for WordPress). Each application provides func-
tionality for managing an online store, allowing users to browse a
store catalog and place orders. Each application maintains inventory,
a ledger of orders, and tracks order status. Store owners can view
this data and perform administrative actions via separate interfaces.
Table 1 summarizes the applications used, their deployments, and
popularity on GitHub. While we could not find deployment numbers
for all of the platforms chosen, according to builtwith.com [4], this
set covers over 55% of eCommerce sites on the Internet. WooCom-
merce alone accounts for 39% of all online stores.

We chose eCommerce sites in part because they are among the
most popular widely-deployed self-hosted web applications and also
because they deal with money. (In contrast, we did not find any
popular self-hosted banking applications.) We did not censor our
selection but instead selected for prevalence and popularity alone.
We report results from every application we tested.

The eCommerce sites’ feature sets ranged considerably, but, as
Table 5 (Appendix C) shows, most had common functionalities
including functionality to track products and inventory, record cus-
tomer activity, and set up promotions—functionality we target in the
next section. Most importantly, they all shipped with sample store
that was easy to configure and represented a basic first deployment
that exercised core application functionality.

Applicability of results. In our analysis, we study application
codebases that allow us to gather traces and verify vulnerabilities
without performing attacks on sites in the wild, thereby avoiding
committing criminal offenses under a variety of jurisdictions. This
methodology leaves two questions unanswered:

First, if installed and configured according to directions, real
online stores using each application we study will use the same
functions and functionality described here, thus exposing themselves
to the vulnerabilities we report. However, it is possible that none of
the vulnerabilities we report actually exist in real sites—the 2M+
site operators using these applications may have fixed or otherwise
mitigated these vulnerabilities. For example, each store owner could
i.) modify the application code to properly encapsulate vulnerable
functionality in transactions, ii.) make sure to only deploy their
stores on databases that support serializability, and iii.) upgrade the

isolation level of their databases from the non-serializable default
isolation levels to serializability. Combined, these three actions
would defend against attacks, as the correctly-scoped application
transactions would exhibit serializable behavior.

We believe it is unlikely that all 2M+ sites running this code
in the wild performed such modifications, especially as none of
the above modifications were mentioned in any documentation we
encountered. However, we have not attempted to verify this fact and
instead only report on application usage as directed.

Second, we only analyzed self-hosted eCommerce applications.
According to builtwith.com [4], the majority of the remaining,
prominent eCommerce application platforms are hosted; that is, pop-
ular platforms such as Squarespace and Shopify provide eCommerce-
as-a-service. These hosted applications do not expose database
access directly but instead surface application APIs to the public
Internet. Thus, it is possible that these hosted eCommerce offer-
ings are subject to the exact same vulnerabilities that many of their
self-hosted peers exhibit in our study. One could attempt an attack
on these hosted offerings by performing concurrent requests to a
store hosted on a platform like Squarespace or Shopify using public-
facing APIs. However, we have not attempted to do so and only
report on self-hosted applications here.

4.2.2 Target Application Invariants
From this corpus of applications, we extracted a set of three criti-

cal invariants as targets for potential ACIDRain attacks. These three
invariants by no means represent the entire set of eCommerce invari-
ants that may be subject to attack, but this set applied to almost all
applications in the corpus and served as a useful basis for a system-
atic study. The exact invariant depended on the specific semantics
of each application but fell into one of three broad categories:

1.) Inventory Invariant. Each eCommerce site maintains its own
bookkeeping of store inventory. Each product has an associated
stock value (i.e., count of product remaining) that is decremented
upon order completion to record that the associated stock is ac-
counted for. We consider the invariant that a product’s stock must be
non-negative and that an item’s final stock count reflect the orders
placed for that item.4 We selected this invariant due to its ubiq-
uity and also because of its close correspondence to the canonical
textbook example of an integrity violation due to concurrent bank
account withdrawals resulting in corrupted or negative balances [42].

2.) Voucher Invariant. Nine out of twelve applications allowed
administrators to create gift vouchers (i.e., gift cards), which have
monetary value and/or a limit on the number of times the voucher
can be used. We targeted the invariant that vouchers should not be
used more than their specified limit. Violating this invariant amounts
to overspending a voucher, effectively stealing from the store. The
applications all process these vouchers internally, using database
backed state instead of third-party payment processors.

3.) Cart Invariant. Each application exposed a shopping cart
functionality, into which users place items and subsequently pay for
them as part of an order. We target the invariant that the total amount
charged for an order should reflect the total value of the goods in
the order. While this invariant may seem obvious, we found that
in several of the applications it was possible to add an item to the
cart concurrent with checkout, resulting in the user paying for the
original total of items in the cart, but placing a valid order including
the new item as well. This allows users to obtain items for free.
For example, a user might buy a pen and add a laptop to their cart
during checkout, paying for the pen but placing an order for the pen

4Some applications allowed backorders, but we disabled that functionality.
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App Name Language Web Deployments GitHub Stars as of 3/21/17 Lines of Code SQL Trace Size (Lines)
OpenCart [7] PHP 298,399 3247 136544 1699
PrestaShop [10] PHP 230,501 2287 189812 1422
Magento [6] PHP 245,680 4198 1161281 801
WooCommerce [16] PHP 1,979,504 3227 100098 1006
Spree [15] Ruby 45,000 8268 56069 768
Ror_ecommerce [11] Ruby – 1106 17224 218
Shoppe [14] Ruby – 835 4062 152
Oscar [8] Python – 2427 31727 769
Saleor [12] Python – 828 8614 401
Lightning Fast Shop [5] Python – 423 25163 563
Broadleaf [3] Java – 889 163012 374
Shopizer [13] Java – 507 59014 845

Table 1: Summary of applications analyzed. Deployment information provided by builtwith.com [4] for all but Spree, where informa-
tion is provided by the SpreeCommerce website. We were unable to find deployment numbers for the other applications. All Ruby
applications were built using Rails, all Python applications were built using Django, and all Java applications were built using Spring
as their respective frameworks. Lines of code only includes the lines in the target language, excluding other files such as Javascript
or HTML.

and laptop. Unless an application operator specifically looks for
mismatched order totals, this may be problematic, especially when
order fulfillment is automated. Thus, violations of this invariant
essentially allow customers to steal items from the store.

Table 3 (Appendix C) provides example formal statements of
these invariants, sample traces showcasing how these anomalies
manifest in the wild, and an example abstract history graph that
might arise from a simplified eCommerce application.

4.2.3 Prototype 2AD Analysis Tool
We implemented a prototype 2AD analysis tool in Python follow-

ing the approach in Section 3.5 The prototype accepts SQL logs
and a schema description and analyzes them via 2AD for potential
anomalies. Given the traces and a database schema, the analysis
tool outputs a list of tables, columns, and API calls for which 2AD
indicates there is a potential anomaly (either level-based or scope-
based).

Workflow, False Positives, and Targeted Analysis. 2AD gen-
erates a potentially large number of witnesses; for example, if an
application fails to use transactions entirely, every read and write to
the same column will result in a potential anomaly. Therefore, in
our analysis, we took a targeted approach: in addition to outputting
all potential anomalies (which can be large), the tool allows filtering
by target columns. For a specific invariant, we first identified the
relevant columns (e.g., vouchers.usage for the voucher invariant).
Subsequently, we passed these columns into the 2AD tool, which
reported potential witnesses for further inspection. This dramati-
cally reduced the overhead of finding and verifying vulnerabilities.
In our traces, the 2AD tool returned a median of 726 vulnerable
pairs of anomalous operations per application before filtering. After
filtering, the median was 37 witnesses. Via the above schema-driven
targeted exploration, by the end of our study, we could perform the
trace 2AD analysis in under half an hour per invariant (with most
of the time spent identifying table and column names); in contrast,
triggering and verifying each attack (e.g., crafting concurrent HTTP
requests) took approximately two hours.

Running time. Table 4 (Appendix C) provides a summary of
the size of the graphs and the corresponding runtimes. The tool
completed in under ten seconds for all traces.

Tool Limitations. Our prototype currently does not support several
SQL language constructs such as nested queries, views, and user-

5https://github.com/stanford-futuredata/acidrain

defined functions. However, the prototype was able to find all of the
vulnerabilities described below. Thus, while providing the tool a
richer understanding of SQL would improve its ability to accurately
find anomalies, this basic implementation proved to be powerful.

4.2.4 Experimental Methodology
We configured each application to run on an Intel i5-430M pro-

cessor with 4GB RAM running Ubuntu 14.04. Due to application
compatibility, we deployed the two Java applications on MySQL
Server v5.5.53 and the rest on MariaDB v10.1.10. We subsequently
generated database traces by interacting with each site via the public
HTTP interface (e.g., placing items in a cart, completing checkout).

Recall that our target invariants are independent of the 2AD anal-
ysis; 2AD only finds anomalies, and an 2AD user must relate those
anomalies to invariants. Therefore, to detect vulnerabilities, we used
our prototype 2AD analysis tool to highlight potential anomalies
relevant to the corresponding database tables under MySQL’s de-
fault isolation level.6 We subsequently verified each by attempting
an attack on the vulnerability by concurrently executing vulnerable
API calls via the user interface on our test deployments. When
attacks succeeded, we further ensured that each behavior was indeed
unexpected by verifying the attack was not possible under a serial
execution. To avoid configuring a custom HTTP request generator
for each application, we reproduced all the anomalies manually, via
rapid, successive HTTP requests (sometimes in separate browsers).
For eight (of 22) successful attacks, we introduced additional net-
work delay of 200ms between the application server and database
using a pass-through proxy. We have provided instructions for re-
producing each vulnerability in the form of publicly accessible bug
reports issued against each application (Section 4.2.7).

4.2.5 Analysis Results
Across the 12 applications, we identified 22 vulnerabilities to

ACIDRain attacks (Table 5, Appendix C). We discuss developer
responses to these vulnerabilities in Section 4.2.7.

Which vulnerabilities occurred? We identified nine inventory
vulnerabilities, eight voucher vulnerabilities, and five cart vulner-

6Because MySQL purports to provide Repeatable Read isolation, MySQL
should not allow Lost Updates. However, we were surprised to trigger Lost
Updates under MySQL Repeatable Read anyway; that is, MySQL “Repeat-
able Read” does not provide PL-2.99. MySQL uses lock-free multi-versioned
reads for all updates except those that specifically specify otherwise (e.g., via
FOR UPDATE). Thus, MySQL behaves as Read Committed instead. For a de-
tailed discussion of this phenomenon, see https://github.com/ept/hermitage.
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abilities. This prevalence inversely correlates with severity: the
inventory vulnerability can simply corrupt store inventory—an an-
noyance, but not necessarily a loss of revenue. The voucher vul-
nerability allows users to double-spend store credit, but typically
receiving the store credit requires the user to purchase the credit at
least once. The cart vulnerability is perhaps most severe, allowing
potentially unlimited addition of items to a user’s order—for free.

Two of the cart vulnerabilities deserve special mention. For both
Broadleaf and Shopizer, our tool reported a potential vulnerability
that we verified. However, further inspection revealed that the values
being written for the order total actually came from request headers,
thus making the vulnerability across API scope and thus technically
out of scope of our study. However, since we successfully triggered
these vulnerabilities and the prototype reported them due to other
reads in the checkout API call, we include them here.

Were particular applications more likely to contain vulnerabil-
ities? Only one application (Lightning Fast Shop) contained all
three vulnerabilities, and only one application (Spree) contained no
vulnerabilities (we discuss Spree’s application programming pat-
terns that defend against attacks below). In contrast, six applications
contained the voucher and inventory vulnerability, and four con-
tained the inventory and cart bug. Shopizer was the only application
with just one vulnerability. Thus, with the exception of Spree, these
vulnerabilities are widespread in our sample and are not localized
to a given set of applications. However, the exact manifestation of
each vulnerability reflects the project’s coding style and idioms (e.g.,
[dis]use of transactions; see below).

Database Level-Based Anomalies Allowed RemainingDefault Isolation Maximum Isolation
MySQL 5 (RC) 0 (S) 17
Oracle 5 (RC) 1 (SI) 17
Postgres 5 (RC) 0 (S) 17
SAP HANA 5 (RC) 1 (SI) 17

Table 2: RC = Read Committed, SI = Snapshot Isolation, S =
Serializability. Summary of how many anomalies would still be
observable under the default and maximum isolation levels of
some popular databases. As described in Section 4.2.4, MySQL
purports to provide Repeatable Read isolation by default but
actually provides Read Committed.

What types of anomalies caused vulnerabilities? Of the 22
vulnerabilities, five were level-based, meaning that the default weak
isolation level led to the anomalies behind the vulnerabilities. The
remaining 17 were scope-based, meaning that the database accesses
were not properly encapsulated in transactions and concurrent API
requests could trigger the vulnerability independent of the level of
isolation provided by the database backend.

Potential level-based anomalies depend on the isolation level
permitted by the database and the access pattern. The five that
arose from level-based anomalies resulted from both Lost Update
(4) behavior and Phantom Reads (1). Thus, under Read Committed
(Adya PL-2), all five are possible, while only the Phantom Read
anomaly should be possible under Repeatable Read (Adya PL-2.99)
and Snapshot Isolation (Adya PL-SI). Table 2 provides an overview
of which popular databases expose applications to attacks.

The remaining 17 vulnerabilities were due to scope-based anoma-
lies. In line with [20], several applications failed to use transactions
entirely. Some, like Ror_ecommerce (which had both a scope-based
vulnerability and a level-based vulnerability) used them sparingly.
Two applications had no logged transactions, although one of these
two had user level concurrency control in the form of PHP session

locks that prevented one of the vulnerabilities (OpenCart, see below).
Many transactions appear to be automatically generated by Object
Relational Mapping (ORM) calls instead of manually specified by
application programmers, making it difficult to distinguish when
transaction usage was intentional. In either case, the prevalence
of scope-based vulnerabilities even in the presence of transactions
indicates that either programmers, ORMs, or both find it difficult to
properly use transactions to encapsulate critical operations.

Were there false positives? As described in Section 4.2.3, we
utilized the 2AD prototype’s schema-targeted interface to focus
on anomalies that pertain to critical columns in the database. We
encountered four vulnerabilities that 2AD reported that were not
actually triggerable, for one of two reasons. The first class of false
positives were due to the use of user-level concurrency control (dis-
cussed at length in the next section); for this reason, the witnesses
produced by 2AD did not trigger the cart vulnerability in OpenCart
and Broadleaf. However, surprisingly, Broadleaf was still vulnera-
ble to the cart exploit due to an error in control flow (i.e., reusing a
previous session value). The second class of false positives were due
to anomalies that were in fact triggerable but were handled by other
program logic and thus rendered benign. The cart vulnerability for
Magento and Spree as well as the voucher vulnerability for Spree
fell into this category: while we were able to trigger read-write
anomalies, these applications used extra database accesses to repeat-
edly read data and verify invariants at the application level, thus
preventing the attack. False positives of the former type could be
mitigated by more detailed refinements. The latter require additional
information about application control flow.

Our focus on targeted 2AD analysis produced a small set of wit-
nesses pertaining to target columns. Out of curiosity, we investigated
a handful of witnesses that were unrelated to the columns of interest
to our invariants. Some were merely variations on a vulnerability
discussed above. Others were more benign: multiple applications al-
lowed a Lost Update to the user’s shopping cart before the checkout
process completed, resulting in the user observing an inconsistent
cart total in an intermediate step but providing no opportunity to
receive inventory for free as in the “true” cart vulnerabilities we
report above. Several others were not observable by external users
due to internal control flow.

4.2.6 Avoiding ACIDRain Attacks

When weren’t applications vulnerable? There were a range of
reasons why applications were not vulnerable to all attacks. Three
applications (Shoppe, Ror_ecommerce, and Shopizer) lacked the
concept of a voucher and so were automatically protected from
the voucher vulnerability. One application, Saleor, backed its cart
via a session variable instead of the database and was therefore
out of scope of this study. Broadleaf appears to have inadvertently
rendered its community edition’s site inventory management func-
tionality inoperable and we instead found an existing bug report
for this broken functionality (and thus were unable to confirm the
vulnerability). Shopizer required integrating with a shipping service
to exercise its inventory management code, so we do not report on
it.

We identified several patterns for avoiding these vulnerabilities.
Not all of these patterns appear to have been implemented deliber-
ately to avoid anomalies, as evidenced both by the comments from
the developers and the fragility with which some of them manage to
prevent a vulnerability:

SELECT FOR UPDATE Appending FOR UPDATE to the end of a
SELECT query prevents the data read from being modified until the
end of the transaction [42]. This can be used to prevent Lost Update
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(i.e., simple Read-Modify-Write) anomalies [17]. Only one of the
applications, Spree, used this functionality correctly to prevent the
inventory vulnerability. Another application, Ror_ecommerce, used
it correctly to prevent the inventory vulnerability when inventory is
low. However, Ror_ecommerce is still vulnerable to an attacker as it
does not guard the stock management when the inventory is above a
user-specified threshold. A third application, Magento, attempted
to use SELECT FOR UPDATE to lock the database row before writing
it. However, since the read used in the inventory check was made
outside of the transaction, Magento was still vulnerable.

In 2AD, accounting for SELECT FOR UPDATE corresponds to a
witness refinement limiting allowable witnesses. When looking for a
cycle between o1 and o2 in the same transaction, with U representing
the set of rows locked by SELECT FOR UPDATE after o1 is executed,
this refinement prevents the inclusion of any operation in the witness
that conflicts with U .

User level concurrency control. A few applications used user-
level locking to prevent concurrent execution of a section of code.
PHP automatically performs “session locking” on session files pre-
venting concurrent calls in the same session [9]. This prevented the
cart vulnerability in OpenCart. Broadleaf attempted to prevent the
cart vulnerability by implementing a mutex in the database. How-
ever, while the mutex was correct, the checkout functionality was
implemented incorrectly, and a version the cart invariant was still
vulnerable (Section 4.2.5, false positives).

In 2AD, user-level concurrency control could correspond to a
refinement rule in the abstract history that is derived from application
logic. We found it simpler to test the anomaly than search for and
encode such refinements.

Single read of data. Some vulnerabilities, like the cart vulner-
ability, stem from an invariant that certain values in the database
obey a given relationship (e.g., the sum of the prices of the items
in the order equals the the total charged for the order). A natural
way to enforce this constraint during checkout is to read the cart
once, then compute both the order total and order items from that
read. This implementation does not allow an anomaly to occur that
violates the constraint, as the data items are both computed from a
single input. Oscar, PrestaShop, and WooCommerce avoided the
cart vulnerability in this manner. In contrast, vulnerable applications
calculate the order total and order items from different reads of the
cart table.

In 2AD, a single read of the cart table will cause there to be
only one read operation mentioning the cart table in the “checkout”
API call, and thus there can be no non-trivial abstract cycle for the
cart table starting from this call. When the cart table is read more
than once, this creates the opportunity for non-trivial abstract cycle
between two read operations in the “checkout” API call and a write
operation in the “add to cart” API call.7

Multiple validations. Spree avoided the voucher vulnerability by
validating that the usage is under the limit multiple times: it checked
both before and after marking the voucher as used, as well as a
third time near the end of checkout. This pattern allowed anomalies
between the checks, but no vulnerability as all anomalies resulted
in unsuccessful checkouts. Similarly, both Spree and Magento read
from the cart table multiple times but prevent the cart vulnerability
by recalculating the cart total after each read.

Multiple validations result in the second type of false positive—
triggerable anomalies that do not compromise the application.

7Some applications did not have a separate order table but instead had to
write back to the corresponding row in the cart table to mark the order
completed. In these cases, a similar cycle existed in the abstract history.

4.2.7 Response and Discussion

Potential fixes. The anomaly type and access patterns in Table 5
dictates the actions that could be taken to prevent each vulnerability.
For level-based anomalies, simply increasing the isolation level to
an appropriate level (if supported) would prevent the corresponding
attack. Furthermore, some of the predicate based reads we observed
were expected to return at most one result. Marking the column be-
ing filtered as unique would allow serializable behavior at a weaker
isolation level. For scope-based anomalies, refactoring to properly
group operations within transactions is required. In either case,
alternative methods discussed in Section 4.2.6 such as SELECT FOR
UPDATE or multiple validations could also be used to prevent attacks.

Developer Response. We have reported 18 vulnerabilities to appli-
cation developers by opening support tickets on each application’s
GitHub repository or issue tracker (Appendix B). Four vulnerabili-
ties had existing issues filed by other users (due to data corruption,
and not explicitly for security-related concerns). Seven reported
vulnerabilities have been confirmed thus far. The developers of
Ror_ecommerce have proposed performing extra reads to prevent
the cart vulnerability. The developers of Oscar have proposed using
SELECT FOR UPDATE to prevent the inventory vulnerability. A user
of Magento responded to the inventory vulnerability issue describ-
ing a similar issue in production: “We set one product to sale and
after that we have quantity of product=-14. We use 18 instances of
frontend. [sic]” In contrast, the developer of OpenCart responded to
the inventory vulnerability by posting a comment—“use your brain!
its [sic] not hard to come up with a solution that does not involve
coding!”—then closed both the inventory and voucher vulnerability
issues and blocked us from responding. Broadleaf considers the
voucher vulnerability a feature. That is, the Broadleaf developers
responded to a similar ticket, indicating that they would prefer to
allow concurrent voucher usage on the grounds that failed checkouts
due to voucher overuse would result in poor user experience. It is
unclear whether the developers recognize the threat due to malicious
abuse of this functionality.

5. RELATED WORK
This research builds upon a long line of work on transaction

processing under weak isolation. Originally introduced in 1976 as
part of the System R project [41], isolation levels have a colorful
history, that includes several efforts to model them by Berenson et
al. [23] in the mid-1990s, Adya in the late 1990s [17], and several
others today [19,28,30]. To date, isolation guarantees remain poorly
understood [21]. In particular, our empirical analysis builds upon
several recent studies in the database community on the impact of
weak isolation:

Jorwekar et al. [44] provide techniques for detecting anomalies
in Snapshot Isolation, using SQL logs to analyze the behavior of
two benchmarks and two applications in use at IIT Bombay. Our
2AD analysis is inspired by Jorwekar et al.’s use of SQL logs, and
Jorwekar et al.’s refinements for SI are directly applicable as refine-
ment rules in 2AD. The work in this paper expands upon Jorwekar
et al.’s study by focusing on API-based security vulnerabilities in
database-backed web applications. We introduce a model that cap-
tures both API calls and transactions (and transactions within API
calls), requiring non-trivial extension to existing models of weak
isolation (including Adya [17]). This extension yields important
results: as we have empirically demonstrated, many vulnerabilities
exist only at the API level (in our study, 17 of 22 vulnerabilities).
In addition, we apply 2AD to isolation levels beyond SI (including
RC, and RR), requiring further work on trace refinement. Perhaps
most importantly, we analyze 12 open source eCommerce appli-
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cations written in four languages, with a broad install base (over
2M websites) and via transaction traces that are up to 46× larger
than the largest reported in this prior work, providing an expanded
perspective on transaction usage and anomalies in the wild.

More recently, Fekete et al. empirically measured conflicts un-
der non-serializable transaction isolation by crafting a synthetic
workload and measuring the occurrence of anomalies in concrete
execution histories. Our focus here is on predictive analysis. Most
recently, Bailis et al. [20] study a corpus of Ruby on Rails applica-
tions to determine the susceptibility of Rails applications to invariant
violations, in the form of violations of assertions regarding database-
backed state appearing in the code (i.e., validations). Thus, while
Bailis et al. study invariants that programmers explicitly specify
across a range of applications, we study a specific class of invariants
that are implicit in eCommerce applications and that are not captured
by Bailis et al.’s study. As a result of our focus on implicit invariants,
we developed 2AD to check for potential invariant violations from
database traces using Adya’s theory of transaction isolation [17]; in
contrast, Bailis et al. use the theory of invariant confluence [18] to
check invariants directly via static analysis of Ruby code.

There are a range of other studies profiling weakly consistent
databases including Amazon’s SimpleDB [59] and S3 [24] databases
and providing online algorithms for detecting violations of lineariz-
ability, and serializability [38, 62], and various bounded staleness
models [22, 36, 61]. Our focus here is on detecting and exploiting
weak isolation anomalies and analyzing their impact on database-
backed applications as deployed on the public Internet.

Several other works study web security. Most techniques de-
signed for the database setting focus on detecting and preventing
database manipulation such as SQL injection [47, 57], which are
not our focus. Model-based intrusion detection flags anomalous
program executions based on a learned or provided programming
model [29, 37]. These tools monitor a running application and en-
force invariants at various program points, unlike our tool which
does not require instrumenting a running program. These tools also
differ in that they cannot reason about concurrent executions. In
contrast, Yang et al. [60] predict the growing threat of concurrency
attacks and analyze some existing attacks; our work builds upon
theirs by defining a new class of concurrency attacks along with
studying the prevalence of these attacks in real applications.

Data race detection is a popular topic in program analysis. Most
dynamic techniques either search for inconsistent locksets [53, 58]
or use Lamport’s happens-before relation [46] to find two accesses
that are unordered with respect to each other [35, 54, 56]. Static
techniques based on the lockset algorithm, type systems, or model
checking are also used [27,31,49,52]. There are two key differences
between this shared memory setting and the database setting:

First, database analyses must consider weak isolation levels as op-
posed to weak memory models. These differ substantially in nature;
weak memory models are traditionally non-transactional, and their
semantics are more influenced by the particulars of hardware cache
coherence protocol design than database systems, which historically
owe their semantics both to relaxations of two-phase locking [41]
and convenient implementation in a multi-versioned concurrency
control subsystem [23]. Second, transaction activity is performed at
a much higher level of semantic granularity than low-level memory
accesses, making it difficult to trace race conditions back to appli-
cation code. Further adapting data race detection techniques to the
database setting is a promising area for future work.

6. CONCLUSIONS
For decades, the transaction concept has played a central role in

database research and development. Despite this prominence, trans-

actional databases today often surface much weaker models than the
classic serializable isolation guarantee—and, by default, far weaker
models than alternative,“strong but not serializable” models such as
Snapshot Isolation. Moreover, the transaction concept requires the
programmer’s involvement: should an application programmer fail
to correctly use transactions by appropriately encapsulating func-
tionality, even serializable transactions will expose programmers
to errors. While many errors arising from these practices may be
masked by low concurrency during normal operation, they are sus-
ceptible to occur during periods of abnormally high concurrency. By
triggering these errors via concurrent access in a deliberate attack, a
determined adversary could systematically exploit them for gain.

In this work, we defined the problem of ACIDRain attacks and
introduced 2AD, a lightweight dynamic analysis tool that uses traces
of normal database activity to detect possible anomalous behavior
in applications. To enable 2AD, we extended Adya’s theory of weak
isolation to allow efficient reasoning over the space of all possible
concurrent executions of a set of transactions based on a concrete
history, via a new concept called an abstract history, which also
applies to API calls. We then applied 2AD analysis to twelve popu-
lar self-hosted eCommerce applications, finding 22 vulnerabilities
spread across all but one application we tested, affecting over 50%
of eCommerce sites on the Internet today.

We believe that the magnitude and the prevalence of these vulner-
abilities to ACIDRain attacks merits a broader reconsideration of
the success of the transaction concept as employed by programmers
today, in addition to further pursuit of research in this direction.
Based on our early experiences both performing ACIDRain attacks
on self-hosted applications as well as engaging with developers, we
believe there is considerable work to be done in raising awareness
of these attacks—for example, via improved analyses and addi-
tional 2AD refinement rules (including analysis of source code to
better highlight sources of error)—and in automated methods for de-
fending against these attacks—for example, by synthesizing repairs
such as automated isolation level tuning and selective application
of SELECT FOR UPDATE mechanisms. Our results here—as well as
existing instances of ACIDRain attacks in the wild—suggest there
is considerable value at stake.

Acknowledgements
We thank the many members of the Stanford InfoLab as well as Ali
Ghodsi and Martin Rinard for their valuable feedback on this work.
This research was supported in part by Toyota Research Institute,
Intel, the Army High Performance Computing Research Center,
RWE AG, Visa, Keysight Technologies, Facebook, and VMWare.

7. REFERENCES
[1] Flexcoin.

https://web.archive.org/web/20160408190656/http://www.flexcoin.com/ (2014).
[2] Michael Stonebraker Turing Award, 2014.

http://amturing.acm.org/award_winners/stonebraker_1172121.cfm.
[3] Broadleaf Commerce, 2016.

https://github.com/BroadleafCommerce/BroadleafCommerce.
[4] builtwith, 2016. https://builtwith.com/.
[5] Lightning Fast Shop, 2016. https://github.com/diefenbach/django-lfs.
[6] Magento2, 2016. https://github.com/magento/magento2.
[7] OpenCart, 2016. https://github.com/opencart/opencart.
[8] Oscar, 2016. https://github.com/django-oscar/django-oscar.
[9] PHP Session Basics, 2016.

http://php.net/manual/en/session.examples.basic.php.
[10] PrestaShop, 2016. https://github.com/PrestaShop/PrestaShop.
[11] ROR Ecommerce, 2016. https://github.com/drhenner/ror_ecommerce.
[12] Saleor, 2016. https://github.com/mirumee/saleor.
[13] Shopizer, 2016. https://github.com/shopizer-ecommerce/shopizer.
[14] Shoppe, 2016. https://github.com/tryshoppe/shoppe.
[15] Spree Commerce, 2016. https://github.com/spree/spree.

16

https://web.archive.org/web/20160408190656/http://www.flexcoin.com/
http://amturing.acm.org/award_winners/stonebraker_1172121.cfm
https://github.com/BroadleafCommerce/BroadleafCommerce
https://builtwith.com/
https://github.com/diefenbach/django-lfs
https://github.com/magento/magento2
https://github.com/opencart/opencart
https://github.com/django-oscar/django-oscar
http://php.net/manual/en/session.examples.basic.php
https://github.com/PrestaShop/PrestaShop
https://github.com/drhenner/ror_ecommerce
https://github.com/mirumee/saleor
https://github.com/shopizer-ecommerce/shopizer
https://github.com/tryshoppe/shoppe
https://github.com/spree/spree


[16] WooCommerce, 2016. https://github.com/woocommerce/woocommerce.
[17] A. Adya. Weak consistency: a generalized theory and optimistic

implementations for distributed transactions. PhD thesis, MIT, 1999.
[18] P. Bailis. Coordination Avoidance in Distributed Databases. PhD thesis, 2015.
[19] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Highly Available Transactions: Virtues and limitations. In VLDB, 2014.
[20] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Feral Concurrency Control: An empirical investigation of modern application
integrity. In SIGMOD, 2015.

[21] P. Bailis, J. M. Hellerstein, and M. Stonebraker. Readings in database systems.
3 edition, 2015.

[22] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica.
Probabilistically Bounded Staleness for practical partial quorums. In VLDB,
2012.

[23] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ANSI SQL isolation levels. In SIGMOD, 1995.

[24] D. Bermbach and S. Tai. Eventual consistency: How soon is eventual? An
evaluation of Amazon S3’s consistency behavior. In MW4SOC, 2011.

[25] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and
recovery in database systems, volume 370. Addison-wesley New York, 1987.

[26] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, Jr. Concurrency control in a
system for distributed databases (SDD-1). ACM TODS, 5(1):18–51, Mar. 1980.

[27] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In OOPSLA, 2002.

[28] A. Cerone, G. Bernardi, and A. Gotsman. A framework for transactional
consistency models with atomic visibility. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 42. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

[29] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach
for the anomaly-based detection of state violations in web applications. In
International Workshop on Recent Advances in Intrusion Detection, pages
63–86. Springer, 2007.

[30] N. Crooks, Y. Pu, L. Alvisi, and A. Clement. Seeing is believing: A unified
model for consistency and isolation via states. arXiv preprint arXiv:1609.06670,
2016.

[31] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions
and deadlocks. In ACM SIGOPS Operating Systems Review, volume 37, pages
237–252. ACM, 2003.

[32] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proceedings of the 22Nd International
Conference on Software Engineering, ICSE ’00, pages 449–458, New York, NY,
USA, 2000. ACM.

[33] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[34] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624–633, Nov. 1976.

[35] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race
detection. In ACM Sigplan Notices, volume 44, pages 121–133. ACM, 2009.

[36] F. Freitas, R. Rodrigues, et al. Characterizing the consistency of online services
(practical experience report). In DSN, 2016.

[37] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion
detection. In NDSS, 2004.

[38] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and
profit. In PODC, 2011.

[39] J. Gray. The transaction concept: Virtues and limitations. In VLDB, 1981.
[40] J. Gray. What next? a dozen information-technology research goals. page 24,

June 1999.
[41] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of

consistency in a shared data base. Technical report, IBM, 1976.
[42] J. Gray and A. Reuter. Transaction processing. Kaufmann, 1993.
[43] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.

ACM CSUR, 15(4):287–317, 1983.
[44] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan. Automating the

detection of snapshot isolation anomalies. In VLDB, 2007.
[45] H.-T. Kung and C. H. Papadimitriou. An optimality theory of concurrency

control for databases. In SIGMOD, 1979.
[46] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

CACM, 21(7):558–565, 1978.
[47] S. Y. Lee, W. L. Low, and P. Y. Wong. Learning fingerprints for a database

intrusion detection system. In ESORICS, 2002.
[48] S. Lu, A. Bernstein, and P. Lewis. Correct execution of transactions at different

isolation levels. IEEE TKDE, 2004.
[49] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java,

volume 41. ACM, 2006.
[50] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.

Springer, 2015.

[51] N. POPPER. A hacking of more than $50 million dashes hopes in the world of
virtual currency, June 2016. New York Times DealBook:
http://nyti.ms/1UdyDfx.

[52] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. PLDI, 2004.
[53] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, 1997.

[54] D. Schonberg. On-the-fly detection of access anomalies. 1989.
[55] E. Sirer. Nosql meets bitcoin and brings down two exchanges: The story of

flexcoin and poloniex.
http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/,
2014.

[56] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound
predictive race detection in polynomial time. In POPL, 2012.

[57] F. Valeur, D. Mutz, and G. Vigna. A learning-based approach to the detection of
sql attacks. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 123–140. Springer, 2005.

[58] C. Von Praun and T. R. Gross. Object race detection. In OOPSLA, 2001.
[59] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties

and the trade-offs in commercial cloud storage: the consumers’ perspective. In
CIDR, 2011.

[60] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks. In
HotPar, 2012.

[61] K. Zellag and B. Kemme. Real-time quantification and classification of
consistency anomalies in multi-tier architectures. In ICDE, 2011.

[62] K. Zellag and B. Kemme. How consistent is your cloud application? In ACM
SoCC, 2012.

APPENDIX
A. 2AD THEORY

In this section, we more formally define 2AD ideas and provide
proofs of key concepts introduced in Section 3. We adopt the for-
malism of Adya [17] whenever possible.

A transaction is a totally ordered set of operations, each of which
is a read or a write to a data item. We model predicate- and set-based
operations per Adya [17], where set-oriented operations read and
write to predicates. The database contains multiple versions of each
item; each write to an object returns a new version of the data item,
and each read from an object returns a version of the data item. We
only consider committed transactions.

A concrete history consists of a multiset of transactions T , a par-
tial ordering O on the operations within T , and a set of return values
R for each operation appearing in T . We denote this CH(T,O,R).

We say two operations conflict if they both operate on the same
data item and at least one of them is a write.

The concrete serialization graph CSG for C =CH(T,O,R), de-
noted CSG(C), is a directed multigraph whose nodes are the trans-
actions in T whose edges are Ti → Tj, i 6= j such that one of Ti’s
operations precedes and conflicts with one of Tj’s operations in C.
Each edge is tagged with the operations that conflict and there is
one edge per pair of conflicting transactions.

We similarly can construct an abstract history on a set of trans-
actions as defined in Section 3.1.2. For brevity, we consider one
transaction per API node here; these results extend to multiple trans-
actions per API node. Given a concrete history C =CH(T,O,R), we
define the abstract history of C as AH(C) = AH(T ′), constructing
one API node per transaction.

Lemma 1. A concrete history C is not serializable if and only if
there is a cycle in its CSG [17, 25].

Lemma 2. Every cycle in a CSG(C) contains at least two distinct
operations from at least one transaction.

Proof. Each cycle specifies n distinct operations. Sort these opera-
tions according to the ordering provided by C. Since the graph has
no self edges, n ≥ 2. By the constraints on the partial order [17],
o1 must precede o2 and similarly o2 precedes on, so o1 6= on. Since

17

https://github.com/woocommerce/woocommerce
http://nyti.ms/1UdyDfx
http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/


659 set autocommit=0
...

664 SELECT (1) AS ‘a‘ FROM
‘voucher_voucherapplication‘ WHERE
‘voucher_voucherapplication‘.‘voucher_id‘
= 6 LIMIT 1

...
708 INSERT INTO ‘voucher_voucherapplication‘

(‘voucher_id‘, ‘user_id‘, ‘order_id ‘,
‘date_created‘) VALUES (6, 4, 23,
’2016−11−06’)

...
723 commit

Figure 6: Sample logs from Oscar “checkout” API call reveal-
ing the voucher vulnerability. We can see that all accesses are
properly wrapped in a transaction (setting autocommit=0 be-
gins a transaction). Oscar checks if a single-use voucher is
available by seeing if there are any applications of the voucher.
This allows a level-based phantom write anomaly to occur un-
der non-serializable isolation levels such as Read Committed,
Snapshot Isolation, and Repeatable Read.

this is a cycle, Ton = To1 . Therefore, To1 has two distinct operations
in the cycle.

We define a non-trivial abstract cycle in an abstract history AH
as a cycle of API nodes where the cycle contains edges induced by
two or more distinct operations residing within a single API node.
Note that this definition allows repetition of nodes.

We say that a concrete history C is non-serializable in o if CSG(C)
has a cycle containing operation o.

Lemma 3. If there exists a concrete history C that is non-serializable
in operation o, then AH(C) contains a non-trivial abstract cycle
containing o.

Proof. By assumption, there is a cycle in CSG(C). Note that there
is a surjective mapping from CSG(C) nodes to AH(C) nodes. Since
AH(C) allows self edges, every edge in CSG(C) corresponds to an
edge in AH(C). Lemma 2 implies that there exists an API node
with 2 distinct operations in the cycle in CSG(C), namely the node
containing the transaction corresponding to the first operation ac-
cording to the ordering of C. Starting from that operation, follow
the corresponding edges in AH(C) to find a non-trivial cycle in
AH(C).

A history C′ is in the expansion of C if, for every transaction Ti in
C′ there is a corresponding transaction Tj such that the operations in
Ti and Tj are identical disregarding concrete values (have identical
access patterns over columns).

Lemma 4. Given a concrete history C, if AH(C) contains a non-
trivial abstract cycle containing o then there exists an expansion C′
of C such that C′ is non-serializable in o.

Proof. Consider an abstract history AH(C) with a non-trivial ab-
stract cycle c. C must contain an API node Ao with two distinct
operations oi and o j such that oi and o j form part of a non-trivial
abstract cycle. Consider the following history C′: first, execute all

559 SELECT ‘main_table‘.∗, ‘cp_table‘.‘type_id‘
FROM ‘cataloginventory_stock_item‘ AS
‘main_table‘ INNER JOIN
‘catalog_product_entity‘ AS ‘cp_table‘
ON main_table.product_id =
cp_table.entity_id WHERE
(‘main_table‘.‘product_id‘ IN(’2048’))

...
680 START TRANSACTION
681 SELECT ‘si‘.∗, ‘p ‘.‘ type_id‘ FROM

‘cataloginventory_stock_item‘ AS ‘si‘
INNER JOIN ‘catalog_product_entity‘
AS ‘p‘ ON p.entity_id=si.product_id
WHERE (website_id=0) AND
(product_id IN(2048)) FOR UPDATE

682 UPDATE ‘cataloginventory_stock_item‘ SET
‘qty‘ = CASE product_id WHEN 2048
THEN qty−1 ELSE qty END WHERE
(product_id IN (2048)) AND (website_id
= 0)

683 COMMIT

Figure 7: Sample logs from Magento “checkout” API call re-
vealing the inventory vulnerability. While the second access
is properly encapsulated in a transaction and use SELECT FOR
UPDATE, the guard against allowing inventory to become nega-
tive uses the value from the first read. This allows the opportu-
nity for a scope-based Lost Update anomaly.

of the transaction operations within Ao up to and including oi. Next,
follow the cycle c and execute all of the operations of each API
node in c in their respective transaction order. If an API node is ever
revisited, create a new instance of that API node and its operations.
Finally, execute o j and the remainder of Ao (don’t create a fresh API
node for o j). Each transaction in C′ corresponds to a transaction in
the set used to create AH, so it can be mapped to a transaction in C
with the same structure. Therefore, it is an expansion of C. Next,
consider CSG(C′). Follow the same path of operations as those in
the cycle in AH(C) starting from oi. Because each operation had
conflicts in AH(C), their corresponding operations must conflict in
C′. There is a cycle of such operations in C′ formed by the coun-
terpart operations, beginning at C′’s counterpart for oi and ending
at o j. Therefore, by definition, there must be a directed cycle in
CSG(CH(C′)) and therefore C′ is a non-serializable expansion.

Lemma 5. For each complete concrete history C′ in the expansion
of C, AH(C′)⊆ AH(C).
Proof. Recall C = CH(T,O,R) and AH(C) = AH(T ). Since
each expansion C′ is also a history, it must have also be C′ =
CH(T ′,O′,R′) and AH(C′) = AH(T ′). We know that for each
Tj ∈ T ′, there is a mapping to a Ti ∈ T such that their structure is the
same. As described in Section 3.1.2, an abstract history will collapse
API nodes with the same structure. Thus, AH(C′)⊆ AH(C).
Theorem 1 (Formal). For every operation o in a concrete history
C, there exists a concrete history C′ in the expansion of C that is
non-serializable in o iff AH(C) contains a non-trivial abstract cycle
including o.

Proof. Case non-serializable expansion implies cycle: Call the ex-
pansion C′. By Lemma 3, AH(C′) contains a cycle. By Lemma 5,
AH(C′)⊆ AH(C), so the cycle can still be found in AH(C).
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108 set autocommit=0 (a)

109 INSERT INTO ‘cart_cartitem‘ (‘cart_id‘,
‘product_id ‘, ‘amount‘,
‘creation_date ‘, ‘modification_date ‘)
VALUES (8, 1, 1, ’2016−07−18
18:35:23.204957’, ’2016−07−18
18:35:23.205002’)

110 commit

388 SELECT ‘cart_cartitem‘.∗ FROM (b)
‘cart_cartitem‘ WHERE
‘cart_cartitem‘.‘cart_id‘ = 8 ORDER BY
‘cart_cartitem‘.‘id‘ ASC

...
402 set autocommit=0
403 INSERT INTO ‘order_order‘ (. . . ) VALUES

(. . . )
404 commit

...
438 SELECT ‘cart_cartitem‘.∗ FROM

‘cart_cartitem‘ WHERE
‘cart_cartitem‘.‘cart_id‘ = 8 ORDER BY
‘cart_cartitem‘.‘id‘ ASC

439 set autocommit=0
440 INSERT INTO ‘order_orderitem‘ (. . . )

VALUES (8, 100, 100, 0, 1, 1, ’1’, ’tp1’ ,
100, 100, 0)

441 commit

Figure 8: Sample logs from the Lightning Fast Shop “add to
cart” (a) and “checkout” (b) API calls revealing the cart vul-
nerability. The reads from the cart individually listed all fields
and joined to the product table for pricing information, we have
simplified for space and clarity. We have similarly simplified
the INSERT statements. The order total is calculated from a dif-
ferent read than the one used to specify the order items. This
gives an opportunity for a new item to be inserted into the order
in between calculating the total and recording the items. The
automatically generated transactions that wrap only single op-
erations do not help prevent this anomaly.

Case cycle implies non-serializable expansion: Follows directly
from Lemma 4.

Finally, note that any non-trivial abstract cycle c implies the
existence of a non-trivial abstract cycle with at most one node
repetition. By assumption, c must contain some oi and o j in the
same API node A0. There must be a subpath of c from oi to o j
that does not visit oi or o j except at the endpoints. Starting from
this subpath, we can build a new cycle C′ by further collapsing any
cycles along this path that do not contain the first or last edge of
the path. The resulting C′ is still a cycle containing two distinct
operations oi and o j in the same API node, so it is a non-trivial
abstract cycle. However, the only API node that could be repeated
is A0 as the other endpoint of one of the edges containing oi or o j.

Name Variables Invariant
Cart item i (cost: ci, qty: qi), total: T ∑i ciqi = T
Inventory item i, stock si ∀i,si ≥ 0
Voucher cost in usage i: ci, limit: vlimit ∑i vi ≤ vlimit

Table 3: Formal statements of target eCommerce invariants;
for brevity, we omit the “no Lost Updates” component of the
Inventory invariant.

B. 2AD LINKS TO ISSUES
We provide links to each GitHub issue we opened during our

investigation below:

https://github.com/opencart/opencart/issues/4811
https://github.com/opencart/opencart/issues/4812
http://forge.prestashop.com/browse/PSCSX-8333
http://forge.prestashop.com/browse/PSCSX-8334
https://github.com/magento/magento2/issues/6363
https://github.com/magento/magento2/issues/6364
https://github.com/woocommerce/woocommerce/issues/12467
https://github.com/tryshoppe/shoppe/issues/403
https://github.com/drhenner/ror_ecommerce/issues/174
https://github.com/django-oscar/django-oscar/issues/2101
https://github.com/django-oscar/django-oscar/issues/2102
https://github.com/mirumee/saleor/issues/543
https://github.com/mirumee/saleor/issues/544
https://github.com/diefenbach/django-lfs/issues/201
https://github.com/diefenbach/django-lfs/issues/202
https://github.com/diefenbach/django-lfs/issues/203
https://github.com/BroadleafCommerce/BroadleafCommerce/issues/1574
https://github.com/shopizer-ecommerce/shopizer/issues/121

C. 2AD APPLICATION VULNERABILITY
EXAMPLES

Figures 6, 7, and 8 show real logs we used to detect the voucher,
inventory, and cart vulnerabilities respectively. We have highlighted
only the relevant log statements, and explain how they exemplify
the patterns discussed in the main text.

Table 3 provides sample logical predicates for invariants. Table 4
provides statistics on graph sizes and runtimes. Table 5 summarizes
the types of vulnerabilities we found, along with the access patterns
and transaction usage allowed for the corresponding anomalies to
take place.

Figure 9 shows a sample abstract history corresponding to a sim-
plified eCommerce application. This abstract history contains API
calls for an add_to_cart function and a checkout function. This
application is backed by a cart_items table storing the products in
a user’s cart, a stock table storing product stock values, an orders
table storing order total information, and a order_items table stor-
ing the products bought in each order.

This figure contains two cycles corresponding to invariant violat-
ing anomalies. First, there is a scope-based anomaly represented by
the path between operations 5, 3, and 7 creating a cycle between
the two API nodes. This anomaly could cause a cart vulnerability.
Second, there is the path from operation 4 to 9 creating a self-loop
cycle on the checkout API call. The corresponding scope-based
anomaly could cause an inventory vulnerability. While this graph is
quite simplified, it captures the essence of behavior that we saw in
real applications.
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App Name Operation Nodes Txn Nodes Explicit Txns API Nodes Edges Total Runtime (s) Parse (s) Analyze (s)
OpenCart 1575 1575 0 12 7845 9.761 9.458 0.299
PrestaShop 1349 1349 0 9 1745 9.165 8.867 0.270
Magento 653 574 13 7 956 4.117 4.035 0.785
WooCommerce 884 740 1 7 8522 3.232 2.976 0.239
Spree 689 587 22 6 3503 2.565 2.395 0.168
Ror_ecommerce 190 159 3 6 226 0.491 0.483 0.007
Shoppe 126 102 6 6 136 0.335 0.321 0.004
Oscar 469 154 14 8 373 2.465 2.424 0.038
Saleor 226 83 16 9 191 1.035 1.026 0.007
Lightning Fast Shop 350 347 1 6 460 2.320 2.288 0.030
Broadleaf 253 216 11 6 288 5.878 5.860 0.017
Shopizer 183 125 37 5 134 7.366 7.348 0.016

Table 4: Explicit transactions are those with more than one operation that have explicit BEGIN and COMMIT statements. All
runtimes only measure the time to find the set of vulnerable API call/table pairs, and are run on an Intel i5-430M processor with
4GB RAM. The runtimes to find an anomaly for all pairs that operate on a specific table are not shown, but were also all under ten
seconds.

Vulnerability
Voucher Inventory Cart

Language Application V AP AT V AP AT V AP AT

PHP

Opencart yes phantom scope yes LU scope no
PrestaShop yes LU scope yes LU scope no
Magento yes LU scope yes LU scope no

WooCommerce yes LU scope yes LU scope no

Ruby (Rails)
Spree no no no

Ror_ecommerce NF yes LU level yes phantom scope
Shoppe NF yes phantom scope yes phantom scope

Python (Django)
Oscar yes phantom level yes LU level no

Lightning Fast Shop yes LU scope yes LU scope yes phantom scope
Saleor yes LU level yes LU level NDB

Java (Spring)
Broadleaf yes phantom scope BF yes* phantom scope
Shopizer NF BF yes* phantom scope

Table 5: Summary of vulnerabilities. V = Vulnerable, AP = Access Pattern, AT = Anomaly Type, NF = No Functionality, BF = Broken
Functionality, NDB = Functionality that is not database backed, and thus out of the scope of this study. The two yes* correspond to
triggerable bugs that were reported by the tool (See Section 4.2.5, “Were there false positives?”).

4 r(stock) 5 r(cart_items) 6 w(order) 7 r(cart_items) 8 w(order_items) 9 w(stock)

1 r(cart_items) 2 r(stock) 3 w(cart_items)

r
r

w

r r

w w

w

r

add_to_cart

checkout

Figure 9: An abstract history corresponding to a sample add_to_cart API call and sample checkout API call. Solid circles cor-
respond to operations, dashed rectangles to transactions, and dotted rectangles to API calls. Edges are labeled with the type of
conflict.
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