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ABSTRACT
Emerging applications face the need to store and analyze intercon-
nected data that are naturally depicted as graphs. Recent proposals
take the idea of data cubes that have been successfully applied to
multidimensional data and extend them to work for interconnected
datasets. In our work we revisit the graph cube framework and
propose novel mechanisms inspired from information theory in
order to help the analyst quickly locate interesting relationships
within the rich information contained in the graph cube. The pro-
posed entropy-based �ltering of data reveals irregularities and non-
uniformity, which are often what the decision maker is looking
for. We experimentally validate our techniques and demonstrate
that the proposed entropy-based �ltering can help eliminate large
portions of the respective graph cubes.
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1 INTRODUCTION
Graph cubes [4, 9, 14] have been recently proposed to provide a
solid foundation that an analyst may build upon, in a manner similar
to what the data cube was for OLAP analysis [5–7, 11]. Graph cubes
contain an exponential collection of aggregated graphs (cuboids). A
decision maker, familiar with the simpler multidimensional frame-
work of data cubes, may be overwhelmed when she tries to navigate
not �at records, but rather complex graph cuboids containing ag-
gregated views of graph nodes and relationships.

In order to help the analyst quickly locate interesting relation-
ships in the aggregated graphs, we propose the use of information
entropy. Our intuition is that the analysts are attracted mainly by
data skew rather than data uniformity. Based in this premise we
use the information entropy to elevate parts of the graph cube that
experience this kind of disorder. As we will show, the entropy-based
�ltering prunes signi�cant parts of the graph cube and at the same
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Figure 1: Sample dataset

time gives valuable indicators as to where interesting associations
exist.

Our major contributions are summarized as follows:
• We �rst revisit the graph cube framework highlighting

the relationships of the constituent cuboids contained in
it. These relationships are modeled as a graph cube lattice
produced by taking the Cartesian product of simpler data
cubes on the attributes of the nodes and edges of the graph.

• We introduce a measure termed external entropy that cap-
tures the entropy of a graph cuboid as a unit. We then
show how to utilize this metric in order to decide whether
a cuboid provides interesting information with respect to
adjacent cuboids in the lattice. We also de�ne the inter-
nal entropy in order to help the user navigate within the
information contained in a large cuboid. The internal en-
tropy helps the analyst elevate interesting interactions in
the graph that become prominent when its raw data is
aggregated at the levels denoted by the cuboid.

• We compare our techniques against alternative methods
for pruning parts of the graph cube. We observe that our
framework maintains the most varied parts of the data
distribution resulting in signi�cantly lower entropy values
on the remaining parts of the graph cube.

2 MOTIVATION
As a motivating example, we consider a social network which de-
picts relationships between di�erent users. Each user can be rep-
resented as a node in a graph. Nodes may have attributes related
to the user such as gender, nation and profession. In Figure 1 we
can see a running example for some data produced by the social
network. Each pro�le (node) has three attributes: gender (male, fe-
male), nation (Greece, Italy, USA) and profession (doctor, professor,
musician). For brevity, we refer to these attributes values by their
initial letter. Each edge is associated with a numeric value (weight)
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(a)Drill down (original data) (b)Drill down (alternative data)

Figure 2: Drill-down from (gender - nation) to (gender,nation - nation) for original and alternative dataset

that in this example indicates the number of interactions between
the respective users.

A possible inquiry on the presented network is to examine how
users depending on their gender relate to other users based on
their nationality. To accommodate this query we need to perform
three di�erent aggregations. First, starting nodes (i.e. nodes with
outgoing edges) are grouped into two aggregate nodes correspond-
ing to gender values male and female, respectively. Similarly, three
aggregate nodes corresponding to nations Greece, Italy and USA
are formed. Finally, each edge of the network, depending on the
gender attribute value of its starting node and the nation attribute
value of its ending node is aggregated into an edge between the
corresponding aggregate nodes created in the previous steps. At
this time, a desired aggregate function can be computed. In this
example, we assume that this function is SUM(). The resulting ag-
gregate graph is depicted in the left-most graph of Figure 2a. Based
on its construction we refer to it as the (gender - nation) cuboid.

Continuing the running example, Figure 2a depicts the process of
drilling down from (gender - nation) to (gender,nation - nation). The
intuition is that we would like to explore whether the nationality
of the source node, in addition to its gender, a�ects the number of
depicted relationships. In this contrived example, the aggregated
edges from cuboid (gender - nation) are split almost evenly when
drilling down to the (gender,nation - nation) cuboid. Thus, this
particular drill-down on the graph cuboids does not seem to reveal
interesting correlations for this dataset.

In Figure 2b we depict another example of this process for an
alternative dataset. In contrast with the �rst case, here we can
�nd some irregularities in the data. These non-uniformities reveal
certain trends, such as that females from Italy are linked mainly to
users from USA, while males from Greece are related to users from
Italy.

Because of the exponential number of cuboids in the graph cube,
it is extremely di�cult for an analyst to manually explore all possi-
ble cuboids and navigation steps among them (roll-up, drill-down)
in search for interesting patterns. This realization provides the mo-
tivation of our techniques. We seek to provide the analyst with
solid mathematical tools derived from information theory and in
particular the information entropy, that can help her reveal such
interesting irregularities.

Figure 3: The Graph Cube

3 THE GRAPH CUBE
The graph cube is the Cartesian product of two cubes: of the starting-
and the ending-cube, as is depicted in Figure 3. In this example a
graph cuboid can be ((gender, *,*) - (*,nation,*)) or, for brevity, (gen-
der - nation). The starting nodes on this cuboid are aggregated
graph nodes based on the gender attribute. Similarly, the ending
nodes are aggregations of raw graph nodes based on the nation
attribute. Starting and ending nodes in this cuboid are intercon-
nected according to the raw graph edges. These raw data edges
are aggregated producing a graph cube edge along with a measure.
The user can choose any combination of functions based on mea-
sure attributes on the constituent nodes and edges. For simplicity,
we assume that this function is the SUM() function along a single
numerical measure on the edges, in our running examples.

Clearly, the graph cube is signi�cantly more complex than the
data cube on the plain node attributes. The number of cuboids
increases from 2n (data cube) to 2(2n) , in the graph cube. Moreover,
each of these cuboids, is not a �at relation, but an aggregated graph,
as is depicted in Figures 2a and 2b.

The graph cube framework can be extended by considering at-
tributes on the edges of the data graph that can be used as another
set of dimensions in the analysis. Since this extension is orthogonal
to the techniques we present next, for brevity in the discussion and
ease of notation, we only consider dimensions used in the graph
nodes.
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Figure 4: Selecting cuboids based on their external entropy, Twitter dataset

Record Cardinality
дenders natione

male Greece 80
male USA 22
male Italy 76
female Italy 60
female USA 54
female Greece 3

Table 1: Dual representation of cuboid (gender - nation). The
table shows the distinct records and their cardinality

4 ENTROPY CALCULATIONS ON GRAPH
CUBOID RECORDS

Let us consider cuboid Ci from the graph cube lattice. The cuboid
is a graph but it can be (virtually) �attened into a relation with
bag semantics (i.e. a table). Each cuboid edge is mapped to a set
of records (rows) with cardinality equal to the aggregate measure
computed on the edge and attribute values those of the constituent
nodes. For example cuboid (gender - nation) of Figure 2a is virtually
represented by a relation with attributes (gender, nation) as is shown
in Table 1. The domain of attribute gender is male, female and that
of attribute nation Italy, Greece, USA. The cuboid edge (female,
Italy) is represented by a set of records of the form (female, Italy).
There would be 60 such records in this virtual table. Similarly, there
would be 3 records of the form (female, Greece).

We refer to this virtual relation as the dual representation of the
cuboid. The number of rows (records) in the dual representation is
the size N of the cuboid. In the running example, the size of cuboid
(gender - nation) is N=295.

We de�ne the external entropy (eH) of a cuboid as the negative
of the logarithm of the probability distribution of the cuboid records
in its dual representation. The virtual relation contains N records
and consists ofm distinct rows with cardinality a1,a2, . . . ,am . E.g.
a(f emale, I taly )=60. The external entropy of Ci is calculated as

eH (Ci ) = −
m∑
j=1

p (aj ) ∗ log2 p (aj ) ,where p (aj ) =
aj

N
(1)

Recall that each cuboid has a certain selection of starting and
ending attributes. Lets assume that cuboid Ci consists of s1, s2,. . . ,
st starting attributes and e1, e2, . . . , ew ending attributes. Thus,
each row r j in the dual representation has tuples of the form
(sj1 , sj2 , . . . , sjt , ej1 , ej2 , . . . , ejw ). If we add another attribute (start-
ing or ending) in the cuboid Ci then we get another cuboid Ck of
the lattice. We refer to cuboid Ck as the "child" of Ci , while Ci is
the "parent" of Ck . For each row of Ci there is a more detailed row
in Ck .

Let us consider the relationship between the external entropies
of these cuboids. Drilling down from the parent Ci to the child Ck
we can calculate the delta-entropy, i.e. the di�erence between the
two external entropies as:

δ (Ck ,Ci ) = eH (Ck ) − eH (Ci ) (2)

This di�erence equals to the conditional entropy of the child
given the parent.

δ (Ck ,Ci ) =
m∑
j=1

p (aij ) × eH (Ck |Ci = aij )

= −

m∑
j=1
{p (aij ) ×

d∑
o=1

p (ako ) × log2 p (a
k
o )} (3)

where p (ako ) =
ako
aij

, rko is a more detailed Ck row of (Ci )’s row r ij

and there are d distinct values for the detailed rows of r ij .
The delta entropy is a non-negative number. This is because

the external entropy of the child cuboid Ck is greater or equal to
the external entropy of its parent Ci . For the minimum and the
maximum entropy of Ck it holds that

0 ≤ eHmin (Ci ) = eHmin (Ck ) ≤ eHmax (Ci ) ≤ eHmax (Ck ) (4)

The minimum entropy value of the child equals to the entropy
of its parent, i.e. when the delta entropy δ (Ck ,Ci ) = 0. In this case
for each distinct record of the parent (in the dual representation),
there is only a single distinct record for the child. The maximum
external entropy of the child is obtained when each distinct record
of the parent dual representation is distributed uniformly among
the more detailed records of the child. For example if the parent
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cuboid Ci has m distinct records with cardinality a1,a2, . . . , am ,
respectively and for each aj , j ∈ [1,m] there are dj distinct records
in the child dual then

eHmax (Ck ) = −
m∑
j=1

p (aj ) ∗ log2
p (aj )

dj
(5)

Based on these observations, we introduce the delta entropy rate
in order to quantify how informative the process of drilling down
from parentCi to its childCk is. We de�ne the external entropy rate
as

eHrate (Ck ,Ci ) =
eH (Ck ) − eH (Ci )

eHmax (Ck ) − eH (Ci )
(6)

Where 0 ≤ eHrate (Ck ,Ci ) ≤ 1. When this value is close to 1,
the drill-down process doesn’t change signi�cantly the distribution
of the records and, thus, no new insights are given to the analyst.
We can therefore exclude less interesting navigations in the lattice
by de�ning an external entropy rate threshold value between zero
and one. When the eHrate of a drill down surpasses the threshold,
then this drill down is omitted from consideration.

4.1 Internal Entropy
In order to gain insight into the distribution of records within a
cuboid, we introduce an additional type of entropy termed internal
entropy. Due to the fact that we consider directed data graphs, we
distinguish between two kinds of internal entropies namely starting
internal entropy and ending internal entropy.

Consider cuboid Ci with N records, s starting attributes and t
ending attributes. Furthermore, there are l distinct combinations of
starting attribute values of the form (a

y
1 ,a

y
2 , . . . ,a

y
s ) : my , where

y ∈ [1, l] and my is their cardinality in the cuboid. For each such
combination (indicated by parameter y) there are fy di�erent com-
binations of ending attribute values with cardinality zqy . We calcu-
late the starting internal entropy as the conditional entropy of the
ending attributes’ values conditioned from each starting attribute
combination of values. Thus, for the combination of starting at-
tribute values indicated byy, we de�ne the starting internal entropy
as

siH (C
y
i ) = −

fy∑
j=1

p (q
y
j ) ∗ log2 p (q

y
j ) where p (q

y
j ) =

zqy

my
(7)

The ending internal entropy eiH is de�ned in an analogous man-
ner. As in the case of external entropy, we introduce the internal
entropy rate (for the starting or ending internal entropy, respec-
tively) as the fraction between the (starting/ending) internal entropy
and the maximum possible value of internal entropy. For example
the starting internal entropy rate is de�ned as

siHrate (C
y
i ) =

siH (C
y
i )

siHmax (C
y
i )

(8)

The value of the internal entropy rate is between 0 and 1 and
can be used to select the most prominent trends within a cuboid.

5 EXPERIMENTS
In this section we provide an experimental evaluation of the pro-
posed framework. We worked with three real social datasets. The
�rst one consists of data sampled from Twitter. The second dataset
is from VKontakte (VK). VK is the largest European on-line social
networking service. It is available in several languages, but is espe-
cially popular among Russian-speaking users. The last dataset is
from Pokec, the most popular on-line social network in Slovakia.
Pokec has operated for more than 10 years and connects more than
1.6 million people. This dataset contains anonymized data of the
whole network. The �rst two datasets were crawled by our team
while the Pokec dataset is available at [8].

The characteristics of these datasets are shown in Table 2. The
Twitter dataset contains 3 attributes on the nodes (pro�les): the
gender, location and language used from the pro�le. The VK dataset
contains 5 attributes: birthyear, country, city, gender and education
level of the user. Finally, the Pokec dataset uses 6 node attributes:
age, region, gender, registration year, public pro�le and completion
percentage of the pro�le.

In order to compute the graph cubes of these datasets, we set up
a small cluster of 4 PCs equipped with Intel i7-3770 CPUs clocked
at 3.40GHz, 4GB of memory and 300GB 7200rpm HDDs. We used
the popular Apache Spark [13] framework on 8 VMs (one being the
master) running on this cluster. At a pre-processing step we com-
puted all cuboids for all three datasets using the BUC algorithm [1]
that we adapted for graph cubes. Given a data cube lattice, the
BUC algorithm initiates a recursive computation of the cuboids by
performing a bottom-up depth-�rst-search traversal of the lattice.
In the case of data graphs, the graph cube lattice is a cross-product
of lattices and this implies that the algorithm may proceed in two
directions (starting/ending node aggregation) its recursive compu-
tation, exploiting the parallelism provided by Spark. In Figure 5 we
depict the �ow of the algorithm for a simpler graph cube lattice
on two attributes gender (G) and nation (N). In this example, after
the (gender - *) cuboid is computed, the modi�ed BUC algorithm
may proceed and compute in parallel cuboids (gender,nation - * )
and (gender - gender). Thus, the modi�ed BUC utilizes a number
of parallel DFS processes. The numbers depicted on the edges of
the lattice in the �gure indicate the relative order of computation.

Other algorithms for computing data cubes can also be extended
for the graph cube. This selection is orthogonal to our techniques.
We used BUC because we also wanted to evaluate the pruning
obtained by our methods against computing an Iceberg cube, which
as will be explained, is computed using BUC.

All presented experiments in what follows were executed on a
small desktop PC running a commercial database server. The desk-
top PCs is equipped with Intel i5-4200 CPUs clocked at 2.30GHz,
8GB of memory and two 2TB 7200rpm HDDs We loaded the graph
cubes obtained by the Spark program in the database and com-
puted the internal and external entropy calculations within the SQL
engine.

In Figure 6a we plot the percentage of records that are retained
in the graph cube (y-axis) for all the datasets when we vary the
threshold for the external entropy rate (x-axis). The absolute sizes of
the corresponding cubes are presented in Table 2. A small value of
the external entropy rate threshold �lters out a large portion of the
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Twitter VK Pokec
Pro�les (nodes) 34,062,759 3,917,224 1,632,803
Relations (edges) 910,526,369 493,137,167 30,622,564
Number of Attributes 3 5 6
Number of Cuboids 64 1024 4096
Graph Cube Records 4,010,022 362,149,881 66,352,625,425
Graph Cube Size 18 GB 235 GB 1.58 TB

Table 2: Description of datasets used

Figure 5: The BUC algorithm adapted for graph cubes

graph cuboids. These cuboids provide no signi�cant information
with respect to their ancestors and descendants in the lattice.

The �gure reveals a steep reduction in the graph cube sizes,
when we decrease this threshold bellow a certain value. For the
Twitter dataset only 14% of the cube remains for a threshold rate of
3,5%. Moving up this threshold to 4%, the percentage jumps to 50%
of the Twitter graph cube. This suggests that there is skew in the
distribution of values across cuboids that we can investigate further
using the internal entropy rates (discussed next). On the other
hand, an increase of the external entropy rate threshold beyond 4%
overwhelms the user with a signi�cant increase in the result set, as
many near-uniform relationships are retained complicating further
analysis.

The same phenomenon arises in the VK dataset but is less pro-
found. Still, with a threshold of 10% for the external rate we are left
only with 17% of the VK cube records. The Pokec dataset exhibits
the same behavior. With a threshold of 9% there are only 13% of
graph cube records remaining for analysis.

Figures 6b and 6c illustrate the percentage of records of the graph
cubes retained for the three datasets, scaling the starting and ending
internal entropy rates, respectively. Similar observations can be
made for the pruning power of the internal entropy. For a starting
internal entropy rate threshold of 10% we are left with just 0.7% of
the Twitter graph cube, 0.0026% of the VK graph cube and 0.0019%
of the Pokec graph cube records. For a more relaxed 40% threshold
there are only 26% of Twitter, 5% of VK and 3% of Pokec graph cube
recods �ltered in. In conclusion, only a small percentage of the
billions of records in these graph cubes reveal interconnections that
are far from uniformity.

An alternative method for �ltering out records from the graph
cube is to use a minimum support threshold. Using such a threshold,
we may omit aggregate records (relationships) that are generated
from fewer than the required number of "base" graph records. This
idea has been used under the name of Iceberg cubes [1].

In the following experiments we compute the Iceberg graph cube,
for di�erent values of minimum support and then, we adjust the
internal entropy rate threshold so as to retain the same number
of graph cube records. We then compare the resulting subsets of
the graph cube in terms of the entropy retained in them. Recall
that a smaller value of entropy implies that more skew is evident
in the dataset. In Figure 7a we show the di�erences between the
produced graph cubes for the Twitter dataset. The x-axis in the
�gure is the number of records in the produced graph cubes. For the
same output size the internal entropy rate used by our techniques
for selecting pieces of the graph cube results in a dataset with more
skew or, equivalently, less random behavior. Similar observations
hold for the other two datasets, as is depicted in Figures 7b and 7c.
In some instances, the cube retained by our method holds three
orders of magnitude smaller entropy values than an Iceberg cube
of the same size.

6 RELATEDWORK
The work in [14] introduced the graph cube that takes into ac-
count both attribute aggregation and structure summarization of
the underlying graphs. This work is mainly focused on cuboids that
aggregate the starting and ending nodes on the same dimensions,
e.g. (nation - nation). More general aggregations that di�erenti-
ate between the starting and ending nodes of the graph are not
speci�cally mentioned but can be addressed under a cross-cuboid
computation that is mentioned as an extension. In our work we
elevate such cuboids as �rst-class-citizens in the graph cube frame-
work. As our experiments with real datasets indicate, such cuboids
often hold signi�cant insights for the underlying interconnections.
Furthermore, the work of [14] considers all records in the proposed
graph cube. As we show in our work, only a small part of a complex
graph cube carries interesting information when analyzed under
the lens of our entropy-based navigation framework.

A recent work [12] considers aggregate attributed graphs. The
authors name their model as a hyper graph cube while its compu-
tation is done with map-reduce batches. The hyper graph cubes
aggregate separately attributes at vertices and edges and then calcu-
late the Cartesian product between them. Thus, they do not exploit
and analyze the existing relationships under di�erent levels of ag-
gregation on the starting and ending nodes of the graph.
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(a) Scaling external entropy rate
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(b) Scaling starting internal entropy rate
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(c) Scaling ending internal entropy rate

Figure 6: Records remaining in the graph cube using proposed entropy rates
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(b) VK dataset
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(c) Pokec dataset

Figure 7: Total entropy (log 10) for the same number of output records from the internal and Iceberg threshold, respectively

Our solutions are based on the foundational model of informa-
tion entropy and, as our experiments demonstrated, help steer the
analyst towards the most important parts of the aggregated graph
dataset. A common trend that we observed in all three real datasets
that we used in our evaluation study is that only a small fraction
of the aggregate graph data shows signi�cant skew. As a result,
even on graph cubes containing tens of billions of records (e.g. as in
the Pokec dataset), we can prune the majority of the records based
on the computed entropy model (internal and external entropies).
To the best of our knowledge we are the �rst that utilize the en-
tropy in order to �lter the information that a graph cube holds.
Recently, an entropy-based model has been proposed [10] in order
to estimate the strength of social connections by analyzing users’
occurrences in space and time. This work considers triplets of (user,
location, time) data and utilizes entropy to measure the diversity
of user co-occurrences. In our work we utilize entropy to measure
the diversity within and across graph cuboids. The works of [2, 3]
consider the case of analyzing very large collections of smaller data
graphs, while in this work we consider a singe massive graph that
is under investigation.

7 CONCLUSIONS
In this work we proposed intuitive measures derived from informa-
tion theory in order to select interesting substructures from graph
cubes computed via aggregation a raw data graph over its node
attributes. Our experimental results validate the e�ectiveness of our
techniques on real datasets of realistic sizes. As a future direction
we plan to explore ways to prune some of the required entropy
computations based on the parent-child relationships that we have
identi�ed between the cuboids.
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