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ABSTRACT

An in-memory indexing tree is a critical component of many
databases. Modern many-core processors, such as GPUs, are
offering tremendous amounts of computing power making
them an attractive choice for accelerating indexing. How-
ever, the memory available to the accelerating co-processor
is rather limited and expensive in comparison to the memory
available to the CPU. This drawback is a barrier to exploit
the computing power of co-processors for arbitrarily large
index trees.

In this paper, we propose a novel design for a B+-tree
based on the heterogeneous computing platform and the
hybrid memory architecture found in GPUs. We propose
a hybrid CPU-GPU B+-tree, – HB+-tree, – which targets
high search throughput use cases. Unique to our design is
the joint and simultaneous use of computing and memory re-
sources of CPU-GPU systems. Our experiments show that
our HB+-tree can perform up to 240 million index queries
per second, which is 2.4X higher than our CPU-optimized
solution.

CCS Concepts

•Information systems→ Data management systems;
Data structures; •Computer systems organization→
Multicore architectures;

Keywords

Heterogeneous Computing; Indexing; In-memory Database;
B+-tree

1. INTRODUCTION
The B+-tree is a well known dynamic data structure,

widely used as index in database management systems, data
warehouses, online analytical processing (OLAP), decision
support systems and data mining [10, 26, 4, 15]. Since
the memory capacity of modern servers is sufficiently large,
in many databases today, indexing information is kept in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882918

main memory in order to eliminate performance limitations
arising from expensive disk I/O [35, 2]. Due to different
characteristics of main memory, implementing an efficient
in-memory B+-tree involves different constraints [42].

Approaches that leverage GPUs to accelerate processing
have become popular in many domains due to the superior
computing power to price ratio offered by many GPUs [39,
41]. Also, in databases, several approaches have emerged
to demonstrate the benefits of using GPUs to accelerate
processing, such as, GPUTeraSort for sorting billion-record
wide-key databases [17] and GPU-accelerated relational join
processing [23][6]. Also, tree-based indexing, as a critical
operation in databases, has been in the focus of recent ap-
proaches [27, 28, 13].

A GPU offers a higher memory bandwidth as compared
to a CPU, which makes the GPU an attractive choice for
database indexing. However, the efficient utilization of both
memory bandwidth and computation resources of a GPU is
a challenging endeavor because of distinct architecture of the
GPU, which forces programmers to use the same arrange-
ment of parallel threads for both computation and data
transfer [7]. In addition, leveraging the GPU as a process-
ing accelerator necessarily involves data transfer between
main memory and GPU memory, resulting in additional la-
tency [20].

In this paper, we present HB+-tree (Hybrid B+-tree),
a modified B+-tree, jointly leveraging CPU and GPU re-
sources of the same compute platform. Our design is geared
towards lookup intensive applications where tree updates
are performed through bulk update processing, applicable
to index updates in online analytical processing (OLAP),
decision support systems and data mining [47, 48, 18].

Realizing indexing operations based on either CPU or
GPU is subject to different trade-offs. CPU performance
is bounded by memory bandwidth as the index grows be-
yond the size of the last level cache (LLC), while GPU per-
formance is bounded by memory capacity. Although GPU’s
memory architecture is efficient enough enabling the GPU to
reach higher throughput, the memory available to the GPU
is more limited than CPU’s main memory. Intuitively speak-
ing, our design objective is to combine these characteristics
of CPU and GPU memory to achieve high throughput for in-
dex tree operations over high volumes of data. We explore a
hybrid design that scatters index data among CPU and GPU
memory according to the volume and the frequency of ac-
cesses. Complementing this design, we proposed a heteroge-
neous CPU-GPU algorithm for searching the HB+-tree. We
develop a task pipelining method between CPU and GPU to
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overcome the communication cost between them. For better
computation resource utilization, the task pipeline is further
extended by double buffering, which is a concurrency design
pattern for avoiding delay in data transfer [19]. We also de-
sign a load balancing scheme to improve resource utilization
for systems with different GPU to CPU computation power
ratios.

Furthermore, we propose two versions of HB+-tree in this
paper. In addition to the regular HB+-tree, capable of effi-
ciently performing bulk updates, we propose an array repre-
sentation, referred to as implicit HB+-tree, which is more ef-
ficient for high-throughput search-only applications. More-
over, we develop a bulk update mechanism for the regular
HB+-tree, which deals with the challenges of utilizing a hy-
brid memory architecture. For both regular and implicit
HB+-tree, we develop and evaluate a 64-bit and a 32-bit
key versions of the tree. The data structure and algorithm
designs we describe are based on using 64-bit keys; the de-
sign differences for the 32-bit tree version are summarized
at the end of each section.

To the best of our knowledge, HB+-tree is among the first
indexing approaches to jointly leverage the heterogeneous
computing power of CPU and GPU as well as jointly uti-
lize their separate memories to achieve a higher aggregate
bandwidth than using either memory alone.

Our approach has two main advantages over previous het-
erogeneous implementations of B+-tree employing, for ex-
ample, an APU (Accelerated Processing Unit) [13]. First,
our design benefits from the hybrid memory architecture to
improve memory bandwidth instead of relying on the CPU’s
main memory alone. Heterogeneous platforms increase the
potential computing power of a system, but applications
which are bandwidth bounded cannot leverage the extra
compute resources unless the memory bandwidth is also im-
proved [29]. Second, we accelerate the index search using a
discrete GPU which provides higher computing power than
an integrated GPU, as found in APUs. An APU is a sys-
tem processor equipped with additional processing resources
such as a FPGA (Field-Programmable Gate Array) or an in-
tegrated GPU to accelerate a specific kind of computation.
However, the computing power of these integrated compo-
nents are not comparable to high-end discrete FPGAs or
GPUs that are interconnected with the system via the PCIe
bus.

We opted to develop our approach using CUDA, which is
the widely-used parallel computing platform and program-
ming model developed by Nvidia for general purpose com-
puting on GPUs [44]. However, there is no technical limi-
tation in our design that prevents porting our approach to
other GPU platforms, such as OpenCL [46].

To highlight the advantages of our hybrid solution, we fur-
ther develop a CPU-optimized, multi-threaded B+-tree, as
baseline for comparison with our HB+-tree. For this design,
we also develop regular and implicit as well as 64-bit and
32-bit tree versions.

To ensure our CPU-optimized B+-trees exhibits adequate
performance, we also implement FAST – the fastest reported
indexing performance of a comparable solution running on a
single CPU [29] – and compare our implementations against
it. Our CPU-optimized B+-tree attains 1.3X higher through-
put than FAST on average. Furthermore, for our CPU-
optimized tree, we propose a novel tree structure optimiza-
tion based on cache blocking and SIMD-enabled parallel

search algorithm, and show how the use of huge pages help
to increase the throughput of index search operations using
a single CPU. Several components of the CPU-optimized
B+-tree are used in the implementation of our HB+-trees.

We evaluate our solutions for varying number of tuples
from 8M to 1B and show how each design decision affects
the indexing performance.

HB+-tree achieves up to 240 and 210 million queries per
second for implicit and regular tree versions, respectively,
which is 2.4X times higher than the results for our CPU-
optimized B+-tree.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related approaches. Section 3 provides back-
ground information on B+-tree. Section 4 presents our CPU-
optimized design and implementation of B+-tree. Section 5
introduces our HB+-tree, including implementation details.
Section 6 presents our experimental evaluation. Section 7
gives our conclusions and identifies future works.

2. RELATED WORK
A large body of work has been developed to optimize B-

tree-like indexing. In this section, we focus on analyzing
related work on in-memory indexing employing the power
of parallel computing platforms.

B+-tree is an indexing structure originally designed for
systems with small main memory and comparatively large
hard disks [8][15]. To optimize for costly disk I/O, B+-tree
operations are performed for entire disk blocks yielding fewer
I/O transactions.

Flash-aware indexing trees such as BF-tree, FD-Tree, and
LA-Tree have been proposed to reap performance benefits
from the superior bandwidth and latency of solid state dri-
ves [5, 34, 1]. Furthermore, there exist many approaches for
in-memory indexing in order to exploit the superior band-
width and latency of system main memory. For example,
Zhang et al. [22] provide a comprehensive review of data
structures for in-memory data management such as for time-
/space efficient indexing and concurrency control.

T-tree was proposed for databases where both indexing
information and data records reside in main memory [31].
Lu et al. [36] showed that B+-tree outperforms T-tree when
concurrency control mechanisms are enforced. Rao et al. [42]
introduce a cache-conscious indexing data structure, called
Cache Sensitive Search Tree (CSS-tree), which is designed
for predominantly static data. Later, Rao et al. [43] ex-
tended CSS-tree to CSB+-tree to support incremental up-
dates.

The Bw-tree is designed to exploit the caches of mod-
ern multi-core chips and the superior bandwidth of flash
storage [33]. Zhou et al. [50] present an access buffering
technique for in-memory tree-structured indexes that avoids
cache thrashing. Mao et al. [37] introduced Masstree, a
shared concurrent data structure combining B+-tree and
tries tailored to multi-cores. Hankins et al. [21] studied
the effect of node size on cache misses, instruction count,
and TLB misses for the CSB+-tree. Based on their exper-
iments, using nodes with sizes of 512 bytes and above, re-
sulted in fewer TLB misses and better performance, while
setting nodes size equal to the cache line width produced
fewer cache misses but higher TLB misses. Chen et al. [11]
explored how prefetching could improve operations in B+-
tree, also concluding that nodes wider than a single cache-
line resulted in better performance. ART (Adaptive Radix
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Tree) and FAST (Fast Architecture Sensitive Tree) are the
latest data structures targeting high throughput in-memory
indexing [32] [29]. ART is an adaptive radix tree (trie) for
high speed in-memory indexing which exhibits better mem-
ory usage than previous radix trees. Alvarez et al. [3] com-
pared the lookup throughput and memory footprint of ART
to different data structures including B+-tree and hash in-
dexes. FAST is a static binary-tree developed for multi-core
systems, which is configurable according to system char-
acteristics such as cache-line size, memory page size and
SIMD width. Sewall et al. [45] introduced PALM, a parallel
latch-free modification of a B+-tree designed for multi-core
processors which is capable of concurrent search and update
processing.

All these approaches are developed to utilize either a sin-
gle-core or a multi-core CPU expect FAST which is capa-
ble to be configured for many-core GPU accelerators. But
it is only able to operate on GPU resident data and as-
sumes that the data fits into the GPU memory; it is there-
fore bounded by the GPU memory capacity. There are
other GPU-accelerated index structures, which suffer from
the same limitations. Fix et al. [16] presented an approach
for a GPU-accelerated B+-tree by proposing to modify the
memory layout of the B+-tree optimized for GPU mem-
ory. No GPU search throughput is reported, but a 9.4X to
19.2X speedup over a single-threaded CPU implementation
is shown. Kaczmarski [27] proposed a GPU-specific imple-
mentation of B+-tree which is capable of performing efficient
updates. Although this approach performs bulk insertions
faster than a CPU implementation, search throughput does
not surpass 25.6 Kilo Queries Per Second (including copying
keys from CPU to GPU and returning values back). Also
in [28], the authors proposed a p-ary search with the goal of
improving response time of query search using GPUs.

The limited capacity of GPU memory is addressed by
other approaches. Daga et al. [13] utilize an APU (Accel-
erated Processing Unit) to accelerate search in a B+-tree.
Since the integrated many-core processor is directly access-
ing system main memory, their approach does not suffer
from the penalty of having to move data between CPU and
GPUmemory and the limited capacity of GPU memory does
not constitute a problem. However, it is still bounded by sys-
tem main memory bandwidth, which is a critical problem for
tree traversal as the tree grows [29]. Their implementation
achieved up to 18 MQPS for a 6-core CPU and 70 MQPS
for an APU (operating on system memory). Although, an
APU is a heterogeneous computing platform, our solution
based on a similar platforms has two main advantages. First,
we are jointly utilizing two memory components, which is
critical to improve the overall system memory bandwidth,
while the APU approach is still relaying only on system main
memory. Second, the computing power of high-end discrete
GPUs is significantly higher than the integrated accelerator
available in APUs.

3. B+-TREE BACKGROUND
B+-tree is a variation of B-tree which stores values only in

leaf nodes, while inner nodes only comprise keys [15]. Hence,
inner nodes and leaf nodes are represented by different data
structures. Beside the characteristics adapted from B-tree
such as height-balance and optimized memory access, B+-
tree offers faster range query support because of its sorted
linked leaf nodes. The branching factor of the inner nodes

Level 1Level 0 Level n-1

Inner Nodes Segment

(I-segment)

Leaf Nodes Segment (L-segment)

Figure 1: Arrangement of nodes in I-segment and
L-segment.

is called the order of the B+-tree. Inner nodes of order m,
store up to m− 1 keys and m child references.

Search in B+-tree is a step-wise process, traversing the
tree from the root node, each step consists of two parts:
first, the search detects the child node associated with an
interval which holds the targeted key, and, second, traversal
proceeds to the next node. The process continues until the
target key-value pair is found in a leaf node. To perform a
range query on a B+-tree, one can simply search for the first
key in the range and then traverse leaf nodes until the last
key is found.

Data structures in which the structural information is
implicitly preserved in the way data is stored rather than
explicitly through pointers, are called implicit data struc-

tures [38]. In implicit representation of B+-tree, nodes are
arranged in a breadth-first fashion in a one dimensional ar-
ray. Since a node’s child locations are known, and there is
no need to store pointers, an implicit B+-tree requires less
memory and provides higher search throughput as compared
to a regular B+-tree. However, using an implicit represen-
tation leads to a linear time penalty for insert and delete
operations. To distinguish the implicit representation from
the one with pointers, we refer to the latter as the regular

B+-tree and the former the implicit B+-tree in the rest of
this paper.

The notations we use in this paper is summarized below.

H : Height of root node (leaves are at height zero).
S : Size of a variable (a key or a value) in bytes.
SI : Size of an inner node in bytes.
SL : Size of a leaf node in bytes.
FI : Maximum fanout of an inner node.
PL : Maximum capacity of key-value pairs in a leaf node.

4. CPU-OPTIMIZED B+-TREE
In this section, we describe our parallel design of both,

the implicit and the regular B+-tree, optimized to exploit
the features of a multi-core Intel CPU. Our CPU-optimized
solutions serve as baseline in the evaluation of our hybrid
solution, the HB+-tree, described in the next section. The
three main optimization we applied for the CPU-optimized
solutions are : (1) an SIMD-enabled search algorithm based
on the Intel AVX extension, (2) cache blocking to minimize
cache misses, (3) huge page utilization to reduce TLB misses.

4.1 Tree Layout
The node structures of the CPU-optimized B+-tree are

designed with regards to minimizing both cache and TLB
misses during search operations. We make use of huge pages
by developing our own memory allocator which allows deter-
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Figure 2: Node structure for CPU-optimized B+-
tree. (a) leaf node on implicit B+-tree (b) inner
node of implicit B+-tree (c) inner node of regular
B+-tree (d) leaf node of regular B+-tree (✕ indicates
the element in fixed to maximum value).

mining whether a node resides on a huge page or not. Cou-
pled with our tree node segmentation, which separates inner
and leaf nodes into different segments, our approach mini-
mizes the cost of TLB misses. We also use cache-conscious
node structures for better cache data utilization.

The nodes are split into two segments: Inner node seg-
ment (I-segment) and leaf node segment (L-segment). The
I-segment is always allocated to huge pages, while the L-
segment could be allocated to either a huge page or a 4KB
page, depending on the total size of the B+-tree. For a given
set of N tuples, the space needed for the I-segment (Ispace)
and L-segment (Lspace) is given in Equation 1 (assuming the
tree is full). Since there are only four entries in the last level
TLB for 1GB pages and to assure that accessing inner nodes
cause no TLB misses, the I-segment must not be larger than
4GB.

Ispace =
N

PL(FI − 1)
× SI , Lspace =

N

PL

× SL (1)

Query search starts from the I-segment, where the root
resides, and after passing all inner nodes, continues in the
L-segment to determine the target key-value pair in the leaf.

The total number of TLB misses depends on whether the
L-segment is placed in a 1GB or a 4KB page. In case of
using a 4KB page, since accessing the I-segment causes no
TLB miss and each leaf node resides within its individual
4KB page, there is at most a single TLB miss per lookup.
If the required memory to store both segments is not more
than 4GB, the best option is to also allocate the L-segment
on the huge page. Using such a configuration causes no TLB
miss for the entire search operation. If the size of the tree
exceeds 4GB and the L-segment is allocated to a huge page,
the total number of misses depends on the sequence of input
queries and the TLB replacement policy.

We design different inner node data structures for our im-
plicit and regular B+-tree, as detailed in Figure 2.

Implicit B+-tree: Since in this tree organization, nodes
are arranged in a breadth first fashion, the child node loca-
tions are implicitly known. If the node A is the ith node of a
tree at level m in breadth first order, then the jth child of A
is at position Offset[m+1]+i×FI+j, where Offset[l] is point-
ing to the beginning of the lth-level. As a result, it is possible
to achieve a higher fanout using the same amount of mem-
ory in comparison to the regular B+-tree. We dedicate one
cache line per each inner or leaf node (SI = SL = 64). The
only content of leaf nodes are key-value pairs as it shown in
Figure 2(a). Since all nodes are fully occupied and they are

First comparison

Second comparisonSecond comparison

First comparison

(a) (b)

Second comparison

(c)

First comparison

Figure 3: Node search using AVX unit. (a) linear
64-bit (b) hierarchical 64-bit (c) hierarchical 32-bit.

placed in order, there is no need to explicitly maintain node
size as well as next and previous node pointers for the linked
list of leaves. Each inner node filled with eight keys as illus-
trated in Figure 2(b). The number of cache lines required
per search query is H + 1, where H = ⌈log9 (N/4 + 1)⌉.

Regular B+-tree: The minimum amount of space re-
quired for an inner node with m children is equal to (m −
1)S+mP bytes, where P is the reference size in bytes. Con-
sidering S = P = 8, the maximally achievable fanout using
a single cache line is limited to 4. Such a small fanout leads
to many random memory accesses during search operations.
For better lookup performance, we propose a structure for
inner nodes consisting of indexes, keys and child references.
As illustrated in Figure 2(c), each inner node consist of 17
cache lines (SI = 1088), where the first one is dedicated
to indexes, while keys and references are arranged in the
following sixteen cache lines (FI = 64). Each index is as-
signed to the maximum value of the corresponding cache
line (Is = K8s). Utilizing indexes, only three cache lines
are retrieved to find the successor node. The search algo-
rithm first searches indexes and, based on the comparison
result, fetches the corresponding cache lines, which includes
the targeted child reference.

We apply inner node fragmentation in order to achieve
better memory and cache line data utilization. The data of
each inner node is broken up into two fragments. One frag-
ment contains key-value pairs and child references, and the
other one contains the node size, parent and sibling refer-
ences. Whenever an inner node is needed, our node memory
allocator dedicates one of each fragment from two separated
data structures in such a way that both fragments share the
same index which can be used to retrieve both fragments
later on. Also, we set all empty keys of each inner node to
the maximum value in our implementation (2n− 1 for an n-
bit integer), so that the lookup algorithm is able to perform
node search without knowing the inner node size.

The size of a leaf node in the regular B+-tree impacts
the range query performance. Moving to the successor leaf
node in the implicit B+-tree can be done very efficiently,
as leaf nodes are arranged sequentially. But the small leaf
node capacity of the regular B+-tree causes a series of cache
misses during range query execution and, thus, decreases
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performance, while leaf nodes bigger than a cache line lead
to slower leaf node search. To address this problem, we de-
signed bigger leaf nodes and make use of a dedicated memory
pool manager for allocating leaf nodes and last level inner
nodes so that both point and range queries can be realized
efficiently. We pack 64 small leaf nodes into a bigger node,
which we extend with another cache line to store leaf node
information. Each last level inner node is only related to one
big leaf node. Similar to the node fragmentation technique
we used, here, our memory pool manager allocates leaf nodes
and last level inner nodes from two different memory pools
in such a way that both nodes share the same index. Conse-
quently, the tree lookup algorithm can directly retrieve the
cache line in the leaf node, where the targeted key is located,
by using the index of the last inner node and the inner node
search result. Moreover, we set all empty elements of a leaf
node to the maximum value, which enables the lookup algo-
rithm to search a leaf node without knowing the size of the
leaf node. In case the search key is the maximum value, the
lookup algorithm must read the node size to perform leaf
node search. Although the capacity of the bigger leaf node
is 256 key-value pairs, we consider PL = 4 in our analysis
since the addressable units from a last inner node are cache
lines with a capacity of 4. The structures of implicit and
regular B+-tree are illustrated in Figure 2(a) and (d), re-
spectively. The total number of cache lines needed for each
query is 3H + 1, where H (height of tree) is:

⌈

log32

(

N

4
+ 1

)⌉

≤ H ≤

⌊

log16

(

N/2 + 1

2

)⌋

+ 1 (2)

Using 32-bit variables, 16 keys or values can fit into a
cache line. Consequently, an inner node’s fanout increases
to 17 and 256 for implicit and regular B+-tree, respectively.
The capacity of each cache line in leaf nodes increases to 8.

4.2 Utilizing SIMD Unit for Search
The Advanced Vector Extensions 2 (AVX2) is the latest

enhancement to Intel x86 processors for SIMD operations.
AVX2 is capable of operating on 256-bit registers, which is
equivalent to eight 32-bit or four 64-bit integers.

Since the size of AVX registers is half the size of a cache
line, it is not feasible to compare an entire cache line using a
single AVX comparison operation. We propose two different
approaches to employ the AVX unit: linear and hierarchical.

The linear approach divides the cache line into two equal
parts and separately searches each one. In contrast, the
hierarchical approach divides the array into three equal parts
and uses the boundary keys to locate the part where the
target is placed.

The hierarchical approach needs less data loaded into
AVX2 registers, while the linear approach is control depen-
dency free, which is safe for out-of-order execution. We also
implemented sequential search as a baseline to measure the
resulting speedup. Our AVX-enabled search algorithms are
illustrated in Figure 3.

Software Pipelining is a method to improve loop perfor-
mance by rearranging instructions such that the instructions
of the modified loop are chosen from different iterations of
the original loop [24]. Using this method, dependent instruc-
tions from a single iteration are scattered among multiple
loop iterations, so that the CPU pipeline can be scheduled
to reduce instruction stalls caused by memory latency. To

this end, each CPU thread loads a batch of queries and
resolves them concurrently. Using this configuration, the
thread switches to resolving another query whenever the
current search operation is blocked by a data access. The
optimal size for batches depends on the system configura-
tion. Small batch sizes cannot provide reasonable overlap,
while large overlap leads to inefficient CPU register utiliza-
tion. In our experiments, a size of 16 resulted in the best
performance. The total number of concurrent queries is up
to 16× CPU Threads.

5. HYBRID CPU-GPU B+-TREE
In this section, we introduce the design of our CPU-GPU

hybrid B+-tree. We describe the tree’s memory layout and
the heterogeneous CPU-GPU search algorithm. Finally, we
present a load balancing method, as technique for fine-tuning
our hybrid tree across systems with different GPU-to-CPU
computation power ratios.

5.1 Overview
Current multi-purpose processors are heavily relying on

cache units to mitigate the memory wall problem [49]. For
trees which would fit entirely into the last level cache (LLC),
caching is very effective and memory latency would almost
vanish. However, search throughput drops noticeably as
the tree size surpasses LLC capacity and becomes mem-
ory bound [29]. Although techniques such as prefetching
and software pipelining are applicable for tree-based index
search to alleviate the memory latency problem, the system
performance is still bounded by the memory bandwidth [11,
29].

The results from previous efforts of implementing a B+-
tree on GPUs demonstrate the realizable performance ben-
efits [29]. Instead of relying on caching, GPUs use high
degrees of multi-threading and fast context switching logic
with near zero overhead, to hide memory latency [12]. Since
this mechanism is not affected by the volume of data, the
throughput of tree indexing using GPUs is more resilient
against tree growth. As result, GPU-based approaches out-
perform CPU-based approaches for tree sizes larger than
the LLC [29]. However, GPUs cannot maintain their per-
formance advantage, because the amount of their memory
is limited in comparison to CPUs. It is not feasible to make
use of the computational capabilities of GPUs, when the
tree grows beyond the GPU memory capacity using previ-
ous methods [13].

To address this dilemma, we propose a new B+-tree, called
HB+-tree, leveraging the hybrid memory architecture and
heterogeneous computing model of today’s computing plat-
forms. Here, we employ the computing power of discrete
many-core accelerators for index searching on trees larger
than the accelerator’s dedicated memory. We design HB+-
tree based on a compute platform accelerated by GPUs.
To achieve higher total memory bandwidth, we scatter the
nodes across GPU and CPU memory in a way which enables
the index search algorithm to utilize both memories concur-
rently. As a result, the effective system memory bandwidth
is the aggregate of both memory units. Also, we design a
heterogeneous search algorithm to minimize the communi-
cation overhead between processors and utilize both – GPU
and CPU – simultaneously.

Since our target use cases are lookup-intensive and batch
update processing dominated scenarios (e.g., data ware/-
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CPU Memory

Inner Node

Leaf Node

I-segment
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Figure 4: HB+-tree node arrangement: The trian-
gular area is the I-segment which is duplicated on
both CPU and GPU memory and the rectangular
area is the L-segment which resides only in the CPU
memory.

houses), we envision that our indexes are integrated into ex-
isting systems based on passing query input and index out-
put via CPU main memory. Also, all our HB+-tree versions
exhibits the same interface as our CPU-optimized B+-tree;
both follow the conventional B+-tree interface.

5.2 Tree Layout
Similar to the CPU-optimized tree, HB+-tree also consist

of I-segments and L-segments. The L-segment is configured
based on the CPU search algorithm and only resides in CPU
memory, while the I-segment resides in both GPU and CPU
memory, i.e., it is mirrored across both memory units. The
rationale for this design is that leaf nodes require more space
than inner nodes for storage and are less frequently accessed;
thus, we place them in CPU memory, which has a higher
capacity but lower bandwidth.

Figure 4 illustrates the placement of inner and leaf nodes
in the HB+-tree. The leaf nodes of both, the regular and
implicit HB+-tree, are identical to the ones of the CPU-
optimized version of the tree.

Unlike main memory, the GPU memory architecture does
not have a fixed unit of transfer. As a warp executes an
instruction accessing GPU memory, the GPU translates the
access into one or more aligned data transfers of size 32, 64 or
128 bytes [40]. This limitation is a consequence of coalesced
memory access, which results in higher bandwidth as well
as higher latency.

We discovered that the best balance between thread sched-
uling efficiency and bandwidth utilization results from using
transfers of size 64 bytes. Since our CPU-optimized B+-tree
nodes are also based on 64 byte transfers, the inner node
structures of HB+-tree are similar to our CPU-optimized
B+-tree. For the regular version, the inner nodes are iden-
tical, but we reduce fan-out of inner nodes in implicit HB+-
tree to 8, so that we can utilize the same thread hierarchy for
both data access and node search and avoid warp divergence,
and we set the last key (K8) to the maximum representable
value.

For the 32-bit version, FI is increased to 16 and 256 for
implicit and regular HB+-tree, respectively.

5.3 Parallel Node Search on GPU
In this section, we first describe our search algorithm for

an arbitrary sized array and then explain how it is used for
search in HB+-tree.

For a given key and a sorted array of s elements such that
key is not bigger than the last element (key ≤ array[s]), the
parallel search algorithm finds the maximum index i such
that key ≤ array[i]. The possible values for i are [1..s].
To find the target index i, the search algorithm initializes s
threads (tj : 1 ≤ j ≤ s), where each thread is assigned to a
single result value. First, each thread (tj) compares key to
the associated value (array[j]) to check whether key is less
than or equal to array[j] and stores the result (rt : 0, 1) in a
shared array. Based on the thread’s local comparison result
(rt) and the result from the prior thread (rt−1), each thread
determines if it is assigned the final answer. If so (i.e., rt = 1
and rt−1 = 0), the thread sets the final answer to its own
index.

Because the last keys of all inner nodes of HB+-tree are
always set to the maximum (2n − 1 for an n bit number), it
is assured that all queries are less than or equal to the last
key, and our search algorithm always returns a valid result.

Searching an inner node in the regular HB+-tree is slightly
different and requires three memory accesses instead of one
and involves three steps. First, the parallel search algorithm
is applied on indexes to determine the interval of keys con-
taining the search query. Then, the corresponding interval
is fetched from GPU memory and searched using the par-
allel algorithm to identify the next node position. Finally,
the address of the next level node is retrieved using an extra
memory transfer.

The total number of concurrent queries at the GPU is
equal to GPU Threads/T , where the optimal number of
GPU Threads depends on the GPU specification and T is
the number of threads dedicated per each query (8 for a
64-bit implementation and 16 for a 32-bit implementation).

5.4 Search Query Execution
Since we considered that the input queries are given in

CPU memory, the first step is to transfer them into GPU
memory, before the GPU starts executing a search opera-
tion. After GPU finished its task, the intermediate results,
– references to nodes where the search operation must be
resumed, – are transfered into main memory after the GPU
completes the search operation. In the last step, the CPU
continues the search operation to reach the target tuple.
The execution of a search on the CPU is analogous to the
implementation for the CPU-optimized B+-tree.

The given queries are broken into buckets of size M which
are processed independently according to the following steps,
where Ti, i = 1..4 are times required for each step in our cost
model.

1. Transfer bucket to GPU memory.
T1 = Tinit + (M × S)/Bandwidt

2. GPU traversal of all inner nodes of tree per each query.
T2 = Kinit + (M/SIMDG)× PGPU

3. Transfer of intermediate results to CPU memory.
T3 = Tinit + (M ×R)/Bandwidt

4. CPU continues search in leaf nodes.
T4 = (M/SIMDC)× PCPU
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ing.

R : Size of an intermediate result in bytes.

Tinit : Data transfer initialization time between main
memory and GPU memory.

Kinit : GPU initialization time for search operation.

SIMDG : GPU SIMD width.

SIMDC : CPU SIMD width.

PGPU : Average processing time for a query on GPU.

PCPU : Average processing time for a query on CPU.

Bandwidth : Data transfer bandwidth between main memory
and GPU memory.

Assigning the proper value for M is important since both
performance parameters, throughput and latency, are con-
trolled by M . Small bucket sizes increase the influence of
overhead constants (Kinit and Tinit) against effective com-
putation time, leading to lower throughput; increasing M
increases the cost of each step (Ti), resulting in higher la-
tency.

Apart from how each bucket is processed, bucket sched-
uling is also important for optimal utilization of resources.
The simplest approach is to load and resolve each query
bucket sequentially. The drawbacks of using this approach
are two-fold: (1) it is not feasible to utilize both processors
concurrently, and (2) there is no opportunity of overlapping
communication and computation to eliminate data transfer
overhead. Thus, the cost for resolving each bucket is the
aggregate of all steps (TS =

∑

4

i=1
Ti). We propose CPU-

GPU pipelining and employ a double buffering technique to
eliminate these drawbacks.

CPU-GPU pipelining improves system performance by
overlapping the execution of buckets. As illustrated in Fig-
ure 5, the next bucket is loaded as soon as the intermediate
result of the current bucket is transferred into CPU mem-
ory. In this way, CPU and GPU can be utilized concur-
rently. The average time needed to resolve queries within a
bucket is reduced to TP = T1 +max(T2 + T3, T4) (ignoring
pipeline initialization stalls). Considering T2 = T4, TP is

equal to T1 + T2 + T3, then CPU processing time has been
eliminated.

Furthermore, we extend pipelining with double buffering
to eliminate the data transfer time. The timeline for the en-
hanced pipelining approach is given in Figure 6. We initiate
two GPU threads which are working on separated buffers
but share the same processors, where each thread operates
as a CPU-GPU pipelined approach. The average cost of pro-
cessing each bucket is TP = max(T2, T4), considering that
data transfer time is smaller than computation time.

Although double buffering improves overall system
throughput, it also increases processing latency because of
prefetching of buckets. The average latency of the pipelined
approach is T1+T2+T3+

T4

2
, which increases to 2×T2+

T4

2

by applying double buffering.

5.5 Load Balancing Scheme
Our HB+-tree design is primarily targeting systems which

are accelerated using sufficiently powerful GPUs and the sys-
tem throughput is bounded by the CPU. Therefore, HB+-
tree devotes only a small share of the query load to the CPU,
which is only searching leaf nodes while all inner nodes are
processed by the GPU.

To offer a more generally applicable solution, we enhance
HB+-tree with a load balancing mechanism, which improves
resource utilization on systems with an arbitrary GPU-to-
CPU computation power ratio, refereed to as load balanced

HB+-tree.
With the load balancing scheme, the CPU starts travers-

ing inner nodes up to a specific depth (D) and transfers the
query and the intermediate inner node index to GPU mem-
ory. Then, the GPU resumes traversing up to the final inner
node level and returns the leaf node index to the CPU. Fi-
nally, the CPU searches the leaf node to determine the target
key-value pair. We prefer to dedicate the top inner nodes
to the CPU since the space required for them is comparably
lower than the inner nodes at the bottom of tree resulting
in better cache utilization and lookup performance.

Let IG,i and IC,i be the average cost of searching at depth
i for GPU and CPU, respectively, and let LC be the average
cost of searching a leaf node, then the average cost of a single
search (C) is given according to Equation 3. Adjusting the
parameter D is required to minimize Cinner.

C = max(LC +

D
∑

0

CC,i,

H
∑

D+1

CG,i) (3)

Moreover, to provide a finer granularity for work load distri-
bution, we divide each bucket into two parts. For the first
part, R × M queries (0 ≤ R ≤ 1) of a bucket, the CPU
searches only D levels of inner nodes, while for the rest of
the queries (M × (1 − R)), the CPU searches D + 1 levels.
Using the new parameter R, the search cost C is updated
to Equation 4.

C = max(LC +

D−1
∑

0

CC,i +R CC,D, (1−R)CG,D +

H
∑

D+1

CG,i)

(4)
We develop a discovery algorithm to determine the values
for D and R that minimize C. The algorithm starts from
D = 0 and R = 1, where it dedicates the maximum possible
load to the GPU. First, it linearly searches for the optimal
value of D (coarser parameter). Then, it adjusts R (finer
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parameter) using binary search. The discovery algorithm is
given in Algorithm 1.

Algorithm 1 Discovery algorithm

1: D ← 0, R = 1
2: (T ime GPU, T ime CPU) = getSample(D,R)†

3: while T ime GPU > Time CPU do
4: D ← D + 1
5: (T ime GPU, T ime CPU) = getSample(D,R)

6: R← 0.5
7: for step← 2 to 5 do
8: (T ime GPU, T ime CPU) = getSample(D,R)
9: if T ime GPU > Time CPU then
10: R← R+ 1/(2step)
11: else
12: R← R− 1/(2step)

†
getSample runs the program for given D and R; it returns the
time GPU and CPU require to perform their work share.

We also change the bucket handling strategy which is ad-
vantageous only for GPU bounded systems. The GPU must
perform thread scheduling prior to starting effective kernel
execution as a new kernel program is submitted to the GPU.
Pre-submitting of a successor kernel before the current one
is finished, enables the GPU to perform scheduling of the
next kernel, concurrently to the previous kernel execution.
For this to work, we require at least three concurrently op-
erating buckets. Since this optimization technique is not
effective for CPU bounded systems, we restrict the number
of query buckets in the not-load-balanced version of HB+-
tree to two in order to reduce latency. However, we increase
the number of query buckets to three in the load balanced
implementation of the HB+-tree for better GPU utilization.

5.6 Batch Update
The implicit B+-tree is not capable of processing individ-

ual updates. Whenever an update is required, the entire tree
must be re-built. The algorithm first builds both I-segment
and L-segment in main memory based on the new dataset
and, subsequently transfers the I-segment to GPU memory.

Efficiently processing concurrent batch updates with the
regular HB+-tree faces two challenges: (1) I-segment syn-
chronization and (2) concurrency handling. The former is
specific to HB+-tree, while the latter is a general challenge
for tree indexing. We propose two different tree update
methods; their performances depends on the batch size.

We design an asynchronous parallel update method which
first performs updates in main memory in parallel and then
transfers the entire I-segment to GPU memory. The given
update queries are processed in groups of size 16K. Each
thread takes a query and searches the tree up to the last
level inner node. At this point, the thread checks if the query
execution causes any node merge or split. If not, it requests
the lock assigned to the inner node and performs the update.
Because of HB+-tree’s big leaf nodes (256 entries), more
than 99% of the update queries can be resolved this way,
on average. The remaining unresolved queries are processed
subsequently using a single thread. When all queries are
executed, the I-segment in GPU memory is updated. This
method is more efficient for bigger batch sizes which often
result in many inner node modifications. In these cases, it is

more beneficial to transfer the entire I-segment once, instead
of performing many small transfers for each inner node.

For smaller batch sizes, we propose a synchronized update
method which is performed by two threads, a modifying and
a synchronizing one. The modifying thread executes update
queries and submits a request for each modified inner node to
a shared queue. Upon receiving a request, the synchronizing
thread updates the inner node in GPU memory according to
the node’s replica in main memory. Using this method, tree
update and node synchronization proceed concurrently. Al-
though, it is feasible to implement this method with multiple
modifying and synchronizing threads, we found the perfor-
mance of this method is bounded by the communication ini-
tialization latency between main memory and GPU memory
which was not reduced by parallelism.

6. EVALUATION
We now present the performance evaluation of both CPU-

optimized B+-tree and HB+-tree. First, we describe the
experimental setup and workload. Then, we demonstrate
the impact of various optimizations on the individual ap-
proaches, and finally, we compare the search operation per-
formance of CPU-optimized B+-tree and HB+-tree consid-
ering latency and throughput.

6.1 Experimental Setup
We used two system setups for evaluating our approaches.

The first machine (M1) is equipped with Intel Xeon E5-2665
accelerated by the Nvidia Geforce 780 GTX. The second
machine (M2) is an Intel Core-i7 4800MQ accelerated by
the Nvidia Geforce 770M GTX.

For all experiments except the experiment on skewed data,
we generated multiple sets of key-value with 8M (223) to
1B (230) tuples, where keys and values are randomly gen-
erated according to a uniform distribution on [0 − MAX]
(MAX = 2n − 1, n is number of bits: 32 or 64). After con-
structing the B+-tree using this set, we randomly permuted
the pairs using the Knuth shuffle [30]. Finally, we use the
new sequence as the input for the search operation.

Our multi-threaded implementation is using OpenMP, an
API for parallel computing based on the shared memory
programming paradigm [14]. We also made use of PAPI to
better understand the performance of our implementation.
PAPI is an API for accessing available hardware counters
inside the CPU [9].

6.2 CPU-optimized B+-tree Evaluation
Memory Page Configuration. In this experiment, we

aim to determine the memory page configuration that max-
imizes the search operation throughput. We evaluated our
B+-tree using three different configurations: (1) both I-
segment and L-segment on small pages, (2) I-segment on
huge pages and L-segment on small pages, (3) both I-segment
and L-segment on huge pages.

To examine our expectation about the average TLB misses
per query, we evaluated a single-threaded implementation of
all three configurations and counted the TLB misses during
search operations using PAPI. Since OpenMP library causes
extra TLB misses, we excluded multi-threading to obtain
more accurate measurement. We plot the average TLB miss
per each query in Figure 7(a). Without utilizing huge pages,
the misses increase as the tree grows. Also, it can be seen
that searching in the implicit tree causes more TLB misses
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Figure 7: Memory page configuration evaluation.
(a) TLB misses (b) Throughput.

than for the regular B+-tree. The reason is the fanout of
inner nodes in the implicit tree is inferior to the regular
tree, consequently, the tree depth is higher. Allocating only
inner nodes on huge pages, significantly reduces the number
of misses. In this case, misses are independent of tree depth
and they are bounded to one TLB miss per query. Allocating
the entire tree on huge pages eliminates misses for smaller
trees which do not need more than 4GB of space. As the
required space exceeds this amount, the average miss rate
increases and surpasses one miss per query. We conclude
from Figure 7(a) that in terms of TLB misses, the second
configuration is more robust against tree growth, while the
third one is best for trees less than 4GB in size.

To determine the effect of TLB misses on tree search per-
formance, we evaluated the multi-threaded tree search using
the same configurations. The results are in Figure 7(b). As
expected, the first configuration is the least performing. The
fastest configuration is the third one, although, it generates
more TLB misses than the second configuration for bigger
trees. According to our analysis, this behavior is the conse-
quence of the different costs of misses for 4K and 1G pages.
As a TLB miss occurs, a page walk is required to retrieve
the requested physical address. For 4K pages, five memory
accesses are required to translate logical to physical address,
while three accesses are sufficient for 1G pages [25]. Even if
the TLB miss rate is higher in the third configuration, the
penalty of a page walk is less significant, which results in
better performance. This experiment indicates the superi-
ority of using huge pages in this application.

SIMD Accelerated Node Search. We now examine
the node search algorithms to determine the fastest one and
measure the resulting improvements. A query search opera-
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Figure 8: Software pipelining and node search com-
parison.

tion is evaluated using three different search algorithms: (1)
sequential, (2) linear SIMD, and (3) hierarchical SIMD; soft-
ware pipelining is applied in all of these configurations. To
indicate the effectiveness of software pipelining in this appli-
cation, we also evaluated sequential search without software
pipelining. Since AVX2 support is required for the evalu-
ation, we evaluated this experiment on M2 (M1 does not
support AVX2). The result of the experiments are given in
Figure 8.

Enabling software pipelining is highly effective and im-
proves the system throughout between 108%-152%, while it
increased latency by 6X on average. Among the node search
algorithms, the hierarchical SIMD approach, achieved the
best result; it is slightly faster than linear search. Both
SIMD implementations lose their advantage to sequential
search as the tree size grows. This behavior confirms that
tree processing becomes memory latency bounded for bigger
trees, and memory optimization techniques are ever more
important in this case.

Comparison with FAST. We compare our CPU-opti-
mized implicit B+-tree to FAST [29], the fastest reported
indexing tree in the literature, – also an implicit structure,
– to assure our CPU-optimized B+-tree design is competi-
tive enough to be used as a performance baseline. As shown
in Figure 9, our B+-tree achieved 1.3X higher throughput
on average than FAST. Our different SIMD-enabled node
search, which allows us to reach higher node fan-out and,
consequently, better cache line utilization, is the source for
this improvement. Even though our implementation achieves
better performance than what FAST reported, we do not
aim to challenge FAST in this work, since FAST is designed
to be a configurable data structure, able to adapt to differ-
ent hardware configurations, while our design is specifically
tuned for the Intel architecture.

6.3 HB+-tree Evaluation
Bucket Handling Strategies. In this experiment, we

study three different bucket handling techniques: (1)
sequential, (2) pipelining, and (3) pipelining with double
buffering. With sequential bucket handling, it is neither
feasible to employ CPU and GPU simultaneously, nor over-
lap communication and computation. This approach is the
simplest; we use it as baseline in our evaluation. Resolving
buckets using pipelining allows us to partially overlap CPU
and GPU computations. Double buffering helps to overlap
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Figure 9: Comparison of FAST and implicit CPU-
optimized B+-tree.
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Figure 10: Bucket handling strategy evaluation.

data transfer and search, so that it improves resource utiliza-
tion. We show the results for search using these techniques
in Figure 10.

Sequential bucket handling is the least efficient. Pipelin-
ing is more effective for the implicit B+-tree. It increases
the throughput by 56% for implicit and by 20% for regular
B+-tree. The double buffering technique is effective for both
tree versions. Using bucket pipelining extended by double
buffering improves throughput by 110% over the baseline
technique. Gaining twice the throughput in comparison to
the sequential approach indicates that we successfully man-
aged to simultaneously exploit the computation capabilities
of both processors.

Bucket Size. The goal of this experiment is to deter-
mine the optimal bucket size considering both throughput
and latency. Increasing the bucket size, diminishes the in-
fluence of communication and GPU initialization overheads,
resulting in better system throughput, while at the same
time, increases the system latency. We evaluated the search
operation using M1 for different bucket sizes: 8K, 16K, 32K,
and 64K. As shown in Figure 11, search throughput grows,
as bucket size increases for the implicit B+-tree, while for
the regular B+-tree, the throughput is nearly the same for
bucket sizes 16K, 32K, and 64K. Considering that the aver-
age latency also increases as the bucket size grows (2.7X for
64K and 1.7X for 32K), we use 16K as the optimal bucket
size for the rest of our experiments.

Impact of Skewed Data. We studied HB+-tree for sev-
eral input data distributions, including Uniform, Normal(
µ = 0.5, σ2 = 0.125 ), Gamma( k = 3, θ = 3 ) and Zipf(
α = 2 ). The generated random values are in the range
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Figure 11: Experiment on varying size of buckets
(a) throughput (b) latency.

[0, 1]. Before the values are given to search queries, they
are linearly mapped to [0,MAX]. We used the Uniform
distribution as the baseline and scaled the results of other
distributions accordingly. The normalized results are illus-
trated in Figure 12.

The performance on all distributions, except Zipf, is within
1.1X of the Uniform distribution, while the performance for
Zipf input data increases by up to 2.2X. When the data be-
comes more skewed, the same portion of the tree is accessed
more frequently, which results in a higher cache hit rate.
This behavior is even more pronounced for highly skewed
data, such as the Zipf distribution.

Update Performance. In this experiment, we evaluate
the performance of update query execution on HB+-tree as
compared to CPU-optimized B+-tree for both regular and
implicit tree versions.

We first present evaluations of the different update query
execution methods for the regular HB+-tree including both
the single- and multi-threaded versions of the synchronous
and asynchronous approach. Figure 13(a) illustrates the
throughput of these methods for various tree sizes; the I-
segment transfer time is excluded for the asynchronous ap-
proaches. Parallel execution is more effective in the asyn-
chronous approach which results in 3X higher throughput
in comparison with the single-threaded approach. The syn-
chronous approach is only 30% faster than the multi-threaded
one, which is bounded by the data transfer latency between
CPU and GPU memory.

The I-segment synchronization times for different tree sizes
are illustrated in Figure 13(b). To examine the effect of I-
segment synchronization overhead, we measure the time re-
quired to perform batch updates with different batch sizes
in a tree of size 64M. The results are shown in Figure 14.
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Figure 13: Evaluation of Regular B+-tree update.

Up to a batch size of 64K, the synchronous approach per-
forms better because of the slow I-segment transfer in the
asynchronous approach. But for batches larger than 128K,
the asynchronous is more effective, as the I-segment transfer
cost is amortized by the larger number of queries processed.
This experiment shows that the choice of update depends on
the batch size. A synchronous update is more efficient for
smaller batches while an asynchronous one performs better
for larger batches.

To update implicit CPU-optimized B+-tree, the entire
tree has to be rebuilt, including the I-segment and L-segment.
For implicit HB+-tree, it is additionally required to trans-
fer the I-segment to GPU memory. To compare the cost of
updating these two trees, we measure the cost of each phase
including L-segment rebuilding, I-segment rebuilding, and
I-segment transfer separately as shown in Figure 15. The
cost of transferring the I-segment is only 3 to 7 percent of
tree reconstruction.

6.4 HB+-tree vs. CPU-optimized B+-tree
We now compare the search performance of HB+-tree

against the CPU-optimized B+-tree in terms of throughput,
latency and selectivity using M1.

Throughput. Figures 16(a) and 16(b) show the search
performance of both trees (for 64-bit and 32-bit variable
sizes). The throughput of the implicit HB+-tree is almost
constant for different tree sizes, which indicates that the
amount of time the GPU requires for traversing inner nodes
is inferior to the time, the CPU requires for scheduling and
searching leaf nodes. Consequently, the search performance
is bounded by the computational power of the CPU. How-
ever, the regular HB+-tree does not show similar behavior;
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similar to the CPU-optimized tree, its performance declines
as the tree grows. The GPU accelerated approach outper-
forms the CPU-optimized approach by 2.4X and 2.1X higher
throughput on average for 64-bit and 32-bit variables, re-
spectively.

Latency. Figure 16(c) illustrates the query search la-
tency for both HB+-tree and CPU-optimized B+-tree. The
hybrid approach exhibits comparably higher latency, 67X on
average, than the CPU-optimized one. The higher latency
is the consequence of a different number of queries required
for an effective utilization of each platform. The number of
concurrent queries for CPU and GPU are 28 and 214, re-
spectively, where the ratio (64) is almost the same as the
latency ratio. The average latency of the hybrid approach
is less than 0.18ms for the implicit B+-tree and 0.25ms for
regular the B+-tree.

Range queries. In this experiment, we compare HB+-
tree against CPU-optimized B+-tree in performing range
queries for different numbers of matching keys per query
for a total of 128M keys. Figure 17 shows the performance
of range queries for the retrieval of 1 to 32 keys. Since range
queries require more leaf node traversal, the ratio of the
search time in inner nodes to the entire lookup time de-
creases for these queries. As a result, the lookup perfor-
mance of implicit and regular tree versions becomes similar;
also, HB+-tree looses its advantage as more keys per query
match. HB+-tree is more than 80% faster than the CPU-
optimized B+-tree up to 8 matching keys per query and the
performance advantage decreases to 22% for 32 matching
keys per query.
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Figure 16: Evaluation of CPU-optimized B+-tree and HB+-tree. (a) Throughput (64-bit) (b) Throughput
(32-bit) (c) Latency (64-bit).
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Figure 17: Throughput of Range queries.
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Figure 18: Evaluation of load balancing scheme.

6.5 Load Balancing Evaluation
We now examine the effectiveness of our load balancing

scheme on heterogeneous platforms where the computation
power is not bounded by the CPU. To this end, we used M2

which is, relatively speaking, equipped with a less powerful
GPU accelerator. Figure 18 shows the results. Without load
balancing, HB+-tree performs 25% slower than our CPU-
optimized tree, on average. This indicates that the commu-
nication overhead between both processors is far higher than
the acceleration provided by the GPU.

Applying load balancing scheme is highly effective and
improves HB+-tree throughput by 65% on average. In com-
parison to the CPU-optimized tree, the load balanced HB+-
tree performs up to 32% and 65% better for the implicit and
regular approach, respectively.

7. CONCLUSIONS
In this paper, we presented an indexing structure, called

HB+-tree, specifically tailored to a heterogeneous comput-
ing platform with a hybrid memory architecture. Index
search is accelerated by utilizing the resources of the hybrid
GPU-CPU platform to aggregate the processing resources
and memory bandwidth of both processing units. These im-
provements empower our approach to perform search faster
for trees where the tree traversal performance approaches
the memory bandwidth limit. In such situations, HB+-
tree performs on average 2.4X faster search than the CPU-
optimized B+-tree, with individual measurements improving
performance by up to 2.9X.

The directions for our future work are two-fold: (1) Fur-
ther support for parallel update queries and (2) develop-
ment of a general leaf-stored tree processing framework us-
ing a CPU-GPU hybrid platform. In this paper, we pri-
marily focused on realizing efficient search. So far, updates
are performed sequentially by the CPU with asynchronous
data transfer to the GPU; this could be further improved by
employing GPU cycles in support of parallel update query
execution. The other direction is to develop a general frame-
work which enables the use of a CPU-GPU hybrid platform
for any arbitrary leaf-stored tree structure, such that using
the node structure and search/update function as input, the
framework would determine the parameters for an approach
that best utilizes the resources of both CPU and GPU.
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APPENDIX

Here, we provide more details on our implementations of the
SIMD-enabled node search using AVX unit, the GPU search
kernel, and more evaluations.

A. SIMD ENABLED SEARCH
In this section, we present our SIMD enabled search algo-

rithm in more detail. Considering Node[0..7] is an array of
keys in an inner node and query is the given search query,
Snippets 1 and 2 show the implementation of the linear and
hierarchical approaches for 64-bit keys, respectively.

Snippet 1 Linear AVX search (64-bit)§.

1: __m256i†Vquery =_mm_set1_epi64x(query);
2: __m256i vec =_mm256_set_epi64x(node[0],
3: node[1], node[2], node [3]);
4: __m256i Vcmp =_mm256_cmpgt_epi64(Vquery ,

vec);
5: int cmp = _mm256_movemask_epi8(Vcmp);
6: cmp = cmp & x10101010;

7: cmp = __builtin_popcount‡(cmp);
8: int k = cmp;
9: Vec = _mm256_set_epi64x(node[4], node[5],

10: node[6], node [7]);
11: Vcmp = _mm256_cmpgt_epi64(Vquery , vec);
12: cmp = _mm256_movemask_epi8(Vcmp);
13: cmp = cmp & x10101010;
14: cmp = __builtin_popcount (cmp);
15: k += cmp;
16: // k is the minimum i s.t. query <= node[i]

§Functions starting with _mm are SIMD instructions
†256-bit data type as four 64-bit integer values
‡method by GNU’s Compiler Collection (GCC) determines the
number of ones in the binary representation of a number

Snippet 2 Hierarchical AVX search (64-bit).

1: __m128i†Vquery = _mm_set1_epi64x(query);
2: __m128i Vec =_mm_set_epi64x(node[2], node

[5]);
3: __m128i Vcmp =_mm_cmpgt_epi64(Vquery , Vec);
4: int cmp = _mm_movemask_epi8(cmpRes);
5: cmp = cmp & 0x00001010;
6: cmp = __builtin_popcount (cmp);
7: int k = cmp * 3;
8: Vec = _mm_set_epi64x(node[k], node[k + 1]);
9: Vcmp = _mm_cmpgt_epi64(Vquery , Vec);

10: cmp = _mm_movemask_epi8(Vcmp);
11: cmp = cmp & 0x00001010;
12: cmp = __builtin_popcount (cmp);
13: k += cmp;
14: // k is the minimum i s.t. query <= node[i]

†128-bit data type as two 64-bit integer values

The linear approach first loads the query into an AVX
vector in Line 1. In Lines 2-4, the first half of the key array
(Node[0..3]) is loaded into a vector and compared to key.
Then, the number of keys smaller or equal to the input are
stored in variable k (cf. Lines 5-8). This process repeats
for the second half of the key array adding the comparison
result to k in Lines 9-15. At the end, k is the index of the
child to resolve the query.

The hierarchical approach first compares the boundary
keys which are node[2] and node[5] to query in Lines 2-4

and based on the comparison results, the search algorithm
calculates the index of keys for the second comparison and
stores it in k. Finally, it compares the query to the node[k]
and node[k+1] to find the right child index.

B. ADDITIONAL EVALUATIONS
In this section, we provide further experimental results for

our HB+-tree and our CPU-optimized B+-tree.

B.1 HB+-tree lookup using CPU
Figure 19 shows a comparison of the lookup performance

of CPU-optimized B+-tree and HB+-tree only using the
CPU. The performance of the regular tree versions are iden-
tical since they are based on the same node structures. The
CPU-optimized implicit B+-tree results in better perfor-
mance, due to better cache line data utilization. The fan-
out of inner nodes in HB+-tree is decremented by one for
the benefit of faster search with GPU.
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Figure 19: Evaluation of lookup in HB+-tree using
CPU.

B.2 Software Pipelining
In this experiment, we study the effect of software pipelin-

ing on lookup performance, that is, on throughput and la-
tency. Software pipelining helps the processor to overlap ex-
ecution with data fetching by executing multiple queries si-
multaneously, but at the same time, increases processing la-
tency. Algorithm 2 shows how we apply software pipelining
with prefetching for CPU-optimized B+-tree lookup. Here,
as a thread finishes searching a node, instead of waiting for
the child node to be loaded into the cache, it switches to
processing another query. Then, when the thread switches
back to the same query, the child node is already loaded into
cache.

Figure 20(a) illustrates the lookup throughput for various
numbers of simultaneously processed queries ranging from 1
to 32. Increasing the number of queries from 1 to 16 continu-
ously improves the throughput, which results in 2.5X better
performance than without software pipelining. But due to
the limited cache size, increasing the number of simultane-
ously processed queries from 16 to 32 is not effective and
performance remains almost the same. The lookup latency
for different software pipeline lengths is illustrated in Fig-
ure 20(b) which indicates the latency is quickly increasing
with number of queries per thread. On average, the lookup
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Figure 20: Evaluation of various software pipelining
lengths: (a) throughput (b) latency.

latency using a software pipeline of length 16 is 6X higher
than without software pipelining.

Algorithm 2 Software pipelining-enabled tree search

Input: P : length of software pipeline
Input: keys[P ] : search queries
Input: H : height of B+-tree
1: for i← 1 to P do
2: node[i]← root

3: for step← 1 to H − 1 do
4: for i← 1 to P do
5: node[i]← getNextNode(I-seg, node[i], keys[i])
6: prefetch(node[i])

7: for i← 1 to P do
8: value[i]← getV alue(L-seg, node[i], key[i])

B.3 Concurrent Search and Update Queries
We now examine the performance of parallel search/up-

date query execution in HB+-tree utilizing only the CPU.
We evaluate both synchronous and asynchronous approaches,
where the I-segment transfer time is excluded for the asyn-
chronous approach.

The synchronous approach consists of one synchronizing
thread, which continuously updates the inner nodes in GPU
memory and multiple query processing threads, while the
asynchronous approach only consists of query processing
threads. The query processing threads are based on the
update algorithms given in Section 5.6, which are also ca-
pable of resolving search queries. The results are shown in
Figure 21. As the ratio of update queries increases, the

throughput of the synchronous approach decreases faster
than the asynchronous one which is due to the high com-
munication initialization overhead between GPU and main
memory. The execution of buckets with 100% search queries
in this evaluation is not as fast as our previously evaluated
lookup methods which is due to the mutex locking and syn-
chronization overhead in the query processing threads.
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Figure 21: Evaluation of concurrent search/update
queries.

C. CUDA PROGRAMMING MODEL
The CUDA programming model is based on hierarchical

threading including the notions of grid, block and thread.
At the top of the hierarchy is the grid which consists of
blocks and each block is a group of threads. Threads are
distinguished by two index values, BlockIdx and ThreadIdx,
which define the runtime behavior of each thread.

Implementing efficient programs for CUDA requires good
understanding of both the GPU memory architecture and
the thread scheduling model. The unit of scheduling in
CUDA is the warp, which is a set of 32 threads. Threads
within the same warp are able to execute only a single in-
struction at a time. The situation called warp divergence

results when threads of the same warp divert into different
code paths, typically occurring for if-then-else statements.
As a result, the warp has to be scheduled for both paths
separately, which increases the total execution time. Proper
index assignment, which directs threads of each warp into a
single code path avoids this situation.

Since there is no message passing mechanism supported by
CUDA, communication is only feasible via read/write opera-
tions on memory. Therefore, efficient bandwidth utilization
is of great significance. The CUDA memory architecture is
composed of different memory types, where the important
ones for our work are shared memory and device memory.

Device memory, or GPU memory, is the biggest and slow-
est memory; it can be accessed by an entire grid. All ac-
cesses to device memory have to be done through either
32-, 64-, or 128-byte memory transactions. As a warp is-
sues a device memory access, the GPU coalesces this ac-
cess into transactions of these sizes. In the worst case, each
access is translated into 32 separate memory transactions,
which divide the device memory performance by 32. Relo-
cating data, such that threads within a warp access adjacent
memory locations, leads to more efficient device memory
utilization. Shared memory is comparably faster than de-
vice memory but it is limited to a block. To provide higher
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Snippet 3 GPU kernel code for searching inner nodes in
implicit tree (FI = 8)§.

1: // teamQuery is the requested key
2: long teamQuery;

3: __shared__† char flag[9], result;
4: char selfFlag , i;
5: long selfKey , nodeIndex;
6: flag[threadIdx.x] = 0;
7: nodeIndex = 0; // root index

8: __syncthreads ()‡;
9: for (i = 0; i < tree_depth; i++) {

10: // levelOffsets is an array stores the
11: // offsets of each level in tree
12: selfKey = tree[levelOffsets[i] + nodeIndex

+ threadIdx.x];
13: flag[threadIdx.x+1] = 0;
14: selfFlag = 0;
15: if (teamQuery <= selfKey) {
16: flag[threadIdx.y][ threadIdx.x+1] = 1;
17: selfFlag = 1;
18: }
19: __syncthreads ();
20: if (selfFlag == 1 &&
21: flag[threadIdx.x] == 0) {
22: result = threadIdx.x;
23: }
24: __syncthreads ();
25: // threads traverse to the next node
26: nodeIndex = (nodeIndex + result) <<3;
27: }
28: // nodeIndex is the index of target leaf

node

§This program is executed by eight threads concurrently with
threadIdx.x = 0 to 7
†Shared variables are declared by __shared__

‡__syncthreads is a barrier synchronization primitive

bandwidth, shared memory is composed of multiple memory
banks which can be accessed simultaneously. The highest
bandwidth is achieved when accesses are equally separated
among the memory banks. For inter-block communication,
shared memory is the better option in comparison to the
device memory due to lower access latency.

The Nvidia Tesla platform is explicitly targeting high per-
formance computing and offers faster double precision float-
ing point operations which is a critical requirement for many
applications. However, we opted for the Nvidia Geforce
processor family in this work, since index tree search algo-
rithms only require integer operations, either 64-bit or 32-
bit, and the Geforece platform offers a better computation-
power-to-price ratio for these operations.

D. GPU SEARCH KERNEL
The Snippet 3 represents the GPU kernel function for

searching the I-segment of the implicit HB+-tree. The in-
put parameters are I-seg: the reference to the I-segment
in GPU memory, levelOffsets: offsets of each level in I-
segment, and teamQuery: the given search query. Shared
variables are declared by the keyword __shared__ and bar-
riers __syncthreads are used to avoid race conditions when
accessing shared variables.

Search starts from the root node (nodeIndex = 0) and
performs the parallel node search per each inner node. Each
thread loads a key from the current node and stores it into
local register (selfKey) in Line 12. After initializing flags,
threads compare their local register to teamQuery and store
the result in both local and shared flags. In Line 19, it is
required to synchronize threads before they check the shared
flag to avoid race conditions. In Lines 20-23, each thread
deduces if it is assigned to the next level node. If so, the
thread update the shared result variable. The operation is
repeated for each level of inner nodes. At the end, nodeIndex
is referring to the desired leaf node.
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