
Emma in Action: Declarative Dataflows for
Scalable Data Analysis

Alexander Alexandrov Andreas Salzmann
Georgi Krastev Asterios Katsifodimos Volker Markl

TU Berlin, Germany
firstname.lastname@tu-berlin.de

ABSTRACT
Parallel dataflow APIs based on second-order functions were
originally seen as a flexible alternative to SQL. Over time,
however, their complexity increased due to the number of
physical aspects that had to be exposed by the underlying
engines in order to facilitate efficient execution. To retain a
sufficient level of abstraction and lower the barrier of entry
for data scientists, projects like Spark and Flink currently
offer domain-specific APIs on top of their parallel collection
abstractions.

This demonstration highlights the benefits of an alterna-
tive design based on deep language embedding. We show-
case Emma – a programming language embedded in Scala.
Emma promotes parallel collection processing through na-
tive constructs like Scala’s for-comprehensions – a declara-
tive syntax akin to SQL. In addition, Emma also advocates
quoting the entire data analysis algorithm rather than its in-
dividual dataflow expressions. This allows for decomposing
the quoted code into (sequential) control flow and (paral-
lel) dataflow fragments, optimizing the dataflows in context,
and transparently offloading them to an engine like Spark
or Flink. The proposed design promises increased program-
mer productivity due to avoiding an impedance mismatch,
thereby reducing the lag times and cost of data analysis.

1. INTRODUCTION & MOTIVATION
The last decade was marked by a major shift in data an-

alytics technology. Driven by the need to store and process
in-situ data at scale, parallel dataflow engines like Hadoop
MapReduce [2], Spark [3] and Flink [1] emerged as an alter-
native to parallel relational databases. The principle pro-
gramming abstraction behind these systems is a distributed
collection type equipped with second-order functions that
encapsulate parallelism. Assembling dataflows by combin-
ing these functions offers flexibility, but is hindered by ad-
ditional complexity as various physical execution aspects
of the underlying engines have to be exposed in the API

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899396

in order to facilitate efficient evaluation. Such issues are:
(i) Multi-way joins need to be written as a cascade of binary
join function applications. The resulting tree is mirrored at
execution time, as no join order optimization is performed
at this level; (ii) Parallel aggregates need to be written in
a specific way using dedicated primitives like reduceByKey
rather than the more general and intuitive groupBy followed
by a map; (iii) Since dataflow expressions per default are
lazy, the decision to materialize an intermediate result is
made explicitly by the programmer with a cache primitive.

We end up in a situation with several well-known problems
such as: (i) high barrier of entry due to the required level of
understanding of the underlying execution model, (ii) hard
to read and maintain code due to low level of abstraction,
and (iii) missed opportunities for optimization due to hard-
coded execution strategies. In [4] we present a more detailed
discussion of the idiosyncratic code patterns resulting from
these problems. The principle way to tackle these problems
is by providing high-level programming abstractions on top
of the low-level dataflow APIs. The merits of this approach
are validated by the popularity of external domain-specific
languages like Pig, Hive, and SystemML, on the one side,
and internal domain-specific libraries like DataFrame APIs,
GraphX, MLLib, and Mahout, on the other. Both strate-
gies, however, do not resolve the need for declarative inte-
gration of parallel collection processing in a general-purpose
language – external languages introduce a language barrier,
while internal libraries introduce a domain or API barrier.

This demonstration aims to showcase the benefits of an
alternative approach based on deep language embedding
through quotation and meta-programming recently pro-
posed in [5]. We show that the ability to manipulate the
entire data analysis program at compile time has twofold
impact. First, extending ideas explored by LINQ [10] and
Ferry [7] to the field of parallel dataflow engines, it facilitates
deep linguistic reuse of host language constructs like com-
prehension syntax for declarative, SQL-like dataflow defini-
tions. Second, it allows for transparently decomposing the
program code into a (sequential) driver and multiple (par-
allel) dataflow fragments. The identified dataflows can then
be optimized jointly based on the surrounding driver context
before being translated and offloaded to a co-processing par-
allel dataflow engine like Spark or Flink. The net effect is
a high-level collection processing API where notions of par-
allelism associated with an underlying dataflow engine are
hidden from the programmer.

2073

http://dx.doi.org/10.1145/2882903.2899396

2. FORMAL FOUNDATIONS
Parallel Bags and Folds. We use the theory of recursive
data types to model the parallel collection types – DataSet
in Flink and RDD in Spark – which form the core of the
targeted parallel dataflow engines. Both types are oblivious
with respect to element order and allow for duplicates and
therefore can be accurately modeled by the algebraic data
type Bag (as opposed to List which also models order or Set
which does not model duplicates).

Depending on the constructor choice, there are two equiv-
alent definitions of the recursive data type BagA usually
called insert and union representation [6]. We base our de-
sign on the latter, in which bags can be constructed in three
ways: by a nullary constructor emp denoting the empty bag,
an unary constructor sngx denoting a singleton bag, or a bi-
nary constructor uni xs ys denoting the (duplicate preserv-
ing) union of two other bags.

Union representation is better suited for our needs than
the more widely used insert representation, as it allows us
to characterize parallel collection processing by means of
structural recursion (folds) – a method for defining functions
on bags xs by means of recursive replacement of constructor
applications with applications of compatible functions [9].

// structural recursion on union-style bags
def fold[A,B](e: B, s: A => B, u: (B,B) => B)

(xs: Bag[A]) = xs match {
case emp => e
case sng(x) => s(x)
case uni(ys,zs) => u(fold(e,s,u)(ys), fold(e,s,u)(zs))
}

The fold function takes three parameters: e, s, and u,
substitutes them in place of the constructor applications in
xs, and evaluates the resulting expression tree to get a fi-
nal value z ∈ B. To compute the sum of all elements, for
example, we substitute with e = 0, s = id, and u = +:

uni

uni

sng

3

sng

5

uni

sng

7

emp

⇒

+

+

id

3

id

5

+

id

7

0

⇒ 15

Aggregations like min, max, sum, and count, existential
qualifiers like exists and forall, as well as collection pro-
cessing operators like map and filter can be defined as folds.

Comprehension Syntax. Using the induced structural
recursion scheme of union-style bags, we can define an alge-
braic structure known as monad on top of BagA and enable
declarative dataflow specification.

To illustrate the rationale behind the bag monad, con-
sider two bags xs = {{1, 2, 2, 3}} and ys = {{1, 2}} with
corresponding constructor application trees:

uni

uni

sng

1

sng

2

uni

sng

2

sng

3

uni

sng

1

sng

2

Now consider an example where we want to compute the
bag of all pairs (x, y) where x ∈ xs, y ∈ ys and x = y.

If xs and ys were sets, we could describe this computation
mathematically using set comprehension syntax:

{ (x, y) | x ∈ xs, y ∈ ys, x = y }

If xs and ys were relations in a database, we could write
a select-from-where query:

SELECT x, y FROM xs as x, ys as y WHERE x = y

Modern functional languages like Scala allow us to use
native comprehension syntax for arbitrary types, as long
as those implement the so-called monad operators: map,
flatMap, and withFilter. We can then formalize the in-
tended computation as:

for (x <- xs; y <- ys; if x == y) yield (x, y)

At parse time, the for-comprehension syntax desugars
into a chain of nested flatMap applications ending with a
map and interleaved with withFilter. The above code be-
comes:

xs.flatMap(x =>
ys.withFilter(y => x == y).map(y => (x, y)))

How should we interpret this desugaring in terms of the
structural recursion scheme discussed above? The map part
of the flatMap application operates on the level of the (red)
xs tree – the tree shape is preserved and each value x is
substituted with a copy of the entire ys tree. The inner map
operates on the level of the ys trees and maps their y values
to a (x, y) pair using the x from the outer map. We end up
with an outer (red) bag of inner (blue) bags.

uni

uni

sng

uni

sng

(1,1)

sng

(1,2)

sng

uni

sng

(2,1)

sng

(2,2)

uni

sng

uni

sng

(2,1)

sng

(2,2)

sng

uni

sng

(3,1)

sng

(3,2)

The withFilter application substitutes singleton bags
that do not satisfy the x = y predicate with emp, and the
flat part of flatMap “forgets” the nested bag structure by
inlining the inner trees into the outer one.

uni

uni

uni

sng

(1,1)

emp

uni

emp sng

(2,2)

uni

uni

emp sng

(2,2)

uni

emp emp

Theory to Practice. Bag comprehensions provide the key
ingredient for solving two long-standing problems. First, as
first-class citizen in a general-purpose source language, com-
prehension syntax offers direct means for declarative paral-
lel collection processing that can be seen as a generalization
of SQL. Second, as first-class citizen in an object language
that can be manipulated trough meta-programming, com-
prehensions can serve as an entry point for the integration of

2074

Scala AST

Emma IR

Driver with
Abstract Dataflows

Flink/Spark
Dataflows

(i) lift

(iii) lower

(ii) rewrite

(iv) translate

(v) evaluate

Figure 1: Emma compiler pipeline.

database optimization techniques into general-purpose lan-
guages. This allows for avoiding the näıve evaluation seman-
tics by rewriting comprehended terms as join cascades [8].

3. EMMA: MAIN CONCEPTS & DESIGN
Based on the formal foundations outlined in Section 2,

in [5] we proposed Emma – a declarative API for parallel
collection processing deeply embedded in Scala. The core
abstraction exposed by Emma is a generic type DataBag
which models bags in union representation. In the following,
we present the most distinguishing features by example.

Declarative SPJ Expressions. Binary operators like
join and cross are not included in the API. Instead, the
DataBag type implements the monad operators discussed in
Section 2. This allows for writing dataflows in a declara-
tive syntax similar to the Select-Project-Join style known
from SQL. To illustrate this, consider the following code
snippet taken from an Emma implementation of the Alter-
nating Least Squares (ALS) algorithm as described by [11].
The code computes a collection of preference objects that
associate users with the feature vectors and the ratings of
their related (i.e. rated) items.

val prefs = for {
user <- users
rating <- ratings
item <- items
if rating.user == user.id
if rating.item == item.id
} yield Pref(user, item.F, rating.value)

Multi-way joins like the example above are identified by
the Emma compiler and translated as join cascades in the
API of the backend engine.

Folds. Computing information from the contents of a
DataBag is allowed only by means of structural recursion.
To that end, we expose the fold operator from Section 2
as well as pre-defined aliases for commonly used folds (e.g.
count, exists, minBy). Counting the number of users, for
example, can be written as:

val N = users.fold(0, x => 1, (x, y) => x + y) // or
val N = users.count() // alias for the above

Nesting. The groupBy operator adds a level of nesting:

val ys: DataBag[Group[K, DataBag[A]]] = xs.groupBy(k)

The resulting bag contains groups of values that share
the same key and values which again have type DataBag[A].
This is different from Spark and Flink, where the type of
the group values is either Iterable[A] or Iterator[A] and

nesting is not natively supported at the API level. The
ability to nest DataBag instances allows for hiding the com-
plexity of primitives like groupByKey, reduceByKey, and
aggregateByKey behind an ubiquitous API in which bags
can be processed in a nested manner. Continuing with the
next step in the ALS example, the code that updates the
user models from the preferences can be written as follows.

users = for { // update users
(user, prefs) <- prefs.groupBy(p => p.user)
} yield { // calculate new feature vector per user
val Vu = prefs.fold(V0)(p => p.F * p.rating, _ + _)
val Au = prefs.fold(M0)(p => p.F outer p.F, _ + _)
val Eu = E * (lambda * user.id)
user.copy(F = inv(Au + Eu) * Vu)
}

As before, due to the fact that the whole expression can
be manipulated at compile time, we can recognize nested
DataBag patterns like the one above and rewrite them using
more efficient primitives like aggregateByKey.

Coarse-Grained Parallelism Contracts. Dataflow APIs
currently provide data-parallelism contracts at the operator
level (e.g. map for element-at-a-time, join for pair-at-a-time,
etc.). Emma takes a different approach as it’s DataBag ab-
straction itself serves as a coarse-grained contract for data-
parallel computation. The promise Emma gives to its users
is to (i) discover all maximal DataBag expressions in a quoted
code fragment, (ii) rewrite them logically in order to maxi-
mize the degree of data-parallelism, (iii) take a holistic ap-
proach while translating them as parallel dataflow expres-
sions, and (iv) transparently place primitives that influence
physical execution aspects like broadcast and cache.

Compiler Pipeline. Figure 1 depicts Emma’s compiler
pipeline. Scala expressions are quoted in a parallelize
macro which exposes the Abstract Syntax Tree (AST) of
the quoted code to the Emma compiler. The compiler first
lifts the AST to a suitable intermediate representation (IR),
and then performs joint logical and physical rewrites (e.g.
inlining, fold-group fusion) on the identified dataflow frag-
ments. The rewritten IR is finally lowered and compiled as a
driver with abstract dataflow expressions. At runtime, these
dataflow expressions are translated Just in Time (JIT) and
evaluated on a target dataflow engine (Flink or Spark).

4. DEMONSTRATION
The demonstration is structured in three parts and show-

cases the main features of Emma highlighted in Sections 2
and 3 by example.

In Part 1 , we offer a gentle introduction to monads and
introduce Emma’s DataBag API. We demonstrate (i) the
ability to use comprehension syntax instead of join cas-
cades, (ii) the support for nesting, and (iii) fold as the
main primitive for parallel computation. We compare the
expressiveness offered by Emma against the parallel data-
flow APIs targeted as a backend, SQL (as a de-facto stan-
dard for declarativity), as well as against domain-specific
APIs offered by the backend engines (e.g. DataFrames in
Spark, Table API in Flink).

In Part 2 , we showcase the compilation pipeline de-
scribed in Section 3 and the core principles advocated by
our design – coarse-grained parallelism contracts and coarse-
grained quotation. To that end, we provide a graphical user
interface (GUI) with two panes (Figure 2).

2075

Figure 2: Two stages in the execution of an Alternating Least Squares algorithm in Emma.

Algorithm Type/Domain

K-Means Clustering
Naive Bayes Classification
LabelRank Semi-supervised classification
Alternating Least Squares Collaborative filtering
Belief Propagation Statistical inference
Graph Colouring Graph analysis
Triangle Count Graph analysis
Tic-Tac-Toe Retrograde analysis
TPC-H Queries Relational

Table 1: Example algorithms implemented in Emma.

1. On the left pane, audience members can select between
several data-analysis algorithms written in Emma and
review their source code (Table 1).

2. The algorithm code is quoted with a parallelize
macro and transformed into an Algorithm object that
can be evaluated by an Emma-supported runtime –
we offer a choice between Spark or Flink. Execution
is triggered by pressing a “Play” button from the GUI.

3. The GUI pauses before submitting the first dataflow,
marks the corresponding DataBag term in the left pane,
and shows the dataflow graph compiled by the Emma
JIT component on the right pane. Optimizations per-
formed by Emma are depicted on the visualized graph.

4. Upon renewed pressing of the “Play” button, the cur-
rent dataflow and the subsequent driver expressions
are evaluated. Execution halts at each subsequent da-
taflow in a manner similar to step 3.

5. A graph that marks adjacent dataflows is lazily con-
structed and visualized. The cycles and branches in
the graph reflect the control-flow structure in the part
of the code which constitutes the algorithm driver.

Finally, in Part 3 we invite the audience to try out the
Emma API and define other data analysis algorithms. The
produced programs can be executed interactively from the
GUI just as the predefined examples from Part 2 .

5. ACKNOWLEDGEMENTS
This work has been supported through grants by the Ger-

man Science Foundation (DFG) as FOR 1306 Stratosphere,
by the German Ministry for Education and Research as
Berlin Big Data Center BBDC (ref. 01IS14013A), by the
European Commission as Proteus (ref. 687691) and Stream-
line (ref. 688191), and by Oracle Labs.

6. REFERENCES
[1] Apache Flink Project. http://flink.apache.org.

[2] Apache Hadoop Project. http://hadoop.apache.org.

[3] Apache Spark Project. http://spark.apache.org.

[4] A. Alexandrov, A. Katsifodimos, G. Krastev, and
V. Markl. Implicit parallelism through deep language
embedding. SIGMOD Record, 2016 (to appear).

[5] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler,
L. Thamsen, O. Kao, T. Herb, and V. Markl. Implicit
parallelism through deep language embedding. In
SIGMOD Conference, pages 47–61. ACM, 2015.

[6] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong.
Principles of programming with complex objects and
collection types. Theor. Comput. Sci., 149(1):3–48,
1995.

[7] G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers.
Haskell boards the ferry - database-supported
program execution for Haskell. In IFL, volume 6647 of
Lecture Notes in Computer Science, pages 1–18.
Springer, 2010.

[8] T. Grust and M. H. Scholl. How to comprehend
queries functionally. J. Intell. Inf. Syst.,
12(2-3):191–218, 1999.

[9] G. L. S. Jr. Organizing functional code for parallel
execution or, foldl and foldr considered slightly
harmful. In ICFP, pages 1–2. ACM, 2009.

[10] E. Meijer, B. Beckman, and G. M. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In SIGMOD Conference, page 706. ACM,
2006.

[11] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
Netflix Prize. In AAIM, volume 5034 of Lecture Notes
in Computer Science, pages 337–348. Springer, 2008.

2076

http://flink.apache.org
http://hadoop.apache.org
http://spark.apache.org

	Introduction & Motivation
	Formal Foundations
	Emma: Main Concepts & Design
	Demonstration
	Acknowledgements
	References

