
REACT: Context-Sensitive Recommendations for Data
Analysis

Tova Milo
Tel Aviv University, Tel Aviv, Israel

milo@post.tau.ac.il

Amit Somech
Tel Aviv University, Tel Aviv, Israel

amitsome@mail.tau.ac.il

ABSTRACT
Data analysis may be a difficult task, especially for non-
expert users, as it requires deep understanding of the in-
vestigated domain and the particular context. In this demo
we present REACT, a system that hooks to the analysis UI
and provides the users with personalized recommendations
of analysis actions. By matching the current user session to
previous sessions of analysts working with the same or other
data sets, REACT is able to identify the potentially best next
analysis actions in the given user context. Unlike previous
work that mainly focused on individual components of the
analysis work, REACT provides a holistic approach that cap-
tures a wider range of analysis action types by utilizing novel
notions of similarity in terms of the individual actions, the
analyzed data and the entire analysis workflow.

We demonstrate the functionality of REACT, as well as
its effectiveness through a digital forensics scenario where
users are challenged to detect cyber attacks in real life data
achieved from honeypot servers.

1. INTRODUCTION
Exploratory data analysis has evolved significantly since

the emergence of the “Big Data” era. Data analysis software
platforms (such as Tableau, Splunk and IBM InfoSphere)
are gradually replacing traditional tools, allowing easy-to-
use data exploration, visualization and mining, in big data
environments, even for users lacking knowledge of SQL and
programming languages. Yet, data analysis can be a diffi-
cult process, especially for non-expert users, as it requires
deep understanding of the investigated domain and the par-
ticular context. Users therefore may skip significant analysis
actions or overlook important aspects of the data [7].

In this demo we present REACT, a system that assists data
analysts by providing personalized recommendations of rel-
evant data analysis actions. REACT exploits previous ex-
perience of other analysts working with the same or other
data sets that it records. Given the specific context of the
user (the analysis actions performed thus far, the results ob-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899392

Figure 1: Parsed Network Capture File

tained, the properties of the data set at hand, etc.) it uses
the recorded information to suggest the next best analysis
action to the user in the current context of their session.

Generating adequate data analysis recommendations is
a theoretical and practical challenge. Ideally, the recom-
mended action should be given with respect to the users’
level of expertise, methodology and their thinking process.
It should be comprehensible at the current point in the anal-
ysis session, and most importantly, should result in a new
view of the information, pointing out interesting aspects of
the data objects in a way that the users did not see before.
Furthermore, it should be presented to the user in reason-
able time, i.e., before she decides herself on the next action.

Previous work suggests the use of recommendations in the
domain of exploratory data analysis but mostly focuses on
one specific aspect of the process. Some works (e.g. [3], [6])
focus on data retrieval, providing SQL query recommenda-
tions with auto-completion features; other works (e.g.[5])
focus on data presentation via OLAP operations, presenting
a recommender system for data-cube queries; systems for
data visualization recommendations were presented e.g. in
[10]. While these works all make a notable contribution, user
studies show that data analysis sessions interleave actions of
all types with dependency of one action on the results of
previous actions of the same or different type [1]. Thus, as
advocated in the white paper of [7], a more holistic approach
is required to fully capture the essence of the analysis work.
It should also be noted that most of the previous work as-
sumes an environment with a single data source queried by
multiple users. Current big data settings support a large
number of data sources and there is an important need to
transfer experience gained with one data source to others.
REACT, to our knowledge, is the first one to provide a holis-

tic approach that exploits user experience (in terms of both
the individual analysis actions, their workflow, and the an-
alyzed data), on similar-but-not-necessarily-identical data
sources, for generating context sensitive recommendations.

In a nutshell, given a repository of recorded analysis ses-
sions and the state of a user within its current session, REACT

2137

Figure 2: An analysis session tree.

operates as follows: First, it identifies previously performed
similar sub-sessions, based on notions of data-similarity and
analysis actions-similarity that we define. From these we
retrieve a set of candidate next actions. Since the actions
may be diverse and operate on distinct data sets, rather
than looking at the individual frequent actions, our next
step is to identify common generalized action templates. Fi-
nally, by considering the properties of the current data set,
we instantiate the templates with actual parameters to ob-
tain concrete action recommendations that have the poten-
tial to highlight new and interesting point-of-views of the
given data source.

Our solution makes three primary contributions: (i) A
generic data model that captures the nature of exploratory
data analysis, including: data retrieval, cube operations
and data mining, and can be expanded for visualization as
well. Therefore REACT is easily adjustable to state-of-the-art
data analysis platforms. (ii) Our system engine can identify
similar analysis session patterns, made over different data
sources. This novel approach significantly increases the pool
of relevant actions for the recommendation process. (iii) Our
system groups and then generalizes individual analysis ac-
tions performed by users, in order to find better recommen-
dation candidates. This makes REACT a good fit for practical
scenarios where there are many data sources and the chances
for multiple users to perform the exact same actions are slim.

To demonstrate the functionality of REACT, our scenario
of choice is digital forensics in the context of cyber secu-
rity threat detection. Participants will be invited to take
part in numerous forensics challenges from the HoneyNet
project1, for identifying malware communication, APT (ad-
vanced persistent threats), or exploits in the provided data.
The participants will be asked to solve analysis challenges
of increasing level of difficulty and we will compare the time
it takes to complete them with and without the assistance
of REACT. We will also provide a “behind the scenes” view of
the system, demonstrating the operation of the underlying
algorithms and their key components.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of the data model and some theo-
retical background. A description of the system architecture
and flow is presented in Section 3. Section 4 describes the
demonstration scenario in more detail.

2. TECHNICAL BACKGROUND
We briefly review the technical background underlying RE-

ACT. We start with the data model, then overview the main
algorithms for computing analysis recommendations.

Data source. A typical data analysis session starts when
a data analyst inquires into a matter (e.g. Detect a back-
door communication session within a network capture file,
as illustrated in Figure 1). Initially, she parses the traffic
capture to a tabular format and loads the data to an analy-

1http://honeynet.org

sis UI. Then, she executes a series of analysis tasks, to fulfill
her assignment.

We abstractly model a data source by a triplet 𝒟 = (𝒪,𝒜,ℋ),
where 𝒪 is a set of data objects, 𝒜 is a domain of attribute
names and ℋ is a set of semantic hierarchies, one per at-
tribute name, that defines an abstraction refinement order
on the attribute values. For example, semantic hierarchies
that can be employed for the time and IP attributes of the
data source in Figure 1 are: hours ≤ minutes ≤ seconds and
country ≤ city ≤ IP.

Data Display, Analysis actions, Analysis tree. Inspired
by [1], we assume that an analyst performs actions of three
main categories: data retrieval actions, performed to select
and filter the relevant data objects for the current assign-
ment (e.g. FILTER BY “protocol=HTTP”); data represen-
tation operations are performed to alter the point-of-view of
the data objects and include OLAP cube exploration, sort,
highlight, and alike (e.g., ROLL-UP ’session time’ FROM ’sec-
onds’ TO ’days’) and data mining tasks such as clustering
and outlier detection (e.g., CLUSTER BY ’source IP address’).

At each point of the analysis we are given some Data Dis-
play 𝐷 = (𝑂,𝐴, 𝑔,𝑀), where 𝑂 ⊆ 𝒪 is the current sub-
set of data objects and 𝐴 ⊆ 𝒜 are the attributes being
considered. 𝑔 denotes the current group-by preferences for
the objects, identifying one abstraction level per attribute
(and possibly a corresponding aggregate function) and rep-
resents the cube point-of-view of the current display (e.g. in
the current example 𝑔 can be {⟨Time:Minuetes;IP:country
⟩, ’avg length’:AVG(length)}). Finally, 𝑀 associates a (pos-
sibly empty) set of labels with each object, originating from
data mining operations (Refer to Figure 2 for an example).

We assume a domain 𝒯 of analysis actions that an analyst
can perform on the data display through a given UI. Exam-
ples are FILTER BY, ROLL-UP, CLUSTER BY, etc. Each action
𝑡 ∈ 𝒯 , takes some parameters (e.g. the filtering selection
criteria, roll up attributes, clustering function, etc.) and,
given as input some data display, generates a corresponding
new display. We use 𝑡(𝑝) to denote the action 𝑡 ∈ 𝒯 with its
concrete parameters 𝑝. We may generalize a concrete action
𝑡(𝑝) into an action template 𝑡′(𝑝′) by replacing the action
name or some of the parameter tokens in 𝑝 by new variable
names. For example, the two concrete filtering actions FIL-
TER(length ≥ 48) and FILTER(length = 5) may both be gen-
eralized to the action template FILTER(length x1 x2) where
x1 generalizes ’=’; and ≥ and x2 generalizes ’48’ and ’5’.

Generalization defines a partial order among templates.
We write 𝑡′(𝑝′) ≤ 𝑡(𝑝) if 𝑡′(𝑝′) equals 𝑡(𝑝) or generalizes
it. Given two actions 𝑡1(𝑝1), 𝑡2(𝑝2), we say that a tem-
plate 𝑡′(𝑝′) is their most specific generalization if it gen-
eralizes the two and there is no other template 𝑡′′(𝑝′′) s.t.
𝑡′(𝑝′) ≤ 𝑡′′(𝑝′′). W.l.o.g. we will assume below that all
actions have the same number of parameters/tokens. All
results generalize to the general case via padding.

In our analysis we will be interested in action templates
that occur frequently. Given a set 𝑇 of concrete actions and
some threshold Θ, we say that an action template 𝑡′(𝑝′) is

frequent in 𝑇 if |{𝑡(𝑝)|𝑡(𝑝)∈𝑇,𝑡′(𝑝′)≤𝑡(𝑝)}|
|𝑇 | > Θ. In particular,

we will be interested in the most specific such templates. We
say that 𝑡′(𝑝′) is maximal-frequent if it is frequent and there
is no other frequent template 𝑡′′(𝑝′′) s.t. 𝑡′(𝑝′) ≤ 𝑡′′(𝑝′′).

Analysis sessions work intuitively like website navigation
sessions - at each point of the session one may backtrack

2138

to a previous data display and take an alternative naviga-
tion path. We thus model an analysis session as an ordered
labeled tree whose nodes are the data displays. The edges
outgoing each node are labeled by the performed action and
lead to the resulting data display node. The order captures
the execution time-line. See Figure 2 for an illustration of
an analysis session tree.

2.1 Generating recommendations
Given a repository of previously performed sessions (mod-

eled as trees, as described above), and the current user ses-
sion (modeled as well as a tree) we first search the repository
to identify the top-k similar subtrees. Then we use them to
generate next-action recommendations.

Identifying similar subtrees. Our notion of subtree simi-
larity is based on edit distance: An edit script is constructed
from edit operations that can be applied on nodes and on
edges: delete/add a node or an edge, and alter the label of a
node or an edge. Each operation has a cost, and the edit dis-
tance is the cumulative cost of edits required to transform
one tree into another. Add/delete operations have a unit
cost, whereas the cost of an alter operation for node/edge
labels reflect the similarity between the data displays and
analysis actions that they represent, respectively. Next, We
intuitively define these similarity notions.

Data display similarity. Recall that different analysts
may operate on distinct data sources (as well as on dis-
tinct sets of objects in the same source), yet we would like
to benefit from the users’ experience across data sources
and sets. Given two data displays, we first employ schema
matching [8] to match (when possible) between the attribute
of the two displays. We then compare the content of the
matched attributes. Since the objects being examined may
be very different, and thus also the attribute domains, rather
than comparing the actual value distributions we character-
ize their structure via the standard notion of entropy and
compare the resulting entropy values. Finally, given two
data displays, their overall similarity score (whose exact for-
mula is omitted for space constraints) incorporates (1) the
schema similarity matching score, (2) the attributes entropy
similarity, (3) the similarity in the group-by preferences (de-
fined by their distance in the abstraction hierarchy) and (4)
the similarity in mining labels (defined via Dice coefficient,
which is a standard similarity measure for multisets).

Actions similarity. We measure the similarity between
two concrete analysis actions 𝑡1(𝑝1) and 𝑡2(𝑝2) by the sum
of their distances from their common most specific general-
ization2. For instance, in our example above, the distance
between FILTER(length ≥ 48) and FILTER(length = 5) is 4,
given that FILTER(length x1 x2) is their most specific com-
mon generalization.

Optimized search algorithm. To find the top-k sim-
ilar trees we employ a refinement of the subtree similarity
search algorithm in [2] with the edit distance computation
method suggested in [11]. First, as [11] supports edit opera-
tions on nodes only, we replace each edge in our trees by an
edge-node-edge triplet, assigning the edge label to the corre-
sponding node. Second, since the algorithm in [2] is linear in
the data size, and the number of recorded analysis sessions
may be large, to allow for instant response time we prepro-

2normalized by the maximal distance between a concrete
action and a template where all tokens are variable

Figure 3: The system architecture.

cess the data, clustering similar analysis trees together. We
compare the user tree only to the center of each cluster, and
further explore cluster members (within a bounded radius
from the center) only for the most similar ones.

From a storage (and computation) perspective it is im-
portant to note that the data displays need not be fully
recorded to enable this computation. Indeed, for each node
we only record the set of attribute names along with the
entropy value for each attribute, and the attribute names
(resp. mining labels) in 𝑔 and 𝑀 . Schema matching may
also be precomputed for all data sources.

Generating recommendations. Once the set of similar trees
is identified, we use them to decide on the best next action.
This is done in three steps.

First we consider the nodes (in the retrieved set of similar
subtrees) that correspond to the current user node. We take
the edges (actions) outgoing these nodes and form a multiset
consisting of candidate actions. Since the actions may be
diverse and operate on distinct data sets, our next step is
to identify common generalized action templates. Formally,
the maximal-frequent action templates as defined above.

Finally, by considering the properties of the current data
set, we instantiate the templates with actual parameters to
obtain concrete action recommendations that are relevant to
the given user and have potential to highlight new and inter-
esting point-of-views of the data source. For that we employ
notions presented in [4] to formulate an interestingness mea-
sure. Given an action template, the domain of instantiations
that we consider for its variables, consist of the common in-
stantiations in the actions that it generalizes (mapped to
the current schema). For each such full instantiation, we
calculate its interestingness by executing the action (using
the measure mentioned above), and select the top-k most
interesting such instantiations.

3. SYSTEM OVERVIEW
We implemented REACT in Python 2.7, as an intermediate

plug-in between an analysis UI (Bootstrap 3) and the data
source layer. The main system components and workflow
are illustrated in Figure 3). A user analyzes data via a UI
(see Figure 4) to which REACT is plugged in. Her analysis ac-
tions are passed from the UI to the Session Recorder which
incrementally constructs the current session’s tree represen-
tation and updates the Sessions Repository correspondingly.
It then passes the session tree as input to the Recommen-
dations Engine which works as follows. Given the current
session tree, the Candidate Templates Generator calls the
Similar-Subtrees Finder that searches the Sessions Reposi-
tory for similar sub-sessions. It extracts from them a list of
Action Candidates and passes them to the Templates Gen-

2139

Figure 4: Analysis UI powered by REACT recommendations

erator. The latter generalizes the actions to obtain a set of
maximal-frequent templates. The templates are then passed
to the Templates Instantiator that instantiates them into a
set of explicit “most relevant” actions. To identify these ac-
tions it executes the candidate instantiations over the data
source and measures the potential interestingness of the re-
sults. Finally, the selected Action Recommendations are
returned to the user via the UI (Figure 4) where she can
preview the recommendation results set (Figure 5).

4. DEMONSTRATION
We demonstrate the functionality of REACT, as well as its

effectiveness, in the context of digital forensics in cyber secu-
rity. Note that when solving cases of network breeches and
malware attacks, forensics researchers often have to dive into
a vast amount of machine generated data coming from mul-
tiple sources (e.g. network traffic files, system logs, mem-
ory dumps, etc.). This is a particularly suitable setting for
demonstrating the capabilities of REACT as it includes all the
challenges that the system addresses: The data sources vary
from one investigation to another, and furthermore, even
when working on the same data, users have different goals,
as well as a distinct expertise and methodology.

We will begin with an overview of the system and its user
interface, then invite the participants to take part in solving
several forensics challenges from the HoneyNet project, pub-
lished in the past few years. Each challenge has a distinct
goal and data set, e.g., identifying malware communication
in network traffic capture files, tracing APT (advanced per-
sistent threat) activity in syslog messages and spotting ex-
ploits in memory dump files. The participants will be given
analysis tasks in an increasing difficulty level and will be
asked to perform the analysis actions via a dedicated UI.

To demonstrate the effectiveness of REACT, participants
will be split into two groups, one working with the full
fledged system, and another working with a degenerated ver-
sion of the system that does not provide recommendations.
We will record the time to completion of both user groups
and present the average difference, demonstrating the supe-
rior success rates and speedup that REACT achieves.

Users working with the full system will be guided by RE-

ACT in performing the analysis actions required to complete
the task. Within each analysis session, REACT will generate
personalized recommendations using a sessions repository
consisting of previous sessions recording tasks performed by
users over the available data sources. We will complement
the demonstration by providing a “behind the scenes” view
of the system. Following the analysis work of participants,
we will show how the system finds similar sessions, then
generalizes the identified candidate actions into action tem-

Figure 5: Action preview (Corresponding to Figure 4)

plates and finally how it instantiates the templates to obtain
a personalized recommendation to fit the user’s context.

Related Work. As mentioned previously, there has been
much work on recommender systems [9], and explicitly for
data analysis [3] but they focus mostly on one specific as-
pect of the process. Our holistic approach incorporates these
facets into a comprehensive solution. Our architecture is
modular and can employ complimentary measures of sim-
ilarity and interestingness depicted e.g. in [4]. Analysis
recommendation systems often assume that users are work-
ing on the same data source/set of objects with a sufficient
number of sessions that one can learn from [6]. However,
this may not be the case in current distributed settings and
our work allows to leverage sessions over multiple sources.

Acknowledgments. We thank Daniel Deutch and Amir Gi-
lad for their insightful comments. This work has been par-
tially funded by the European Research Council under the
FP7, ERC grant MoDaS, agreement 291071 and by a grant
from the Blavatnik Interdisciplinary Cyber Research Center.

5. REFERENCES
[1] R. Amar, J. Eagan, and J. Stasko. Low-level components of

analytic activity in information visualization. In INFOVIS.
IEEE, 2005.

[2] N. Augsten, D. Barbosa, M. Böhlen, and T. Palpanas.
Tasm: Top-k approximate subtree matching. In ICDE,
2010.

[3] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[4] L. Geng and H. J. Hamilton. Interestingness measures for
data mining: A survey. CSUR, 38(3):9, 2006.

[5] A. Giacometti, P. Marcel, and E. Negre. Recommending
multidimensional queries. Springer Berlin Heidelberg, 2009.

[6] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: Context-aware autocompletion for sql.
PVLDB, 2010.

[7] J. Liu, A. Wilson, and D. Gunning. Workflow-based
human-in-the-loop data analytics. In HCBDR, 2014.

[8] T. Sagi and A. Gal. Schema matching prediction with
applications to data source discovery and dynamic
ensembling. PVLDB, 2013.

[9] M. Sarwat, J. Avery, and M. F. Mokbel. Recdb in action:
recommendation made easy in relational databases.
PVLDB, 2013.

[10] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: efficient data-driven visualization
recommendations to support visual analytics. PVLDB,
2015.

[11] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM,
1989.

2140

