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ABSTRACT
Nowadays microblogging sites, such as Twitter and Chinese Sina
Weibo, have established themselves as an invaluable information
source, which provides a huge collection of manually-generated
tweets with broad range of topics from daily life to breaking news.
Entity linking is indispensable for understanding and maintaining
such information, which in turn facilitates many real-world appli-
cations such as tweet clustering and classification, personalized mi-
croblog search, and so forth. However, tweets are short, informal
and error-prone, rendering traditional approaches for entity link-
ing in documents largely inapplicable. Recent work addresses this
problem by utilising information from other tweets and linking en-
tities in a batch manner. Nevertheless, the high computational com-
plexity makes this approach infeasible for real-time applications
given the high arrival rate of tweets. In this paper, we propose an
e�cient solution to link entities in tweets by analyzing their social
and temporal context. Our proposed framework takes into con-
sideration three features, namely entity popularity, entity recency,
and user interest information embedded in social interactions to
assist the entity linking task. E↵ective indexing structures along
with incremental algorithms have also been developed to reduce
the computation and maintenance costs of our approach. Experi-
mental results based on real tweet datasets verify the e↵ectiveness
and e�ciency of our proposals.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and Retrieval—
Information Search and Retrieval

General Terms
Algorithms; Experimentation

Keywords
Microblog entity linking; Social temporal context; Entity popular-
ity; Entity recency; User interest
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1. INTRODUCTION
Twitter1, an online social networking and microblogging service,

has attracted worldwide attention since its birth in March 2006.
With more than 500 million registered users in 2012, it received
over 340 million tweets per day2 about topics ranging from daily
life to breaking news. This huge collection of tweets make Twitter
an invaluable information source, as well as a platform to maintain
social interactions. Obviously, a better understanding of the con-
tent published on Twitter can benifit many real-world applications
such as tweet clustering and classification, personalized microblog
search, and so forth.

Consider microblog search as a motivation example throughout
the paper. One of the most important issues faced by microblog
search is entity ambiguity. Teevan et al. [1], based on analysis on
large-scale query logs, observed that users search Twitter mostly
to find information about breaking news or people of interest (e.g.,
celebrities), both of which involve named entities. Meanwhile, ac-
cording to the statistics of a randomly sampled and manually an-
notated tweet corpus used in [2], about 45.08% of tweets have at
least one named entity mention. In short, queries and tweets are full
of named entities that, however, are usually ambiguous in practice,
i.e., the same entity mention can correspond to multiple real-world
entities. Therefore identifying the exact references for named en-
tities can bring tremendous benefit to improving the accuracy and
user experience of microblog search. Consider the example shown
in Fig. 1, wherein the leftmost part are entity mentions occurring
in tweets (e.g., “Jordan”), in the middle are named entities in a
knowledgebase (e.g., Jordan (country), Air Jordan, Michael Jor-
dan (basketball), and Michael Jordan (machine learning expert)),
and each user ui posts multiple tweets dj at time t j. Given a query
with some entity mentions (e.g., “Jordan”), if we can successfully
link them to the right entities (e.g., Michael Jordan (basketball)),
the corresponding tweets (e.g., d5, d13 and d15) can be retrieved as
the personalized search result. As we will show shortly, the per-
formance of existing entity linking methodologies still needs to be
improved, which is the focus of this work.

Next we will first review the state-of-the-art development in en-
tity linking problem with a brief summary of di↵erences between
our proposal and existing approaches, and then bring out the chal-
lenges and our contributions.

1.1 Literature of Entity Linking
Entity linking is a task of automatically linking entity mentions

to real-world entities stored in large-scale machine-understandable
knowledgebases (e.g., Wikipedia3). Recently, significant progresses
1
https://twitter.com/

2
http://en.wikipedia.org/wiki/Twitter

3
http://www.wikipedia.org/
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Figure 1: Entity linking for personalized microblog search.

have been achieved in linking named entities detected from Web
documents with knowledgebases [3, 4, 5, 6, 7, 8, 9]. Many of
them [3, 4] measure mention-entity correspondence by context sim-
ilarity, i.e., similarity between text around the entity mention and
the document describing the entity in a knowledgebase. However,
tweets in microblogging sites are usually too short to have su�-
cient information to calculate context similarity accurately, which
leads to unsatisfactory performance. Other approaches [5, 6, 7, 8,
9] assume that entities mentioned in a single document are likely to
be topically coherent, and can collectively link mentions in a doc-
ument by considering the interdependence between corresponding
entities. Nevertheless, in the microblogging environment, there are
usually too few available mentions to derive a joint and interdepen-
dent entity assignment due to the word limitation per tweet.

Recently, increasing attention has been paid to entity linking in
short texts like tweets [10, 11, 12, 2, 13]. Regardless of their im-
provements over methods that link entities in a single tweet by con-
sidering topical coherence [14], these approaches are still not flaw-
less. First, most of them [11, 12, 2] utilise information obtained
from other tweets, and disambiguate entity mentions in these tweets
collectively. They leverage the feature that Twitter users are con-
tent generators and hence their interest, which is helpful for entity
linking, might be scattered in messages they broadcast. However,
the topics of users’ tweets vary significantly, making it di�cult to
detect user interest from such a diverse stream of tweets. Moreover,
a large amount of Twitter users are information seekers (rather than
content generators) who rarely tweet [15], which also increases the
di�culty of learning their interest. Second, some work [13] en-
riches contextual information of tweets with knowledge from ex-
ternal sources such as Web documents. While such a strategy is
feasible in an o✏ine setting, it cannot handle the online tasks such
as microblog search where thousands of tweets per second are to be
processed in real time. Last but not least, none of them considers
the popularity and recency of entities, which are important for cap-
turing the dynamic nature of microblogging environment. In other
words, their approaches always link Michael Jordan in queries or
tweets issued by a user interested in computer science to Michael
Jordan (machine learning expert). This is obviously unreasonable,

since Michael Jordan (basketball) is so popular and well-known
that even machine learning experts sometimes talk about him. Fur-
thermore, users’ interest can be influenced by recent events and
change over time. For example, Michael Jordan (basketball) is
more likely to be mentioned during NBA seasons while Michael
Jordan (machine learning expert) is probably a better candidate en-
tity when ICML (International Conference on Machine Learning)
is being held.

Our proposed method di↵ers from existing approaches mainly in
the following aspects.

• Instead of estimating user interest from her broadcasting his-
tory that is widely adopted in existing content-based meth-
ods, we resort to social interactions between users, namely
the followee-follower relationship. This avoids the di�culty
and inaccuracy of modeling user interest from limited amount
of tweets with diverse topics.

• We propose a novel feature, entity recency, to model the
evolving user interest influenced by recent events in the real
world, which is important to capture the dynamic nature of
microblogging sites.

• Di↵erent from existing collective entity linking methods, our
framework links entities independently without considering
any intra-tweet or inter-tweet relationships. This makes our
approach much more e�cient and suitable for online appli-
cations with real-time requirement.

1.2 Challenges and Contributions
In this paper, we propose to disambiguate entity mentions de-

rived from microblog queries or tweets by leveraging several con-
textual information, namely user interest, entity popularity, and en-
tity recency. In order to maintain the accuracy and e�ciency of our
framework, we need to overcome several challenges as elaborated
in below.
Challenge 1. The first challenge is concerned with measuring
user interest by social interactions. After o✏ine entity linking us-
ing state-of-the-art approaches [2], entities in the knowledgebase
are linked to tweets along with their timestamps and authorship.
In other words, each entity is complemented with a community,
namely a collection of users mentioning that entity. For example in
Fig. 1, the communities associated with Michael Jordan (basket-
ball) and Michael Jordan (machine learning expert) are {u3, u7, u9}

and {u6} respectively. Therefore, measuring a user’s interest in a
candidate entity is equivalent to measuring her interest in the cor-
responding community. A straightforward method to estimate a
user’s interest in a community is to check her reachability with ev-
ery user in that community through her social network. However,
this approach has several drawbacks. First, conventional reacha-
bility test only considers connectivity between users. The small-
world theory indicates that users in Twitter can reach each other
within 4.12 hops in average [16], implying that just “reachable”
does not mean “interested”. Second, it is unreasonable to treat
users in a community equally, since di↵erent people have di↵er-
ent influences to a community, and a user’s interest in influential
people contributes more to her interest in that community. Third,
reachability test between random users is time consuming in large-
scale followee-follower network. Fourth, it is very expensive to
aggregate reachability between the target user and every other user
in a community, given that communities associated with popular
entities are extremely large.
Contribution. To tackle the first challenge, we propose a novel
concept of weighted reachability to model a user’s personal interest
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in others. Instead of merely checking whether a path exists between
two users, we also consider the number of paths in-between as well
as the length of each path. We design indexing structures along
with incremental algorithms to reduce the time cost for weighted
reachability evaluation over the entire followee-follower network.
Moreover, e↵ective ways to estimate user influence in a community
and incorporate it into measuring a user’s interest in that commu-
nity are also proposed.
Challenge 2. The second challenge is related to gathering entity
recency from tweets. Entity recency is modeled by a burst of tweets
talking about that entity during recent time period. In other words,
entity recency represents an entity’s recent popularity, so it is in-
feasible to pre-calculate and store entity recency o✏ine. Another
issue concerning entity recency estimation is that recency could be
reinforced between related entities. For example, there might not
be any tweets about Michael Jordan (machine learning expert) at
the beginning of ICML. However, the possibility that users search
for or tweet about Michael Jordan (machine learning expert) in the
near future cannot be ignored. It is quite challenging to develop an
e�cient algorithm to evaluate entity recency on-the-fly while tak-
ing their mutual reinforcement into consideration. We capture this
phenomenon with recency propagation, through which any change
in some entity’s recency can a↵ect many other related ones.
Contribution. To cope with above challenge, we measure topi-
cal relatedness between entities based on their hyperlinks in the
knowledgebase, with the rational that highly related entities should
propagate recency to each other in a larger extent. To overcome
the e�ciency issue, we detect clusters of entities with strong con-
nection, and ignore recency propagation between less relevant ones
to avoid expensive recency di↵usion. A PageRank-style algorithm
has been proposed to conduct recency propagation, which can in-
corporate both recency gathered from underlying tweets and that
reinforced by other highly related entities.

The rest of this paper is organized as follows: in Sec. 2, we
briefly summarize development in the literature of graph reach-
ability which is quite related with our work; then we define the
problem of entity linking formally in Sec. 3, along with a brief in-
troduction of notations adopted in this work; our approaches and
experiments are described in Sec. 4 and Sec. 5 respectively, fol-
lowed by a conclusion and discussion of future work in Sec. 6.
The appendix includes a more detailed review of existing work on
named entity recognition, two theorem proofs, dataset descriptions
and two additional sets of experiments. At the end we also put a
discussion about the issues of handling new entities/meanings and
our thoughts of preliminary solution.

2. RELATED WORK
Reachability (Shortest Path Distance) Queries. One of the

most important research topics related to our work is the reachabil-
ity (shortest path distance) between two nodes over a network. Ex-
isting approaches to reachability checking trade-o↵ between query
e�ciency and indexing cost, and thus can be classified into three
categories: online search, transitive closure, and 2-hop labeling.

To determine reachability between two nodes u and v, the online
search approach traverses from u to v using breadth- or depth-first
search over the network G. This incurs O(|E|) cost of query pro-
cessing time, where |E| is the number of edges contained in G. Lots
of e↵orts [17, 18, 19] have been devoted to pruning the search space
of BFS or DFS by pre-computing certain auxiliary information on
G. For example, GRAIL [19] assigns each node in G with an inter-
val such that u cannot reach v if u’s interval does not fully contain
v’s interval. Given a reachability query from u to v, the algorithm
starts DFS from the source node u and avoids visiting nodes whose

interval does not cover that of the terminal node v, since they can
never reach v. In spite of these pruning strategies, the online search
approach still takes much more time than methods in the other two
categories, making it inapplicable to real-time applications where
query e�ciency is a major concern.

The transitive closure approach [20, 21, 22, 23, 24, 25, 26], on
the contrary, answers reachability queries within constant time. For
each node u in G, it pre-calculates and maintains on disk a collec-
tion of all nodes that u can reach, namely a transitive closure. In
this way, the algorithm determines reachability from u to v simply
by checking whether (u, v) exists in the transitive closure matrix
of the network. Obviously, the transitive closure approach is quite
e�cient, but it results in significant pre-computation and high stor-
age consumption, and hence cannot easily scale to large networks.
However, such an approach is still useful in situations where query
e�ciency is much more critical than storage consumption, as long
as e�cient algorithms can be proposed to reduce pre-computation.

To the best of our knowledge, 2-hop labeling approach [27, 28,
29, 30, 31, 32, 33, 34] is the most widely-adopted indexing scheme
for reachability queries on large networks. It targets on designing
indexes to reduce the space consumption of transitive closure and
at the same time answer reachability queries e�ciently. Typically,
a 2-hop cover of a network G = (V, E) consists of two label sets
{Lin(v)}v2V and {Lout(v)}v2V , where Lin(v) (resp. Lout(v)) represents
the collection of nodes that can reach v (resp. nodes reachable from
v). For any two nodes u and v, u can reach v if and only if Lout(u)\
Lin(v) , ;. Therefore, a reachability query can be answered within
linear time by checking the intersection of the source node’s out-
label set and the terminal node’s in-label set. Obviously, the 2-
hop labeling approach also provides satisfying query e�ciency, and
thus can be regarded as a wonderful alternative for the transitive
closure method when storage is limited.

3. PROBLEM STATEMENT
In this section, we briefly introduce some basic concepts and no-

tations employed in the remaining of the paper, as well as a formal
definition of entity linking. After that, we present an overview of
our framework to entity linking. Table 1 summarizes major nota-
tions used in the paper.

Table 1: Summary of notations.
Notation Definition

m entity mention
e entity
Em candidate entity set of mention m
d tweet with timestamp d.t and author d.u
De tweets linked to entity e
Ue community associated with entity e

In f (u,Ue) user u’s influence in community associated with entity e
R(u, v) weighted reachability between users u and v

S in(u, e) user u’s interest in entity e
S p(e) popularity score of entity e
S r(e) recency score of entity e

3.1 Preliminary and Problem Definition

Definition 1 (Entity). An entity e corresponds to a real-world
object which exists in itself.

Definition 2 (Mention). A mention m is a sequence of words
extracted from text and referring to some entities.
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Mentions are ambiguous while entities are unique, meaning that
there exists many-to-many correspondence between mentions and
entities. Specifically, A mention can refer to multiple entities. In
Fig. 1, “Jordan” is a mention of Jordan (country), Air Jordan,
Michael Jordan (basketball), and Michael Jordan (machine learn-
ing expert) as well. Meanwhile, an entity might have multiple men-
tions corresponding to it. For example, both “NYC” and “The Big
Apple” can refer to the entity New York City. To resolve such a
many-to-many correspondence between mentions and entities, en-
tity linking is required.

Definition 3 (Entity Linking). Entity linking is the task of de-
termining the most probable entity e⇤ for a mention m.

A typical strategy adopted by existing work on entity linking
[3][4][5][6][7][8][9][10][11][12][2][13] includes two steps:

1. Candidate Generation. Given a mention m, a candidate entity
set Em is generated where each ei 2 Em is a possible entity that m
might refer to. In Fig. 1, the candidate entity set of “Jordan” is
EJordan ={Jordan (country), Air Jordan, Michael Jordan (basket-
ball), Michael Jordan (machine learning expert)};

2. Scoring and Ranking. For each entity in the candidate entity
set ei 2 Em, a score S (ei) is calculated based on features which are
application-dependent sometimes. After that, the most probable
entity e⇤ is determined directly according to the ranking of scores.

Our focus in this work is how to calculate scores of entities in
the candidate entity set, in order to achieve a reasonable ranking of
candidate entities. we will briefly describe our approach to candi-
date generation in the next subsection. One thing to note is that a
knowledgebase is required to enable machines to generate candi-
date entities automatically.

Definition 4 (Knowledgebase). A knowledgebase K is a col-
lection of mentions and entities along with mappings between them.

Definition 5 (Complemented Knowledgebase). A complemented
knowledgebase K0 is a knowledgebase where each entity is associ-
ated with a list of tweets mentioning that entity along with their
timestamps and authors, as illustrated in Fig. 1.

We have discussed in Section 1.1 that the most important fea-
tures for entity linking in Web documents are contextual similarity
and topical coherence. Wikipedia, which is also the knowledge-
base adopted in our work, is su�cient to provide these statistical
information. However, queries and tweets are naturally short and
informal, making both contextual similarity and topical coherence
inapplicable. One of the most notable contributions of our work is
that we propose new and e↵ective features, namely user interest by
social interactions, entity popularity and entity recency, which we
believe are better options for entity linking in queries and tweets.
In order to calculate these features, the original Wikipedia requires
to be complemented with additional knowledge. Specifically, we
pre-process a collection of tweets using current state-of-the-art ap-
proach to entity linking [2], and complement each entity in Wiki-
pedia with a list of tweets mentioning that entity along with their
timestamps and authors. We denote the collection of tweets linked
to entity e asDe. Fig. 1 illustrates part of the complemented knowl-
edgebase, where tweets associated with entities e1 = Michael Jor-
dan (basketball) and e2 = Michael Jordan (machine learning ex-
pert) are De1 = {d5, d13, d15} and De2 = {d14} respectively. In the
rest of this paper, we will use Knowledgebase and Complemented
Knowledgebase interchangeably whenever context is clear.

We also mentioned in Section 1.2 that social interaction between
users (i.e., followee-follower relationship) is a better choice to learn

user interest, compared with tweet history. Although topics of
users’ broadcastings range from daily activities to breaking news
and it is relatively di�cult to detect user interest from such a di-
verse stream of tweets, users subscribe to others largely based on
what they care. Therefore, a user’s interest in an entity can be mod-
eled as her interest in following users talking about that entity.

Definition 6 (Community). A community Ue is a collection of
users tweeting about a specific entity e, namely Ue = {d.u|d 2 De}

where d 2 De represents that tweet d is linked to entity e in our
complemented knowledgebase.

In Fig. 1, the communities associated with entities e1 = Michael
Jordan (basketball) and e2 = Michael Jordan (machine learning
expert) are Ue1 = {u3, u7, u9} and Ue2 = {u6} respectively.

3.2 Framework Overview
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Figure 2: Framework overview.

Fig. 2 illustrates the framework of our prototype system for en-
tity linking, which consists of two parts: o✏ine knowledge acquisi-
tion and online inference. The workflow of our system is as below:

3.2.1 Offline Knowledge Acquisition
This module complements the original knowledgebase (Wiki-

pedia) by pre-processing a set of tweets using current state-of-the-
art approach to entity linking [2], and associating each entity in the
knowledgebase with a list of tweets mentioning that entity along
with their timestamps and authors, as demonstrated in Fig. 1. Af-
ter that, it harvests essential knowledge which will be used during
online inference.

Collective entity linking. [2] conducts entity linking in a batch
manner. It assumes that each microblog user has an underlying in-
terest distribution over named entities. Therefore, the intra-tweet
entity relatedness and the inter-tweet user interest information can
be integrated into a unified graph-based framework for collective
entity linking. Specifically, given a set of entity mentions derived
from all tweets posted by a user, it first constructs a graph be-
tween candidate entities where edge weights are calculated using
the Wikipedia Link-based Measure (WLM) described in [35]. Then
it estimates an initial interest score for each entity by consider-
ing its popularity, context similarity, as well as topical coherence,
and employs a PageRank-like algorithm to propagate user interest
from one entity to another. Finally, entities with the largest interest
scores are regarded as the entity linking results.

Knowledge acquisition. We collect three types of knowledge
during this process, namely weighted reachability between users,
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collections of most influential users broadcasting about each entity,
and topical relatedness between entities. In this work, we deter-
mine a user’s interest in an entity e by considering her interest in
following the community broadcasting about e, namely Ue. This
requires a reachability checking between the target user and users
in Ue. In order to improve e�ciency, we identify a set of most
influential users for each community and check reachability only
with these users. We describe the details of reachability checking
and influential user detection in Sec. 4.1. Entity recency, which
is aggregated from associated tweets, is also important for entity
linking. We observe that recency can be propagated among related
entities. Therefore, we pre-calculate topical relatedness between
entities to facilitate recency propagation, as described in Sec. 4.2.

3.2.2 Online Inference
Given an entity mention along with its author, this module first

generates a collection of candidate entities. Then for each can-
didate, it calculates a score which is a combination of user inter-
est, entity popularity, and entity recency. Finally, it outputs a list
of top-k entities according to the estimated scores. One thing to
note is that our framework for entity linking can be easily designed
to support personalized microblog search. Specifically, if the in-
put entity mention comes from a keyword query, our system will
collect tweets linked to the top-k entities from the complemented
knowledgebase and regard them as answers to that query; but if the
entity mention is derived from a tweet, our system will interactively
consult users for the correctness of the top-k entities, and link the
tweet as well as its timestamp and author to each of the correct en-
tities in the knowledgebase, and update existing knowledge such as
user influences in the corresponding communities.

Candidate generation. Since this is not the focus of our work,
we simply adopt approaches proposed in previous work [9, 36]. In
particular, given an entity mention m, we generate a set of candidate
entities Em which might by referred to by m. To ensure flexibility,
our knowledgebase contains various surface forms of named en-
tities, such as name variations, nicknames, abbreviations, and so
forth, which are derived from Wikepedia’s entity pages, redirect
pages, disambiguation pages and hyperlinks in Wikipedia articles
(details described in [9]). For example in Fig. 1, if the entity men-
tion m matches knowledgebase entry “Jordan”, its candidate entity
set will be Em ={Jordan (country), Air Jordan, Michael Jordan
(basketball), Michael Jordan (machine learning expert)}. As we
know, queries and tweets are full of misspellings. Therefore, we
build a segment-based index on knowledgebase entries and adopt
fuzzy matching to obtain candidate entities based on edit distance
similarity (details described in [36]).

Scoring and ranking. The score of each candidate entity in
Em is a combination of user interest, entity popularity and entity
recency, namely:

S (e) = ↵ · S in(u, e) + � · S p(e) + � · S r(e) (1)

In Eq. 1, ↵+ �+ � = 1 are parameters indicating the importance of
each feature for entity linking, which can be manually set based on
experience or learned from labeled data. S in(u, e) measures user u’s
interest in entity e, and is calculated through reachability checking
between u and the most influential users in e’s community Ue. We
describe the details in Sec. 4.1. S r(e) is the recency score of entity
e, which will be discussed in Sec. 4.2. S p(e) is the popularity score
of entity e, and is calculated as follows:

S p(e) =
count(e)

P
ei2Em count(ei)

(2)

where count(e) is the number of tweets linked to entity e in the
knowledgebase, and Em is the candidate entity set of mention m.

4. METHODOLOGY
In this section, we describe some technical details in our frame-

work for entity linking, including estimation of user interest by so-
cial interactions, as well as calculation and propagation of entity
recency.

4.1 User Interest by Social Interactions
Traditional approaches to modeling user interest in microblog-

ging sites are basically content-based, by assuming that users’ in-
terest might be scattered in their broadcastings. However, the top-
ics of users’ tweets usually range from daily activities to break-
ing news, making it di�cult to detect user interest from such a di-
verse message stream. Furthermore, a large amount of microblog-
ging users are information seekers who tweet rarely, which also
enhances the di�culty to estimate their interest.

Fortunately, besides being content generators, microblogging users
are also social network members, and they subscribe to others largely
based on what they care. Therefore, we resort to social interac-
tions between users (i.e., the followee-follower relationship) in this
work, to avoid the di�culty and inaccuracy of modeling users’ in-
terest from their postings. In particular, we model a user’s interest
in an entity as her interest in following the community (i.e., the
collection of users) broadcasting about that entity.

4.1.1 Weighted Reachability Checking
A straightforward way to measure a user’s interest in a commu-

nity is to calculate the number of users she subscribes to in that
community, or in other words the proportion of overlapping be-
tween the community and her friend circle (i.e., followees). How-
ever, this naive method ignores users’ interest in people several
hops away. Such an indirect interest is also the motivation of friend
recommendation in microblogging sites. Therefore, a better ap-
proach is to consider average reachability from the target user to
people in the community through the directed followee-follower
network.

S in(u, e) = S in(u,Ue) =
P

v2Ue R(u, v)
|Ue|

(3)

In Eq. 3, S in(u, e) denotes user u’s interest in entity e, which is
transformed into u’s interest in the community associated with en-
tity e in our knowledgebase, namely S in(u,Ue). And R(u, v) denotes
reachability from user u to user v.

However, Conventional reachability only considers connected-
ness between two nodes over a network, which is di↵erent from
interestedness. The small-world theory guarantees that users in
Twitter can be reachable within 4.12 steps in average ([16]), but
it is obviously impossible for normal users to be interested in ev-
ery other user. In order to achieve a meaningful measurement of
users’ interest in subscribing to other users, reachability should
be weighted. We propose following heuristics:

• The shorter the distance from users u to v in the followee-
follower network, the higher the probability of u following
v;

• The larger the number of u’s followees who participate in
a shortest path from u to v, the higher the probability of u
following v.

The second heuristic formulates strength of connection between
users in the followee-follower network. Take 2-hop relationship
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as an example. If most of u’s followees subscribe to v, then u is
probably interested in following v. Based on these heuristics, we
define weighted reachability from u to v as follows:

R(u, v) =
1

duv
·

|Fuv|

|Fu|
(4)

In Eq. 4, Fu denotes the collection of users that u subscribes to (i.e.,
u’s followees), and Fuv represents u’s followees participating in at
least one shortest path from u to v. Formally, Fuv = {t|t 2 Fu ^ t 2
u {⇤ v}, where u {⇤ v is the set of shortest paths from u to v
whose length (i.e., number of edges in-between) is denoted as duv.

Extended Transitive Closure Framework
Since query e�ciency is a major concern when conducting entity
linking for personalized microblog search, we first assume access
to unlimited storage resource and extend the transitive closure ap-
proach [20, 21, 22, 23, 24, 25, 26] for weighted reachability check-
ing. Our focus here is to design algorithms to reduce time cost for
o✏ine pre-computation.

Obviously, a traverse over the entire followee-follower network
is required to calculate weighted reachability between each pair of
users. This is extremely time-consuming and thus unacceptable,
even if reachability is calculated o✏ine. In this work, we design
an incremental algorithm to improve e�ciency of reachability
checking, as illustrated in Algo. 1.

Algorithm 1 Incremental algorithm for extended transitive closure
Input:

G = (V, E) /*followee-follower network*/
H /*maximum number of hops*/

Output:
R /*weighted reachability matrix*/

1: Initialize each element of R
|V |·|V | as 0

2: for each e = (u, v) 2 E do
3: R(u, v) = 1
4: end for
5: for len=2:H do
6: for each u 2 V do
7: T = {t|R(u, t) = 1} /*followees of u*/
8: for each t 2 T do
9: Vt = {v|R(t, v) , 0} /*reachable from t in len � 1 hops*/

10: end for
11: V = hv, nvi /*nv is the number of Vt containing v*/
12: for each v 2 V do
13: if R(u, v) = 0 then
14: R(u, v) = 1

len ·
nv
|T | /*no shorter path from u to v, then update

weighted reachability*/
15: end if
16: end for
17: end for
18: end for

Our incremental algorithm works by increasing the number of
hops (i.e., the length of shortest path) one at a time. Given the
followee-follower network G = (V, E), we construct a matrix R

|V |·|V |
to maintain weighted reachability between each pair of users. We
traverse the network once and set reachability between connected
users as 1 (lines 2-4). For each user u, her followees can be eas-
ily obtained by searching for elements in the reachability matrix
R(u, ⇤) whose value is 1 (line 7). The key technique in this incre-
mental algorithm lies in how to determine whether a followee of
u (say t) participates in a shortest path from u to v, by leveraging
existing knowledge about reachability.

Theorem 1. There exists a len-hop shortest path from u to v
which passes through u’ followee t only if the shortest path dis-
tance from t to v is len � 1 hops.

According to Theorem 1, we can determine whether to insert t into
u’s followee set participating in the len-hop shortest path from u to
v simply by checking whether t can reach v within len � 1 hops (or
whether R(t, v) , 0 after the (len � 1)-th iteration). We collect such
followees, and update the weighted reachability matrix using Eq. 4
(lines 8-16).

Compared with the naive method which traverses the followee-
follower network for reachability checking between each pair of
users, our incremental algorithm directly or indirectly scans the
network only H (i.e., maximum number of hops) times. More
formally, the naive method needs to calculate pairwise weighted
reachability for O(|V |2) times, where |V | is the number of users in
the followee-follower network. For each reachability checking, it
uses a breadth-first search which traverses O(|E|) = O(|V |2) users.
Altogether, the time complexity of the naive method is O(|V |4). Our
incremental algorithm, on the other hand, can leverage existing in-
formation about reachability and thus achieves O(H · |V |2) time
complexity. According to a previous study on Twitter’s network
structure, users can be connected within 4.12 steps in average [16].
In other words, H is guaranteed to be a small value.

Extended 2-Hop Cover Framework
The transitive closure approach requires O(|V |2) space consump-
tion, making it inapplicable when storage resource is limited. Re-
cent work mostly targets on designing indexes to reduce the space
consumption of transitive closure and at the same time answer reach-
ability queries e�ciently. We believe the 2-hop labeling approach
[27, 28, 29, 30, 31, 32, 33, 34] is the most e�cient and widely-used
indexing method for reachability queries on large graphs. There-
fore, we also consider extending the 2-hop cover framework in this
work, to support weighted reachability queries when storage is lim-
ited.

Typically, a 2-hop cover of a graph G = (V, E) consists of two la-
bel sets {Lin(v)}v2V and {Lout(v)}v2V , where Lin(v) (resp. Lout(v)) rep-
resents the collection of nodes that can reach v (resp. nodes that can
be reached from v). Given a reachability query Query(s, t, Lin, Lout)
from node s to node t, the algorithm first retrieves the out-label set
of s and the in-label set of t, and then calculates the intersection of
these two label sets:

Intersect(s, t) = (Lout(s) [ {s}) \ (Lin(t) [ {t})

If the intersection set Intersect(s, t) is empty, then the algorithm re-
turns FALS E to reachability query Query(s, t, Lin, Lout); otherwise,
t is regarded to be reachable from s.

In Eq. 4, we define weighted reachability from node u to node
v in terms of the shortest path distance between u and v, as well as
the number of u’s followees who participate in at least one shortest
path. Therefore, an extension of the original 2-hop cover is required
to incorporate these information and support weighted reachability
queries. In particular, we define two label sets for each node v 2 V:

Lin(v) = {(s, dsv)}

Lout(v) = {(t, dvt, Fvt)}

where s in Lin(v) (resp. t in Lout(v)) is a node that can reach v (resp.
a node reachable from v), and dsv (resp. dvt) is the shortest path
distance from s to v (resp. from v to t). Fvt in Lout(v) is a collection
of v’s followees participating in the shortest path from v to t, namely
Fvt = {u|u 2 Fv ^ u 2 v{⇤ t}.

In order to calculate weighted reachability from users s to t (i.e.,
R(s, t)), we issue a weighted reachability query Query(s, t, Lin, Lout)
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to retrieve information required in Eq. 4 (i.e., dst and Fst):

(dst, Fst) = Query(s, t, Lin, Lout)

=

(
dst = min{dsv + dvt |(v, dsv, Fsv) 2 Lout(s) ^ (v, dvt) 2 Lin(t)}
Fst =

S
dsv+dvt=dst Fsv

(5)
Here, dst is the shortest path distance from nodes s to t, and dst = 1
when s cannot reach t within H (i.e., predefined maximum number
of hops) steps. Fst is the collection of followees that participate in
the shortest path from s to t.

Theorem 2. If the shortest path from s to v passes through s’s
followee f , and v lies in the shortest path from s to t, then f partic-
ipates in the shortest path from s to t.

According to Theorem 2, we calculate Fst in Eq. 5 by aggregat-
ing Fsv where v lies in the shortest path from s to t. For exam-
ple, assume that Lout(s) = {(v1, 2, { f1, f2, f3}), (v2, 3, { f2, f4})} and
Lin(t) = {(v1, 2), (v2, 1)}, then the shortest path distance from s to t
is obviously dst = 4 and s’s followees participating in its shortest
path to t is Fst = { f1, f2, f3, f4}.

Algorithm 2 Index construction for extended 2-hop labeling
Input:

G = (V, E) /*followee-follower network*/
H /*maximum number of hops*/

Output:
L|V |in and L|V |out /*2-hop labels of G*/

1: Sort V by their degrees in descending order
2: for k=1:|V| do
3: 8v 2 V , Lk

in(v) = Lk�1
in (v) and Lk

out(v) = Lk�1
out (v)

4: /*Conduct backward BFS to find all nodes that can reach vk , and
update Lk

out’s distances and followee sets when necessary*/
5: Q = an empty queue; Enqueue hvk , 0i onto Q
6: while Q is not empty do
7: Dequeue hu, leni from Q
8: len = len + 1
9: for all s 2 Nin(u) do

10: (dsvk , Fsvk ) = Query(s, vk , Lk�1
in , L

k�1
out )

11: if len < dsvk then
12: /*If distance is shortened, then update Lk

out and add the cur-
rent node onto the queue*/

13: if vk 2 Lk
out(s) then

14: Remove (vk , dsvk , Fsvk ) from Lk
out(s)

15: end if
16: Lk

out(s) = Lk
out(s) [ {(vk , len, {u})}

17: if len < H ^ s < Q then
18: Enqueue hs, leni onto Q
19: end if
20: else if len = dsvk ^ u < Fsvk then
21: /*If a new shortest path is found, then update followee set*/
22: if vk 2 Lk

out(s) then
23: Lk

out(s).Fsvk = Lk
out(s).Fsvk [ {u}

24: else
25: Lk

out(s) = Lk
out(s) [ {(vk , len, {u})}

26: end if
27: end if
28: end for
29: end while
30: Conduct forward BFS to find all nodes that vk can reach, and update

Lk
in only when distance is shortened

31: end for

Our o✏ine indexing algorithm for the extended 2-hop labeling
framework is depicted in Algo. 2. Inspired by the Pruned Land-
mark Labeling (PLL, [32, 33]) approach, we sort nodes in G =
(V, E) by their degrees in descending order (line 1), and construct
2-hop labels Lk

in (resp. Lk
out) from Lk�1

in (resp. Lk�1
out ) using informa-

tion obtained by pruned forward (resp. backward) BFS from the

node vk (lines 2-31). Specifically, suppose that we are handling a
node t with distance len during the forward BFS from vk. We is-
sue a weighted reachability query from vk to t, namely (dvkt, Fvkt) =
Query(vk, t, Lk�1

in , L
k�1
out ). If len < dvkt (i.e., we find a shorter path

from vk to t), then we add (vk, len) to Lk
in(t) (i.e., Lk

in(t) = Lk
in(t) [

(vk, len)) and insert t into a queue for further BFS. One thing to
note is that the index updating strategy for Lout is slightly di↵er-
ent. Since Lk

out(s) records both the shortest path distance from s
to vk and the collection of s’s followees participating in the shortest
path, special attention is required to maintain the followee set when
updating Lk

out(s) (lines 5-29). Assume that we are visiting a node s
with distance len during the backward BFS from node vk, and the
shortest path distance (resp. followee set) obtained by a weighted
reachability query from s to vk is dsvk (resp Fsvk ). We consider two
situations here which trigger updates of Lk

out(s): 1) len < dsvk (lines
11-19). Like before, a shorter path from s to vk (i.e., s ! u { vk)
is detected in this situation. We add (vk, len, {u}) to Lk

out(s) where
u is the followee of s in the len-hop path from s to vk, and insert
s into a queue for further BFS. Since we traverse nodes using a
backward BFS, s’s followees u can be directly recorded during this
process. 2) len = dsvk (lines 20-27). A new len-hop shortest path
from s to vk (i.e., s ! u { vk) is detected in this situation. We
need to check whether the information that s’s followee u partic-
ipates in a shortest-path from s to vk has been encoded in exist-
ing 2-hop labels. If not, we insert u into the followee set, namely
Lk

out(s).Fsvk = Lk
out(s).Fsvk [ {u}. Since the shortest path distance

from s to vk stays unchanged, which means the distances from s’s
ancestors to vk passing through s must also be the same, we do not
need to add s into the queue for further BFS.

We evaluate the performance of the extended transitive closure
framework and the extended 2-hop cover framework for weighted
reachability queries in Sec. 5, in terms of query e�ciency, space
consumption, as well as pre-computation time.

4.1.2 Detecting influential users
As depicted in Eq. 3, measuring a user u’s interest in an en-

tity e requires reachability checking between u and other users in
the community associated with e. Although these information can
be obtained directly from the pre-computed weighted reachability
matrix, aggregating such a great amount of reachability during on-
line inference is still a waste of time. Moreover, it is obviously
inappropriate to treat every user as equal. Di↵erent people have
di↵erent influences in a community, and a user’s interest in influen-
tial people has more contribution to her interest in the community.
To improve both the accuracy and the e�ciency of user interest es-
timation, we propose to detect a collection of most influential users
for each community and consider reachability only with those in-
fluential users.

Intuitively, a user is influential in a community associated with
an entity if:

• She posts a large proportion of tweets linked to that entity;

• She is discriminative among candidate entities.

The second intuition guarantees that the influential user of an entity
has a distinct interest in broadcasting about that entity, and such an
interest remains stable over time. For example, a machine learning
expert might also has a major interest in basketball, and will talk
about both Michael Jordan (basketball) and Michael Jordan (ma-
chine learning expert) in her tweets. Hence, estimating target user
u’s interest in following such a user makes little contribution to dis-
criminating candidate entities of the mention “Jordan”. On the con-
trary, NBA’s o�cial account in Twitter (i.e., @NBAO�cial) hardly

1767



broadcasts about Jordan (country), Air Jordan, or Michael Jordan
(machine learning expert), making u’s subscription to @NBAOf-
ficial an important hint of her interest in basketball. In this case,
mentions of “Jordan” in u’s queries and tweets should probably be
linked to Michael Jordan (basketball).

Tfidf-Based Approach
One possible approach to identify influential users in a commu-
nity considering the aforementioned intuitions is to adopt the tf-idf
weighing strategy. Given the candidate entity set Em of mention
m, we can obtain documents and community associated with each
candidate entity e from our complemented knowledgebase, namely
De and Ue respectively. We use the following formula to measure
the influence of a user u in community Ue:

In f (u,Ue) =
|Du

e |

|De|
· log

|Em|

|Eu
m|

(6)

In Equation 6, Du
e = {d|d 2 De ^ d.u = u} denotes the collection

of tweets linked to entity e which are posted by user u. Hence,
|Du

e |
|De |

indicates u’s enthusiasm in broadcasting about entity e. On
the other hand, log |Em |

|Eu
m |

reflects u’s ability to di↵erentiate candidate
entities (namely whether u’s interest is unique or diversified among
all candidate entities), where Eu

m = {ei|ei 2 Em ^ 9d 2 Dei , d.u = u}
denotes the set of candidate entities that user u has mentioned at
least once in her tweets.

Entropy-Based Approach
In practice, it is possible that an influential user in a community
(say @NBAO�cial) occasionally tweets about candidate entities
of other communities (say Air Jordan). Such an incident posting
should not cause huge impact on her influence in the original com-
munity. In this sense, the tfidf-based approach is inappropriate,
since it penalizes a user’s influence as long as she has broadcast-
ings in many communities. A better approach is to consider the
probability distribution of a user’s tweets among candidate entities.

Entropy can be regarded as a quantitative description of the shape
of a probability distribution, which maximizes when the distribu-
tion is uniform. Obviously, a user is discriminative among candi-
date entities if and only if the probability distribution of her tweets
among these entities is biased, which in turn means a small entropy
value. Therefore, we propose an entropy-based approach to esti-
mate user influence in a community:

In f (u,Ue) =
|Du

e |

|De|
·

1
entropy(u,Em)

(7)

As before, |D
u
e |
|De |

in Eq. 7 reflects user u’s contribution of tweets to
the community associated with entity e. entropy(u,Em) measures
u’s ability to di↵erentiate candidate entities, which is calculated as
below:

entropy(u,Em) = �
X

ei2Em

p(u, ei) log p(u, ei)

p(u, ei) =
|Du

ei
|

P
ek2Em |D

u
ek
|

Here, p(u, ei) is the probability of user u mentioning entity ei in her
tweets, as compared with other entities in the candidate entity set
Em. And Du

ei
= {d|d 2 Dei ^ d.u = u} is the collection of tweets

written by user u about entity ei.
We will evaluate the e↵ectiveness of both tfidf-based and entropy-

based approaches to user influence estimation in Sec. 5. Given in-
fluence scores of users in a community Ue, the collection of most

influential users in that community can be identified by a simple
ranking:

U⇤e = arg max
u

In f (u,Ue)

After that, we can estimate a user’s interest in entity e by her in-
terest in following those influential users, which is in turn estimated
through weighted reachability checking. Formally,

S in(u, e) = S in(u,U⇤e) =
P

v2U⇤e R(u, v)
|U⇤e |

(8)

where U⇤e is the set of influential users associated with entity e, and
R(u, v) is the weighted reachability from users u to v.

4.2 Entity Recency
As discussed in Sec. 1, recency is important to entity linking

especially when it is conducted to support personalized microblog
search. Entity recency can be obtained indirectly by gathering tem-
poral information of tweets talking about that entity. However,
linking a single newly-generated tweet to an entity does not nec-
essarily mean a refresh of entity recency. Instead, entity recency
can be identified only when a burst of tweets about that entity oc-
curs within short time. In this work, we adopt a simple but e↵ective
approach to measure entity recency - sliding window.

Given a time window ⌧, we define recent tweets of entity e as
those linked to e and published within ⌧ till the current time. If
the number of recent tweets exceeds a predefined threshold ✓1, we
believe that there has been a burst of attention on entity e, which
implies the freshness of e. Since entity recency is proposed as a
feature to support entity linking, namely estimating the probability
of mapping an entity mention to a specific entity in the candidate
entity set, we normalize recency of entity e over all candidate enti-
ties:

S r(e) =

8>><
>>:

|D⌧e |P
ei2Em |D

⌧
ei |
|D⌧e | � ✓1

0 otherwise
(9)

In Eq. 9, D⌧e = {d|d 2 De ^ d.t � now � ⌧} denotes recent tweets of
entity e concerning time window ⌧.

Besides a burst of tweets mentioning entity e, recency of e can
also be indirectly signified by that of related entities. For example,
the recency of Chicago Bulls and NBA (National Basketball As-
sociation) enhances that of Michael Jordan (basketball). Similarly,
increasing amount of tweets about ICML (International Conference
on Machine Learning) implies more attention on machine learning
experts like Michael Jordan (machine learning expert). Therefore,
we propose a recency propagation model to incorporate mutual
reinforcement of recency between related entities.

We adopt the Wikipedia Link-based Measure (WLM) described
in [4] to calculate topical relatedness between entities. WLM as-
sumes that two Wikipedia articles are topically related if the num-
ber of Wikipedia articles linked to both of them is large. Formally,
given two entities ei and e j, we define topical relatedness between
them as follows:

Rel(ei, e j) = 1 �
log(max(|Aei |, |Ae j |)) � log(|Aei \ Ae j |)

log(|A|) � log(min(|Aei |, |Ae j |))
(10)

where A is the entire set of Wikipedia articles, and Ae is the set of
Wikipedia articles that link to Wikipedia article describing entity
e. Obviously, the more topically related ei and e j are, the larger
Rel(ei, e j) will be.

Fig. 3 illustrates an example of the recency propagation network
whose nodes are entities in our knowledgebase. We propose several
heuristics on constructing the network:

1768



Michael Jordan 
(basketball)

Michael Jordan 
(machine learning 

expert)

Chicago BullsNBA

ICML

Bulls, New Zealand

Bulls (Super 
Rugby)

Jordan (country)

Air Jordan

!"#$%&

!"%'() !"%*+#
!"&#$'

!"&*($

!"('+)

Figure 3: Example of recency propagation network.

• Since recency is used to find the best mention-entity map-
ping, it should not be propagated between candidate entities
of the same entity mention;

• If two entities are more interdependent or topically related
with each other, recency should be propagated between them
in a larger extent;

• Only highly related entities can reinforce recency of each
other. This avoids extensive recency di↵usion to slightly re-
lated entities.

The first heuristic indicates that candidate entities of the same men-
tion, such as Jordan (country), Air Jordan, Michael Jordan (basket-
ball), and Michael Jordan (machine learning expert), should not be
connected in the recency propagation network; The second heuris-
tic implies that edge weight should be defined as the topical relat-
edness between corresponding entities; And according to the third
heuristic, we remove edges whose weights are smaller than a prede-
fined threshold ✓2 from the entity relatedness network, and conduct
a Graph-Cut to find clusters of strongly connected entities. We add
edges between entities in such clusters into the recency propagation
network.

Given the recency propagation network G = (V, E), our prop-
agation algorithm runs as follows: First, we initialize recency of
entities in our knowledgebase based on their recent tweets, namely
Eq. 9. This results in an initial recency vector denoted as ~S r

0
. Then

we reinforce recency between entities iteratively using a PageRank-
like algorithm. Edges in the recency propagation network consti-
tute a path to propagate recency from one entity to another. We
normalize edge weights as below, to formulate the probability of
recency reinforcing:

P(ei, e j) =
w(ei, e j)P

(ei ,ek)2E w(ei, ek)

Here, w(ei, e j) is the edge weight (i.e., topical relatedness) between
entities ei and e j. Given the initial recency vector ~S r

0
and the re-

cency propagation matrix P, we can get the final recency vector
using the following iterative process:

~S r
i
= � · ~S r

0
+ (1 � �) · P · ~S r

i�1
(11)

In Eq. 11, � is a parameter to trade-o↵ between recency gathered
from underlying tweets and that reinforced by other entities.

5. EXPERIMENT
We conducted extensive experiments to evaluate the e↵ective-

ness and e�ciency of our framework for entity linking in microblog-
ging services. All the algorithms were implemented in C#, and all

the experiments were conducted on a server with 2.90GHz Intel
Xeon E5-2690 CPU and 192GB memory.

5.1 Experimental Setting

5.1.1 Wikipedia dataset
We downloaded the July 2014 version of English Wikipedia,

which was used to construct our original knowledgebase defined
in Sec. 3. The Wikipedia dump contains 6.3 million redirect pages,
0.2 million disambiguation pages, and 19.2 million entity pages.
380 million hyperlinks are established between entity pages, and
from anchor texts associated with these hyperlinks we extracted 3.8
million nicknames of entities. Altogether, we obtained 29.3 million
mentions (e.g., “Bulls”, “Tony Allen”, and “Jordan” in Fig. 1) and
19.2 million entities (e.g., Chicago Bulls, Tony Allen (basketball),
and Michael Jordan (basketball) in Fig. 1) together with mappings
between them. We pre-calculated topical relatedness between en-
tities using Wikipedia Link-base Measure (WLM, Eq. 10), which
will be used in our recency propagation model, as well as the es-
timation of topical coherence considered in current state-of-the-art
approaches to entity linking [14, 2]. We also harvested the popu-
larity and the context of each entity from Wikipedia, to calculate
intra-tweet features adopted in [14] and [2].

5.1.2 Twitter dataset
To guarantee that our knowledgebase has integrated as many en-

tities mentioned in tweets as possible, the tweets we collect for
experiments should be generated before the timestamp of Wiki-
pedia dump. In particular, we used Twitter’s API to download a
collection of 29.3 million tweets which were published by 5 million
users between September 2012 and February 2013. After conduct-
ing Named Entity Recognition (NER) using current start-of-the-art
approaches to NER in tweets [37, 38], we observed that 12 million
tweets in our dataset (40.96%) contain at least one named entity
mention. This is slightly smaller that the 45.08% percentage found
in previous work [2].

We conducted a collective entity linking [2] on part of the tweet
dataset to complement our knowledgebase. Since [2] assumes that
a user’s interest is scattered amongst her broadcastings, it requires
that the target user should have su�cient amount of historical tweets
to infer her interest. Therefore, we extracted a set of active users
with more than ✓ postings during this period, and used their tweets
for the collective entity linking. We ranged ✓ from 10 to 90 incre-
mented by 20, and obtained five tweet datasets: D10, D30, D50,
D70, and D90. In this work, we claim that one of the most notable
superiorities of our framework is its ability to maintain accuracy
of entity linking for information seekers who tweet rarely. To ver-
ify this, we randomly sampled 200 inactive users (with less than
10 broadcastings) and used their tweets for testing: Dtest. Table 2
summarizes the statistics of these tweet datasets.

Table 2: Statistics of tweet datasets.
D10 D30 D50

#user #tweet #user #tweet #user #tweet
311,835 6.76M 46,476 2.69M 16,015 1.56M

D70 D90 Dtest
#user #tweet #user #tweet #user #tweet
7698 1.01M 4422 0.82M 200 649

5.1.3 Evaluation Method
We compared our approach to entity linking in tweets with two

state-of-the-art methods, in terms of both accuracy and e�ciency.
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[14] conducts entity linking on-the-fly (i.e., tweet by tweet), by
considering intra-tweet features such as entity popularity in Wiki-
pedia, context similarity between mentions and entities, topical co-
herence within tweets, and so forth. [2] combines intra-tweet fea-
tures with inter-tweet interest distributions, and thus achieves en-
tity linking in a batch manner. We invited three colleagues to help
with the labeling, by providing them with the entity linking results
of each tweet along with its author, as well as some recent tweets
containing the same entity mentions. Annotators were required to
examine the friend network of the target user, her historical broad-
castings and the recent tweets, to make their decisions. The final
labels were based on majority voting. Table 3 lists default values
of parameters used in this work.

Table 3: Default values of parameters.
importance of user interest, entity recency, and popularity

↵ � �
0.6 0.3 0.1

# recent tweet within time window highly-related
⌧ ✓1 ✓2

3 days 10 0.6

5.2 Experimental Results

5.2.1 Effectiveness
Fig. 4 (a) illustrates the accuracy of entity linking achieved by

on-the-fly approach [14], collective approach [2], and our proto-
type system respectively. We present the percentage of correctly
linked mentions, and that of tweets whose mentions are all correctly
linked. As expected, the accuracy of mentions is always larger than
that of tweets. We observe that the collective entity linking method
performs better than the on-the-fly counterpart, since it considers
users’ interest distribution among their tweets, and combines inter-
tweet features with traditional intra-tweet features to conduct entity
linking. However, such an improvement is not as significant as that
discovered in [2]. This is mainly because the collective method
requires large amount of tweets to estimate a user’s interest distri-
bution. Whereas we focus on entity linking for information seek-
ers with limited tweets in this work. Specifically, users in our test
dataset only have 3.25 tweets in average, making the improvement
of collective method insignificant. Our approach, on the other hand,
achieves better performance by inferring user interest based on so-
cial interactions, and combining such interest with entity recency
and entity popularity to detect the best linking.

An important prerequisite to our entity linking approach is the
quality of the complemented knowledgebase. Therefore, we com-
pared the accuracies of entity linking when complementing Wiki-
pedia with di↵erent sizes of datasets. Fig. 4 (b) shows the result.
We can see that with increasing amount of tweets appended to the
original knowledgebase, the accuracy of entity linking improves
gradually. This is consistent with our expectation. Nevertheless, we
still observe a slight degradation of performance from D70 to D50,
which is caused by mistakenly linked tweets when conducting col-
lective entity linking on users with limited number of tweets. This
is actually a trade-o↵ between quality and coverage of the knowl-
edgebase.

In our propotype system, we combine user interest, entity re-
cency, and entity popularity to conduct entity linking. In Eq. 1,
↵, �, and � reflect their relative contributions to the overall scoring.
Table 4 illustrates the accuracies achieved by considering these fea-
tures separately and all together. We can see that user interest is
the most important feature to support personalized entity linking.

Table 4: E↵ectiveness of user interest, entity recency, and entity
popularity for entity linking.

↵ = 1 � = 1 � = 1 all features
tweet 0.6281 0.6000 0.5906 0.6375

mention 0.7190 0.6860 0.6777 0.7273

And the performance of user interest estimation using social inter-
actions is better than that obtained using content-based approaches
(i.e., 0.686 mention accuracy and 0.6 tweet accuracy achieved by
collective method in Fig. 4 (a)), especially for information seekers.
Entity recency performs better than entity popularity, since recency
is a time-dependent feature which measures an entity’ recent popu-
larity. By combining all these features, our framework achieves the
highest accuracy.

In this work, we propose new approaches to estimate user inter-
est and entity recency respectively. We evaluated their e↵ective-
ness in our experiments. We measure a user’s interest in an entity
by examining her interest in following the community (i.e., set of
users) tweeting about that entity, which is in turn formulated as
the average weighted reachability between the target user and the
most influential users in the community. We propose two meth-
ods to calculate user influence: tfidf-based and entropy-based. Fig.
4 (c) demonstrates their performance reflected by the accuracy of
entity linking. We can see that the entropy-based approach per-
formances better than the tfidf counterpart, since it allows for the
case that an influential user in a community (e.g., @NBAO�cial)
occasionally tweets about entities in other communities (e.g., Air
Jordan). We propose a recency propagation model to estimate en-
tity recency. Fig. 4 (d) shows the necessity and performance of
recency reinforcing. As we have discussed before, the recency of
NBA will increase that of Michael Jordan (basketball). And sim-
ilarly the recency of ICML might also indicates a burst of tweets
about Michael Jordan (machine learning expert). Therefore, the
accuracy of entity linking which incorporates propagated recency
outperforms that without recency reinforcement in Fig. 4 (d).

5.2.2 Efficiency
Entity linking is usually regarded as an online task, or an under-

lying step of many other text processing algorithms such as clus-
tering and classification. This requires that it should be conducted
within short time. Fig. 5 (a) illustrates the time requirement of
our framework for entity linking, compared with current state-of-
the-art methods. We present the average time required to link a
single mention and a whole tweet respectively. As expected, exist-
ing on-the-fly approach is the most e�cient, since it only considers
intra-tweet features which can be calculated easily. The collec-
tive method incorporates inter-tweet features. It propagates user
interest among entities extracted from all the tweets of a specific
user, which is obviously time-consuming when the user has a large
amount of tweets. However, since we focus on entity linking for
information seekers in our experiments, the collective method only
needs to handle a few mentions each time. In our test dataset, each
user has 3.25 tweets and each tweet has 1.36 mentions in average,
making the collective method to be extremely fast. Our approach,
on the contrary, employs a PageRank-like algorithm to model re-
cency reinforcement between related entities. Since a popular en-
tity (e.g., Michael Jordan (basketball)) usually has a large number
of related entities (e.g., NBA, Chicago Bulls, Kobe Bryant, etc.),
the e�ciency of our framework is incomparable with existing on-
the-fly method. Nevertheless, our approach can still link entities
of a tweet within 0.5 milliseconds by constraining recency prop-
agation only between highly related entities, which we believe is
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Figure 4: Results of e↵ectiveness evaluation.
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Figure 5: Results of e�ciency evaluation.

su�ciently fast for most real-world applications. For example,
Twitter’s data showed that 200 million users send over 400 million
tweets daily as of September 20134, which means 5000 postings are
generated every second. Given that 40% of tweets contain at least
one named entity mention, the entity linking framework needs to
handle each tweet within 0.5 milliseconds. In this sense, our ap-
proaches are feasible for entity linking in real-time. Besides, our
framework can be easily parallelized, since it conducts entity link-
ing independently (i.e., tweet by tweet or even mention by mention)
and requires no information from any other tweet. This can further
improve the e�ciency and applicability of our methods for online
entity linking.

In this work, we measure a user’s interest in an entity by calcu-
lating weighted reachability between the target user and users in the
community associated with that entity. Since e�ciency is the major
concern in order to support online entity linking, we assume access
to unlimited storage consumption, and extend the transitive clo-
sure framework for weighted reachability query. Naive approach
to o✏ine transitive closure construction needs to traverse the entire
followee-follower network to calculate reachability for each pair of
users, and thus is ine�cient. We propose an incremental algorithm
to improve the e�ciency. Fig. 5 (b) shows the pre-computation
time for transitive closure in log-scale. We omit results of index
construction that cannot be finished within one day. From Fig. 5
(b) we can see that our incremental algorithm is extremely faster
than the naive method. In particular, it takes less than 20 minutes
to calculate all the pairwise weighted reachability in our largest
dataset.

We also extend the 2-hop cover framework to support weighted
reachability queries in case of limited storage resource, consider-
ing its ability to reduce space consumption of the transitive closure
and at the same time answer reachability queries e�ciently. We
evaluated the performance of the extended transitive closure frame-
work and the extended 2-hop cover framework on our datasets, in
4
http://en.wikipedia.org/wiki/Twitter#Growth

terms of query e�ciency, index size, as well as pre-computation
time. In addition to the filtered datasets adopted in previous ex-
periments (i.e., D10, D30, D50, D70 and D90), we also evaluated
our approaches on the whole crawled dataset (i.e., D with 5 million
users), as well as a public Twitter social network dataset5 consist-
ing of 11.3 million users. In order to evaluate query e�ciency, we
randomly sampled 1000 source nodes and another 1000 terminal
nodes from each dataset, and generated 1,000,000 weighted reach-
ability queries. We calculated the average query time to measure
the e�ciency of our approaches. Table 5 illustrates the statistics of
these datasets and the performance of our indexing strategies for
weighted reachability queries. As for the extended transitive clo-
sure framework, we only present the index construction time after
applying our incremental algorithm. Results for index construction
that cannot be finished within one day or that occupies excessive
memory resource are ignored. We can see that the transitive closure
approach answers reachability queries much faster than the 2-hop
cover counterpart, at the cost of higher storage consumption and
longer index construction time. On the other hand, the 2-hop cover
framework, besides reducing index sizes dramatically, can still an-
swer reachability queries e�ciently, which makes it a wonderful
alternative to handle large graphs (e.g., D and Twitter in Table 5)
when storage resource is limited. Note that the index sizes, index-
ing time, and query e�ciency of our approaches are slightly worse
than those achieved in previous work on reachability queries. But
this is mainly due to the fact that extra operations are required to
maintain the followee sets in-between the shortest paths from nodes
s to t, in order to calculate weighted reachability.

Although reachability can be retrieved directly after o✏ine pre-
calculation, estimating a user’s average reachability with a commu-
nity is still time-consuming, since the communities associated with
popular entities are usually very large. Therefore, we propose to de-
tect a collection of most influential users in a community, and check
reachability only with those influential users. Fig. 5 (c) illustrates
5
http://www.datatang.com/data/44253/
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Table 5: Performance of the extended transitive closure framework and the extended 2-hop cover framework.
#node #edge avg degree max degree indexing time index size query time

transitive closure 2-hop transitive closure 2-hop transitive closure 2-hop
D90 4.6K 52.3K 22.6 0.7K 7s 2s 67MB 11MB 0.1µs 0.3µs
D70 7.9K 123.07K 31.1 1.1K 36s 16s 154MB 31MB 0.1µs 0.4µs
D50 16.2K 343.1K 42.3 1.9K 156s 86s 655MB 102MB 0.2µs 1.2µs
D30 46.7K 899.1K 38.5 3.5K 328s 239s 1.8GB 271MB 0.1µs 0.8µs
D10 312.1K 5.8M 34.3 6.8K 1217s 471s 8.7GB 1.4GB 0.2µs 1.5µs
D 5.0M 71.4M 28.61 412.76K - 1893s - 16GB - 4.7µs

Twitter 11.3M 85.3M 15.1 564.8K - 3417s - 38GB - 4.2µs

the variation of time requirement when we increase the number of
users to check reachability with. We observe an insignificant dif-
ference in Fig. 5 (c). This is mainly because that the tweet dataset
we used for knowledgebase complementation in our experiments
is quite small compared with the whole tweet dataset in Twitter.
Hence, even the communities associated with popular entities con-
tain only a small number of users. However, we can still find a
trend of increasement of time when calculating reachability with
more users.

At last, we examined the scalability of our framework for entity
linking. From Fig. 5 (d), we can see that the time requirement
of our system remains stable when we complement our knowl-
edgebase with increasingly larger tweet dataset. The most time-
consuming modules in our framework are reachability checking
with community and the recency propagation model. However,
after restricting reachability checking only with influential users
and recency propagation only between highly related entities, both
modules are insensitive to the number of tweets complemented to
the original knowledgebase.

6. CONCLUSION
In this paper, we propose an on-the-fly approach to entity linking

in tweets, which takes into consideration a combination of user in-
terest, entity recency, and entity popularity. Unlike existing content-
based methods, we measure user interest by social interactions,
considering the di�culty and inaccuracy in inferring user interest
from a diverse stream of tweets with highly diversified topics. We
formulate a user’s interest in an entity as her interest in subscribing
to the community tweeting about that entity, which is calculated by
weighted reachability between the target user and the most influen-
tial users in the community. We propose two approaches for user
influence estimation within a community, namely tfidf-based ap-
proach and entropy-based approach. E↵ective indexing structures
along with incremental algorithms are developed to reduce the time
requirement for calculating weighted reachability. We adopt a sim-
ple but e↵ective method - sliding window - to estimate an entity’s
initial recency, and propose a page-rank style recency propagation
model to incorporate recency reinforced by other highly related en-
tities. Empirical studies have demonstrated the superior e↵ective-
ness of our approach compared with state-of-the-art methods and
the e�ciency feasibility for online applications with real-time re-
quirement.

Currently, we evaluate our approaches by providing annotators
with top-k entities for each mention, and asking them to exam-
ine the correctness of the entity linking result, which is labour-
intensive, time consuming and sometimes subjective. A better ap-
proach is to build an interface for our methods on Twitter, and invite
tweet authors themselves to conduct the evaluation. We are cur-
rently working on this development. Furthermore, our framework
for entity linking can be easily extended to support personalized
microblog search. However, in order to build a robust search en-

gine, the entire followee-follower network as well as an extremely
huge collection of tweets are required. We are seeking for coop-
erations with companies and other research teams to achieve this
goal.
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APPENDIX
A. ADDITIONAL RELATED WORK

Named Entity Recognition (NER). One of the prerequisites
to entity linking is Named Entity Recognition, namely detecting
named entities from texts written in natural languages. Existing
approaches to NER can be classified into two categories: linguistic-
based and knowledge-based.

Linguistic-based approaches are the current dominant techniques
for addressing the NER problem. Most of them formulate NER as a
sequential labeling task, and apply various machine learning algo-
rithms, including Support Vector Machine (SVM) [39, 40], Max-
imum Entropy Model (ME) [41, 42, 43], Hidden Markov Model
(HMM) [44], and Conditional Random Field (CRF) [45], to deter-
mine the NE labels of tokens collectively. The features they employ
are basically linguistic-based such as capitalization, digitalization,
punctuation, part-of-speech tags, and so forth. Despite the already
satisfying performance that linguistic-based approaches to NER
have achieved on news articles and Web documents, they cannot be
applied directly to short texts like tweets. This is partially due to the
fact that tweets are informal and error-prone, making traditional lin-
guistic features (e.g., capitalization) inapplicable. Recently, much
work [46, 47, 48] has been devoted to designing linguistic features
to capture tweets’ unique characteristics and training tweet-specific
models to extract named entities. For example, Ritter et. al [46] ex-
plore features including retweets, @usernames, hashtags, URLs,
and Brown clustering results to train tweet-specific POS tagger (T-
POS) and shallow parsing (T-CHUNK), whose results are then re-
garded as features to train a CRF model for named entity recogni-
tion (T-NER). Liu et. al [47] leverage cross-tweet information by
using a KNN-based classifier to conduct word-level pre-labeling,
and then feed those information into a CRF model to conduct finer-
grained NER. However, due to their supervised nature, these ap-
proaches require a vast amount of labeled data which is usually
expensive to come by.

Knowledge-based approaches [37, 38] to NER are unsupervised,
making them more feasible for handling texts in a streaming man-
ner. A knowledgebase (also called gazetteer, lexicon, or dictionary)
is required in such methods, and named entity recognition is con-
ducted by simply checking for existence or frequency of a phrase in
the knowledgebase. For example, the widely-used Longest-Cover
method searches for longest terms contained in the knowledgebase
while scanning a text. Like many recent attempts to entity linking
in short texts [14, 2], we also adopt the knowledge-based approach
as a pre-step to extract entity mentions, considering its simplicity
and real-time nature. Note that most knowledge-based approaches
implicitly require candidate phrases to exactly match at least one
element in the knowledgebase, but some flexibility can be added
by allowing for word stemming or fuzzy matching.

B. METHODOLOGY
In this section, we prove the theorems proposed in this work to

verify the correctness of our algorithms.
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B.1 Proof of Theorem 1.
Theorem 1 claims that there exists a len-hop shortest path from

u to v which passes through u’ followee t only if the shortest path
distance from t to v is len�1 hops. We restate this theorem formally
as below:

Theorem 3. 8t 2 Fu, duv = len^ t 2 u{⇤ v) dtv = len� 1, or
simply 8t 2 Fu, t 2 u{⇤ v) dtv = duv � 1.

where Fu denotes the collection of u’s followees, and duv the short-
est path distance from u to v. t 2 u {⇤ v means that u’s followee t
participates in a len-hop path from u to v.

Proof. Assume by contradiction that dtv , len�1, which means
either t cannot reach v or the shortest path distance from v to t is
longer or shorter than len � 1 hops. 1) If v is not reachable from
t (i.e., t 6{ v), then u cannot reach v through its followee t (i.e.,
t < u { v); 2) If the shortest path distance from t to v is longer
than len � 1 hops (i.e., dtv > len � 1), then the distance of path
u ! t { v is larger than len, implying that t cannot participate
in a len-hop shortest path from u to v (i.e., t < u {⇤ v); 3) If the
shortest path distance from t to v is shorter than len � 1 hops (i.e.,
dtv < len � 1), then the distance of path u ! t { v is smaller than
len, which means a shorter path from u to v has been detected (i.e.,
duv < len).

Corollary 1. 8t, duv = Len ^ dut = len ^ t 2 u {⇤ v ) dtv =
Len � len, or simply 8t, t 2 u{⇤ v) dtv = duv � dut.

where duv is the shortest path distance from u to v, and t 2 u {⇤ v
means that t participates in the shortest path from u to v. Corollary
1 can be proved similarly as in the above theorem.

B.2 Proof of Theorem 2.
Theorem 2 claims that if the shortest path from s to v passes

through s’s followee f , and v lies in the shortest path from s to t,
then f participates in the shortest path from s to t. We restate this
theorem formally as below:

Theorem 4. 8 f 2 Fs, f 2 s{⇤ v ^ v 2 s{⇤ t ) f 2 s{⇤ t

where Fs denotes the collection of s’s followees, and f 2 s {⇤ t
means that f participates in the shortest path from s to t.

Proof. Assume the shortest path distance from s to t is dst =
Len. Since s subscribes to f , it su�ces to prove that there exists a
(Len � 1)-hop path from f to t. From f 2 s {⇤ v and v 2 s {⇤ t,
we can obtain that f can reach v which in turn reaches t. In other
words, we have successfully detected a path from f to t, namely
f { v { t. Now we only need to show that the distance of path
f { v{ t is Len�1 hops. Assume the shortest path distance from
s to v is dsv = len. According to Corollary 1, df v = dsv �1 = len�1
and dvt = dst�dsv = Len�len. Hence, there exists a path f { v{ t
whose distance is df v+dvt = Len�1. This completes our proof.

C. ADDITIONAL EXPERIMENTS

C.1 Generalizability of our system
Di↵erent microblogging sites. We used Twitter dataset in our

experiments considering the wide-spread adoption and the avail-
ability of large-scale tweet dataset for empirical study in this com-
munity. However, our approaches can apply to solve entity link-
ing problem on any microblogging social network (e.g., Facebook,
Google+, Pinterest, Chinese Sina Weibo, etc), since we do not ex-
ploit any features that are unique to Twitter.

To verify this, we collected 23.3 million tweets published be-
tween January 2012 and October 2012 as well as the followee-
follower network using Chinese Sina Weibo’s API. We downloaded
the July 2014 version of Chinese Wikipedia from which 5.1 mil-
lion mentions and 3.5 million entities were extracted to construct
our knowledgebase. We conducted a collective entity linking [2]
on part of the Sina Weibo dataset published by active users to com-
plement the original knowledgebase, and used postings of inactive
users for testing. The experimental results are consistent with those
found in Twitter. Due to limitation of paper length, we only present
the comparison of our framework and existing state-of-the-art ap-
proaches to entity linking in terms of both accuracy and e�ciency,
as illustrated in Fig. 6 (a) and (b) respectively. From Fig. 6 (a)
we can see that our approaches still outperform existing On-the-
fly method [14] and Collective method [2] when applied to Chi-
nese Sina Weibo, although the improvement is slightly smaller than
that achieved in Twitter (3.7% mention accuracy improvement and
2.6% tweet accuracy improvement in Sina Weibo vs. 6% mention
accuracy improvement and 4.5% tweet accuracy improvement in
Twitter - Fig. 4 (a)). Postings in Sina Weibo usually contain more
entities (2.3 entities per tweet in our Sina Weibo dataset) than Twit-
ter, making it much more reliable to consider topical coherence for
entity disambiguation, which in turn leads to better performance of
the On-the-fly method in Sina Weibo compared with Twitter. Fig.
6 (b) demonstrates that our framework can link entities of a tweet
in Sina Weibo within 0.5 milliseconds in average. This is also suf-
ficiently fast for most real-world applications. For example, Sina
Weibo reported that about 100 million messages were posted each
day in the year 20126, which requires an entity linking framework
to handle each tweet within 2 milliseconds. In this sense, our ap-
proaches are also feasible for real-time entity linking in Chinese
Sina Weibo.

Varying tweet length. We do not theoretically restrict the num-
ber of entities per posting in our framework, though we believe
there should not be too many entity mentions in each tweet in a
microblogging site like Twitter. We conduct an experiment in the
paper to study the di↵erences between our framework and existing
state-of-the-art approaches with varying tweet lengths. We divide
our test dataset into 4 parts according to tweet length (i.e., number
of entity mentions per tweet) and then apply these methods to each
part. As illustrated in Fig. 6 (c), the accuracy of our framework for
entity linking remains quite stable when tweet length ranges from
1 to 4. This is mainly due to the fact that we handle each entity
mention separately without considering their interdependence. We
notice that the superiority of our method over other content-based
counterparts is even more considerable when the target tweet con-
tains only 1 entity mention. In this case, topical coherence adopted
in [14] is no longer applicable, making the entity linking results un-
satisfactory. [2] can improve the situation a little bit by estimating
users’ interest from their historical postings and linking all the enti-
ties mentioned by a single user collectively. However, such an im-
provement is insignificant for information seekers with few tweet-
ing histories. Although Fig. 6 (c) shows an accuracy improvement
of [14] and [2] when tweet length increases, our framework is still
in a very competitive position since most microblogging sites (e.g.,
Twitter, Chinese Sina Weibo, etc.) impose a words limitation on
their content, which in turn limit the number of entities per posting.

Di↵erent entity categories. It is also important to see how our
framework performs on di↵erent categories of entities, in order to
verify its generalizability. We asked annotators to manually classify
the entities mentioned in our test dataset into 5 categories - Person

6
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Figure 6: Additional experimental results.

(71.35%), Location (8.38%), Company (2.6%), Product (2.27%),
and Movie&Music (15.4%), and evaluate the accuracy of entity
linking respectively. We find Location category gets the best accu-
racy (74.32%) and Movie&Music category has the worst (71.32%),
which demonstrates that the performances of our framework on
these five categories are similar and also irrelevant to the number
of entities in each category. This is an expected result, since we do
not employ any features specific to a particular category of entities.

C.2 Sensitivity of our system to parameters
In this work, we combine user interest, entity recency, and en-

tity popularity to derive an overall ranking of candidate entities for
a target entity mention. We adopt a linear combination of these
three features in the current model, and use ↵, � and � to reflect the
relative contributions of these features to the final scoring of can-
didate entities. From Table 4 we can see that the performance of
user interest estimation using social interactions is better than that
obtained using traditional content-based approaches, and that en-
tity recency performs better than entity popularity, since recency is
a time-dependent feature which measures an entity’s recent popu-
larity. By combining all these features, our framework achieves the
highest accuracy. In order to get a better insight of the sensitivity
of our framework to the values of ↵, � and �, we conduct an exper-
iment by setting ↵ to 0.1, 0.3, 0.6, and 0.9 respectively and measur-
ing the performance of our system with various combinations of �
and �. Fig. 6 (d) shows that our method is indeed sensitive to the
settings of these parameters. For each value of ↵, the best perfor-
mance can be achieved only when neither � nor � are equal to 0,
verifying the importance of both entity recency and entity popular-
ity for entity linking. Furthermore, the peak value of accuracy is
always obtained on the right side of Fig. 6 (d) (i.e., when � is larger
than �), which indicates the superior of entity recency over entity
popularity. This is consistent with the result in Table 4. In practice,
these three parameters can be manually defined or automatically
learned using existing machine learning methods. We choose to
set them manually due to lack of large-scale training dataset. Sec-
tion 5.1 reports the best combination of ↵, � and � according to the
experimental results.

D. DISCUSSION
It is important to think about the impact of vocabulary on link-

ing quality, considering the dynamic feature of microblogging sites.
Usually the knowledgebase should periodically check if new enti-
ties or new meanings for old entities appear in the Web and update
its entity database accordingly. If new entities/meanings do appear
but have not been reflected in knowledgebase, these entity mentions
cannot be detected from tweets or be linked to the new meanings,
since the nature of entity linking problem is to recognize and link an
entity mention to the most appropriate entity meaning that already

existed in the knowledgebase. The knowledgebase can be updated
manually (e.g., Wikipedia) or automatically (e.g., Probase). There
have been a lot of interesting discussions on the update policy for
knowledgebase, which is out of the scope of this work. However,
there are indeed two issues we need to consider, as detailed below.

First, we should avoid the false-positive error before the knowl-
edgebase is updated. More specifically, an entity mention should
not be linked to any of the existing entity meanings if the target
user is found to have no interest in existing meanings of the entity.
Since our framework adopts a linear combination of user interest,
entity recency and entity popularity, any candidate entity meaning
the target user is not interested in will receive an overall score no
greater than � + �. Therefore, we can set a threshold at � + � and
only output top-k entities whose score exceeds the threshold. In
this way, we avoid the false-positive error even before knowledge-
base has been updated properly. Moreover, when the entity linking
result is empty, it is most probable that the target entity mention
should be linked to a new meaning which does not exist in the cur-
rent knowledgebase. In this case, we can interactively ask the user
to add a new entity meaning. By this means our framework can
also help updating the knowledgebase in proactive manner.

Second, we should avoid the true-negative error after the knowl-
edgebase is updated. This means the new entity meanings should
be able to be linked to after knowledgebase updates. Since we
complement the original knowledgebase using historical broadcast-
ings, the newly-generated tweets containing mentions to new en-
tity meanings have not been complemented to the knowledgebase.
Therefore, a system warm-up is required, which can also been done
through the aforementioned interactive process. In particular, when
no entity linking result can be derived or the target user finds the
top-k entity meanings unsatisfactory, we provide her with the new
meaning and allow her to decide whether it is the desired one.
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