
CrowdMatcher: Crowd-Assisted Schema Matching

Chen Jason Zhang§, Ziyuan Zhao§, Lei Chen§, H. V. Jagadish†, Caleb Chen Cao§

§ Hong Kong University of Science and Technology, Hong Kong, China
† University of Michigan, Ann Arbor, MI, USA

{czhangad,zzhaoab,leichen}@cse.ust.hk, jag@umich.edu, caochen@cse.ust.hk

ABSTRACT

Schema matching is a central challenge for data integration sys-
tems. Due to the inherent uncertainty arose from the inability of
schema in fully capturing the semantics of the represented data,
automatic tools are often uncertain about suggested matching re-
sults. However, human is good at understanding data represented in
various forms and crowdsourcing platforms are making the human
annotation process more affordable. Thus in this demo, we will
show how to utilize the crowd to find the right matching. In order
to do that, we need to make the tasks posted on the crowdsouricng
platforms extremely simple, to be performed by non-expert people,
and reduce the number of tasks as less as possible to save the cost.

We demonstrate CrowdMatcher, a hybrid machine-crowd sys-
tem for schema matching. The machine-generated matchings are
verified by correspondence correctness queries (CCQs), which is
to ask the crowd to determine whether a given correspondence is
correct or not. CrowdMatcher includes several original features:
it integrates different matchings generated from classical schema
matching tools; in order to minimize the cost of crowdsourcing, it
automatically selects the most informative set of CCQs from the
possible matchings; it is able to manage inaccurate answers pro-
vided by the workers; the crowdsourced answers are used to im-
prove matching results.

Categories and Subject Descriptors

H.2.1 [Logical Design]: Schema and subschema

Keywords

Crowdsourcing, Schema Matching

1. INTRODUCTION
Schema matching refers to finding correspondences between el-

ements of the two given schemata, which is a critical issue for many
database applications [8]. Although many works concentrate on the
development of methods and tools for automatic schema matching,
finding high-quality schema matching is still a challenging issue.
In fact, it is very difficult to tackle schema matching completely
with an algorithmic approach - some ambiguity is unlikely to be
removed because it is believed that typically “the syntactic repre-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2594515.

Possible Matchings probability
m1={ <(Professor)Name,Prof.name>, <Position, Position>,

<Gender,Sex>, <(Department) Name, Department>} .45
m2={ <(Professor)Name,Prof.name>,

<Gender, Sex>, <(Department) Name, Department>} .3
m3={ ((Department)Name,Prof.name), (Position, Position)

(Gender,Sex) } .25

Correspondence probability
c1=<(Professor)Name,Prof.name> .75

c2=<Position, Position> .7
c3=<Gender,Sex > 1

c4=<(Department) Name, Department> .75
c5=<(Department)Name,Prof.name> .25

Table 1: Uncertain Schema Matching
sentation of schemata and data do not completely convey the se-
mantics of different databases” [7].

Therefore, many schema matching tools will produce not just
one matching, but rather a whole set of possible matchings. In fact,
there is even a stream of works dealing with models of possible
matchings, beginning with [2]. Matching tools can produce a re-
sult similar to the upper part of Table 1, with one matching per
row, associated with a probability indicating its correctness. Based
on that, one can create an integrated database that has uncertain
data, and work with this using any system that supports probabilis-

tic query processing over uncertain data. However, preserving the
uncertainty complicates the query processing and increases stor-
age cost. Therefore, we would prefer to making choices earlier, if
possible, and eliminating (or reducing) the uncertainty to be prop-
agated.

The recent advent of crowdsourcing platforms (e.g. Amazon
Mechanical Turk) opens a new opportunity for resolving the in-
herent ambiguity with human insights [4, 6, 10]. These platforms
provide support for managing and assigning mini-tasks to crowd-
sourcing workers. The crowd can be used to produce massive labels
for such a human-assisted schema matching system. However, to
obtain an efficient and effective process, two main issues need to be
addressed. First, since tasks are performed by non-expert people,
they should be extremely simple. Second, since the cost of crowd-
sourcing becomes proportional to the number of tasks, the number
of tasks to be crowdsourced should be minimized.

In this work, we present CrowdMatcher, a hybrid machine-crowd
system, which leverages workers engaged from a crowdsourcing
platform to provide the needed human intelligence. The tasks con-
sist of a sequence of Correspondence Correctness Queries (CCQ),
which are the simplest queries, asking the crowd to determine the
correctness of a given correspondence with a yes/no answer (e.g.
“ Are ‘Name’ from Schema A and ‘Prof.name’ of Schema B refer-
ring to the same concept?"). The CCQ answers received from the
workers are exploited by CrowdMatcher to adjust the probability
of matching results.

721

To minimize the cost of crowdsourcing, CrowdMatcher adopts
two approaches [11] to generate the most valuable questions that
lead to the highest uncertainty reduction, thus minimizing the num-
ber and the cost of the tasks assigned to the crowdsourcing plat-
form. For schema matching certainty, we choose entropy as our
measure.

The first approach, called Single CCQ, determines the single
most valuable correspondence query to ask the crowd, given a set of
possible matchings and associated correspondences, all with prob-
abilities. Intuitively, one may try a simple greedy approach, choos-
ing the query that reduces entropy the most. However, there are
three issues to consider. First, the correspondences are not all in-
dependent, since they are related through candidate matchings. So
it is not obvious that a greedy solution is optimal. Second, even
finding the query that decreases entropy the most can be compu-
tationally expensive. Third, we cannot assume that every person
among the crowd answers every question correctly - we have to al-
low for wrong answers too. We derive an efficient algorithm to find
the most optimal correspondence to be crowdsourced, and handle
the error rate of workers with Bayes’ theorem [11].

Usually, we are willing to ask the crowd about more than one
correspondence, even if not all of them. We could simply run Sin-
gle CCQ multiple times, each time greedily resolving uncertainty
in the most valuable correspondence. However, we can do better.
For this purpose, we develop Multiple CCQ, an extension of Sin-
gle CCQ that maintains k most contributive questions in the crowd,
and dynamically updates questions according to newly received an-
swers.

We also extend this hybrid crowd-machine method to multiple
schema matching, which is desirable in many application contexts
involving multiple data sources (e.g., the web, personal informa-
tion management, enterprise intranets). When multiple schemata
are input, CrowdMatcher automatically creates a mediated schema
from the provided schemata and consecutively generates uncertain
semantic matchings between the input schemata and their mediated
schema. Then we perform crowd verification on each of the pair-
wise matchings.

2. CROWDMATCHER ARCHITECTURE
The CrowdMatcher incorporates automatic schema matching with

a human verification process, which relies on the results of mini-
tasks submitted to the crowd. CrowdMatcher takes as input a col-
lection of schemata, each of which contains a set of attributes.

Given a pair of schemata, CrowdMatcher first uses an existing
schema matching tool to generate a set of possible matchings, each
of which is associated with a probability. Due to the inherent uncer-
tainty, the probability of possible matchings result is relatively low
(usually less than 0.5). As discussed in the previous section, the
system reduces the uncertainty by posing CCQs to crowd workers.
The system adopts two approaches, “Single CCQ” and “Multiple
CCQ”, which adaptively select, publish and manage the questions,
in order to maximize the uncertainty reduction within a limited bud-
get.

When more than two schemata are provided, CrowdMatcher first
clusters schemata from the same domain to avoid unnecessary match-
ing operations between schemata from different domains. Then, a
mediated schema is automatically generated for each cluster. Last,
CrowdMatcher conducts pairwise schema matching for each schema
and its corresponding mediated schema. In other words, the mul-
tiple schema matching problem is transferred into several pairwise
schema matching problems.

Figure 1 illustrates the architecture of the CrowdMatcher system,
as well as the flow of the process. We illustrate different modules

and the workflow of CrowdMatcher as follows. The input of the
system is a set of (two or more) schemata. If the size of input is
two, the process will follow the upper part of the figure. Other-
wise, the lower part is initiated. In case of more than two schemata,
CrowdMatcher starts with Schema Clustering, based on which we
generate the mediated schema for each cluster in Attribute Clus-

tering module. Then, the top-k schema matching is performed in
the module of Automatic Schema Matching. Given these matching
results, the Result Set Analysis module constructs the correspon-
dence set, which is passed to the Correspondence Manager. After
that, Correspondence Manager selects and publishes CCQs to the
crowdsourcing platform (i.e. Amazon Mechanical Turk). When-
ever crowdsourced answers are received from workers, the Result

Set Analysis module applies the collected data to adjust the prob-
ability distribution of possible matchings. The updated matchings
are subsequently delivered to the Correspondence Manager mod-
ule for recursively selecting new CCQs. After reaching the budget
or time limit, the matching result with the highest probability is vi-
sualized with the Matching Visualization module, and presented to
requester.

We now give a more detailed description of the main modules of
the system.

2.1 Schema Clustering
Since it is expensive to perform schema matching and schemata

from different domains are unlikely to have attributes refer to the
same entity. CrowdMatcher first adopts schemata clustering as a
preprocess step of schema matching when there are more than two
schemata provided by the user. In particular, we adopt Canopy

Clustering algorithm [5], which doesn’t require the initial setting
of the number of clusters and allows overlapping. After canopy
clustering, schemata are divided into overlapping subsets we call
canopies, which are outputs for this module.

2.2 Attribute Clustering
We need to create mediated schema for each cluster generated

from the schema clustering module. Mediated schema refers to the
schema which best represents the cluster of the schemata. Here we
adopt strategy introduced in [9], which creates a mediated schema
by clustering attributes from input schemata. Mediated schemata
should contain all “important” attributes from input schemata, and
semantically similar attributes from different schemata should be
combined into one cluster.

The mediated schema is created in three steps. First, we remove
infrequent attributes from the set of all attributes of input schemata;
that is, attributes that do not appear in a large fraction of input
schemata. This step ensures that remaining attributes are all rel-
evant and central to the domain. Second, we construct a weighted
graph whose nodes are the attributes that survived the filter of the
first step. An edge in the graph is labelled with the pairwise sim-
ilarity between the two nodes it connects. An edge is included in
the graph only if its weight is above a certain threshold. Finally,
the nodes in the resulting weighted graph are clustered to obtain
the mediated schema. A cluster is defined to be a connected com-
ponent of the graph.

For similarity, we use Jaro Winkler similarity [1] to measure the
distance between two given attributes, which depicts how closely
the two attributes represent the same real-world concept.

2.3 Automatic Schema Matching
Automatic schema matching module is to generate the top-k match-

ing results using machine-only schema matching tools. Here we
adopt OntoBuilder [3], which is one of leading schema matching

722

Figure 1: System Architecture

tools. In OntoBuilder, 6 schema matching algorithms are imple-
mented, namely Term, Value, Term&Value, Composition, Prece-
dence and Graph. In CrowdMatcher, a requester is free to select
any algorithms to use. This module outputs a set of possible match-
ings, each of which is associated with a global score indicating the
goodness of the matching. We obtain probabilities of matchings
by normalizing the global score. In case of multiple schemata, we
match all input schemata with its corresponding mediated schema.

2.4 Result Set Analysis
This module takes a set of possible matchings as input. It gener-

ates the correspondence set, which consists of all correspondences
contained by all possible matchings. The probability of a corre-
spondence is calculated by simply adding up the probabilities of
matchings in which the correspondence holds. For example in Ta-
ble 1, the correspondence c1 holds in m1 and m2, but not m3.
Therefore, its probability is obtained as 0.45 + 0.3 = 0.75. An-
other role of this module is to dynamically adjust the weight of
possible matchings when the answer of a correspondence is up-
dated into the database. If we know a particular correspondence to
be true (or false), this will automatically disqualify any matching in
which this correspondence is absent (respectively, present). Since
the probabilities of all possible matchings must sum to one, the
probabilities of the remaining (not invalidated) matchings are in-
creased proportionately. Once matching probabilities are updated,
correspondence probabilities have to be recomputed as well, to re-
flect the new matching probabilities.

2.5 Correspondence Manager
Serving as the core of the system, this module directly interacts

with the crowd: it implements two algorithms that generate CCQs
to pose to the workers in order to get high uncertainty reduction
while minimizing the financial costs. As discussed in the previ-
ous section, only the most valuable questions should be selected
to post to workers. We evaluate the importance of a set of cor-
respondences with their expected reduction of uncertainty. Then
the problem is transferred to an optimization problem: Given a set
of possible matching with a probability distribution, a budget of
CCQs, we aim to maximize the reduction of uncertainty. It is clear
that the selection of CCQs is the core task for our algorithm.

In the framework of single CCQ, a naive approach is to traverse
all correspondences and compute the expected uncertainty reduc-
tion of each CCQ, which will result in a long running time for
complex schemata. We simplify this problem by proving that the
uncertainty reduction is mathematically equivalent to the entropy of
the answer of a CCQ. Based on this, an intuitive idea is to prioritize
the ones that we are more uncertain. In the case of Single CCQ, this
idea indicates to select the CCQ with probability closest to 0.5. So
the algorithm starts with greedily selecting and publishing the sin-
gle CCQ in each iteration that will result in the greatest reduction

of uncertainty. When the CCQ is answered, we adjust probability
of all possible matchings based on the answer and the correspond-
ing error rate, and then generate a new CCQ. The adjustment part
is conducted in Result Set Analysis module.

As an extension of single CCQ, multiple CCQ approach issues k
CCQs simultaneously at one iteration. Different workers can then
pick up these tasks and solve them in parallel, cutting down wall-
clock time. Inspired by single CCQ, we prove the expectation of
uncertainty by a set of CCQs is equivalent to the joint entropy of
the CCQs, i.e. for a given set of CCQs SQ = {Qc1 , Qc2 , ..., Qck},
the answer has domain

DA = {ai|ai ⊆ 2SQ and ∀Qcj ∈ ai , cj is correct;

and ∀Qcjai , cj is incorrect}

and distribution pA = (Pr(a1), P r(a2), ..., P r(a2k)), then we
have the expected uncertainty reduction

E(∆HSQ) = −
∑

ai∈DA

Pr(ai) logPr(ai)

= H(Qc1 , Qc2 , ..., Qck)

Thus we reduce this problem to a special case of joint entropy
maximization problem. After proving that this maximization prob-
lem is NP-hard, we propose an approximation algorithm with a per-
formance guarantee of (1− 1/e), by iteratively selecting the most
uncertain variable given the ones selected so far. The procedure is
described as follows. The underlying theory and algorithms of this
process are detailed in [11].

2.6 Matching Visualization
This module provides the interface displaying the final matching

results generated by the Result Set Analysis. We use the JavaScript
InfoVis Toolkit to implement the data visualization. The cluster-
ing information is represented by a undirected graph, whose nodes
symbolize schemata. schemata belong to the same cluster is con-
nected to their mediated schema. And we use a structure similar
to a bipartite graph to show the matching result between pairwise
schemata, in which attributes forming a correspondence are con-
nected.

3. DEMO PLAN
The demonstration of CrowdMatcher will involves the interac-

tion of attendees during the conference. Attendees can act as the
requester or crowdsourcing workers. Firstly, the requester is re-
quired to upload a set of schemata (at most 20 in one request).

After uploading schemata, participants need to specify some pa-
rameters required in the following process, e.g. the total budget, the
algorithms to use in automatic schema matching stage. Participants
are also allowed to choose the question generation approaches, i.e.
single CCQ or multiple CCQ.

723

(a) Request List (b) HIT(CCQ) Example

(c) Clustering Result (d) Matching Result

Figure 2: Screenshots

If a participant input more than two schemata, the system will
first perform Schema Clustering and Attribute Clustering. As the
output of this two modules, the mediated schema and cluster results
will be demonstrated in the final result page in a visualized way.

The CrowdMatcher will then go through the Automatic Schema

Matching, Result Set Analysis and Correspondence Manager. Dur-
ing the demonstration, we will show a log of the run to demonstrate
the detailed process of these modules. After that, a set of CCQs will
be generated and posted to the Amazon Mechanical Turk (AMT)
platform. In each iteration, the system will demonstrate the web
page that lists all the tasks, each of which is attached with a link
to the AMT platform. Clicking the link button will redirect to the
real HIT task page in AMT. These tasks can be either answered
by real AMT workers, or attendees who act as the workers. Each
task consists of one or more CCQs, which are presented through
the interface shown in Figure 2 (b): it lists all the attributes of the
schemata involved in the CCQ to help workers make determination.
To make the tasks easier for the workers, the attributes involved in
the CCQs are highlighted (in red).

When receiving all the answers in this iteration, the Correspon-

dence Manager will select another set of CCQs and post that to the
AMT platform.

When reaching the budget limit set by requester, the system stops
issuing new CCQs and return the requester with the matching re-
sult with the highest probability in a visualized way. As shown in
Figures 2 (c) and (d), the system first demonstrates the visualized
clustering result. Clicking any schema will open a new page which
demonstrates the mapping information between this schema and its
corresponding mediated schema.

4. ACKNOWLEDGMENT
This work is supported in part by the Hong Kong RGC Project

MHKUST602/12, National Grand Fundamental Research 973 Pro-
gram of China under Grant 2012-CB316200, Microsoft Research
Asia Gift Grant and Google Faculty Award 2013.

5. REFERENCES
[1] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg.

A comparison of string distance metrics for name-matching tasks. In
IIWeb, pages 73–78, 2003.

[2] Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration with
uncertainty. VLDB J., 18(2):469–500, 2009.

[3] Avigdor Gal, Maria Vanina Martinez, Gerardo I. Simari, and V. S.
Subrahmanian. Aggregate query answering under uncertain schema
mappings. In ICDE, pages 940–951, 2009.

[4] Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltán Miklós, and
Karl Aberer. On leveraging crowdsourcing techniques for schema
matching networks. In DASFAA (2), pages 139–154, 2013.

[5] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient
clustering of high-dimensional data sets with application to reference
matching. In KDD, pages 169–178, 2000.

[6] Robert McCann, Warren Shen, and AnHai Doan. Matching schemas
in online communities: A web 2.0 approach. In ICDE, pages
110–119, 2008.

[7] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández.
Schema mapping as query discovery. In VLDB, pages 77–88, 2000.

[8] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001.

[9] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD Conference,
pages 861–874, 2008.

[10] Yongxin Tong, Caleb Chen Cao, Chen Jason Zhang, Yatao Li, and
Lei Chen. Crowdcleaner: Data cleaning for multi-version data on the
web via crowdsourcing. In ICDE 2014.

[11] Chen Jason Zhang, Lei Chen, H. V. Jagadish, and Chen Caleb Cao.
Reducing uncertainty of schema matching via crowdsourcing. Proc.
VLDB Endow., 6(9):757–768, July 2013.

724

