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ABSTRACT
This paper presents ParTime, a parallel algorithm for temporal
aggregation. Temporal aggregation is one of the most important,
yet most complex temporal query operators. It has been extensively
studied in the past, but so far there has only been one attempt to
parallelize this operator. ParTime supports data parallelism and
has a number of additional advantages: It supports the full bi-
temporal data model, it requires no a-priori indexing, it supports
shared computation, and it runs well on modern hardware (i.e.,
NUMA machines with large main memories). We implemented
ParTime in a parallel database system and carried out comprehen-
sive performance experiments with a real workload from the airline
industry and a synthetic benchmark, the TPC-BiH benchmark.
The results show that ParTime significantly outperforms any other
available temporal database system. Furthermore, the results show
that ParTime is competitive as compared to the Timeline Index, the
best known technique to process temporal queries from the research
literature and which is based on pre-computation and indexing.

1. INTRODUCTION
Support for temporal data is a core feature of many data man-

agement systems. There are a number of application areas that
rely heavily on temporal data. Examples are the financial industry,
health care, and the travel industry. Correspondingly, the SQL
standard has been mandating support for temporal data processing
since 2011. As of today, most major relational database systems
comply and support temporal data and queries (e.g., IBM DB2,
Oracle, SAP HANA, and Teradata).

Temporal databases and the efficient implementation of temporal
operators have been studied extensively since the early Nineties
[22]. There are a number of different temporal operators such
as time travel, temporal join, windowing, and temporal aggrega-
tion. In general, temporal databases are larger than non-temporal
databases because every tuple can come in several versions. Fur-
thermore, temporal operators are typically more complex than non-
temporal operators. As a result, parallelization is important in order
to achieve acceptable response times in temporal database systems.
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The focus of this work is on the temporal aggregation operator.
Temporal aggregation is a critical operator in many application
domains. More specifically, temporal aggregation is critical in
the particular workload from the travel industry that motivated
this work. In that industry, for instance, analysts are interested
to plot the number of available seats of all flights for a certain
connection over time. It turns out that temporal aggregation is
one of the most expensive temporal operators, and it has been
one of the most difficult operators to optimize. As a result, there
has been extensive prior work on this operator in the past; e.g.,
[3, 26, 16, 13] to name just a few. Because of its high cost, it
is particularly important to parallelize this operator. To the best
of our knowledge, however, there has been only one attempt by
Gendoranoy et al. [9] to parallelize this operator. The reason is
that most approaches to implement termporal aggregation are based
on tree traversals and these approaches do not parallelize well as
shown in Gendoranoy’s work. In addition, tree-based approaches
do not perform well in modern, main-memory and NUMA-aware
parallel database systems as shown in [5].

This paper proposes the first parallel temporal aggregation algo-
rithm with (almost) linear speed up, called ParTime. ParTime is
a two pass algorithm that is based on the simple insight that the
impact that a record has on the aggregate value can be computed
independent of any other record. Based on this insight, ParTime
is able to compute this impact of all records in parallel and in
any given order. In the first pass, ParTime scans the whole table
and computes the impact of each record at every point in time.
ParTime executes this scan in parallel and there are no constraints
on how the table is partitioned or the degree of parallelism. The
second pass merges the results of the first pass, thereby computing
the aggregation result for each point in time. This second pass
works like the merge phase of an ordinary (non-temporal) sort-
based GROUP BY operator [11]. In principle, this second pass can
be parallelized, too. It turns out, however, that this second pass is
cheap for most practical queries so that we propose to carry out this
second pass sequentially. For completeness, we studied queries for
which this second pass was not cheap with synthetic benchmarks,
but we have not seen any such cases in real workloads yet.

In addition to its simplicity and embarrassing parallelism (in the
first pass), ParTime has a number of other important advantages.
One important advantage is that it works on any kind of bi-temporal
data (i.e., databases that have multiple dimensions of business time
and transaction time). In contrast, many algorithms devised in the
literature only work for one time dimension. In our experience,
support for the bi-temporal data model is crucial. In the airline
industry, for instance, data scientists are often interested to aggre-
gate over the time when a booking was made and the departure
time of a flight. Another advantage is that ParTime integrates well
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into databases that were designed for modern NUMA hardware.
ParTime is based on a parallel table scan that allows each core
to separately and independently compute data from a different
partition of the database with memory affinity. Last but not least,
ParTime integrates well into any parallel database system. It is im-
plemented by extending the scan operatior. In particular, ParTime
can make use of shared parallel scans which are implemented in
many modern parallel database systems [27, 6, 25]. As we will see,
this feature is particularly important for high-throughput workloads
with many concurrent non-temporal queries and updates. Due to
data freshness and cost considerations, it is often not affordable to
build a separate data warehouse just to execute temporal queries;
instead, all queries and updates must be served by a single database
system.

We implemented ParTime and integrated it into Crescando, a
main-memory parallel database system deployed at Amadeus, one
of the leading airline reservation systems [25]. We carried out
comprehensive performance experiments with both the Amadeus
workload and with a synthetic temporal database benchmark, the
TPC-BiH benchmark [14]. The results confirm that Crescando with
ParTime significantly outperforms any other available temporal
database system. ParTime is also competitive to the best known
way to implement temporal aggregation from the research literature
[13]. This approach is based on the so-called Timeline Index,
which effectively pre-computes the results of temporal aggregation;
i.e., the Timeline Index can be seen as a materialized temporal
aggregation view. The Timeline Index, thus, serves as a lower
bound for the best possible performance that can be achieved
and it shows that with sufficient parallelism, ParTime can reach
this lower bound even without any materialization. Unfortunately,
materialization and the Timeline Index are not viable for update-
intensive workloads such as the Amadeus workload because of the
prohibitively high cost to maintain the Timeline Index with every
update; nevertheless, the Timeline Index is a great baseline to study
the performance for read-only workloads.

In summary, this paper presents the following contributions:

• The ParTime method for parallel temporal aggregation. This
paper shows how ParTime works for one-dimensional and
multi-dimensional temporal aggregation. Additionally, we
present a special optimization that is applicable to a popular
class of temporal aggregation queries, so called windowed
temporal aggregation queries.

• The implementation and integration of ParTime into Cres-
cando, a parallel, main-memory database system. The most
important contribution here is to show how the processing
of temporal aggregation queries with ParTime seamlessly
co-exists with the processing of other temporal and non-
temporal queries and updates as part of a shared scan. It
is only this embedding of ParTime into a shared scan that
makes it possible to sustain the high query and update
throughput of the Amadeus workload. No other database
system that we are aware of is able to sustain this workload.

• The results of comprehensive performance experiments. These
results study the speed-ups that can be achieved with Par-
Time and demonstrate the robustness of ParTime for com-
plex and update-intensive workloads.

The remainder of this paper is organized as follows: Section 2
discusses related work. Section 3 presents the ParTime method.
Section 4 shows how to integrate ParTime into Crescando. Section
5 summarizes the results of our performance experiments. Section
6 contains conclusions and possible avenues for future work.

2. RELATED WORK
Temporal databases have been the subject of extensive research

since the 1990s. In particular, numerous algorithms for temporal
aggregation have been devised. These algorithms often involve
tree data structures which are either built on demand as an inter-
mediate data structure or persisted as an index. Kline and Snod-
grass [16] were among the first to develop sophisticated algorithms
for temporal aggregation. Their best algorithm operates in two
passes: In the first pass, it scans the data and builds a so-called
Aggregation Tree. This tree encodes all the time intervals in which
the aggregate function remains constant. In the second phase,
this tree is traversed, thereby computing the aggregate value for
each time interval. The initial work on Aggregation Trees was
designed for sequential execution. Later, Gendranoy et al. studied
how this approach could be parallelized and the effect of different
partitioning schemes of the data, number of nodes, and placement
of the intermediate results. Goa et al. [8] revisited these results
for main-memory databases. The results of [8], however, show that
overall the Aggregation Tree approach does not parallelize well;
there is some improvement, but the speed-up is far from linear and
the scalability is limited. A recent comprehensive performance
study showed that even with a high degree of parallelism, the
performance of the Aggregation Tree approach is not competitive
[13]. From a bird’s eye perspective, ParTime is similar to the
original Aggregation Tree algorithm proposed in [16]: It also works
in two passes and scans the table in the first pass in order to compute
the affects of each tuple. However, the data structures used are
different and what makes ParTime unique is the way it computes
the contribution of each tuple.

One of the particular problems of the original Aggregation Tree
algorithm is that the Aggregation Tree is not necessarily balanced
and can degenerate into a linked list. In this case, the Aggrega-
tion Tree algorithm has quadratic complexity. To overcome this
problem, Böhlen et al. [3] proposed an algorithm which is based
on AVL trees for the upper and lower bounds of the time intervals
stored in the Aggregation Tree. While that approach does lead to
significantly improved performance and guarantees O(n * log n)
complexity, [13] shows that even this approach is not competitive
and is outperformed by the Timeline Index by at least one order of
magnitude on modern hardware. That is why we used the Timeline
Index as a baseline in the performance experiments (Section 5) and
refer the interested reader to [13] for a comprehensive performance
study of the most important algorithms for temporal aggregation in
the research literature.

There has been a large variety of index structures for temporal
databases [18]. One prominent example is the multi-version B-tree
[2]. The multi-version B-tree can only index a single time dimen-
sion and it indexes both, the time dimension and a (non temporal)
search key. Another example is the work by Nascimento et al. [19].
This work proposes a two-level bi-temporal indexing scheme that
is based on a B+-tree on transaction time, in which every entry of
a leaf node points to another tree that indexes business time. The
state-of-the-art in this area, however, is the Timeline Index, which
was shown to clearly outperform these indexes [13]. At the core
of the Timeline Index is the event map, which is a pre-computed
sorted list of points in time when versions of records became
valid and invalid. Given this event map, computing the result
of a temporal aggregation query involves only one scan of this
highly compressed sorted list. To further speed the computation
up, the Timeline Index features checkpoints, which materialize a
bitmap with all active records for a specific point in time: This
way, the scans can start at the appropriate checkpoint, rather than
scanning through the whole event map from the very beginning.
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The Timeline Index works particularly well for the transaction time
dimension (see next section) which is naturally ordered. However,
the Timeline Index has recently been amended to support the full
bi-temporal data model [15].

In terms of query performance, the Timeline Index can be seen
as a lower bound for what is possible today because it precomputes
the results of temporal aggregation. Depending on checkpoints in
the query interval, the Timeline Index has linear or even constant
complexity. That is why we use it in Section 5 to assess the
performance of ParTime for queries. However, the Timeline Index
is not a viable solution for update-intensive workloads. For such
workloads, maintaining the Timeline Index is prohibitively expen-
sive. Another short-coming of the Timeline Index is that it cannot
be partitioned. If the size of the Timeline Index grows beyond the
size of a NUMA region or even beyond the main memory of a
single machine, the performance of the Timeline Index degrades
significantly.

Most vendors of commercial database systems started adding
temporal features into their systems in the last few years. To the
best of our knowledge, Teradata, IBM DB2, Oracle, and SAP
HANA are the systems with the most advanced support for tem-
poral database features. Of these systems, only Teradata has native
support for temporal aggregation [1]. Teradata implements tempo-
ral operators with non-temporal operators. Specifically, Teradata
uses the Temporal Statement Modifier approach devised by Böhlen
et al. [4]. Teradata supports bi-temporal tables with at most one
business time dimension. This restriction also applies to IBM
DB2 [23]. HANA only supports transaction time. Oracle has
been supporting temporal data for more than 10 years as part of
Flashback [21]. With Oracle Version 12c, there is full support for
bi-temporal tables. As shown in Section 5, ParTime significantly
outperforms any commercial database system.

An important feature of ParTime is that ParTime integrates well
into any system that makes use of scans and in particular shared
scans. Crescando uses the ClockScan algorithm [25], but ParTime
can be integrated into any other scan implementation. RedBrick
was the first database system to rely heavily on shared scans in
the late Nineties. In the meantime, there has been a great deal of
work on shared scans; e.g., as part of MonetDB [27], Blink [20],
Crescando [25], Aster Data [6], and SharedDB [10]. Based on all
this work, it is widely believed that robust database performance for
high-throughput workloads can only be achieved with such shared
scans. To the best of our knowledge, however, ParTime is the
first temporal database algorithm that tries to take advantage and
integrates nicely into a shared scan.

3. PARTIME METHOD
This section presents the ParTime technique. There are two

variants of the ParTime algorithm. First, a general variant that
works for any kind of temporal aggregation. Second, an optimized
variant that works for “windowed temporal aggregation queries.”
We show how both variants work for one-dimensional temporal
data and for bi-temporal data with arbitrary dimensionality.

3.1 Running Examples
Figure 1 shows an example Employee table. For each employee,

it records the name, job description, and salary. The Employee
table of Figure 1 has two time dimensions, denoted as BT for
business time (often also referred to as application time) and TT for
transaction time (often also referred to as system time). The busi-
ness time indicates when the information was true in the real world;
the timestamps of the business time are set by the application. The
transaction time indicates when the information was entered into

Row 0 Anna CEO 10k 01-01-1993 ∞ t0 t7

Row 1 Anna CEO 10k 01-01-1993 01-06-1994 t7 ∞

Row 2 Anna CEO 15k 01-06-1994 ∞ t7 ∞

Row 3 Ben Coder 5k 01-01-1993 ∞ t0 t7

Row 4 Ben Coder 5k 01-01-1993 01-06-1994 t7 ∞

Row 5 Ben Manager 5k 01-06-1994 ∞ t7 t11

Row 6 Ben Manager 8k 01-06-1994 ∞ t11 ∞

Row 7 Chris Coder 5k 01-08-1993 ∞ t5 t16

Row 8 Chris Coder 5k 01-08-1993 01-01-1995 t16 ∞

NAME DESCR SALARY START_BT END_BT START_TT END_TT

Figure 1: Temporal Employee Table

the database; i.e., which transaction carried out the update. The
timestamps of the transaction time are set automatically by the tem-
poral database system as a side-effect of committing transactions
and creating new versions of tuples.

In Figure 1, for instance, Row 0 indicates that at the beginning
(after processing Transaction t0), the database recorded the infor-
mation that Anna’s salary is 10k and it has been 10k since January
1, 1993. Then, Transaction t7 updated this information indicating
that Anna had a salary increase on June 1, 1994. As a result, t7
updates Row 0: It sets the END_TT timestamp of Row 0 to t7,
thereby indicating that this version of Anna’s record is only valid
from Version t0 to t7. Furthermore, t7 creates Rows 1 and 2: Row 1
indicates that Anna’s salary was 10k from January 1, 1993 to June
1, 1994. Row 2 indicates that Anna’s salary has been 15k since
June 1, 1994.

The bi-temporal data model that we use for this work has been
described in detail in [24]. (In the literature, other definitions can be
found, too.) In practice, it is not unusual to have multiple business
time dimensions. In the travel industry, for instance, an application
could involve a business time dimension that keeps track of when
the departure of a flight was scheduled and another business time
dimension that records when the flight actually departed. However,
there is always only one transaction time that describes the ver-
sioning of the temporal database. In the literature, tables with only
transaction time are typically denoted as temporal tables whereas
tables with transaction time and one or several business times are
denoted as bi-temporal tables.

There are a number of specific temporal operators that can be
applied to such (bi-) temporal tables [24]. The best known operator
is the so-called time-travel operator. This operator fixes a certain
point in time for each temporal dimension. For instance, one could
ask about the total payroll on June 1, 1994 given Version t3 of the
database. The result of this query applied to the table of Figure
1 is 15k because only Rows 0 and 3 existed in Version t3 of the
database. We could also ask about the total annual payroll on
June 1, 1994 given the current version of the database. In our
example, the result is 28k as Rows 2, 6, and 8 qualify. The time
travel operator has been standardized inSQL 2011 and it has been
supported for a long time in the Oracle database system.

It turns out that the time-travel operator is straightforward to
implement in parallel database systems like Crescando: It is a
simple selection on the time dimensions. A more involved op-
erator is temporal aggregation. Temporal aggregation computes
an aggregate value for every point in time. Temporal aggregation
can be one or multi-dimensional. For instance, Figure 2 shows the
result of asking for the total payroll in 1995 for each version of the
database. This query is an example of a one-dimensional temporal
aggregation query because only the transaction time is varied (the
business time is fixed to 1995).
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t0 t5 15k

t5 t7 20k

t7 t11 25k

t11 t16 28k

t16 ∞ 23k

START_TT END_TT SUM

Figure 2: Example 1, Result of One-dim Temp. Aggr.
Total payroll in 1995 for each version of the database.

START_BT END_BT START_TT END_TT SUM

01-01-1993 ∞ t0 t5 15K

01-01-1993 01-08-1993 t5 t7 15K

01-08-1993 ∞ t5 t7 20K

01-01-1993 01-08-1993 t7 t11 15K

01-08-1993 01-06-1994 t7 t11 20K

01-06-1994 ∞ t7 t11 25K

01-01-1993 01-08-1993 t11 t16 15K

01-08-1993 01-06-1994 t11 t16 25K

01-06-1994 ∞ t11 t16 28K

01-01-1993 01-08-1993 t16 ∞ 15K

01-08-1993 01-06-1994 t16 ∞ 20K

01-06-1994 01-01-1995 t16 ∞ 28K

01-01-1995 ∞ t16 ∞ 23K

Figure 3: Example 2, Result of Two-dim Temp. Aggr.
Total payroll for each moment in time and each version.

Figure 3 shows the result of a query that asks for all the payroll
values for every point in time and all versions of the database. This
is an example of a two-dimensional temporal aggregation because
both the business time and the transaction time are varied. As with
SQL GROUP BY queries, the result size of temporal aggregation
grows exponentially with the number of dimensions.

Finally, Figure 4 shows the result of a query that asks for the
payroll at the beginning of each year given the current state of the
database (i.e., all tuples with END_TT = ∞). This query is one-
dimensional (transaction time is fixed, business time is varied) and
an example of a windowed temporal aggregation query.

Snodgrass defined the semantics of the temporal aggregation
operator in [16]. Due to its complexity, many algorithms have been
proposed in the literature (Section 2). As we will show, ParTime is
the first parallel algorithm that scales linearly, takes advantage of
shared scans, and does not require any pre-computation.

3.2 General Temporal Aggregation
ParTime is a two step algorithm. The first step scans the temporal

table and computes the deltas of each record for the time when
the record became valid and for the time when the record became
invalid. The first step is the most expensive step and runs in parallel.
That is, each core processes a different set of tuples independently.
The second step merges the results of Step 1. Step 2 is more
difficult to parallelize (Section 3.4). Fortunately, Step 2 is cheap
for most practical queries so that ParTime typically achieves linear
scale-up and scale-out, even without parallelizing Step 2 (Section
5).

3.2.1 Example 1: Generating Delta Maps (Step 1)

START_BT END_BT SUM

01-01-1993 31-12-1993 20k

01-01-1994 31-12-1994 28k

01-01-1995 31-12-1994 23k

Figure 4: Example 3, Result of Windowed Temp. Aggr.
Total payroll by year.

Row 0 Anna CEO 10k 01-01-1993 ∞ t0 t7

Row 1 Anna CEO 10k 01-01-1993 01-06-1994 t7 ∞

Row 2 Anna CEO 15k 01-06-1994 ∞ t7 ∞

Row 3 Ben Coder 5k 01-01-1993 ∞ t0 t7

Row 4 Ben Coder 5k 01-01-1993 01-06-1994 t7 ∞

Row 5 Ben Manager 5k 01-06-1994 ∞ t7 t11

Row 6 Ben Manager 8k 01-06-1994 ∞ t11 ∞

Row 7 Chris Coder 5k 01-08-1993 ∞ t5 t16

Row 8 Chris Coder 5k 01-08-1993 01-01-1995 t16 ∞

NAME DESCR SALARY START_BT END_BT START_TT END_TT

Figure 5: Generating Delta Maps (Example 1)

t0 t5 15k

t5 t7 20k

t7 t11 25k

t11 t16 28k

t16 ∞ 23k

t0 +10k

t7 +5k

t11 +8k

Delta Maps

t0 +5k

t5 +5k

t7 +0

t11 -5k

t16 -5k

START_T
T

END_TT SUM

Figure 6: Merging Delta Maps (Example 1)

We illustrate the ParTime technique using the simple, one-
dimensional temporal aggregation query of Example 1 (Figure 2).
For the purpose of this example, we assume that we have two cores
and that Core 1 processes all even rows (Rows 0, 2, 4, etc.) and
Core 2 processes all odd rows (Rows 1, 3, etc.). ParTime works
with any kind of partitioning; it works best if all cores process the
same number of records so that random or round-robin are good
partitioning schemes.

The key idea of ParTime is that every core creates a delta map
as a result of scanning its partition of the temporal data. A delta
map is a data structure that maps timestamps to deltas of aggregate
values. That is, the delta map captures the affects of all tuples that
became valid or invalid at each point in time. Furthermore, a delta
map is ordered by timestamp, which speeds up the merge operation
as part of Step 2. We used B-trees in our implementation of delta
maps, but other data structures can be used, too, and may give even
better performance.

Figure 5 shows the two delta maps that are computed for our
running example and the query that asks for the total payroll for
each version of the database (i.e., varying transaction time, fixing
business time to 1995). To be more specific, Step 1 generates the
following two deltas when processing Row 0 of Figure 1:

〈t0,+10k〉〈t7,−10k〉

These two entries indicate that at Version t0 the total payroll needs
to be increased by 10k as a result of Row 0 becoming visible in this
version. Correspondingly, the payroll needs to be decreased by 10k
at Version t7 when the life time of Row 0 expires.

Because the life time of Row 2 is ∞, only one delta entry is
generated for Row 2:

〈t7,+15k〉

This entry indicates that starting at Version t7, the total payroll
needs to be increased by 15k. When this entry is inserted into the
delta map, it is immediately merged with the existing 〈t7,−10k〉
entry (the delta map is indexed by timestamp). As a result, the delta
map of Figure 5 shows only a single consolidated entry for t7 that
reflects the affects of both Rows 0 and 2; i.e.:

〈t7,+5k〉
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function GENERATEDELTAMAP(chunk)
dm← new Btree()
for all record in chunk do

value← record(column)
validFrom← record(validFromIdx)
validTo← record(validToIdx)
DM-PUT(validFrom, value)
if validTo 6=∞ then

DM-PUT(validTo,−1 · value)
end if

end for
end function

Figure 7: Step 1 of General Aggregation (Sum)

NAME SALARY START_BT END_BT END_TT

Row 0 Anna 10K 01-01-1993 ∞ t
7

Row 2 Anna 15K 01-01-1993 01-06-1994 ∞

Row 4 Ben 5K 01-01-1993 01-06-1994 ∞

+20K -20K

01-01-1993 01-06-1994

+15K

+5K

-15K

-5K

Figure 8: Generating Fixed-sized Delta Maps (Example 3)

In Example 1, Rows 1, 4, and 8 are ignored. These rows involve
data that is not relevant for the query because these rows contain
information for the years 1993 and 1994 only and the query asks
specifically for salaries of the year 1995. Accordingly, these rows
are filtered out before the ParTime algorithm takes effect and no
delta entries are generated for these rows.

3.2.2 Example 1: Merging Delta Maps (Step 2)
Figure 6 shows the second step of the ParTime algorithm for gen-

eral temporal aggregation; i.e., merging the delta maps generated in
parallel in Step 1. This merge can be implemented in exactly the
same way as a merge in a sort-based, regular (non-temporal) group-
by operator [11]. That is, the timestamp is used as the group-by key
and increments / decrements are simply added to generate the final
payroll value for each version of the database system. Comparing
Figures 6 and 2, it can be seen that the ParTime algorithm computes
indeed the correct result.

3.2.3 Algorithm Description
Figure 7 gives the pseudo-code of Step 1 of the general ParTime

algorithm for one-dimensional temporal aggregation if sum is used
as an aggregate function. Assuming that B tree lookups are O(log
n), the complexity of this algorithm is O(n * log n). We extended
our B tree implementation to support a special put operation which
adjusts an existing entry, if it exists, or creates a new entry, if the
search key cannot be found. We omit details of Step 2 of the
general ParTime algorithm because it is identical with any other
merge operation (e.g., [11]).

The ParTime algorithm works very well for all aggregate func-
tions that can be computed incrementally. Examples of such ag-
gregate functions are sum, product, or count. Not all aggregate
functions are incremental; e.g., min, max, or median. For these
aggregate functions, it is not sufficient to keep a single aggregate
value at all times in the delta map. Instead, the delta map keeps the
set of values that became valid / invalid at each point in time. The
merge step then involves keeping a priority queue to compute the
aggregate value at each point in time.

function GENERATEDELTAMAP(chunk, size)
dm← new Array[size]
for all record in chunk do

value← record(column)
validFrom← record(validFromIdx)
validTo← record(validToIdx)
dm[validFrom]← dm[validFrom] + value
if validTo 6=∞ then

dm[validTo]← dm[validTo]− value
end if

end for
end function

Figure 9: Step 1 of Windowed Aggregation (Sum)

3.3 Windowed Queries
We will now turn to Example 3 of Section 3.1; Figure 4. In

principle, this query can be executed using the very same general
ParTime algorithm that was described in the previous section.
However, we can do better and apply an important optimization
for such windowed temporal aggregation queries.

The main observation is that the size of the result of the temporal
aggregation is known in advance. This particular query asks for the
total payroll at the beginning of each year. The database contains
only information for three years, 1993, 1994, and 1995. This fact
can be exploited to speed up the algorithm of Figure 7 significantly.
Instead of maintaining the delta map as a dynamic B tree (or some
other dynamic data structure), we can implement the delta map as
an array and use the timestamps (i.e., years) to access the cells
of this array directly. Fundamentally, the algorithm of Figure 7
is unchanged, but the dm-put() operations can be implemented
in a much more efficient way by a simple array look-up. For
completeness, Figure 9 shows the pseudo code: Compared to the
algorithm of Figure 7, the only difference is that the delta map is
implemented as an array instead of a B-tree.

In theory, this optimization is applicable to any temporal aggre-
gation query, not only windowed queries. We can always calculate
an upper limit for the number of versions in each time dimension.
In the general case, however, this optimization is less effective
because the array can become sparse and we would pay a high price
in terms of memory footprint.

Figure 8 shows how windowed aggregation is applied to the third
query of our running example. In this example, Row 0 is ignored
because the query asks only for tuples of the current version of the
database; i.e., records with END_TT = ∞.

3.4 Multi-dimensional Temporal Aggregation
The same two-step techniques, described in the previous two

sections, can be applied to any multi-dimensional temporal ag-
gregation query. Example 2 of Section 3.1 is a two-dimensional
temporal aggregation query that varies business time and transac-
tion time. The important difference to one dimensional temporal
aggregation is that the deltas consider all temporal dimensions
involved in the query. Another difference is that the deltas pivot
on one temporal dimension and then capture the information along
all other temporal dimensions. For instance, the ParTime algorithm
generates the following two deltas for Row 0 and Example 2, if we
pivot on the transaction time:

〈+10k, 01-01-1993,∞, t0〉, 〈−10k, 01-01-1993,∞, t7〉

The first delta reads as follows: “At Transaction Time t0, 10k
need to be added to the total payroll for the business time duration
01-01-1993 to ∞.” If we pivot for transaction time in this example,
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function GENERATEDELTAMAP(chunk)
dm← new Btree()
for all record in chunk do

value← record(column)
pivotBegin← record(idxOfBegin(0))
pivotEnd← record(idxOfEnd(0))
validFrom← array(numDimensions− 1)
validTo← array(numDimensions− 1)
for i in (1..numDimensions− 1) do

validFrom(i− 1)← record(idxOfBegin(i))
validTo(i− 1)← record(idxOfEnd(i))

end for
fstKey ← concat(validFrom, validTo, [pivotBegin])
DM-PUT(fstKey, value)
if pivotEnd 6=∞ then

sndKey ← concat(validFrom, validTo, [pivotEnd])
DM-PUT(sndKey,−1 · value)

end if
end for

end function

Figure 10: Step 1 of Multi-dim. Aggregation (Sum)

ParTime generates two deltas because Row 0 expires along the
transaction time dimension at t7. If we pivot for business time,
ParTime generates only one delta for Row 0 because Row 0 has
no expiration date along the business time. In this case, ParTime
generates the following delta. (As a convention, we keep the pivot
time dimension last.)

〈+10k, t0, t7, 01-01-1993〉
This delta reads as follows which is a different yet equivalent

interpretation of Row 0: “Starting at business time 01-01-1993,
10k need to be added to the total payroll for the transaction time
duration t0 to t7.” For correctness, any time dimension can be used
as pivot dimension. For performance, it is best to choose the time
dimension with the least distinct values (i.e., timestamps) because
that will minimize the size of the delta map generated in Step 1.
Typically, one of the business time dimensions has the least distinct
values and our implementation of ParTime keeps statistics to pivot
for the best possible time dimension.

Figure 10 shows the pseudo code for Step 1 of the multi-
dimensional temporal aggregation. For simplicity, the pseudo code
of Figure 10 always chooses time dimension 0 as a pivot; our
implementation is more sophisticated in that regard. In Figure 10,
validFrom and validTo are arrays that represent the start and end
times for all temporal dimensions; for the pivot dimension, only the
validFrom time is recorded. These times are filled in the inner loop
which iterates over all temporal dimensions involved in the query.
Other than that, this algorithm is the same as the one-dimensional
algorithm shown in Figure 7.

Step 2 of the generalized, multi-dimensional ParTime algorithm
implements the merge of delta maps in a similar way as the merge
operation of a sort-merge join. Just as for the sort-merge join,
Step 2 must carry out a Cartesian product for all overlapping delta
entries. This Cartesian product results in the (correct) explosion
of the query result of multi-dimensional temporal aggregation,
as observed in Figure 3. Again, this exponential complexity in
the number of time dimensions is fundamental to the temporal
aggregation operator and not a weakness of the ParTime method, as
explained in Section 3.1. Unlike the merge phase of a sort-merge
join, Step 2 of the ParTime algorithm must aggregate the values of
delta entries that are identical in all time dimensions.

In principle, Step 2 of the ParTime algorithm can be parallelized
just as the merge phase of a sort-merge phase. For instance, this

Storage Nodes

Aggregators

Clients

Figure 11: Architecture of Crescando

parallelization can be achieved with a multi-level merge operation
as described in [11]. So far, we have not implemented such a
parallel Step 2 of ParTime. The reason for this decision was that
for all the temporal aggregation queries of the Amadeus work-
load that motivated this work, Step 2 is cheap and the cost of a
temporal aggregation query is always dominated by Step 1. As
shown in Section 5, however, the synthetic TPC-BiH benchmark
does include cases in which Step 2 is indeed expensive and worth
parallelizing. Studying how such a parallelization of Step 2 could
improve performance is left for future work.

4. PARTIME AND SHARED SCANS
This section describes our implementation of ParTime in Cres-

cando, Amadeus’ parallel database system as one particular exam-
ple system that can make use of ParTime. ParTime, however, can
be integrated into any parallel database system: All that needs to
be done is to extend the scan operator to generate delta maps and a
separate operator to merge delta maps. Furthermore, the optimizer
must be extended to determine the right degree of parallelism.

4.1 Overview
Figure 11 shows the architecture of Crescando; details of Cres-

cando can be found in [25]. This architecture has been pioneered
by Amazon as part of the Dynamo system [7]. Crescando is a
shared-nothing database system with a two-tier architecture. At
the lower layer are the storage nodes. The storage nodes persist the
data. Each storage node keeps a different partition of a (temporal or
non-temporal) table, thereby making use of horizontal partitioning
of the data. Crescando supports any kind of partitioning scheme;
in particular, it supports round-robin partitioning as used in the
examples of the previous section.

Crescando is a main-memory database system. If the database
grows, new storage nodes must be added. All read-requests are
served completely out of main memory. Write-requests are logged
to disk for crash recovery. In order to improve fault-tolerance, each
storage node has a hot stand-by node (not shown in Figure 11) that
fully replicates all the data and events of the storage node, thereby
following state-machine replication [17].

The second tier of Crescando is composed of aggregator nodes.
Crescando processes queries (and updates) in the following way:
A client connects to one of the aggregators which coordinates the
execution of the query. Any aggregator can be chosen for this
purpose. In the default configuration, a client always connects to
the same aggregator, but a round robin approach is also possible.
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Query processing is then split between the storage nodes and the
aggregator. Basic operations such as selections and projections
are carried out by the storage nodes. Complex operations such
as grouping are carried out by the aggregator. Furthermore, the
aggregator collects the results from all storage nodes and produces
the final query result and ships it to the client.

Depending on the partitioning scheme and the query, all or a
subset of the storage nodes are involved in processing a query. For
a round-robin partitioning scheme, all storage nodes are involved in
all queries because it is not possible to infer that a particular storage
node does not contain any relevant data that is needed to process a
query. This worst-case scenario is not unusual in practice, and it
is the scenario that was measured in the performance experiments
reported in Section 5.

One problem of the architecture of Crescando are stragglers. If
one storage node is significantly slower than all the others, then this
storage node dominates the response time of all queries because
the aggregator needs to wait for the results of all storage nodes.
Crescando treats stragglers in the same way as failed nodes: It
shoots them down and continues to operate with the hot stand-
by node. These mechanisms are independent of ParTime and
describing these mechanisms in detail is beyond the scope of this
paper.

Another problem of running all queries on all storage nodes is
cost. If the queries were executed one at a time, the storage nodes
could easily become the bottleneck of the system. To address
this challenge, Crescando makes heavy use of shared scans in the
storage nodes. That is, a batch of queries and updates from multiple
clients and aggregator nodes are processed by a storage node with
a single scan, thereby processing the queries and updates on the
fly. Specifically, Crescando makes use of the ClockScan algorithm
described in [25] which was shown to give robust performance for
demanding workloads with high update rates and complex queries.
Crescando also supports indexes. For the experiments reported in
Section 5, however, no indexes were used. That is, every query
and update involved a full (parallel) table scan of the partition in all
storage nodes. The larger the number of storage nodes, the smaller
the partitions and correspondingly the faster the parallel scan.

Finally, aggregators are stateless in the architecture of Figure 11.
Crescando does not make use of caching at the aggregator layer
because the shared, parallel scans at the storage layer are so fast
that caching does not help. When an aggregator fails, all its queries
(and updates) are restarted. Furthermore, new aggregator nodes can
be added at any point in time to sustain a higher load. Likewise, an
aggregator can be shut down at any time if the load decreases.

4.2 Temporal Extensions
Initially, Crescando was not designed for temporal data and

did not support the bi-temporal data model or temporal operators.
Adding support for temporal data, however, was straightforward.
As shown in Figure 1 temporal tables can be stored in the same
way as regular, non-temporal tables in the storage nodes. The
start and end timestamps of the temporal dimensions are stored
and processed like any other column.

The time-travel operator can also be implemented in a straight-
forward way in Crescando. As mentioned in Section 3, time-travel
involves the evaluation of range predicates on the time dimensions
and range predicates were already supported in Crescando.

ParTime also fits nicely into the architecture of Figure 11. Step
1, generating the delta maps, is carried out by the storage nodes
for all temporal aggregation queries. More specifically, the storage
nodes generate the delta maps as part of the same shared scan that
carries out all other queries and updates. Each storage node creates

one delta map for each temporal aggregation query in addition
to the result tuples for other queries and updates. The storage
nodes generate these delta maps (and other results) in parallel
independently of each other.

Step 2, merging the delta maps, is carried out by the aggregator
that handles the temporal aggregation query. To this end, the aggre-
gator waits until it has received the delta maps of all storage nodes.
Since each query is assigned to exactly one aggregator, it is not
easy to parallelize Step 2 in Crescando, even though Step 2 can be
parallelized in principle as described in Section 3.4. Aggregation
nodes also execute other complex operations such as joins, ranking
and sorting, or other grouping and aggregation operations which
are part of the query. It is also possible that a query involves several
temporal aggregation operators. Within the aggregation nodes, the
execution of the operators is pipelined using the iterator model.
We are currently generalizing and improving the query processing
capabilities of aggregator nodes, including parallel query operators,
as part of the SharedDB project [10].

4.3 Query Optimization
Independent of ParTime, there is a need to optimize queries

that involve several temporal and non-temporal operators. Query
optimization is beyond the scope of this paper, but ParTime can be
added to the compiler of an extensible temporal database system
just like any other new algorithm [12, 11].

One special consideration for most parallel database systems is
to optimize the degree of parallelism. As shown in Section 5, it
is indeed advisable to carry out this optimization for ParTime, just
like for any other parallel algorithm. Unfortunately, this optimiza-
tion is not possible in Crescando. Crescando fixes the degree of
parallelism as the number of storage nodes because every query
is executed on all storage nodes. As a result, Crescando does not
exploit the full flexibility and versatility of ParTime. Other paral-
lel database systems might achieve even better performance with
ParTime than Crescando by optimizing the degree of parallelism.

5. PERFORMANCE EXPERIMENTS AND
RESULTS

This section studies the performance of ParTime. It compares
the performance of Crescando with ParTime to two best-of-class
commercial database systems and the best-known approach for
temporal aggregation from the research literature. We conducted
the experiments using a real workload from the travel industry and
a synthetic database benchmark for bi-temporal data.

5.1 Software and Hardware Used
In order to assess the performance of ParTime, we used the

following baselines in our performance experiments:

Timeline Index. [13]: The Timeline Index is the best known
approach to compute temporal aggregation from the research lit-
erature. It precomputes all temporal information and keeps this
information in a sorted way so that temporal aggregation can be
carried out fast. We implemented the Timeline Index and the tem-
poral aggregation algorithm based on the description of [13]. The
big disadvantage of the Timeline Index is that it is a materialized
view and it is costly to maintain the Timeline Index for update-
intensive workloads. As a result, the Timeline Index is not practical
for the Amadeus airline reservation application that motivated this
work. For the purpose of this paper, the Timeline Index serves as
a baseline to demonstrate the best possible query performance for
read-only workloads and how close ParTime can come to that.
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System D:. A commercial disk-based, general-purpose database
system. We studied several general-purpose database systems and
System D was the system that performed best throughout the exper-
iments reported in this paper. We used the index advisor shipped
with the product to generate indexes for the benchmark workload.

System M:. System M is a commercial main-memory database
system which was specifically designed for analytics and has sup-
port for temporal data and transactions. Again, System M can be
seen as the best of its class for temporal workloads and the queries
and workloads studied in our experiments. By default, System M
only creates indexes for the primary keys of tables. It turned out
that this default was the best configuration for all our experiments.

A comprehensive performance study of other algorithms from
the literature is given in [13]. Licensing agreements do not allow
us to reveal the real product names of System D and System M.

We used Crescando in two modes:

• Shared scans: Exploit shared scans as described in Section
4. This mode is the default for Crescando.

• No sharing: Crescando without shared scans. In this mode,
Crescando processes each query individually.

With No sharing, we could isolate the performance advantages that
Crescando gets from making use of the ParTime algorithm vs. the
performance advantages that Crescando has from exploiting shared
scans. To the best of our knowledge, Systems D and M do not make
use of shared scans. We measured throughput and response time.
For all response time experiments, we ran Crescando in the No
sharing mode. In all experiments reported in this paper, Crescando
did not make use of any data-indexes, independent of the mode.
Crescando did however use indexes on queries in sharing mode, as
discribed in [25].

All experiments were carried out on a machine with 1.5 TB of
main memory (DDR3, 1066MHz RAM) and four Intel Xeon E5-
4650 processors with eight 2.7 GHz cores each (32 cores in total).
The machine ran Linux (Kernel 3.14.17-100). In all experiments,
the whole database fit in main memory and we warmed up the
buffers in order to make sure that disk I/O was only required to
log updates for recovery. Naturally, warming up the buffers was
particularly important for System D.

Systems D and M made use of all 32 cores. To study the
effectiveness of parallelization with ParTime, we varied the number
of cores for Crescando. If not reported otherwise, Crescando used
half of the cores to implement storage nodes and half of the cores
as aggregator nodes (Figure 11). That is, in a configuration with
18 cores, Crescando used 9 cores as aggregators and partitioned
the database across the other 9 cores. Temporal aggregation with
the Timeline Index does not allow for parallelization so that all
response time experiments with the Timeline Index were carried
out with a single core. In all cases, however, we made sure that the
allocated memory was close to the used cores to the extent possible.
This NUMA-awareness was critical to achieve good performance
for all four systems. Crescando and our implementation of the
Timeline Index were in C++.

5.2 Benchmark Environment
We studied a real workload from the Amadeus airline reservation

system. The results of the experiments with this workload gave
insights into the end-to-end performance of a temporal database
system for a complex application that includes various types of
temporal queries, non-temporal queries, and a high update rate. In
order to specifically study the effects of ParTime, we also carried
out experiments with a synthetic benchmark.

Query Freq.Type Description

ta1 1% Temp.Aggr. Number of Open Flights grouped
by transaction time

ta2 1% Temp.Aggr. Number of Open Flights grouped
by business time

other temporal8% Time Travel, Rangenumber of bookings at a
certain time, bookings by day, etc.

other 90% Non-temp.
e.g., number of bookings for a
given flight and airline, passenger
lists, etc.

Table 1: Queries of Airline Res. System

5.2.1 Amadeus Workload
Table 1 gives an overview of the queries of the Amadeus work-

load. In that workload, there are only two kinds of temporal
aggregation queries, denoted as ta1 and ta2. The first kind of these
queries involves transaction time and asks, for instance, how the
number of bookings for a specific flight evolved over time. The
second kind of temporal aggregation queries of this system involves
business time (e.g., the validity of a ticket) and queries such as the
number of open and valid tickets over time. While both of these
kinds of queries are quite complex, it is important to note that
these queries are rare: Only about 2 percent of the queries of this
workload involve temporal aggregation. 8 percent of the queries
involve other temporal operators and the bulk of the queries are
non-temporal (i.e., current time in all temporal dimensions).

The airline reservation workload is update-intensive. In addition
to these queries, it involves 250 updates per second. These updates
include inserts (e.g., new bookings) and updates (e.g., setting the
frequent-flyer number, registering dietary requirements, etc.).

The database of the airline reservation system contains 2.4 Bil-
lion bookings. On average, a booking has five versions, but there
is skew and some bookings are updated much more often than
others. The information in the bookings table is encoded in a highly
compressed way (using flags and fixed-length codes) so that the
size of the database is only 300 GB (without indexes) and easily fits
into main memory. Unfortunately, System D and System M were
not able to execute the temporal aggregation queries on the full 2.4
Billion bookings; the queries timed out. As a result, we also carried
out experiments on a 1% subset of 24 Million bookings.

5.2.2 TPC BiH Benchmark
In order to focus better on the performance of temporal operators

and study a wider range of different kinds of temporal queries, we
used the TPC-BiH benchmark [14]. This benchmark also allowed
us to compare ParTime to the Timeline Index. We could not
implement the Amadeus workload with the Timeline Index because
the Amadeus workload requires a full-fledged database system with
comprehensive support for the SQL standard and our prototype
implementation of the Timeline Index does not have that. SAP is
currently working on an implementation of the Timeline Index for
HANA; however, that work has not yet been released.

Table 2 gives an overview of the queries of the TPC-BiH bench-
mark. All of these queries can be executed on all three systems
and with our implementation of the Timeline Index. The most
relevant queries for this work are queries r1 to r4. These are four
different temporal aggregation queries that differ on whether they
aggregate over transaction time and business time and that vary the
time range. Queries r1 and r2 involve the whole database (without
any selection or window), similar to Examples 1 and 2 in Section
3. Queries r3 and r4 are windowed temporal aggregation queries,
similar to Example 3 in Section 3.
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Query Type Description

t2 Time Travel
What was the total revenue of all orders at a given
business time known as recorded at a certain
previous time in history?

t3_sys Time Travel
Compare the estimated revenue of the open orders
at a given business time recorded at two
different times in history?

t3_app Time Travel Compare the estimated revenue of the open orders
at two given business times?

t6_sys Time Travel What is the average revenue per customer over
business time, at a given time in history?

t6_app Time Travel What is the average order revenue per customer
over history at a given point in application?

t8 Time Travel For a given airline, how much time before
the departure is the booking done in average?

t9 Time Travel Flight Bookings per Point in System Time
(time interval)

k1_sys Key-in-TimeHow did a given order as it is valid at a certain
business time evolve in history?

k1_appKey-in-TimeHow did a given order as it is valid at a certain
system time evolve in history?

r1 Temp.Aggr. Which customers moved to US and still live there as
registered within full system time?

r2 Temp.Aggr. Which customers moved to US and still live there as
registered within full business time?

r3 Temp.Aggr. Which customers moved to US and still live there as
registered within a system time interval?

r4 Temp.Aggr. Which customers moved to US and still live there as
registered within a business time interval?

Table 2: TPC-BiH Queries

The TPC-BiH benchmark database is created using the TPC-
H benchmark database as a starting point (Version 0) and then
running TPC-C style transactions in order to generate versions
of the database. Each transaction creates a new version of the
database. Like TPC-H, the TPC-BiH benchmark specifies a scaling
factor that determines the size of the database. We used SF=1 to
generate a small database of 5 GB of raw data (without indexes)
and SF=100 for a large database of 312 GB of raw data. Systems
D and M timed out for almost all queries on the large database so
we only show the results for those systems on the small database.

5.3 Amadeus Workload

5.3.1 Exp 1: No Sharing, Small Database
Figure 12 shows the throughput of Systems D, M, and Crescando

with ParTime for the Amadeus workload. For this experiment, we
used a read-only variant of the Amadeus workload. That is, we
replayed the queries from the traces we got from the airline reser-
vation application and did not replay the updates. Furthermore, we
used a small subset of the original booking database (24 Million
bookings, 3 GB) because the temporal aggregation queries timed
out for Systems D and M on the full 300 GB data set. Our baselines,
Systems D and M, used all 32 cores throughout this experiment;
both systems showed robust performance with 32 cores and we
could not find a good way to vary the number of cores for these
systems. For Crescando with ParTime, we varied the number of
cores in order to see how it scales with the number of cores. In
order to better compare ParTime with Systems D and M in this
initial experiment, we ran Crescando in the No sharing mode. (The
next subsection studies the importance of shared scans.)

Figure 12 shows that System M has the highest throughput and
ParTime beats System D, even if ParTime runs only on two cores
and System D runs on 32 cores. To better understand these results,
Figure 13 shows the response times of two representative temporal
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Figure 12: Tput: Amadeus, Small DB, Vary Cores, No Sharing

aggregation queries (Fig. 13a) and two non-temporal queries (Fig.
13b) of the Amadeus workload. It becomes clear that Crescando is
one order of magnitude better than both System D and System M
for the temporal aggregation queries; that is the effect of ParTime.
Yet, Crescando is several orders of magnitude worse for the non-
temporal queries for which ParTime obviously does not matter.
Since the non-temporal queries are much more frequent than the
temporal aggregation queries, System M outperforms Crescando
in this experiment. Systems D and M outperform Crescando for
the non-temporal queries because Systems D and M make use of
indexes. In contrast, Crescando had to rely on a table scan for
each query in this experiment which obviously resulted in poor
single-query performance. Our decision to run Crescando without
indexes becomes clearer in the next subsection when we show the
effect of shared scans and one of the main results of this paper:
ParTime helps Crescando to sustain real world workloads that no
other database can handle today.

5.3.2 Exp 2: The Importance of Sharing
Figure 14 shows the throughput of Crescando (with and without

shared scans) for the (read-only) Amadeus workload and the full
database (i.e., all 2.4 Billion bookings and all their versions). No
other database system that we are aware of can sustain this work-
load. Even though rare, the temporal aggregation queries consume
so many resources in Systems D and M that the throughput virtually
drops to zero. To make things worse, these temporal aggregation
queries time out in Systems D and M.

Of course, ParTime’s ability to process temporal aggregation
queries efficiently is critical for the Amadeus workload. What
this experiment, however, also demonstrates is another critical
strength of ParTime: ParTime co-exists nicely with traditional
(non-temporal) query processing techniques as part of a shared
scan. Ultimately, that is the key to the success of ParTime for
this real-world workload. With every scan through the booking
table, Crescando processes a batch of up to 2000 queries. Some
of these queries are cheap range queries, some of these queries
are more expensive non-temporal queries, and some of them are
expensive temporal aggregation queries. Unlike for Systems D
and M, however, the expensive temporal aggregation queries do
not slow down everybody else with ParTime. Instead, the shared
scan seamlessly executes Step 1 of the ParTime algorithm. Step
2 is then carried out on dedicated aggregator nodes, again without
hurting the performance of other concurrent queries.

Figure 14 also shows how nicely ParTime and Crescando scale
with the number of cores. With 32 cores, the throughput is roughly
15 times as high as with 2 cores. This observation is true for
Crescando in both modes. By increasing the number of cores,
the size of the partition handled by each storage node gets smaller
and the shared scan on each partition correspondingly requires less
time. With two cores, for instance, there is only one storage node
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Figure 13: Resp. Time (logscale): Amadeus, Small DB, 32 Cores (Selected Queries)
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(and one aggregator node) and that storage node handles the whole
300 GB database. With 30 cores, there are 15 storage nodes and
each storage node needs to scan only 20 GB of data for every batch
of queries.

To demonstrate the speed-up of ParTime for the temporal ag-
gregation queries of the Amadeus workload, Figure 15 shows the
response time of two selected queries with a varying number of
cores. These are the same queries shown in Figure 13(a). The figure
shows that ParTime has almost linear speed-up for both queries
up to sixteen cores. Section 5.4 revisits the effects of parallelism
and presents more response time results for a more diverse set of
temporal queries of the TPC-BiH benchmark.

5.3.3 Exp 3: Updates
Experiments 1 and 2 studied the Amadeus workload without any

updates; i.e., read-only workloads. Figure 16 shows the throughput
of Crescando for the full Amadeus workload including 250 updates
per second. For this experiment, we used the complete Amadeus
database with 2.4 Billion bookings.

Figure 16 shows that Crescando requires at least 18 cores to
sustain this workload. With less than 18 cores, Crescando requires
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Figure 16: Tput: Amadeus, Large DB, 250 Upd/sec, Vary Cores

all the resources to process the updates and has no more capacity
to process any queries. Neither System D nor System M are able to
sustain this workload, even with 32 cores and the whole database
residing in main memory.

Overall, this experiment confirms the most important findings
of Experiments 1 and 2: ParTime helps to handle workloads that
traditional database systems cannot sustain. It is the seamless
integration of processing temporal aggregation queries with Par-
Time into regular query processing and shared scans that makes
the difference. The presence of updates does not change this
basic observation. Update-intensive workloads, however, are a
show-stopper for the Timeline Index, the best known approach to
process temporal aggregation queries. Specifically studying the
performance of ParTime vs. Timeline Index for temporal queries is
the subject of the next set of experiments.

5.4 TPC-BiH Benchmark

5.4.1 Exp 4: Overview
Figures 17 and 18 give the results of Systems D, M, and ParTime

for the queries of the TPC-BiH benchmark. Furthermore, these
figures contain results for the Timeline Index which is directly
applicable to the queries of the TPC-BiH benchmark. Again, the
Timeline Index is not a good fit for the Amadeus workload because
updates are extremely expensive and most queries of the Amadeus
workload are non-temporal and the Timeline Index is not applicable
to those queries. Furthermore, our prototype implementation of the
Timeline Index was not comprehensive enough to execute all the
queries and updates of the Amadeus workload.

For ParTime, we studied the response time with 2 cores (1
storage node, 1 aggregator) and with 31 cores (30 storage nodes,
1 aggregator). Systems D and M used all 32 cores in these exper-
iments. We only show results for Systems D and M for the small
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Figure 17: Resp. Time: TPC-BiH, Small DB (SF=1)
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Figure 18: Resp. Time: TPC-BiH, Large DB (SF=100)

TPC-BiH database (Figure 17) because Systems D and M timed
out for all queries and a large TPC-BiH database (Figure 18).

Overall, these experiments confirm all expectations. The Time-
line Index is the clear winner because it precomputes all temporal
information and, thus, makes the execution of temporal queries
extremely fast. System D performs worst because it is a disk-based
database system and cannot compete with main-memory database
systems even if all the data is kept in the main-memory buffers
of System D. ParTime with 31 cores outperforms System M with
32 cores because of the effectiveness of the ParTime algorithm.
System M with 32 cores, however, outperforms ParTime with only
2 cores because in that configuration ParTime has no advantage
from its parallelization as it runs on only one storage node.

The most interesting observation from this experiment can be
made by comparing Figures 17 and 18 and focusing on the results
for ParTime with 30 cores (the dark blue bars) and the Timeline
Index (the red bar). We can see a good example for Amdahls
law. For the small database (Figure 17), the difference between
ParTime and the Timeline Index is huge: For such a small database,
parallelization does not buy us much because there are a number of
query processing steps that cannot be parallelized (including Step 2
of the ParTime algorithm in our implementation) and that dominate
the response time. For the large TPC-BiH database (Figure 18), the
dark blue and red bars are almost the same. Here, the parallelism
of ParTime pays back because these queries involve scanning large
volumes of data. The amazing result is that parallelization is
(almost) as good as pre-computation for such large data sets. We
demonstrate this effect in more detail in the next experiment.

5.4.2 Exp 5: Parallelization
Figure 19 shows the response time of the ParTime algorithm for

two selected TPC-BiH queries, r2 and r4, with a varying number
of cores on the large TPC-BiH database (SF=100, 320 GB of raw
data). r2 is a full temporal aggregation over the whole database
on business time. r4 is a windowed temporal aggregation over the
whole database on business time.

As expected, r4 scales almost linearly up to 16 cores (15 storage
nodes, 1 aggregator). After that, it flattens out because of Amdahl’s
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Figure 19: Resp. Time: TPC-BiH, Large DB, Vary Cores

law. For a larger database, this flattening would happen later, with
more than 16 cores. This experiment confirms the results of Figure
14 and the scalability of the ParTime algorithm for the temporal
queries of the Amadeus workload. The interesting observation
is that due to parallelization, ParTime is competitive with the
Timeline Index for r4, even though ParTime does not precompute
anything and needs to scan the whole temporal table in order to
compute the temporal aggregation.

The second somewhat disappointing result of Figure 19 is that
the ParTime algorithm gets worse for r2 and a growing number
of cores. The main reason for that is that the result set of this
query is huge: The query result has roughly the same size as
the whole temporal table. Partitioning the data does not help for
this query because each partition generates a very big delta map
independent of the granularity of the partition; again in the order of
the size of the whole base table. With two storage nodes (3 cores),
for instance, each storage node generates a big delta map and the
aggregator in Step 2 merges two big delta maps each approximately
the size of the base table. With ten storage nodes (11 cores), each
storage node again generates a big delta map and the aggregator
merges ten big delta maps that have the size of the whole base table
each. Clearly, this bad behavior is an artifact of Query r2 of the
TPC-BiH benchmark which tests a specific corner case in which
the temporal aggregation query virtually does not aggregate any
data. Fortunately, such queries are rare in practice.

In summary, these experiments show that the degree of paral-
lelism needs to be optimized and controlled with ParTime. As
explained in Section 4, Crescando does not provide this flexibility
due to its specific architecture. Other parallel database systems,
however, might be able to take advantage of this additional opti-
mization opportunity for ParTime.

5.5 Exp 6: Memory Consumption
One benefit of ParTime is that it does not need any indexes to

do efficient query processing. As pointed out earlier, this allows
for higher update performance. Another positive effect is that
ParTime has a lower memory footprint than all the other approaches
that we studied. In most data centers, main-memory footprint
translates directly to cost for energy and investments into machines.
Table 3 summarizes this result for the TPC-BiH database with
scaling factor SF=1. Only System M beats ParTime in terms of
memory footprint. The reason is that System M has much better
compression than Crescando as it is the more mature main-memory
database system. The Timeline Index incurs a storage overhead of
almost 30 percent.

5.6 Exp 7: Bulkload Times
We also evaluated the time it takes to load the data into the

system. This includes parsing of the data which was initially stored
in a simple text file. Even for this relatively small data set of the
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System Size (GB)
Uncompressed Table 2.3
ParTime 2.3
Timeline 3.0
System D 2.5
System M 2.1

Table 3: Memory Consumption, Small DB (SF=1)

System Time (minutes)
ParTime 2.5
Timeline 4
System D 220
System M 962

Table 4: Bulkload Time, Small DB (SF=1)

TPC-BiH benchmark with SF=1 (i.e., 2.3 GB), Systems D and
M take a considerable amount of time. The problem is missing
support for bulkloading temporal data. These systems are much
more efficient in bulkloading non-temporal data. Crescando, in
contrast, is quite fast because it bulkloads temporal data in the
same way as non-temporal data. The temporal columns are no
different than any other column and Crescando creates no data
structures that are specific to temporal data. The Timeline Index
can be constructed very fast for this small data set; however, for
SF=100, it takes more than seven hours to create the Timeline Index
and its storage structures whereas it takes only about three hours to
bulkload the large TPC-BiH database into Crescando.

6. CONCLUSION
This paper presented ParTime, a parallel temporal aggregation

algorithm. ParTime is based on a two step approach. In the first
step, the temporal data is scanned, thereby computing the affects
of each row in the form of deltas. In the second step, the deltas
are merged to compute the result. The first step is embarrassingly
parallel. The second step is more difficult to parallelize and we
did not parallelize it in our implementation because it is typically
cheap. Our experimental results showed that ParTime can achieve
linear speed-ups for most queries found in practice. Furthermore,
ParTime outperforms any existing algorithm that is not based on
pre-computation. With sufficient parallelism, ParTime is even
competitive to an approach that is based on a materialized temporal
view (i.e., the Timeline Index). In addition to the general ParTime
algorithm, this paper presented an important optimization that is
applicable to a large class of temporal aggregation queries, so-
called windowed temporal aggregation queries.

Arguably, parallelization is the most important feature of Par-
Time. In addition, ParTime has a number of other advantages.
One of the most important advantages is that the first step of the
ParTime algorithm integrates nicely into a shared scan. We ex-
ploited this feature and integrated ParTime in Crescando, a parallel
main-memory database system that relies heavily on shared scans.
This way, Crescando with ParTime was able to handle a complex
workload from the travel industry with complex temporal aggregate
queries and high update rates. To date, no other system is able to
sustain this workload. The only way to implement this workload
today is to split the workload and to carry out the temporal queries
in a separate data warehouse.

There are a number of possible avenues for future work. First,
we would like to generalize the ParTime technique and apply it
to other temporal operators; e.g., temporal joins. Second, weplan
to investigate how ParTime can co-exist with indexes such as the

Timeline Index; for instance, would it be possible to partially index
historic data that is not updated and to apply ParTime only to fresh
and recently appended data in a hybrid way. Third, we would like
to develop a cost model in order to compute the optimal degree of
parallelism for ParTime.

7. REFERENCES
[1] M. Al-Kateb et al. Temporal query processing in Teradata. In EDBT,

2013.
[2] B. Becker et al. An asymptotically optimal multiversion B-Tree.

VLDB J., 1996.
[3] M. H. Böhlen, J. Gamper, and C. S. Jensen. Multi-dimensional

Aggregation for Temporal Data. In EDBT, 2006.
[4] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Temporal statement

modifiers. ACM Trans. Database Syst., 25(4), 2000.
[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture

Optimized for the New Bottleneck: Memory Access. In VLDB, 1999.
[6] G. Candea, N. Polyzotis, and R. Vingralek. A Scalable, Predictable

Join Operator for Highly Concurrent Data Warehouses. PVLDB,
2009.

[7] G. DeCandia et al. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

[8] D. Gao et al. Main Memory-Based Algorithms for Efficient Parallel
Aggregation for Temporal Databases. Distributed and Parallel
Databases, 16(2), 2004.

[9] J. A. G. Gendrano et al. Parallel Algorithms for Computing Temporal
Aggregates. In ICDE, 1999.

[10] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing One
Thousand Queries With One Stone. PVLDB, 5(6), 2012.

[11] G. Graefe, A. Linville, and L. D. Shapiro. Sort versus hash revisited.
IEEE Trans. Knowl. Data Eng., 6(6), 1994.

[12] L. M. Haas et al. Extensible query processing in starburst. In
SIGMOD, 1989.

[13] M. Kaufmann et al. Timeline Index:A Unified Data Structure for
Processing Queries on Temporal Data in SAP HANA. In SIGMOD,
2013.

[14] M. Kaufmann et al. TPC-BiH: A Benchmark for Bi-Temporal
Databases. In TPCTC, 2013.

[15] M. Kaufmann et al. Bi-temporal timeline index: A data structure for
processing queries on bi-temporal data. In ICDE, 2015.

[16] N. Kline and R. T. Snodgrass. Computing Temporal Aggregates. In
ICDE, 1995.

[17] L. Lamport. Using Time Instead of Timeout for Fault-Tolerant
Distributed Systems. ACM Trans. Program. Lang. Syst., 6(2), Apr.
1984.

[18] D. B. Lomet and B. Salzberg. Access methods for multiversion data.
In SIGMOD, 1989.

[19] M. A. Nascimento et al. M-IVTT: An Index for Bitemporal
Databases. In DEXA, 1996.

[20] L. Qiao et al. Main-memory scan sharing for multi-core CPUs.
PVLDB, 1(1), 2008.

[21] R. Rajamani. Oracle Total Recall / Flashback Data Archive.
Technical report, Oracle, 2007.

[22] B. Salzberg and V. J. Tsotras. Comparison of Access Methods for
Time-Evolving Data. ACM Comput. Surv., 31(2), 1999.

[23] C. M. Saracco, M. Nicola, and L. Gandhi. A Matter of Time:
Temporal Data Management in DB2 10. Technical report, IBM,
2012.

[24] R. T. Snodgrass et al. TSQL2 Language Specification. SIGMOD
Record, 23(1), 1994.

[25] P. Unterbrunner et al. Predictable Performance for Unpredictable
Workloads. PVLDB, 2(1), 2009.

[26] D. Zhang et al. On Computing Temporal Aggregates with Range
Predicates. ACM Trans. Database Syst., 33(2), 2008.

[27] M. Zukowski et al. Cooperative Scans: Dynamic Bandwidth Sharing
in a DBMS. In VLDB, 2007.

1010




