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ABSTRACT
Even with the recent developments in Web search of answer-
ing queries from structured data, search engines are still lim-
ited to queries with an objective answer, such as european
capitals or woody allen movies. However, many queries
are subjective, such as safe cities, or cute animals. The
underlying knowledge bases of search engines do not contain
answers to these queries because they do not have a ground
truth. We describe the Surveyor system that mines the
dominant opinion held by authors of Web content about
whether a subjective property applies to a given entity. The
evidence on which Surveyor relies is statements extracted
from Web text that either support the property or claim its
negation. The key challenge that Surveyor faces is that
simply counting the number of positive and negative state-
ments does not suffice, because there are multiple hidden
biases with which content tends to be authored on the Web.
Surveyor employs a probabilistic model of how content is
authored on the Web. As one example, this model accounts
for correlations between the subjective property and the fre-
quency with which it is mentioned on the Web. The parame-
ters of the model are specialized to each property and entity
type.
Surveyor was able to process a large Web snapshot within

a few hours, resulting in opinions for over 4 billion entity-
property combinations. We selected a subset of 500 entity-
property combinations and compared our results to the dom-
inant opinion of a large number of Amazon Mechanical Turk
(AMT) workers. The predictions of Surveyor match the
results from AMT in 77% of all cases (and 87% for test cases
where inter-worker agreement is high), significantly outper-
forming competing approaches.
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1. INTRODUCTION
In recent years, Web search engines have invested heav-

ily in answering queries with structured data. For example,
queries such as woody allen movies or american presi-
dents will yield a display of the appropriate entities. These
queries are enabled by large knowledge bases about impor-
tant entities and properties of these entities. Albeit vast,
these knowledge bases are restricted to objective properties
of the entities. Hence, queries with subjective properties
such as big cities, safe cities, or cute animals would
not trigger search results from structured data. Considering
that queries about subjective properties are very common in
the query stream, this implies lost opportunities for offering
rich information.

We describe the Surveyor system whose goal is to mine
from the Web the dominant opinion about whether a partic-
ular property applies to entities of a particular type. Given
a property, typically expressed as an adjective (e.g., cute),
a type (e.g., Animals) and a set of entities of that type from
the knowledge base, Surveyor decides whether the major-
ity of users associate the property with the entity. The pur-
pose is to build a knowledge base of subjective properties
and entities. To the best of our knowledge, we are the first
to study this problem.

The state-of-the-art approach to building Surveyor would
be to use an information extraction or natural-language pro-
cessing method to simply count the number of occurrences
on the Web in which the property is attributed to the en-
tity and the number of times in which a negative assertion
about the property applying to the entity is found. We
would then decide if a property applies to an entity based
on a count-based estimator such as the majority vote. Such
an approach would be appropriate if we had a sufficiently
large and unbiased sample of statements about each entity.
In practice, this assumption does not hold for the following
reasons.

First, the statement sample might be biased because users
with one specific opinion are more likely to express them-
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selves than the others. For example, users who experience
a certain city as being not safe might be more likely to
point that out than other users who experience the same
city as safe. Therefore, finding more statements claiming
that a certain city is not safe does not necessarily mean
that this is the majority opinion. Second, there are many en-
tities and properties for which only very few statements can
be found on the Web. This does not mean that we cannot
infer the dominant opinion for them. Consider, for exam-
ple, the property-type combination big city. Big cities are
mentioned more frequently than small cities. A city about
which we find no mentions is likely not big. Furthermore,
such correlations are specific to a particular property-type
combination.

To overcome all these challenges, we need a model that
captures biases and correlations in how users create content
on the Web, and therefore enables us to make inferences
that go beyond majority voting on assertions. To that end,
a critical component underlying Surveyor is a probabilis-
tic model of how assertions about properties of entities are
generated in Web content. The parameters of the model are
instantiated differently for each combination of entity type
and property. We use an iterative expectation-maximization
approach [9] to infer optimal parameter values automatically
for each type and property. Our method is therefore com-
pletely unsupervised, enabling us to scale to large numbers
of types and properties. Figure 1 illustrates the flow of Sur-
veyor.

The contributions of this paper are the following:

1. We introduce the problem of mining subjective proper-
ties of entites from the Web, complementing the cur-
rent capabilities of search engines to answer queries
from structured data. We describe the specific chal-
lenges that this problem poses, based on an analysis of
several use cases.

2. We describe the architecture and implementation of
the Surveyor system which parses Web snapshots to
extract statements involving entities from the knowl-
edge base and subjective properties. Surveyor ana-
lyzes sets of statements gathered about specific entity-
property pairs to derive the probability that the prop-
erty applies to the entity according to the dominant
opinion.

3. We present a probabilistic model of how authors gen-
erate content on the Web. Our model is a parametric
Bayesian network whose variables capture hidden au-
thor biases. We derive an efficient training and infer-
ence algorithm whose time complexity is linear in the
number of entities and independent of the number of
mentions. Thus our probabilistic model is applicable
to Web-scale data.

4. We describe our experience of applying Surveyor to
a Web snapshot of 40 TB, leading to extractions con-
cerning 7 million property-type combinations and re-
sulting in probabilities for over 4 billion entity-property
pairs with a processing time of few hours on a large
cluster. We evaluate the precision of Surveyor by
comparing its output to opinions collected from a large
number of Amazon Mechanical Turk workers; Sur-
veyor outperforms baselines by more than 20 ∼ 30%
in precision.

... I find kittens cute ...
...San Francisco is

not a big city...

Free Text Corpus

Extraction & Filtering

(kittens, cute)→pro: 22,000; contra: 120
(tiger, cute)→pro: 210; contra: 300

Evidence Statement Counts

Learn Model:
Cute Animals

Learn Model:
Big Cities

...

(kitten, cute)
(tiger, NOT cute)

Cute Animals

(San Francisco, big)
(Palo Alto, NOT big)

Big Cities...

Figure 1: Surveyor begins by extracting positive and
negative statements about entity-property pairs and
counting the number of each. It then learns and
applies a type and property specific probabilistic
model to decide whether the counts entail a dom-
inant opinion w.r.t. the property and the entity.

The remainder of this paper is organized as follows. In
Section 2 we give a formal problem statement and analyze a
representative use case leading to several insights that mo-
tivate specific design decisions later. We present the archi-
tecture of our system in Section 3. In Section 4 we describe
the natural language processing methods by which we detect
positive and negative statements. In Section 5 we describe
our probabilistic model of user behaviour that is based on
the observations from Section 2. We derive equations to cal-
culate optimal parameter values for that model in Section 6.
In Section 7 we describe the properties of the full data set
generated by our system, and experimentally evaluate our
system against baseline approaches. In Section 8 we discuss
related work in more detail.

2. PROBLEM STATEMENT
We begin by introducing our terminology and defining the

addressed problem. Then, we present an empirical analysis
of an example scenario that uncovered many of the chal-
lenges we faced and motivated the proposed solution.

Definitions
A subjective property in our scenario is an adjective, op-
tionally associated with preceding adverbs. Example prop-
erties include cute, densely populated, or very small.
We focus on properties that are subjective, meaning that
there is no objective ground truth about whether they apply
to certain entities. While different users might disagree on
whether subjective properties apply to certain entities, we
assume that there is a dominant opinion for many entity-
property combinations, meaning that a significant part of
the user base agrees on whether the property applies to the
entity. When being asked whether the property cute applies
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Animal
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Figure 2: Graphical depiction of problem setting for
entity type Animal: typed entities can be connected
to subjective properties with positive (is) or nega-
tive (is-not) polarity.

to puppy or whether big applies to Los Angeles, without
being given any specific context, a majority of users would
intuitively answer with Yes. In such cases we have a pos-
itive dominant opinion while otherwise we have a negative
dominant opinion.

We assume that a knowledge base is available which stores
entities with their associated entity type (e.g., entity tiger
of type animal), as well as additional (objective) infor-
mation on those entities. Subjective queries use subjec-
tive properties to characterize entities. This requires us to
find out which subjective properties the average user as-
sociates with which entities in the knowledge base. Upon
receipt of a subjective query, the search engine can exploit
high-confidence entity-property associations and offer links
to supporting content on the Web as query result.

This leads to the subjective property mining problem which
is defined as follows: Given a document corpus W , an en-
tity e, and a subjective property p, determine the polarity
of the dominant opinion on the entity-property pair (e, p)
among the authors of W , i.e., whether the majority of au-
thors would intuitively associate the property with the en-
tity. Given a document corpus W and a threshold ρ, Sur-
veyor solves the all pairs version of the subjective property
mining problem that determines dominant opinions for all
pairs (e, p) where entities of the same type co-occur with the
property p in at least ρ statements in W . See Figure 2 for a
graphical depiction of our problem setting.

The region a user comes from can influence the probabil-
ity that (s)he associates certain entities with certain proper-
ties. For example, Chinese users might have different ideas
than American users about what constitutes a big city.
Surveyor can produce region-specific results if the input is
restricted to Web sites with specific domain extensions. In
general, we can specialize the output of Surveyor for any
user group by restricting the input to documents that have
been authored by that group.

Empirical Analysis
We considered a test scenario where we had to decide for
461 Californian cities whether the property big applies (ad-
ditional test scenarios are shown in Appendix A). We col-
lect evidence for a specific city X by issuing Google queries
for positive statements of the form “X is a big city” and
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probabilistic model

Figure 3: We interpret the statement counts (Fig-
ures 3(a)/3(b)) using majority vote (Figure 3(c))
and a probabilistic user model (Figure 3(d)).

queries for negative statements of the form “X is not a big
city”. Note that in our actual system we used a more so-
phisticated Natural Language Processing (NLP) approach
to extract the statements, which recognizes a much broader
class of patterns.

We checked the names of all cities that received at least
100 hits in total for ambiguity and discarded 11 out of 23
of those cities since the top search result did not return
the city that the population count refers to. We conclude
that disambiguation is crucial in our scenario; our extraction
mechanism that we present in Section 4 uses annotated Web
documents as input that have been pre-processed by an en-
tity tagger using state-of-the-art means for disambiguation.

Unlike our final evaluation of Surveyor with Mechanical
Turk, in this exploration we use the population of the city
as a proxy for its size. We chose this example because pop-
ulation correlates with the property big, but in general, the
property will not necessarily be correlated to knowledge in
the knowledge base. Figures 3(a) and 3(b) show the number
of positive and negative statements for all cities that passed
the ambiguity test, ordered by population count. There are
many cities for which we find a non-negligible number of
positive and negative statements at the same time. This
means that a significant fraction of users disagrees with the
dominant opinion. Therefore, we must take into account
subjectivity and must aggregate contradictory results.

The first approach that comes to mind for aggregating
contradictory results is to take the majority vote. Under
the assumption that we find sufficiently large and unbiased
sets of statements about each entity, the majority vote is
representative for the dominant opinion. Figure 3(c) shows
the result of the majority vote: for each city, we compare the
number of positive statements with the number of negative
statements and mark it as big (polarity=+) if the num-
ber of positive statements is higher; we mark it as not big
(polarity=−) if the number of negative statements is higher.
We mark polarity=N if both counters are equal. The figure
shows that we find more negative than positive statements
for some cities. Such cities should probably be marked as
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not big which underscores the need to use NLP technology
that can distinguish positive from negative assertions, and
excludes the use of purely occurrence-based approaches that
have been used by prior work in product tagging [2, 4, 5].

Despite the fact that we distinguish negative and positive
statements, the result quality in Figure 3(c) seems rather
low. Many cities are marked as big despite a relatively low
population count. Looking for an explanation, we find that
the total number of negative statements (see Figure 3(b))
is much lower than the number of positive statements (see
Figure 3(a)). We have no reason to suspect that our sam-
ple contains mainly big cities (the opposite is probably true
given the population counts). This indicates that counters of
positive and negative statements can follow different proba-
bility distributions, i.e. we might have a polarity bias.

In addition to the lack of a correlation between property
polarity and population counts, the results in Figure 3(c)
are poor for another reason: for many cities, we cannot de-
cide whether they are big or not because we could not ex-
tract positive or negative statements about them. At first
glance, this problem seems hard to solve. Looking again
at Figures 3(a) and 3(b), we realize however that the to-
tal number of positive and negative statements is correlated
with the population count. Big cities tend to be mentioned
more often on the Web than small cities. If we are able to
automatically detect such correlations, we can infer that a
city that is never mentioned on the Web is not big with high
probability. Note that the lack of mentions for an entity is
rather meaningless when working with a small collection of
documents. But when considering the entire Web, finding
no occurrences of an entity means that billions of content-
generating users made the decision not to mention the en-
tity; at sufficiently large scale, the lack of any evidence can
be evidence as well. We conclude that taking into account
occurrence bias, the correlation between property polarity
and occurrence frequency, can be helpful.

Our hypothesis is that it is possible to account all types
of bias by using a probabilistic user behavior model. Fig-
ure 3(d) shows the result of applying an early version of the
probabilistic model presented in Section 5 to interpret the
statement counts from Figures 3(a) and 3(b). The result
quality is markedly better than in Figure 3(c): we obtain
a decision for each city and polarity is strongly correlated
with population count.

As we have seen, users are more likely to write about
cities if they associate the property big with them. This
implies that users are less likely to mention cities if they
associate the property small with them, as big and small
are antonyms. This means that the occurrence bias for those
two properties is different. In general, we observed that all
types of bias mentioned before may differ across properties
but also across entity types. We conclude that polarity bias
and occurrence bias do not generalize and must be inferred
separately for different property-type combinations.

The method that we present in the following sections is
based on all those observations.

3. SYSTEM OVERVIEW
Algorithm 1 provides a high-level description of Surveyor.

The input is a collection of annotated Web documents W ,
from which we extract evidence, a knowledge base KB con-
taining entities with their types, and a threshold parameter ρ
whose semantics we discuss later. The output of Algorithm 1

Algorithm 1 Surveyor algorithm

1: // W : Web snapshot; KB: Knowledge base
2: // ρ: occurrence threshold
3: function Surveyor(W,KB, ρ)
4: Iterate over documents in W to extract evidence
5: for 〈type, property〉 : at least ρ extractions do
6: Learn model parameters
7: for entity ∈ KB : entity is of type do
8: Calculate prb = Pr(property applies)
9: Add 〈entity, property,+〉 to result if prb > 1

2

10: Add 〈entity, property,−〉 to result if prb < 1
2

11: end for
12: end for
13: return result
14: end function

is a set of tuples assigning entity-property combinations to
a polarity representing the dominant opinion.

Extracting Evidence. We extract positive and negative
evidence from a text corpus containing a snapshot of the
Web. The corpus text was preprocessed using NLP tools
and contains annotations mapping text mentions of entities
to our knowledge base which is an extension of Freebase.
We consider each mention of a knowledge base entity and
analyze the surrounding free text. We use several patterns
to detect evidence statements and to extract the properties
that they connect to the entity and the polarity of the as-
sociation. Section 4 provides more details on the extraction
phase.

Next, we group evidence by the entity-property pair it
refers to. For each pair, we compute two counters: the total
number of positive statements and the total number of neg-
ative statements. Those counters are the input for the next
step of the algorithm.

Evidence Interpretation. We interpret the collected ev-
idence to calculate the probability that a specific property
applies to a given entity. The knowledge base associates
each entity with an entity type (the knowledge base may
actually associate multiple types with an entity but we use
only the most notable type). We group evidence by entity
type, and aggregate for each property-type combination the
total number of extracted statements. We only compute
probabilities for property-type combinations for which the
number of extracted statements is sufficiently high.

We consider each property-type combination separately.
For each combination, we first use the collected evidence to
instantiate a probabilistic model of how authors decide to is-
sue positive or negative statements. Section 5 describes the
model and justifies the underlying assumptions. The model
is parameterized and we show in Section 6 how to learn opti-
mal parameter values in an iterative approach. The instan-
tiated model can be used to determine for a given entity the
probability that the dominant opinion on it is positive, based
on the collected evidence. We calculate probabilities for all
entities in the knowledge base that belong to the current
entity type. In paritcular, this includes entities for which no
evidence was extracted at all. For some property-type pairs,
Surveyor may draw conclusions for these unmentioned en-
tities as well.

We currently assume a positive dominant opinion if the
probability is greater than 0.5, and a negative dominant
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Figure 4: Evidence extraction patterns as Stanford
typed dependency trees: property tokens are red.

Table 1: Example extractions

Statement Pattern Entity Property

Snakes are danger-
ous animals

Adjectival
modifier

snake dangerous

Chicago is very big Adjectival
complement

Chicago very big

Soccer is a fast and
exciting sport

Conjunction soccer exciting

opinion if it is less than 0.5. We can chose a different thresh-
old if we want to trade precision for recall.

4. EXTRACTING EVIDENCE
In this section we describe some of the details of evidence

extraction in Surveyor. In particular, we describe our ex-
traction patterns, how we limit the extraction to intrinsic
evidence, and how we determine the polarity of evidence.

An evidence statement connects an entity to a property;
a positive statement claims that the property applies to the
entity, a negative statement claims the opposite. We recall
that in our setting, a property is an adjective, optionally
associated with adverbs (e.g., densely populated, very
big). The input for evidence extraction is an annotated
Web snapshot that was preprocessed using NLP tools simi-
lar to the Stanford parser1 and by an entity extractor that
identifies mentions of knowledge base entities using disam-
biguation techniques. The annotations contain the resulting
dependency tree representation of sentences and the links to
knowledge base entities. We consider sentences in our text
corpus that mention at least one entity from the knowledge
base and analyze their dependency parse trees.

We manually devised several patterns against which we
match the sentences in the corpus. Figure 4 shows a simpli-
fied representation of those patterns. We obtain the proper-
ties associated with an entity by matching the corresponding
pattern with the dependency tree. The tokens that together
form the property are colored in red in Figure 4. Table 1
shows an example statement for each of the three patterns
and the corresponding extractions. In the first example,

1http://nlp.stanford.edu/software/
stanford-dependencies.shtml

note that animals is coreferential with snakes, i.e. those
are two mentions of the same entity. Property dangerous
is adjectival modifier of the second mention. Also note that
the third statement contains two patterns: using the adjec-
tival modifier pattern we can also extract property fast for
entity soccer.

Our patterns do not explicitly target subjective properties
(e.g., we might extract objective properties such as ameri-
can for a city), but most extracted properties turn out to
be subjective in practice. The patterns depicted in Fig-
ure 4 are relatively restrictive. We tried several variations
of those patterns (see Appendix B), allowing for instance
an extended set of verbs for the top node of the adjecti-
val complement pattern depicted in Figure 4(b), but came
to the conclusion that the patterns in Figure 4 offer the
best tradeoff between precision and recall for our applica-
tion. In general, our design of the extraction and filtering
mechanisms prioritizes precision over recall since we apply
Surveyor to large input document collections where recall
is less critical.

Once an evidence statement is extracted, we apply several
heuristics to filter out non-intrinsic evidence statements. An
example of a non-intrinsic statement is New York is bad
for parking because it only refers to a specific aspect of
the city (in contrast to the statement New York is bad).
While it would be possible to use expressions such as bad
for parking as properties, we assume that the number of
statements found for such complex properties would be too
low to allow reliable inference. In order to recognize non-
intrinsic statements that refer only to a specific aspect of an
entity, we search for sub-trees in the dependency tree that
could represent constrictions. We search for sub-trees that
have a specific position in the dependency tree relative to
the detected pattern (e.g., additional sub-trees of the top
level node in Figure 4(b)) and contain nodes with specific
labels (e.g., labels indicating prepositions). If such a sub-
tree is found, we assume that the statement is non-intrinsic.
While this filtering mechanism can be rather conservative at
times, we found it to improve precision significantly.

As another example, compare the statements southern
France is warm and Greece is a southern country.
Both statements use the adjective southern as adjectival
modifier for an entity of type country. They differ in that
the first statement uses the adjective to refer to a specific
part of a country (France) while the second statement claims
that southern is an intrinsic property of an entire country
(Greece). To filter out non-intrinsic statements that refer
to a part of an entity (instead of distinguishing the entity
from other entities of the same type), we require sentences in
which the adjectival modifier pattern was detected to be co-
referential. Note that this test distinguishes the two example
statements given above.

Next, we determine the polarity of the statement by ex-
ploiting annotations in the dependency tree that indicate
negations: for example, the sentence I don’t think that
snakes are never dangerous contains two negations (the
negations don’t and never). Figure 5 shows the depen-
dency tree representation of that sentence (negations are
marked in red). Note that this sentence is recognized as ev-
idence since a sub-tree (snakes are dangerous) matches
the adjectival complement pattern from Figure 4.

We decide the polarity by following the path in the de-
pendency tree from the property token to the root: starting
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Token Negated Token +/-1 Polarity

I do ’nt

think

that snakes

are

never dangerous

+1

-1+1

Figure 5: We detect the polarity of the example
statement by counting the negated tokens on the
path from property (dangerous) to tree root (think).

with a polarity of +1, we change the sign every time we
encounter a negated token on that path (a negated token
has a negation as child element). If the number of negated
tokens is odd, then the polarity of the statement is negative,
and otherwise it is positive. Note that this method recog-
nizes even double negations which are rare but do sometimes
appear for the properties we consider.

We considered taking into account antonym relationships
between adjectives when identifying negations, e.g., inter-
preting the statement Palo Alto is small as negation
of Palo Alto is big. We decided against it for two rea-
sons: First, even if two adjectives are registered as antonyms
(e.g., within a database such as WordNet), they usually do
not represent the exact opposite of each other. Users who
consider a city as not big do not necessarily consider it
small. Second, we consider adverb-adjective combinations
for which it is often impossible to find any antonyms at all.

5. MODELING USER BEHAVIOR
As we described in Section 2, the simple approach to es-

timating the probability of the dominant opinion based on
majority vote counting does not work very well because it
fails to model the different types of bias that underlie au-
thoring on the Web. To address this fundamental challenge,
Surveyor employs a probabilistic model that explicitly ac-
counts for behavior of authors on the Web and takes into
consideration the different types of biases. This section de-
scribes the model, beginning with an overview. Section 6
describes how we learn the model parameters for specific
property-type combinations.

5.1 Model Overview
We assume in the following that one specific property-type

combination is considered. The output of the extraction
stage, described in Section 4, is an evidence tuple 〈C+

i , C
−
i 〉

for each entity; the evidence consists of the total count of
positive statements, C+

i , and the total count of negative
statements, C−i , gathered during extraction about the entity
and the current property.

Our probabilistic model assumes that each evidence tuple
was drawn from one of two possible probability distributions:
in the first distribution, we assume that the dominant opin-
ion applies the property to the entity, whereas in the second,
the dominant opinion does not. If we know how to express
those two probability distributions then we can calculate for
each evidence tuple the probability with which it was drawn
from one distribution or the other; this is at the same time
the probability that the entity to which the evidence tuple
refers, does or does not have the current property.
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Figure 6: Each property-type combination is as-
sociated with two probability distributions over
the statement counters: the dominant opinion on
the entity for which we receive the counts 〈60,3〉,
marked by X, is more likely to be positive.
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Figure 7: Probabilistic user behavior model: users
agree with the dominant opinion on specific entity-
property pairs with probability pA; they state their
opinion with probability p+S if it is positive and prob-
ability p−S if it is negative.

Example 1. Figure 6 illustrates the scenario described
above: we have two two-dimensional probability distributions
that assign tuples of positive and negative statement counts
to probabilities, lighter colors represent higher probabilities in
the figure. Assume we receive the evidence tuple 〈60, 3〉 for
an entity (this point is marked by the black X in Figure 6).
As the distribution for entities with positive dominant opin-
ion (depicted in Figure 6(a)) assigns a higher probability
to that tuple than the distribution for entities with nega-
tive dominant opinion (depicted in Figure 6(b)), the current
property is more likely to apply to that entity than not.

Statements are issued by users who have a certain opinion
about an entity and decide to express that opinion on the
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Web. In order to model the probability to receive a certain
number of positive or negative statements, we must model
the probability that a single user decides to issue a positive
or negative statement.

Figure 7 is a graphical depiction of our user model. We
denote the dominant opinion for entity i of the given type
by Di. The top node, the dominant opinion about an entity-
property pair, is what we are trying to compute. However,
the only observable variables are the green rectangles at the
bottom, namely, the actual statements (positive and nega-
tive) that we can extract from the text corpus. The prob-
abilistic model contains internal variables that model how
actual statements on the Web are created relative to a given
dominant opinion.

First, the dominant opinion could be either positive or
negative, which is represented by the two rectangles below
the dominant opinion. We denote the probability for a pos-
itive dominant opinion by Pr(Di = +) and the probability
for a negative dominant opinion by Pr(Di = −). Those
probabilities are initially unknown but the model enables us
to calculate them.

Second, given the polarity of the dominant opinion, an
author of a web page may or may not agree with it. This
connects to our observation from Section 2 that subjectivity
plays an important role in our scenario. We will denote by
pA the probability that an author agrees with the dominant
opinion, and therefore the transition from the second layer
of Figure 7 to the third layer is done with probabilities pA
and 1− pA, depending on the direction.

Finally, we model the probability that an author will ac-
tually write a statement about whether the property applies
to the entity. We have observed various types of bias in Sec-
tion 2, leading us to believe that the probability for writing
a statement may depend on the user opinion. We therefore
introduce two separate parameters, p+S and p−S , representing
the probability that a user mentions an entity with which
(s)he associates the current property (p+S ) and the probabil-
ity that a user mentions an entity with which (s)he does not
associate the current property (p−S ).

We note that the model is parameterized per each property-
type combination, as opposed to, for instance, all types-
property, or all types-all properties pairs. This choice is
based on our observation (in Section 2) that the right set-
tings for the parameters vary across entity types for a fixed
property but also across properties for a fixed type. Our ex-
periences when collecting ground truth data for our experi-
mental evaluation, described in Section 7.3, further support
this design decision.

5.2 Model Details
The process described in the previous subsection can be

expressed as a Bayesian network as illustrated in Figure 8.
We use random variables Di, C

+
i and C−i to model the

dominant opinion on the i-th entity, the number of posi-
tive statements and the number of negative statements col-
lected for the i-th entity. We conceptually introduce two
variables, Oiw and Siw, for the Web document with in-
dex w ∈ {1, . . . n}. Variable Oiw represents the opinion of
the corresponding author about whether the current prop-
erty applies to the i-th entity; this opinion may be posi-
tive or negative (represented by Oiw = + and Oiw = − re-
spectively), it is consistent with the dominant opinion (i.e.,
Oiw = Di) with probability pA and inconsistent with prob-

Di

Oi1 Oin...

Si1 Sin...

C+
i , C−i

Di
Oiw

Pr(Oiw|Di)
+ −

+ pA 1− pA
− 1− pA pA

Oiw
Siw

Pr(Siw|Oiw)
+ −

+ p+S 0

N 1− p+S 1− p−S
− 0 p−S

Figure 8: Probabilistic model as Bayesian network
with conditional probabilities

ability 1 − pA. Variable Siw captures whether the author
of document w decided to make a positive or negative or
no statement about whether the current property applies
to entity i; those three cases are represented by Siw = +,
Siw = −, or Siw = N respectively. The probability of mak-
ing a statement is p+S if Oiw = + and p−S if Oiw = −. The
counter variable C+

i counts the number of documents w such
that Siw = + and variable C−i counts the number of doc-
uments such that Siw = −. Note that the values for the
parameters pA, p+S , and p−S are fixed for each property-type
combination. We illustrate those definitions by an example.

Example 2. Assume we want to find out which animals
are considered cute. Let kitten, dog, spider be the list of
entities (animals) that we consider. Then Di for 1 ≤ i ≤ 3
represents the dominant opinion about whether the i-th ani-
mal in that list is cute, counter C+

i represents the number
of times the i-th animal was mentioned as being cute on
the Web, and C−i is the number of times the animal was
mentioned as being not cute. If O1w = + and S1w = N ,
for some Web site w, then the author of that site considers
kittens as cute but did not decide to express that opinion.

Assume that there is generally a high agreement between
users whether specific animals are cute or not. Then we
expect to obtain a relatively high agreement parameter pA for
this property-type combination from the parameter learning
algorithm presented in Section 6. Users are more likely to
state the fact that they find a specific animal cute than the
fact that they consider an animal not cute and this is why
we expect to obtain statement probabilities such that p+S �
p−S . Note that it might be the inverse for other property-type
combinations: for instance, users might have a bias towards
rather expressing their opinion if they consider a city not
safe than if they consider it safe. Therefore, we expect to
infer parameter values such that p−S � p+S for property-type
combination safe cities.

Our goal now is to estimate the distribution over the
variable Di given the observed counts, i.e., Pr(Di|C+

i , C
−
i ).

We elaborate on how to compute Pr(Di|C+
i , C

−
i ) with re-

spect to the Bayesian network in Figure 8. First note that
Pr(Di|C+

i , C
−
i ) ∝ Pr(C+

i , C
−
i |Di) Pr(Di). Since we wish to

be agnostic about the prior probability of Di we set Pr(Di =
+) = Pr(Di = −) = 0.5. Since the counts C+

i , C
−
i are de-

terministic functions of Siw, we first solve for Pr(Siw|Di).
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From the Bayesian network, we obtain

(Siw|Di) =
∑

Oiw∈{+,−}

Pr(Siw|Oiw) Pr(Oiw|Di).

By substituting, Di = + or − and Siw = + or −, we get
four possibilities as follows:

Pr(Siw = +|Di = +) = pA · p+S
Pr(Siw = −|Di = +) = (1− pA) · p−S
Pr(Siw = +|Di = −) = (1− pA) · p+S
Pr(Siw = −|Di = −) = pA · p−S

The variables C+
i , C

−
i are obtained by summing up n vari-

ables Siw each of which can be +,−, or neutral. We assume
that the variables Siw are independent for different w since
the chances that two randomly selected documents on the
Web are authored by the same person are negligible. This
implies that (C+

i , C
−
i ) follows a Multinomial distribution

where Pr(C+
i = a,C−i = b|Di = +) =

n!

a!b!(n− a− b)! (p
+
+)a(p−+)b(1− p++ − p

−
+)n−a−b

where p++ and p−+ denote Pr(Siw = +|Di = +), and Pr(Siw =
−|Di = +) respectively (i.e. the subscript is the dominant
opinion and the superscript is the user opinion).

We can approximate this multinomial distribution as a
product of two Poisson distributions since n is expected to
be very large compared to both (C+

i , C
−
i ) [14, 18] since for

any entity and property, the number of Web sites on which
they appear together is very small compared to the total
number of Web sites. Thus, we can rewrite the above ex-
pression as Pr(C+

i = a,C−i = b|Di = +) = Pr(C+
i = a|Di =

+) Pr(C−i = b|Di = +) =

Pois(a;λ+
+ = np++)Pois(b;λ−+ = np−+)

We derive a similar expression for the case where Di = −.
In summary, we obtain four different Poisson distribu-

tions that can be described using the three parameters pA,
p+S , and p−S : the two counter distributions for positive and
negative statements for entities to which the current prop-
erty applies according to the dominant opinion, and the
two corresponding distributions for entities to which the
property does not apply. Each of the four distributions
is described by one of four Poisson parameters λσ2σ1 with
σ1, σ2 ∈ {+,−} where the subscript σ1 refers to the dom-
inant opinion and the superscript σ2 to the statement po-
larity such that (Cσ2i |Di = σ1) ∼ Pois(λσ2σ1). The following
equations express the Poisson parameters in terms of the
three model parameters:

λ+
+ = n · pA · p+S λ−+ = n · (1− pA) · p−S
λ−− = n · pA · p−S λ+

− = n · (1− pA) · p+S

Example 3. Assume we choose pA = 0.9, np+S = 100,
and np−S = 5. The agreement parameter is relatively high
and p+S significantly higher than p−S ; those are the charac-
teristics of Example 2. We obtain λ+

+ = 90, λ−+ = 0.5,

λ−− = 4.5, and λ+
− = 10. The corresponding distributions

over the evidence tuples are the ones shown in Figure 6.

Algorithm 2 Learning model parameters

1: // E: All evidence about one property-type pair
2: // X: number of iterations
3: function EM(E,X)
4: Guess initial parameter vector θ0
5: for k ← 1 to X do
6: Calculate opinion probabilities Pr(D|E, θk−1)
7: Calculate θk using opinion probabilities
8: end for
9: return θX

10: end function

6. CALCULATING PARAMETER VALUES
The probabilistic model introduced in the last section con-

tains at the same time unknown parameters (pA, p+S , and
p−S ) and unobservable random variables (the dominant opin-
ion Di on each entity). Knowing all parameter values would
allow to infer the dominant opinion on each entity from the
counts of positive and negative statements. Knowing the
dominant opinion on each entity would allow to calculate op-
timal parameter values from the statement counts. We know
however neither parameter values nor the dominant opinion
and adopt therefore an iterative expectation-maximization
(EM) approach [9].

Algorithm 2 shows a high-level overview of the expectation-
maximization approach, applied to our scenario. The func-
tion represented in Algorithm 2 uses the evidence E that
was collected about one specific property-type combination
as input, i.e. E = {〈c+i , c

−
i 〉|i = 1..m} is the count of pos-

itive and negative statements concerning the current prop-
erty for all entities of the current type. The output is a
three-dimensional vector θX containing near-optimal values
for the three model parameters. The algorithm is iterative
and executes X times the following two steps. First, it uses
the estimates for the parameter values derived in the last it-
eration (or a vector of default values for the first iteration) to
calculate probabilities for the dominant opinion about each
entity. Second, it uses the opinion probabilities to calcu-
late the most likely values for the parameters. We provide
details on the second step in this section; the last section
sketched how opinion probabilities can be calculated. Note
that Algorithm 2 is executed separately for each property-
type pair.

The EM approach is an extension of the Maximum- Like-
lihood (ML) method [9]. The goal of the ML method is to
maximize a likelihood function L(Θ) in the parameter values
Θ. The likelihood function represents the probability of ob-
taining given observations when assuming specific parameter
values. The EM approach introduces a likelihood function
that depends not only on the parameters but also on the un-
observable random variables. In our scenario, this likelihood
function L(d,Θ) := Pr(E,D = d|Θ) depends on the parame-
ters Θ = 〈pA, p+S , p

−
S 〉 but also on the values d = 〈d1, . . . , dm〉

for the vector D = 〈D1, . . . , Dm〉 of unobservable dominant
opinions. Algorithm 2 calculates a probability distribution
over D in the first step of each iteration. Following the
EM approach, we use that distribution in the second step to
calculate function Qk(Θ), representing the expected value of
the logarithm of the likelihood function in the k-th iteration:

Qk(Θ) =
∑

d∈{+,−}m
Pr(D = d|θk−1, E) logL(d,Θ) (1)
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We choose the new parameter estimate by maximizing Qk:

θk = arg max
θ

(Qk(θ)).

Note that the formula for Qk contains the variable Θ, in
which we maximize, as well as the constant vector θk−1 that
was calculated in the last iteration. In the following, we
outline howQk can be expressed and maximized. Evaluating
(1) directly is inefficient since the sum has an exponential
number of terms in the number of entities. By summarizing
the corresponding terms, we obtain a formula for Qk with a
linear number of terms in the number of entities:

m∑
i=1

∑
di∈{+,−}

[
log(Pr(Di = di, Ei|θ)) Pr(Di = di|θk−1, Ei)

]
We use r+i := Pr(Di = +|θk−1, Ei) to denote the probabil-
ity that the dominant opinion on the i-th entity is positive.
Maximizing Qk is equivalent to maximizing Q′k which is ob-
tained by neglecting constant factors in Qk and yields:

Q′k(Θ) =∑
i

[r+i (c+i log(λ+
+)− λ+

+ + c−i log(λ−+)− λ−+)

+ (1− r+i )(c+i log(λ+
−)− λ+

− + c−i log(λ−−)− λ−−)]

Details of the transformation from Qk to Q′k are given in
Appendix C. We can find the maximum of Q′k by setting
the partial derivatives ∂Q′k/∂pA, ∂Q′k/∂p

+
S , and ∂Q′k/∂p

−
S

to zero. In our implementation, we speed up computations
by trying a fixed set of values for pA and maximizing Q′k in
p+S and p−S for each value of pA by setting the partial deriva-
tives for p+S and p−S to zero. We introduce several short
notations to be able to conveniently express the formulas
for p+S and p−S that maximize Q′k for fixed value of pA. By
gσ2σ1 with σ1, σ2 ∈ {+,−}, we denote the estimated number
of statements with polarity σ2 for entities with property po-
larity σ1 according to the dominant opinion (e.g., g−+ is the
estimated number of negative statements about positive en-
tities). By g+ we denote the estimated number of entities
with positive dominant opinion and by g− the number of
entities with negative dominant opinion:

g++ =
∑
i

(c+i r
+
i ) g−+ =

∑
i

(c−i r
+
i )

g+− =
∑
i

(c+i (1− r+i )) g−− =
∑
i

(c−i (1− r+i ))

g+ =
∑
i

r+i g− =
∑
i

(1− r+i )

Now we can finally express the formulas for np+S and np−S
(we prefer working with np+S and np−S over working with p+S
and p−S in our implementation to minimize rounding errors)
that maximize Q′k and Qk for fixed values of pA:

np+S = (g++ + g+−)/(g− + pAg+ − pAg−)

np−S = (g−+ + g−−)/(g+ + pAg− − pAg+)

We derived expressions for the parameters values that can
be evaluated in O(m), i.e. in linear time in the number of
entities. This allows Surveyor to scale to large entity sets
as demonstrated in the next Section.

7. EXPERIMENTAL EVALUATION
We used Surveyor to solve the all common pairs ver-

sion of the subjective property mining problem. Our input
corpus was a snapshot of the entire Web. Section 7.1 quan-
tifies input and output data set sizes as well as processing
times for the different processing steps. Section 7.2 presents
statistics concerning the number of extracted statements for
different entities, properties, and types. We selected a lim-
ited set of entity-property combinations as sample to evalu-
ate the precision of Surveyor in comparison to simpler ap-
proaches. Evaluating precision requires us to establish some
kind of ground truth to compare against. Our ground truth
is the dominant opinion among Web users about whether
certain subjective properties apply to certain entities; we can
approximate that dominant opinion by asking a sufficient
number of Amazon Mechanical Turk (AMT) workers. Sec-
tion 7.3 describes the test samples and how we approximate
the dominant opinion on them using AMT. Section 7.4 com-
pares Surveyor with alternative approaches against AMT.
We summarize and discuss all results in Section 7.5.

7.1 Mining Subjective Properties on Web Scale
The data processing pipeline was executed on up to 5000

nodes. We used an annotated Web snapshot of 40 TB as
input. Extracting evidence statements from that snapshot
took around one hour. We thereby extracted over 922 mil-
lion evidence statements concerning over 60 million entity-
property combinations. Our knowledge base is an exten-
sion of Freebase; extracting the relevant information from
the knowledge base (entities with their most notable types)
took around 20 minutes. Combining information obtained
from the knowledge base with evidence extracted from the
Web snapshot and grouping entities by type took around
one hour. The grouping of 60 million entity-property pairs
by type, yielded 7 million distinct property-type pairs. We
filtered this set down to 380,000 by removing the property-
type pairs with fewer than 100 evidence sentences. On each
property-type pair we ran the EM algorithm of Section 6
to get dominant opinions for 4 billion entity-property pairs
subsumed by the 380,000 type-property pairs. The total
time for this step was only 10 minutes. We attribute the
efficiency of the EM step to the closed-form expressions we
derived for each of the E and M steps.

7.2 Extraction Statistics
Figure 9 shows statistics concerning the number of ex-

tracted statements for entities, properties, and types. Fig-
ure 9(a) shows percentiles for the number of statements ex-
tracted about specific knowledge base entities: the 20th per-
centile shows for instance the number of statements such
that for 20% of all knowledge base entities at most that
many statements were extracted per entity. All percentiles
up to the 95th percentile are close to zero. This means that
most entities are rarely mentioned while few popular entities
are the subject of most extracted statements.

Figure 9(b) shows the distribution of extracted statements
over different property-type combinations. The distribution
is skewed, meaning that a big part of all extracted state-
ments concerns a few popular property-type combinations.

As discussed before, we only consider property-type com-
binations for which at least 100 statements are extracted.
Figure 9(c) shows the distribution of considered properties
over the entity types. The distribution is skewed again,
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Figure 9: Extraction statistics: a big part of all
extracted statements refers to a small set of popu-
lar entities and popular property-type combinations;
few types are associated with many properties.

meaning that many properties are considered for few types
while few properties are considered for most types.

7.3 Test Cases
We evaluate the accuracy of our system against a test

dataset containing dominant opinions gathered from AMT
workers. Our test dataset comprised 500 entity-property
pairs: we selected five entity types and for each type 20 enti-
ties and five subjective properties as summarized in Table 2.
We selected diverse types and properties that are common
in the query stream. We safeguard against undesirable bias
that this selection might introduce by reporting on a second
series of evaluations over randomly selected entity-property
pairs in Appendix D.

Since the goal of Surveyor is to find the dominant opin-
ion, we tapped the crowd to collect ground truth data. We
approximate the dominant opinion by asking AMT workers:
we asked 20 workers about each of the 500 entity-property
combinations such that we collected in total 10,000 opinions.
We payed a fixed amount of 10 cents for providing an opin-
ion on all entities of the same type for one specific property
such that the total cost was 50 US dollars.

Figure 10 shows the results that we obtained from AMT
for the property-type combination Cute animals: for each
animal, we report the number of AMT workers that would
associate the property cute with it (out of 20 workers in
total). Even if Cute is a subjective property, we see that
there is often a strong agreement between workers about

Table 2: Evaluated property-type combinations

Entity Type Properties

Animals dangerous, cute, big, friendly, deadly

Celebrities cool, crazy, pretty, quiet, young

Cities big, calm, cheap, hectic, multicultural

Professions dangerous, exciting, rare, solid, vital

Sports addictive, boring, dangerous, fast,
popular
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Figure 10: Test case example: how many out of 20
AMT workers call the animal “cute”?

whether specific animals are considered cute or not. In Fig-
ure 11 we show the distribution of the worker agreement
values over all 500 test cases. We calculated worker agree-
ment as the number of AMT workers that share the same
opinion. We observe that there is indeed a dominant opinion
that is worth searching for. Averaged over all 500 test cases,
we had a worker agreement of 17 out of 20 with almost 180
cases enjoying perfect agreement. Only for 4% of the cases
we got ties. We removed these cases from our test set.

While overall agreement was high, we noticed differences
across different types and properties. Worker agreement was
for instance higher when deciding which animals are dan-
gerous (average agreement: 18) than when deciding which
sports are dangerous (average agreement: 16). Also, peo-
ple agree more on which sports are dangerous than on
which sports are boring (average agreement: 15). This
means that the agreement parameter pA should be chosen
differently for each of the three combinations dangerous
animals, dangerous sports, and boring sports. This
justifies our design decision of treating different property-
type combinations separately.

7.4 Experimental Results
We evaluate Surveyor on the test cases presented in Sec-

tion 7.3 by comparing its output to the opinions we collected
from AMT. For a given test case, Surveyor will either as-
sign positive polarity, negative polarity, or not generate any
output (if we calculate a probability of 0.5 for the dominant
opinion being positive). We consider the test case unsolved
in the latter case. We use three measures to evaluate: cov-
erage, precision, and F1. Coverage is the ratio of solved test
cases to test cases. Precision is the ratio of correctly solved
test cases to solved test cases. F1 score is the harmonic
mean of precision and coverage.

Surveyor uses a sophisticated probabilistic model to in-
fer the dominant opinion given the counts of positive and
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negative statements. We compare this approach against two
simpler methods: majority vote and scaled majority vote.
Majority Vote (MV) decides that a property applies to an
entity if the number of positive statements exceeds the num-
ber of negative statements and decides that the property
does not apply if the number of negative statements exceeds
the number of positive statements. No decision is possible
if the two statement counters are equal. Scaled Majority
Vote (SMV) is similar but scales the number of negative
statements by the average ratio of positive to negative state-
ments. As we will show this provides a gross adjustment of
the inherent bias against negative statements.

As we discuss in Section 8, we are aware of no existing
work on associating subjective properties to entities that
can work on a Web scale without any supervision. The clos-
est related work is the WebChild knowledge base [22] that
associates entities with adjectives. The goal of WebChild
is to associate an entity with all applicable adjectives like
shape, color, and taste. WebChild does not explicitly model
subjectivity and does not include negations of adjectives.
Therefore, these comparisons are not entirely fair. In our
comparison, we treat the absence of a property for an entity
in WebChild as a negative assertion. Therefore, the only
reason for loss of coverage for WebChild is that an entity is
not contained in the knowledge base.

We first compare these four methods on aggregate perfor-
mance over all 500 test cases and later present the results
against varying levels of agreement among AMT workers.
Table 5 shows that Surveyor is significantly better than
the other methods according to all criteria. MV has low
coverage indicative of the many cases with equal number of
positive and negative statements which is often zero. SMV
is able to improve on test cases where the number of nega-
tive statements is non-zero, explaining the slightly increased
coverage. The coverage of WebChild is similar to the base-
line’s. The coverage of Surveyor is nearly doubled in com-
parison to the baselines because Surveyor employs a type
and property specific model that allows inference even for
entities that are not mentioned on the Web. Surveyor
also performs significantly better in terms of precision. MV
has the worst precision since it does not account for polar-
ity bias. SMV has better precision but is still limited by the
fact that it assumes universal polarity bias, meaning that its
scaling factor is not type and property dependent. The pre-
cision of WebChild is significantly higher than for the two
baselines. WebChild is however targeted at commonsense
properties and not at subjective properties, so it does not
explicitly detect negations; for certain property-type com-
binations (e.g., cute animals) we observed a high number
of false positives from WebChild and suspect a connection.
Surveyor suffers from none of those limitations; it detects
negations and its model adapts to the type and property
specific polarity bias.

We next compare the different approaches against varying
levels of agreement among AMT workers. It seems more im-
portant that our system takes the right decisions for entity-
property combinations where worker agreement is high. Fig-
ure 11 shows how many entity-property combinations satisfy
different thresholds on the worker agreement. We observe
that there is significant variation in the level of agreement;
we have perfect agreement on 180 cases and less than 75%
agreement on 100 cases. Figure 12 shows how precision and
coverage vary with varying worker agreement. We see that

Table 3: Comparison of different methods for inter-
preting statement counters

Approach Coverage Precision F1

Majority Vote 0.483 0.29 0.36

Scaled Majority Vote 0.486 0.37 0.42

WebChild 0.477 0.54 0.51

Surveyor 0.966 0.77 0.84
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Figure 11: Number of test cases with AMT worker
agreement above threshold
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Figure 12: Precision and coverage for test cases with
agreement above threshold

the precision of Surveyor increases with the worker agree-
ment. It increases from 77% when considering all test cases
to 87% when at most one worker disagreed. Figure 11 shows
that almost half of all test cases fall into this category. MV
cannot benefit from growing worker agreement while the pre-
cision of SMV increases from 37% to 44%. The effect is in-
conclusive for WebChild. Altogether, Surveyor performs
better for test cases with high worker agreement which are
at the same time the test cases that matter most.

We also experimented with randomly selected entities and
properties which leads to similar precision values for all ap-
proaches while the coverage gap between Surveyor and the
baselines increases. Details are given in Appendix D.

7.5 Discussion
The results show that our problem scope is reasonable:

even if we consider subjective properties, the average agree-
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ment of 17 out of 20 for our test cases shows that a domi-
nant opinion exists for many entity-property combinations.
Surveyor outperforms competing approaches significantly
in terms of precision and coverage. We believe that this
is mainly due to the following properties of our approach.
First, we distinguish between affirmative and negative state-
ments which is important for controversial properties. Sec-
ond, we do not treat different entities independently from
each other but treat all entities of the same type together
for each property. This increases coverage since it sometimes
allows inferences for entities that are rarely mentioned (this
is the case for most entities as shown in Section 7.2). Also, it
improves precision since it allows to take type and property
specific bias influencing the number of positive and negative
statements into account.

8. RELATED WORK
We discuss the most closely related work in this section

while we discuss additional publications in Appendix E.
Our work belongs to a broad family of approaches that

parse free text to gain information about entities [2, 3,
4, 5, 22]. WebChild [22] associates nouns with adjectives
over fine-grained relations such as has-shape or has-taste.
The focus is on finding commonsense associations (e.g., car-
rot has-color orange) that are expected to be noncontrover-
sial (e.g., we do not expect statements claiming that car-
rots are not orange). Therefore, WebChild does not search
for statements claiming that a property does not apply to
an entity and has no mechanisms to aggregate conflicting
opinions. We compare our system against WebChild in Sec-
tion 7. Chakrabarti et al. [4] and Cheng et al. [5] associate
properties (tags in their terminology) with entities if the
co-occurrence frequency (i.e., the number of documents in
which property and entity appear close to each other) is sta-
tistically significant. Chakrabarti et al. [3] and Agrawal et
al. [2] associate URLs with entities and rank entities based
on the number of associated URLs that a search engine re-
turns when querying for product features. The focus of these
papers is less controversial properties like product features.
They do not distinguish positive from negative statements,
and do not deal with bias in mentions. As shown in Sec-
tion 7, both of these are essential for subjective properties.

Sophisticated probabilistic models have been developed in
the context of Information Extraction [8] to consolidate con-
flicting fact extractions (e.g., [6, 7, 20]). Those models are
unsuitable for the scenario that we consider because their
purpose is to explain the behavior of extraction algorithms
in order to calculate a confidence from the number of con-
sistent extractions. The purpose of our model is to explain
the behavior of users in order to infer the majority opin-
ion from the potentially non-representative set of statements
that we collect. This is why our model integrates parameters
modeling subjectivity and bias between positive and nega-
tive statements. This is what enables us to make inference
even from the fact that we do not harvest any statements
about specific entities. The models that are used in infor-
mation extraction do not model subjectivity (assuming that
inconsistent extractions are always due to mistakes of the
extraction algorithm) and all inference is based on the fact
that information was extracted (but not on the fact that no
information was extracted).

The OpenEval system [19] is similar to our system in that
it tries to connect entities to predicates. It differs however

from our system since it uses supervised learning and would
require us to specify by hand positive and negative sam-
ples for each property-type combination; this approach does
not scale to large numbers of types and properties. Also,
OpenEval uses Google queries to collect statements and is
not able to mine a large number of opinions for a given
entity-property combination as it only examines the first
few result sites for each query. OpenEval is designed for
scenarios in which the ground truth can be collected from
a few reliable sources and it is not necessary to mine many
conflicting opinions in order to obtain a reliable estimate of
the majority opinion.

Opinion Mining and Sentiment Analysis [24, 23, 15] tech-
niques extract and aggregate sentiments from text snippets;
the goal is to detect expressions of positive or negative sen-
timents. One of the main challenges in this field is how to
associate text snippets with sentiments, which are often ex-
pressed in subtle ways. Corresponding approaches classify
text snippets on n-grams that are known to be associated
with positive or negative sentiments. Such n-grams with
associated polarity can be manually entered [21], learned
from labeled reviews [16, 15], obtained from synonym and
antonym relationships in WordNet2, or seeded from a man-
ually created list [11]. Our terminology is similar to the one
used in sentiment analysis but the semantic differs: positive
and negative statements in our case are not associated with
positive or negative sentiments. In our scenario, statements
connect entities to properties and the entities and properties
are explicitly mentioned; there is no need to interpret sub-
tle nuances. Unlike most approaches in sentiment analysis,
our method does not require any labeled training samples
nor dictionaries; instead, we rely on a fixed set of extraction
patterns that are specific to our scenario. Opinion mining
and sentiment analysis systems might include a final aggre-
gation stage but this simply involves counting the number
of sentences (or reviews) in which positive or negative sen-
timents are expressed [11, 13, 25] or calculating a rating
average [15]. In contrast, our focus is on a intelligent aggre-
gation step that adjusts for user bias and thus goes beyond
counting and averaging.

9. CONCLUSION AND OUTLOOK
Users often use subjective properties to restrict the scope

of their Web queries. If search engine providers want to be
able to respond to such queries with structured information
then they must learn how to associate entities with sub-
jective properties. Surveyor represents our first step into
this direction. Our experimental results justify our problem
scope as well as our overall approach.

In future work, we plan to use Surveyor to connect sub-
jective properties to objective properties. We could for in-
stance try to find a lower bound on the population count of a
city starting from which an average user would call that city
big. Inferring and exploiting such relationships should allow
to improve precision and coverage for the subset of subjec-
tive properties for which such correlations can be found.
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APPENDIX
A. EXTENDED EMPIRICAL STUDY

We describe the results for additional property-type com-
binations that we tried during our empirical study. In ad-
dition to the property-type combination big city, we tried
the combinations wealthy country, big lake, and high
mountain. The experimental setup is the same as in Sec-
tion 2: for each subjective property, we determine a nu-
merical property that it should correlate with. Whether a
country is considered wealthy should correlate with its GDP
per capita. Whether a lake is considered big or not should
correlate with its area and whether a mountain is considered
high should correlate with its height.

For each of the three property-type combinations, we iden-
tified an HTML table on the Web that contains entities of
the corresponding type and specifies the required numerical
property for them. We selected a table containing countries
with their GDP per capita as estimated by the IMF for 2013,
a table containing lakes in Switzerland with their associated
area in square kilometers, and a table containing mountains
on the British Islands with their relative height in meters.
We issued Google queries for all entities in the corresponding
tables as described in Section 2, thereby counting affirma-
tive and negative statements on the Web. Then we use the
majority vote and the probabilistic model to estimate for
each entity the polarity from its statement counts.

Figure 13 compares the polarity results in terms of how
well they correlate with the numerical properties that we
specified before. For all three scenarios, the correlation is
significantly better for the probabilistic model. In addition,
the probabilistic model is even able to classify entities for
which no statements were collected. The latter problem
concerns in particular the scenarios with lakes and moun-
tains. Those scenarios are representative for the bigger part
of property-type combinations that Surveyor considers; as
our knowledge base is large, it contains many entities for
which no statements can be collected on the Web (see statis-
tics in Section 7.2). The Surveyor system can cope with
sparseness since it considers sets of entities of the same type
together; the majority vote approach considers each entity
separately and cannot deal well with sparseness. Note that
we use a qualitative evaluation approach here, while we use
a quantitative approach to compare the probabilistic model
against majority vote and other baselines in the experimen-
tal section.

1757



103 104 105

−

N

+

GDP per capita ($)

P
o
la

ri
ty

Majority Vote

103 104 105

GDP per capita ($)

Probabilistic Model

(a) Wealthy countries

100 101 102 103

−

N

+

Lake area (km2)

P
o
la

ri
ty

Majority Vote

100 101 102 103

Lake area (km2)

Probabilistic Model

(b) Big lakes in Switzerland

600 900 1,200

−

N

+

Relative height (m)

P
o
la

ri
ty

Majority Vote

600 900 1,200

Relative height (m)

Probabilistic Model

(c) High mountains on the British Islands

Figure 13: Result comparisons of majority vote (left
side) and probabilistic model (right side).

B. EVOLUTION OF PATTERNS
We provide details on the different extraction patterns

that we tried out before opting for the version that is pre-
sented in Section 4. Table 4 shows the different versions that
we developed and tried out consecutively. The modifiers col-
umn describes the types of connections between adjectives
and nouns that we considered for extraction; amod abbrevi-
ates adjectival modifier and captures cases such as “the cute
cat” while acomp abbreviates accompanying modifier and
captures cases such as “the cat is cute”. The verbs column
describes the verbs we considered for connecting adjectives
to nouns; the class of copula verbs comprises all verbs that
are commonly used to connect the subject of a sentence to
a predicate. The other alternative is to be more restrictive
and to consider only the verb“to be”. The checks column in-
dicates whether we filter out non-intrinsic statements. The
statements column describes how many statements were ex-
tracted by the corresponding version.

Table 4: Comparison of different pattern versions

Vers. Modifiers Verbs Check Statements

1 amod copula no 1321194344

2 amod+acomp copula no 1779253966

3 acomp to be yes 98574972

4 amod+acomp to be yes 922299774

Our first version did not filter out non-intrinsic statements
and used only the adjectival modifier pattern. After adding
the accompanying modifier pattern for the second version,
the number of extracted statements increased by over 30%.
While the number of extractions was satisfactory, the quality
of the extracted statements was not sufficient as we verified
by studying example extractions. Our goal for the third ver-
sion was to improve extraction quality; we therefore added
the intrinsicness tests that are described in Section 4 and re-
stricted ourselves to the accompanying modifier pattern and
the verb “to be”. This increased extraction quality indeed
but at the same time decreased the number of extractions
by more than one order of magnitude. For the final version,
we used the adjectival modifier and accompanying modifier
patterns together again but left the intrinsicness checks in
place. The quality of the extractions now seemed signifi-
cantly better than in the first versions while the number of
extracted statements was still relatively close to the max-
imum. We used the fourth version for the experiments as
it seemed to offer the best trade-off between precision and
recall.

We also report extraction times for the different versions
of the extraction patterns. Using version 1, extraction took
around 2 hours and 40 minutes on a cluster with 1000 nodes.
We increased the cluster size for executing version 2; extrac-
tion took around 50 minutes on a cluster with 5000 nodes.
Version 3 took around 48 minutes with 5000 nodes. For our
final version, extraction time was around one hour. Note
that run time was not our primary criterion for selecting
between extraction patterns.

C. ANALYSIS DETAILS
We provide more details on the analysis that we sketched

in Section 6, leading to our formulas for calculating optimal
parameter values. More precisely, we show how we obtain
function Q′k(Θ) which becomes maximal for the same pa-
rameter values as Qk(Θ). The formula for Qk is:

m∑
i=1

∑
di∈{+,−}

[
log(Pr(Di = di, Ei|θ)) Pr(Di = di|θk−1, Ei)

]
The factor Pr(Di = di|θk−1, Ei) is a constant in iteration

k and we focus on transformations of the factor log(Pr(Di =
di, Ei|θ)) in the following. The following transformations use
the formula of conditional probabilities and basic properties
of the logarithm function:

log(Pr(Di = di, Ei|θ))
= log(Pr(Di = di|θ) · Pr(Ei|Di = di, θ))

= log(Pr(Di = di|θ)) + log(Pr(Ei|Di = di, θ))
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The term log(Pr(Di = di|θ)) does not directly depend on
the parameters since we do not consider the evidence Ei yet
(the parameters concern only the connection between the
probability for the dominant opinion and the collected evi-
dence). We can therefore neglect the term when maximizing
Qk as it has no influence on the position of the maximum.
We focus on the term log(Pr(Ei|Di = di, θ)) in the follow-
ing and only consider the special case Di = di = + (while
the analysis for the opposite case is analogue). The follow-
ing transformations exploit the definition of the evidence
Ei = (C+

i = c+i ∧ C
−
i = c−i ) (i.e., the evidence consists of

receiving a specific number c+i of positive and a specific num-
ber c−i of negative statements), the assumed independence
between the counts of positive and negative statements, the
assumption that the number of evidence statements is dis-
tributed according to the Poisson distribution, and basic
properties of the logarithm function:

log(Pr(Ei|Di = +, θ))

= log(Pr(C+
i = c+i |Di = +, θ) · Pr(C−i = c−i |Di = +, θ))

= log(Pois(c+i ;λ+
+) · Pois(c−i ;λ−+))

= log(Pois(c+i ;λ+
+)) + log(Pois(c−i ;λ−+))

We focus on the term log(Pois(c+i ;λ+
+)) in the following

while the analysis of the term log(Pois(c−i ;λ−+)) is analogue.
We use the definition of the Poisson distribution and the
logarithm rules:

log(Pois(c+i ;λ+
+))

= log(
(λ+

+)c
+
i e−λ

+
+

c+i !
)

= log((λ+
+)c

+
i e−λ

+
+)− log(c+i !)

The term log(c+i !) does not depend on θ and we can ne-
glect it when maximizing Qk in θ. We transform the re-

maining term log((λ+
+)c

+
i e−λ

+
+) using our definition of the

Poisson parameter λ+
+:

log((λ+
+)c

+
i e−λ

+
+)

=c+i · log(λ+
+)− λ+

+

=c+i · log(npAp
+
S )− npAp+S

We can apply analogue transformations to all terms in Qk
to obtain the formula for Q′k that was specified in Section 6.

D. ADDITIONAL EXPERIMENTS
For the experiments in Section 7, we selected entity types

and properties that frequently appear in queries. This re-
flects our main application scenario of interpreting queries.
In this section, we provide additional results for types and
properties that are sampled randomly from our large result
set. We sampled 803 property-type combinations and for
each combination we randomly sampled seven entities. This
results in a total of over 5500 randomly sampled test cases.

We use those test cases to compare the performance of
the same four approaches that we already evaluated in the
experimental section. We used all test cases to evaluate

Table 5: Comparison for random sample of
property-type combinations

Approach Coverage Precision F1

Majority Vote 0.0766 0.333 0.125

Scaled Majority Vote 0.0773 0.417 0.130

WebChild 0.173 0.615 0.270

Surveyor 0.999 0.784 0.879

coverage for the four approaches, as coverage can be calcu-
lated automatically: for scaled and naive majority vote we
just verify whether the scaled or raw number of affirmative
and negative statements are equal, for WebChild we check
whether the entity that the test case refers to is included in
the knowledge base.

Precision cannot be checked automatically but requires
ground truth data to compare the output of the four ap-
proaches against. We therefore selected 80 property-type
combinations and generated ground truth data for one ran-
domly sampled entity per combination. We excluded six
clearly offensive combinations such as “obnoxious ethnicity”.
In contrast to Section 7, we did not use AMT to generate the
ground truth data. The reason is the following: our knowl-
edge base is very large and when selecting random entities,
we obtain in most cases entities that are very specific and
not known to the general public. Our random sample of test
cases includes for instance the Latin name of a disease (“Hi-
atal hernia”), a Portuguese artist named “Maria Lusitano”,
and the car model “Ford Cougar”. Deciding for instance
whether hiatal hernia should be counted as a major dis-
ease required us to execute an Internet search and to read
through corresponding material. We therefore do not expect
to obtain meaningful results from AMT as this platform is
rather targeted at simple and quickly executable tasks. The
types and properties that we selected in Section 7 (e.g., an-
imals) are more appropriate for an evaluation using AMT
since those entities should be known to the general public.

Note that the aforementioned entities might still be useful
to answer specific queries (e.g., a query asking for major
diseases with specific properties that is issued by a person
with a medical background).

Table 5 shows the results: our system is the only one
which can slightly improve its F1 score comparing with the
results in Section 7. For the three other approaches, the
drop in F1 score is significant. In particular, there is a drop
in coverage since the randomly sampled entities are less fre-
quently mentioned on the Web, while the values for precision
are comparable to the ones in Section 7. While the results
in Table 5 are very favorable for our system, we still believe
that the results reported in Section 7 are more relevant since
they refer to entities that we expect to be more common in
queries than the ones we randomly sampled. Our goal was
however to show that our selection of test cases did not pe-
nalize the baseline approaches.

E. ADDITIONAL RELATED WORK
We pick one popular probabilistic model from Informa-

tion Extraction, the one proposed by Downey et al. [7], as
example to show why such models are ill-suited for our task.
The model by Downey et al. models each extractor by a

1759



probabilistic “urn”, fact extractions (e.g., the fact that New
York is a city) are modeled as draws from the urns. The
model calculates a confidence that specific facts are correct,
based on the number of times the corresponding fact was
extracted and the total number of draws. This model is not
suitable for our scenario for several reasons. First, it can-
not infer anything for the common case that no extractions
were made for specific entity-property pairs; our model can
give meaning to that case since it connects the likelihood
that users express their opinion to their opinion. Second,
the model by Downey et al. does not explicitly take into ac-
count mutual exclusion constraints between extracted facts.
To map our scenario onto their model, we need to concep-
tually introduce for each property one extractor for positive
statements and one extractor for negative statements. Then
the latter model might for a given city calculate a probabil-
ity for that city being big according to the dominant opinion
and a probability for that city being not big such that those
two probabilities do not sum up to one. The model that we
introduce in this paper takes such exclusions into account.

Entity Classification [10, 12] is a sub-field of information
extraction; the goal is to infer the type of entities mentioned
in free text, using the surrounding text for the classification.
Such techniques are a prerequisite for our approach since we
group entities according to their type in order to learn type-
specific content generation patterns. At the same time, the
problem solved by Surveyor can be seen as a form of entity
classification as well since for each property we classify enti-
ties into those to which the property applies and those where
it does not apply. Our scenario poses however specific chal-
lenges since we consider properties that are controversially
discussed; our prior discussion contrasting the probabilistic
models used in information extraction from our model ap-
plies as well.

Feature Mining is often used as pre-processing step for
opinion mining [11, 17, 15]; Hu and Liu [11] mine for in-
stance product features (e.g., “picture quality” as feature of
“camera”) before extracting ratings for those features in a
second step (we already discussed approaches for extracting
ratings in the previous paragraph). Features are associated
with entity types while subjective properties are associated
with entities (e.g., the feature “picture quality” applies to all
cameras, independently of whether they have good or bad
picture quality, while the property “cute” only applies to a
subset of animals but not to all of them). So the problem
model of feature mining does not map to the problem model
of subjective property mining. Also, features are usually fre-
quent nouns [15] while subjective properties are usually ad-
jectives and adverbs and associating properties with entities
based on occurrence frequency alone creates problems since
it neglects negation.

In Classical Surveys, participants are explicitly asked for
their opinion. The bias introduced by the fact that some
participants refuse to participate in a survey is known as
non-response bias [1]. This case is considered rather rare
and research usually focuses on bounding the effect of this
bias or trying to avoid it by appropriate survey design. Our
scenario differs from a traditional survey since we do not
solicit participation but rather collect opinions that users
decided to post themselves. This makes the “non-response”
bias an important fact in our case since we have no control
over the selection of participants. On the other side, our
survey is simplistic comparing with traditional surveys, as
we only have two options for each entity-property combina-
tion. This gives us the possibility to sometimes even infer
something from the fact that we find “no participants”.
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