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ABSTRACT

Wildfires have been a significant concern for communities and

fire response agencies in many countries. Hence, it is critical to

be able to predict the fire risk in a timely and accurate manner

and at granular level. However, this requires accessing and pro-

cessing large amounts of spatial and temporal data from a number

of sources in near real-time, while ensuring the immediate avail-

ability of risk measurement results. In this paper, we describe a

large-scale data-driven system for personalized risk mitigation, fire

response’s resource optimization and dynamic evacuation planning.

It leverages large spatial and temporal datasets to provide predic-

tive analytics in near real-time and to deliver tailored insights to

government agencies, communities and individuals.

1 INTRODUCTION

Rapid advances in data acquisition technologies are increasing the

volume of data that needs to be processed and stored. The mas-

sive amount of data coming from satellites, diverse devices in the

Internet of Things (IoT), traffic data using GPS, and meteorologi-

cal observations opens an opportunity to a deeper understanding

of the physical world through big data analytics. In the field of

risk analysis for wildfire management, there is steady growth with

new models, simulators, visualization tools and new datasets being

made publicly accessible. By knowing the risk, government agen-

cies, communities and individuals can be better informed and take

appropriate measures to mitigate and prepare for wildfire events.

Current approaches for wildfire risk measurement [8] are insuf-

ficient to deal with diverse sets of data. They also do not provide

individual level risk measurement and recommend mitigation ap-

proaches. Specific big spatial data processing requirements present

further challenges. Firstly, traditional databases do not support

large geospatial datasets of many terabytes in size, and lack the

capability of efficiently indexing and joining various data layers.

Secondly, disparate data sources from various services contributes

to the time consuming pre-processing of geospatial data. Finally,

there is a gap between the algorithms used and the ability to deliver

tailored actionable insights to end users.

The focus of this paper is an integrated system that can, on one

hand, combine diverse sources of relevant data such as weather,

real-time sensor networks, satellite imagery, vegetation, properties
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information, and others, and apply data analytics and simulation

tools to extract insights from the integrated data. On the other hand,

this system has to connect to emergency command and control

centres to provide up-to-date views of the unfolding risks, and

to reach communities and individuals at risk of wildfires, to offer

timely personalized advice to mitigate the risk.

The work was initially motivated by requirements from the

largest emergency management agency in Australia. It was high-

lighted that an integrated system is required that would be able to

forecast and visualize the wildfire risk at property level, and offer

timely insights to the agency to help them prepare to fight the fire

by pre-deploying available fire-fighting assets where needed most

and re-deploying them as the wildfire risk in the area changes.

We describe the capabilities of our system for wildfire risk man-

agement with three relevant applications, 1) personalized risk miti-

gation, 2) dynamic evacuation routing (that would benefit to com-

munities and individuals), and 3) resource pre-deployment opti-

mization (that would benefit to fire emergency agencies).

In our system, the underlying risk model learns from history

and previous actions by the application users in order to recognize

patterns and to mitigate the risk proactively. The risk analytics can

be resolved to the level of an individual property or road segment

within a fire danger zone, with insights relevant to the homeowner,

evacuees, and emergency agencies. Most importantly, the system

is able to:

• Support near real-time and large-scale applications by in-

tegrating data from various data sources with different

formats, projections, and resolution, and handle informa-

tion heterogeneity.

• Abstract fundamental building blocks for accurate and time

efficient predictive analytics and deliver tailored insights

to end users via service REST APIs.

• Reuse and extend the above analytics building blocks to

support personalized risk mitigation, resource optimiza-

tion, and dynamic evacuation planning.

The rest of the paper is organized as follows. Section 2 presents an

overview of our system architecture and highlights several analytics

components. Section 3 provides three case studies supported by

our system in wildfire risk management. Section 4 discusses the

future directions and the paper is concluded in Section 5.

2 SYSTEM ARCHITECTURE OVERVIEW

Most of existing big spatial data management and analytics sys-

tems [1, 5] are developed on top of Hadoop MapReduce, which

has significant overhead when executing iterative algorithms that

many machine learning applications rely on. Further, although the

system proposed in [5] enables automatic data download, data cu-

ration, and scalable storage for big spatial data, it rasterizes all data

layers to handle data download, re-projection, and data indexing,
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thus limiting the capabilities of vector data processing. Vector data

processing is important in our system to support risk prediction

and dynamic evacuation routing.

Figure 1: Architecture of a big spatial analytics system for

disaster management.

In contrast to Hadoop-based systems, we build our system on

top of Spark [12] considering its advantage over Hadoop in running

iterative algorithms, due to Hadoop’s significant overhead associ-

ated with each iteration. We use Spark to access and process both

historical and real-time streaming data in a fast batch way. Spark’s

core data abstraction Resilient Distributed Dataset (RDD) propels

a variety of compute-intensive tasks including interactive queries,

streaming, machine learning, and graph processing.

Our system consists of the backend and the frontend as shown

in Figure 1. The backend is built on Cloud infrastructure 1, which

allows the application to be accessed from anywhere. The frontend

can be any client, for example, iOS or Android mobile app, and

web applications. The backend and frontend communicate via the

Service REST APIs. The backend consists of the following layers:

data storage, index/access, query/analytics. The three frontend

applications are summarized in Figure 2 and presented in Section 3.

We adopt a global-local indexing strategy to achieve better per-

formance. The global index is in the memory of the master node to

keep the boundaries of partitions and enables the system to prune

irrelevant partitions. The local index is in each partition. In the

partition phase, we use the Sort-Tile-Recursive (STR) algorithm [6]

similar as in SpatialHadoop [3]. We implement multiple indexing

to handle diverse datasets because each of the indexing has its

own merits. For example, we use R-tree to handle the skewness

of road network by adjusting the partition size so that each parti-

tion contains similar amount of data. To filter the information that

only matters to a user we adopt uniform grid index to spatially co-

partition the datasets of vegetation and property address in order

to facilitate parallel computing model supported in Spark.

1IBM Bluemix. www.ibm.com/cloud-computing/bluemix/
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Figure 2: Applications on dynamic risk prediction.

The geospatial capabilities supported in our system are shown

in the query/analytics layer in Figure 1. For example, the vector

operations include: 1) Distance: Given a point and a set of polygons,

find the polygons that are within a distance to the point. The dis-

tance could be either straight-line or road-network distance. For

example, in personalized risk prediction, for each property, we need

to find the vegetation polygons nearby. For fire fighting resource

optimization, we need to compute the dynamic road-network dis-

tance between the moving fire fighting asset and a set of properties.

2) Direction: Given a point and a set of polygons, find the poly-

gons that are within a range of direction to the point. For example,

we need to get which set of vegetation polygons would impact a

property by the direction of wind. In the dynamic evacuation rout-

ing application, a vehicle route needs to avoid the fire spreading

direction.

Another component in the query/analytics layer is the online

outlier detection which is used to identify high wildfire risk condi-

tions. To develop such a model, one of the big challenges is lack of

label information for building supervised predictive models. In fact,

we noticed that in case of wildfire risk, it is really not reasonable to

identify which periods of time are risky and which of them are not.

To deal with this challenge an unsupervised algorithm is proposed

for wildfire risk prediction [10], where high risk periods are iden-

tified without any statistics or expert knowledge. An outlierness

value is computed for the incoming streams of weather observa-

tions and these outlierness values are considered as wildfire risk

of observations. Since the proposed algorithm in this component

is completely unsupervised, it can be easily applied in other areas

of interest, using other big weather datasets. More specifically, the

historical data stream is divided into data chuncks (windows of

observations). A near linear clustering-based anomaly detection

technique is used to profile the weather observations for each win-

dow. Thereafter, the similarity between the clustering profile of

current window and the profiles of all historical windows are com-

puted. As a result, more relevant historical profiles are only selected

to decide on the outlierness values of current observations. For each

incoming observation p, an outlierness value is computed using the
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Mahalanobis distance of p and all relevant clusters. Finally, an en-
semble of relevant (weighted) historical models is used in assigning

final anomalous values to the current observations. One advantage

of this analytical component is its low computational complexity

which is near linear with respect to the number of weather observa-

tions. Hence, the queries can be addressed in near real-time. Also,

being an ensemble-based approach is another advantage of this

component which makes it highly scalable by parallelization.

3 CASE STUDY

As discussed in the Section 1, we now describe three applications

of our big spatial system for wildfire risk management, where the

study area is Blue Mountains, New South Wales, Australia. Part

of this work was demonstrated previously in [9]. The area was se-

lected because of the availability of data to test our proposed system,

and to validate the results with domain experts from an emergency

management agency in NSW. As the above mentioned three ap-

plications rely on a number of risk prediction steps (see Figure 2),

we first describe the raw data inputs as well as the data processing

tasks that we applied in order to support the applications.

3.1 Raw Data Inputs

As input for sensing wildfire risk conditions, we choose to con-

duct a high-resolution meteorological re-analysis (WRF-ARW) [2]

that resolves hyper-local phenomena with detailed data, including

temperature, precipitation, pressure, relative humidity and wind

speed. The study area (Blue Mountains, NSW, Australia) covers an

area of 275km × 275km centred on the town of Blackheath (-34.80,

138.90) and has a grid spacing of 5km, resulting in a 55 × 55 grid
and roughly 3000 grid cell observations. The simulation output is

at 1-minute frequency, hence a total of approximately 65,000,000

observations to analyse.

For the Property level risk prediction and Road level risk predic-

tion, the input data is summarized in Table 1.

3.2 Data Processing

The data processing includes loading data into a distributed file

system, re-projecting geographic coordinate systemwhere required,

transforming data format if necessary, partitioning and building

indexes at local and global level, as well as components shown

in the query/analytics layer in Figure 1. As an example, Figure 3

illustrates the data processing sequence for dynamic risk prediction,

along with data format and projection.

3.3 Personalized Risk Mitigation

The value of quantifying wildfire risk is well established, as it en-

ables government agencies, communities, and individuals to under-

stand and proactively manage the risk.

Property level wildfire risk can be seen as a local process, where

attributes such as surrounding tree cover and other vegetation are

location-specific and critical for an accurate risk rating measure-

ment. We calculated a series of attributes that are physically based

and quantifiable, including shortest distances between property

addresses and the adjacent bushland, surrounding tree coverage,

and local slope. To obtain these variables, we used the most detailed

geospatial datasets available, such as geocoded street addresses,
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Figure 3: Data processing for dynamic risk prediction.

5km spatial resolution weather data and 25m resolution digital ter-

rain models. These variables together with information provided by

the user, such as building and roof material, feed into our risk model

to calculate a composite risk rating for each property address.

More specifically, the implemented model for wildfire risk is a

combination of a series of modules relating to different aspects of

wildfire risk, with the relative weights of different aspects having

been qualitatively determined. Further development of the modules

and quantitative parameterization is presently being undertaken.

The modules incorporated in the presented case study are shown in

Figure 4, namely the Fire Danger Index [7], Wilson House Survival

model [4], a wind vector factor, bushland supporting factor, and

Ignition Likelihood Index [11].

The rationale for a modular approach to the fire risk is to support

the use of model blending techniques, which enable the customiza-

tion to local factors, and to support a plug-and-play approach that

facilitates continued development of our understanding of wildfire

risk.
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Figure 4: Modules of personalized wildfire risk model.

The results of this model are risk values for each property and

for each timestamp in the study period, as exemplified in Figure 5

for households in Blue Mountains, Australia. For risk visualization

we use a range of colours, from light blue for lowest risk to dark

red for highest risk (see Figure 5 (c) for the full legend).

Based on the Property level risk prediction, we build a mobile

app that enables individuals to take proactive actions to reduce

the risk to their homes. The mobile app provides personalized

recommendations to the user on actions they could take to reduce

their risk rating, specific to their particular profile. The user is able
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Table 1: Overview of input data to the risk model - Blue Mountains

Data Source Type/Format Resolution Update Rate

Address Open Point/Shapefile NA Static

Elevation Open Raster/GTiff 25 m Static

Vegetation Open Polygon/Shapefile NA >Yearly

Weather WRF-ARW Grid 5 km minute

Drought Factor ADFD Grid/NetCDF 3-6 km Seasonally

House specs User JSON NA Semi-static

Traffic GPS User Point/JSON NA minute

Road network OpenStreetMap Vector/OSM NA Semi-static

to see how the wildfire risk might be reduced by taking corrective

actions that lead to physical changes to the contributing factors

of the risk model. Figure 6 shows two screenshots of the mobile

app designed to help people reduce risk via (a) long-term and (b)

short-term actions. Once people select actions that could reduce

their risk, the system responds in real time with a recalculation of

the predicted risk.

From our extensive testing of the system response time, the risk

model is able to return the risk assessment at property level in less

than a second. Updating the risk assessment of all 43389 properties

in the case study area whenever a new weather forecast is received

is also performed in less a minute.

(a) 

(b) (c) 

Figure 5: Visualization of dynamic risks for properties in

Blue Mountains at (a) 2pm and (b) 5pm.

3.4 Resource Pre-deployment Optimization

Using the forecast risk values from the previous module, our system

enables emergency agencies to take proactive actions to prepare

resources to defend communities.

We deploy an optimization tool that assists in making rapid

and effective decisions for dynamic reallocation of fire-fighting

assets, with the aim of minimising overall fire risk remaining in

the targeted area at any given time. Given a risk measure for each

individual property for each hour interval, our objective prioritizes

coverage of properties with highest risk. Also, response time for

resource vehicles is calculated as travel time along the road network.

(a) (b) 

Figure 6: Mobile app of personalized recommendation for

risk mitigation.

We deal with the complexities of big data computations by de-

veloping a scalable clustering model that groups similar properties

based on the property spatial location, property risk and distance to

accessible roads. The clustering model which is based on k-means
algorithm, changes every hour to cater for dynamic changes of

property risk due to changing weather conditions that lead to re-

locate the fire-fighting assets during the day. Experimental results

show that our scalable optimization model is effective in terms of

property coverage and risk reduction while remaining efficient in

the amount of time required to obtain solutions, making it practical

for real-time applications. The optimization tool uses data from

the clustering model and road networks together with information

about available fire fighting vehicles and stopping locations. For

each hour interval, all available fire fighting vehicles are assigned

to stopping locations such that the configuration of vehicles maxi-

mizes coverage and the estimated risk reduction across the whole

targeted area.

Real world constraints are introduced into the optimization tool

to ensure that solutions for assigned vehicle locations are feasible.

Travel time between the location of any vehicle at the beginning of

an hour, and its assigned destination for that hour interval, must be

less than an hour so that it can reach the desired stopping location

and provide coverage prior to the system being reoptimized at the

next hour interval. Stopping locations include, but are not limited

to, designated fire stations. Other suitable locations within the

targeted area, for example parks with sufficient parking space and

facilities, may also host fire fighting vehicles but are not guaranteed

to be open for fire fighting vehicle pre-deployment at every hour of
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every day. The optimization tool allows the temporal availability of

stopping locations to be respectedwhen optimizing pre-deployment

decisions. The capacity of each stopping location, that is the number

of vehicles that may be situated at the stopping location at the

same time, is also pre-determined and constrains the assignment

of vehicles in the optimization tool.

Multiple types of fire fighting vehicles are considered: heavy

tankers, light tankers and strikers. Different vehicle types have

different accessibility to roads throughout the road network and

provide a varying degree of risk reduction. For example, heavy

tankers carry additional equipment and therefore reduce risk more

than either light tankers or strikers but are unable to access certain

roads outside of urban areas or must travel at lesser speeds than

smaller fire fighting vehicles. Risk reduction is a function of the

capability to reduce risk of each fire fighting vehicle within a cov-

erage radius of 10 minutes travel time, as shown in the example

in Figure 7. Vehicle placements are more effective at reducing risk

when there is a shorter travel time to reach the property at risk.

Multiple vehicles can also contribute to risk reduction for a single

property, however, the risk of a property cannot be reduced below

a lower bound that is greater than zero.

Figure 7: Example of remaining risk after pre-deployment

of fire fighting vehicle configuration

The optimization tool utilizes IBM ILOG CPLEX Optimization

Studios 12.2 to obtain solutions. The amount of time required to find

optimal locations for fire fighting vehicles scales with the number of

vehicles available for defensive pre-deployment. For small numbers

of fire fighting vehicles, the optimization tool can return results

quickly enough to be implemented in response to changes in risk

each hour. Testing shows that assigning stopping locations to a

configuration of 3 heavy tankers, 5 light tankers and 2 strikers

can be solved to 0.01% relative optimality gap with an average

solve time of 5 minutes for a full hour interval. For larger fleets

of fire fighting vehicles, the optimization tool is useful to pre plan

defensive vehicle movements with predicted risk data. Figure 8

visualizes the reduced risk values after pre-deploying 20 compared

with 10 fire-fighting assets in the study area. A substantial reduction

in the risk of property damage can be noticed, and the range of

colours used to visualize risk after pre-deployment is the same as

in Figure 5.

3.5 Dynamic Evacuation Routing

During a disaster event it may be difficult for people in the affected

areas tomake smart decisions about the best routes that are both fast

and safe to evacuate, due to psychological and emotional impact

of these highly stressful situations. Even worse, affected people

may end up moving from one dangerous area to another if they

Figure 8: Risk reduction of resource pre-deployment opti-

mization.

are not provided with real-time information about the areas at

risk, as situations change during the event. For example, wildfires

can unpredictably change direction due to unexpected weather

conditions, reaching areas that were initially deemed safe. In this

context, the safety as well as timeliness of dynamically updated

evacuation routes is extremely critical in responsive management

applications and can save lives.

Hence, we develop an evacuation route planner that dynami-

cally suggests the fastest and safest routes that are adapted to the

changing situations of emergency events in real-time. The route rec-

ommendation algorithm executes on a graph data structure created

by the road network. Road segments essentially constitute edges

in the transportation graph, while intersections of road segments

represent nodes (vertices) of the graph. More importantly, this trans-

portation graph is time-dependent as the costs of the edges change

along the time given new situations such as real-time traffic events

and up-to-date weather data. Another special characteristic of this

transportation graph is that each of its edges is associated with mul-

tiple types of costs including travel time and safety when traveling

along this edge. We estimate the risk when traveling along a road

segment at a given time based on its proximity to the spreading

bushfire at that time. Furthermore, as long as most of the vehicles

during this evacuation crisis are using GPS-equipped devices, their

real-time locations can be collected. Our system estimates the av-

erage travel time along a road segment at runtime based on this

real-time traffic data.

The recommendation workflow works as follows. First, an evac-

uee sends a request including their origin location to the system

using a mobile application. Then, the system runs an optimization

algorithm to calculate the best evacuation route that minimizes

evacuation time as well as the risk of being in danger while along

the evacuation path. The requests from other users and their sug-

gested routes are also taken in account in the planning for new

requests to deal with congestion problem. Finally, the best calcu-

lated route is returned to the evacuee and visualized by the mobile
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application. When the conditions change (e.g., a forecast that pre-

dicts a change in wind direction or the traffic data is updated), the

system updates the results and alerts the user about the new best

path. In addition to real-time recommendation of safest evacua-

tion routes, the system can also provide the affected people with

other useful information such as real-time traffic situation as well

as potential areas at most risk.

Figure 9 compares the routes of evacuation from a high risk

area caused by a wildfire event (red icon) to one of the shelters

(green icon). Figure 9 (a) is the fastest route returned by classical

shortest/fastest path algorithms. This route is safe at the time being

as it is not threatened by the current spreading fire. However, while

the evacuee is on the way, a new fire starts in the vicinity of his

intended route as shown in Figure 9 (b), now this route is shown

in red because it is unsafe anymore. Instead of the static approach,

the routing planner is aware of the occurrence of the second fire,

as well as the blocked road section due to an accident as shown by

the red marker. Therefore, the routing planner returns a new safe

route in blue.

(a) (b) 

Figure 9: Dynamic routes recommended by the evacuation

routing planner.

4 FUTUREWORK

We have identified at least three areas of future work in order to

extend the applicability of the proposed system.

User experience: We intend to automate data gathering for

sources where currently data inputs are highly manual, for exam-

ple retrieving house profile information from the user’s insurance

data rather than user input. IoT devices can provide a variety of

personalized data about the house and environment, as well as

social media can be used as a rich data source. Another aspect of

user experience is to offer automated and near real-time risk as-

sessment with changing weather conditions, without the need for

user-driven re-assessment initiation.

System scalability: System scalability is critical in deploying

the applications to the users. As communities grow and migrates to

different areas, there will be more people living in wildfire-prone

areas that do not have any prior knowledge of wildfire risk. There-

fore, there is an ongoing need to educate, inform and find new ways

of sharing local information with these communities. A mobile app

would serve as a community education tool to improve individual

wildfire preparedness. To reach the wider population, we envisage

making the application available through App/PlayStore, as well as

publishing via the relevant government agencies.

Wider applications: While we have applied our system for

wildfire scenarios, it can be applied in other areas such as personal-

ized recommendation for flood mitigation in disaster prone areas;

individualized risk prediction for beach safety and so on. While

extending the applications of our system, we aim to bridge the gap

between research and practice. The disaster management industry

needs to rely more on science and data than on opinion, so it will

be great to demonstrate a suit of risk data and modelling that are

applicable in a wide variety of contexts. More evidences from ex-

periments with large datasets across multiple scenarios would also

then input into well informed policy decision-making.

5 CONCLUSIONS

Using big spatial and meteorological data with high volumes, ve-

locity and variety to solve real world problems is often complex

and challenging. In this paper, we presented an integrated disas-

ter management system that addresses the challenges of handling

large-scale datasets and provides predictive risk analytics tailored

to individual circumstances. The application of our system can be

extended to a wide number of contexts, while allowing personalized

use for general public, optimization and policy decisions by disaster

management agencies and the government. By continuing to evolve

our system with more dynamic data (e.g., sensor data and satellite

imagery) and embedding more advanced analytics into the system

we will increase accuracy and timeliness of disaster predictions to

save lives and assets.
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