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ABSTRACT
SimRank, proposed by Jeh and Widom, provides a good
similarity score and has been successfully used in many of
the above mentioned applications. While there are many al-
gorithms proposed so far to compute SimRank, but unfortu-
nately, none of them are scalable up to graphs of billions size.
Motivated by this fact, we consider the following SimRank-
based similarity search problem: given a query vertex u, find
top-k vertices v with the k highest SimRank scores s(u, v)
with respect to u.
We propose a very fast and scalable algorithm for this sim-

ilarity search problem. Our method consists of the following
ingredients:

1. We first introduce a “linear” recursive formula for Sim-
Rank. This allows us to formulate a problem that we
can propose a very fast algorithm.

2. We establish a Monte-Carlo based algorithm to com-
pute a single pair SimRank score s(u, v), which is based
on the random-walk interpretation of our linear recur-
sive formula.

3. We empirically show that SimRank score s(u, v) de-
creases rapidly as distance d(u, v) increases. Therefore,
in order to compute SimRank scores for a query ver-
tex u for our similarity search problem, we only need
to look at very “local” area.

4. We can combine two upper bounds for SimRank score
s(u, v) (which can be obtained by Monte-Carlo simu-
lation in our preprocess), together with some adaptive
sample technique, to prune the similarity search pro-
cedure. This results in a much faster algorithm.

Once our preprocess is done (which only takes O(n) time),
our algorithm finds, given a query vertex u, top-20 similar
vertices v with the 20 highest SimRank scores s(u, v) in less
than a few seconds even for graphs with billions edges.
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To the best of our knowledge, this is the first time to scale
for graphs with at least billions edges(for the single source
case).

1. INTRODUCTION

1.1 SimRank
Recent advances in social and information science have

shown that linked data pervades our society. Since graphs
are an intuitive abstraction that can naturally capture ob-
jects as well as their relationships as links, they are becoming
increasingly important to represent complicated structures
and schema-less data. Much effort has been devoted to ex-
tracting useful information from large graphs, and many ap-
plications (e.g., link prediction [22], graph clustering [33,40],
spam detection [4, 11], collaborative tagging analysis [14],
and recommender systems [1]) show some success of vertex
similarities and similarity search methods.

Several similarity measures have been proposed. For ex-
ample, bibliographic coupling [16], co-citation [30], P-Rank [38],
PageSim [23], Extended Nearest Neighborhood Structure [24],
MatchSim [25], and so on. In this paper, we consider Sim-
Rank that was introduced by Jeh and Widom [13]. They
observed that “two similar pages are linked from many sim-
ilar pages.” Due to this observation, SimRank is defined as
the following, recursively.

s(u, v) =


1 (u = v),

c

|δ(u)||δ(v)|
∑

u′∈δ(u),v′∈δ(v)

s(u′, v′) (u ̸= v),

(1)

where δ(u) denotes in-links of a vertex u and c ∈ (0, 1) de-
notes a locality parameter, called a decay factor, which is
usually set to c = 0.8 [13] or c = 0.6 [26]. SimRank and re-
lated similarity measures give high-quality results than other
similarity measures, such as bibliographic coupling or co-
citation. The reason is that SimRank exploits information
on “multi-step neighborhoods” while other similarity mea-
sures, such as bibliographic coupling or co-citation, utilize
only the one-step neighborhoods of pages.

1.2 SimRank computation
Although SimRank gives high-quality similarity measure,

it is not so widely used in practice, due to high computa-
tional cost. While there are several algorithms proposed so
far to compute SimRank scores, unfortunately, their compu-
tation complexities (in both time and space) are very expen-
sive. The difficulty of computing SimRank may be viewed
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as follows: to compute a SimRank score s(u, v) for two ver-
tices u, v, since (1) is defined recursively, we have to compute
SimRank scores for all pairs of vertices. Therefore, since the
number of pairs is O(n2), it requires O(n2) space and O(n2)
time, where n is always the number of vertices in G1.
In order to reduce this computation cost, several approaches

have been proposed [9, 12, 19, 21, 26, 35, 36, 37]. Here, we
briefly survey some existing computational techniques for
SimRank. We summarize the existing results in Table 1.
Let us point out that there are three fundamental problems
for SimRank: (1) single-pair SimRank to compute s(u, v)
for given two vertices u and v, (2) single-source SimRank to
compute s(u, v) for a given vertex u and all other vertices v,
and (3) all-pairs SimRank to compute s(u, v) for all pair of
vertices u and v.
In the original paper by Jeh and Widom [13], all-pairs

SimRank scores are computed by recursively evaluating the
equation (1) for all u, v ∈ V . This “naive” computation
yields an O(Td2n2) time algorithm, where T denotes the
number of iterations and d denotes the average degree of a
given network. Lizorkin et al. [26] proposed a “partial sum”
technique, which memorizes partial calculations of Jeh and
Widom’s algorithm to reduce the time complexity of their
algorithm. This leads to an O(T min{nm,n3/ logn}) algo-
rithm. Yu et al. [37] applied the fast matrix multiplica-
tion [31, 32] and then obtained an O(T min{nm,nω}) algo-
rithm to compute all pairs SimRank scores, where ω < 2.373
is the exponent of matrix multiplication. Note that the space
complexity of these algorithms is O(n2), since they have to
maintain all SimRank scores for each pair of vertices to eval-
uate the equation (1). This results is, so far, the state-of-
the-art algorithm to compute SimRank scores for all pairs
of vertices.
There are some random-walk based algorithms. Jeh and

Widom [13] proposed a random-walk interpretation of Sim-
Rank, which is called a “random surfer-pair model”. Let us
consider two random walks that start from vertices u and v,
respectively, and follow the in-links. Let u(t) and v(t) be the
t-th position of each random walk, respectively. The first
meeting time τu,v is defined by

τuv = min
t
{u(t) = v(t)}. (2)

Then SimRank score is obtained by

s(u, v) = E[cτu,v ]. (3)

Fogaras and Rácz [9] evaluate the right-hand side by Monte-
Carlo simulation with a fingerprint tree data structure, and
they obtained a faster algorithm to compute single pair Sim-
Rank score for given two vertices u, v. This work is rel-
evant to our proposed algorithm because our algorithm is
also based on Monte-Carlo simulation. Moreover, this is the
state-of-the-art Monte-Carlo based algorithm for the single-
pair and the single-source SimRank problems.
Some papers proposed spectral decomposition based al-

gorithms (e.g., [10, 12, 19, 35, 36]), but there is a mistake in
the formulation of SimRank. On the other hand, their al-
gorithms may output reasonable results. We shall mention
more details about these algorithms in Subsections 3.3.
To the best of our knowledge, there is no existing algo-

rithm so far that can compute (single pair) SimRank for

1m is always the number of edges in G

m ≥ 20, 000, 000 size graphs. Indeed in Section 8, we shall
clarify this fact, due to the space constraint. issues.

2. CONTRIBUTIONS

2.1 Problem setting
In this paper, we consider a somewhat different problem,

called “The top-k similarity search problem”, as follows:

Problem 1 (Top-k similarity search).

• Given: A graph G = (V,E).
• Query: A query vertex u and a positive integer k.
• Output: Top-k vertices with the k highest SimRank

similarities with respect to a query vertex u.

This problem is a special case of the single-source SimRank
problem, since our problem only needs k highly-similar ver-
tices. There are two advantages and reasons for this.

Firstly, this problem could be possibly solved more ef-
ficiently. More precisely, as pointed above, the difficulty of
computing SimRank score s(u, v) for two vertices u, v comes
from (1) which is defined recursively. Thus we have to com-
pute SimRank scores for all pairs of vertices, and hence it
requires O(n2) space. On the other hand, the top-k sim-
ilarity search problem has only k outputs for each vertex.
Furthermore, since we do not have to compute the exact
SimRank scores, we are allowed to use some“approximation”
techniques. This could also help accelerating algorithms.

Secondly, in practice, there are usually only small number
of vertices (e.g., 10 to 20 vertices) that have high SimRank
scores for a query vertex u (e.g., greater than 10−2). Since
in many applications we are only interested in “very” similar
vertices, it makes sense to consider only ”top-k” vertices for
a query vertex u, rather than to compute SimRank scores
s(u, v) for all vertices v ∈ V .

2.2 Our main contributions and overview
We propose a novel method that can efficiently find top-k

similar vertices, based on SimRank. Our algorithm is scal-
able to graphs of billions edges.

Technically, our algorithm is based on the following four
key ingredients:

1. We first establish a new framework of computing Sim-
Rank, which introduces a“linear” recursive formula for
SimRank.

2. Based on this linear recursive formula, single-pair Sim-
Rank score s(u, v) can be computed very efficiently by
Monte-Carlo simulation. Indeed, the time complexity
is independent of the size of networks (e.g., n,m).

3. We observe that SimRank score s(u, v) decays very
rapidly as distance of the pair u, v increases.

4. By the above observation, we establish upper bounds
of SimRank score s(u, v) that only depend on distance
d(u, v). The upper bounds can be efficiently computed
by Monte-Carlo simulation (in our preprocess).

These upper bounds, together with some adaptive sam-
ple technique, allow us to effectively prune the similar-
ity search procedure.

Combining these ingredients, we can obtain the following
algorithm for top-k similarity search problem (Problem 1).
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Table 1: Complexity of SimRank algorithms. n denotes the number of vertices, m denotes the number of edges, d denotes
the average degree, T denotes the number of iterations, R is the parameter for the algorithm [9], and r denotes the rank for
low-rank approximation.

Algorithm Type Time Space Technique
Proposed (Section 7) Top-k search << O(n) O(m) Linear recursive formulation & Monte Carlo
Proposed (Section 7) Top-k for all << O(n2) O(m) Linear recursive formulation & Monte Carlo
Li et al. [21] Single-pair O(Td2n2) O(n2) Random surfer pair (Iterative)
Fogaras and Rácz [9] Single-pair O(TR) O(m+ nR) Random surfer pair (Monte Carlo)
Jeh and Widom [13] All-pairs O(Tn2d2) O(n2) Naive
Lizorkin et al. [26] All-pairs O(T min{nm,n3/ logn}) O(n2) Partial sum
Yu et al. [37] All-pairs O(T min{nm,nω}) O(n2) Fast matrix multiplication

Li et al. [20] All-pairs O(Tn4/3) O(n4/3) Block partition
Li et al. [19] All-pairs O(r4n2) O(n2) Singular value decomposition
Fujiwara et al. [10] All-pairs O(r4n) O(r2n2) Singular value decomposition
Yu et al. [35] All-pairs O(n3 + Tn2) O(n2) Eigenvalue decomposition

There are two phases: (1) the preprocess phase (for the
fourth ingredients) and (2) the query phase with respect to
a query vertex u (to obtain top-k vertices for u).
We first perform preprocess to compute the auxiliary val-

ues for upper bounds of SimRank s(u, v) for all v ∈ V (see
Section 6). In addition, we construct an auxiliary bipar-
tite graph H as in Section 7.1. This graph H allows us to
enumerate “candidates” of highly similar vertices v more ac-
curate. This is our preprocess phase. The time complexity
is O(n).
We now perform our query phase. We compute SimRank

scores s(u, v) for each vertex u in the ascending order of dis-
tance from a given vertex u, and at the same time, we per-
form “pruning” by the upper bounds obtained in the fourth
ingredient. Each s(u, v) computation is very efficient by the
second ingredient. By the third ingredient, all top-k vertices
(with respect to u) are close to u (in the sense of graph dis-
tance). In addition, we use the adaptive sample technique.
Specifically, for a query vertex u, we first estimate SimRank
scores roughly for each candidate v (i.e, we only perform
small number of random walks for v). Then, we re-compute
more accurate SimRank scores for each candidate v that has
high estimated SimRank scores (i.e., we perform more ran-
dom walks for v. For more details, please see Section 7.2).
In summary, our search procedure finds all top-k vertices

efficiently by checking the upper bounds and performing the
adaptive sampling, and moreover it terminates very quickly
(since it only looks at local area, i.e, vertices that are close
to u). The time complexity is O(n) in the worst case, but
our experiments in Section 8 shows that it is indeed much
faster, see below.
We can actually perform the similarity search for all ver-

tices. We simply apply the above similarity search proce-
dure for each vertex u. The time complexity is O(n2) in
the worst case but it is much faster in practice. The space
complexity is O(m + kn), where kn comes from the num-
ber of outputs. It is also worth noting that our algorithm
is distributed computing friendly. The bottleneck of the al-
gorithm is computing single-source SimRank scores locally,
as described above, but this part can be performed indepen-
dently. Therefore if there are M machines, the running time
of our algorithm is O(n2/M), i.e., reduced by a factor M2.
In summary, our algorithm has the following attractive

characteristics:

1. Small space: It requires O(n) space for storing the
preprocess results. In addition, for both the single-

2indeed, it would be much faster, since in practice our pro-
posed algorithm for Problem 1 would be much faster

source case and all vertices case, the algorithm uses
only O(m) space to store a network. By comparison,
almost all previously known algorithms need O(n2)
space.

2. Very fast: For the preprocess phase, the time com-
plexity is O(n) (see Section 7).

Concerning the query phase: for the single-source case
(Problem 1), the time complexity is O(n) in the worst
case but much faster in practice. For all vertices case,
the time complexity is O(n2) in the worst case but
much faster in practice.

3. Accurate: Our algorithm computes only “approxi-
mate SimRank”. However, we empirically show that
our algorithm gives almost exact top-k vertices. See
Section 8.2 (and Figure 1 in Section 3.3).

Let us observe that for the space complexity, O(m) is opti-
mal, because we have to read all edges of an input graph.

We conducted our experiments to implement our proposed
algorithm. Our experiments show that the proposed algo-
rithm can scale up to billion-size real networks for the single-
source case. Furthermore, since our all-pairs algorithm can
easily be parallelized to multiple machines, if there are 100
machines, even for graphs of billions size, our all-pairs algo-
rithm can output all top-20 vertices in less than 5 days. To
the best of our knowledge, this is the first time to scale up
to such large networks.

Comparison with other existing algorithms. We
compare our algorithm with the existing ones in Subsec-
tion 8.3. Our algorithms have the following advantages:

1. The state-of-the-art all-pairs algorithm, proposed by
Yu et al. [37], requires much more memory, and hence
works only for graphs with at most a million edges.
On the other hand, our all-pairs algorithm requires
much less memory, therefore it works for a very large
networks.

2. The state-of-the-art Monte Carlo based single-pair and
single-source algorithm by Fogaras and Racz [9] re-
quires much more space than our algorithm(even for
the case R′ = 100 samples for their algorithms). Even
though their algorithm can be faster both in prepro-
cess and in query time, their algorithm scales up to
graphs with at most 70, 000, 000 edges. In addition,
the accuracy of their algorithm is less than that of our
algorithm, see Section 8.2.

The above two comparisons explain why our algorithm is
the first to scale up to graphs of billions edges. Namely,
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some state-of-the-art algorithm (i.e., Fogaras and Racz [9]
Monte-Carlo type algorithm) may be faster than ours in
query time, but it does not scale up to large graphs, due to
the space constraint. By comparison, our algorithm requires
much less memory space than any other existing algorithms,
which allows our algorithm to scale for much larger graphs.

Organization of the paper
This paper is organized as follows. In Section 3, we first
introduce a “linear” recursive formula for SimRank. Based
on this linear recursive formula, single-pair SimRank score
s(u, v) can be computed very efficiently by Monte-Carlo sim-
ulation. This will be presented in Section 4. SimRank score
s(u, v) decays very rapidly as distance of the pair u, v in-
creases. This is shown in Section 5. In Section 6, the upper
bound of SimRank score s(u, v) will be given via our theo-
retical analysis. Indeed, we give two such upper bounds, one
is more effective for a low degree query vertex, and the other
is more effective for a high degree vertex. We also present
efficiently Monte-Carlo based algorithms to obtain such two
upper bounds in Section 6. Note that this is done in our
preprocess phase. In Section 7 we propose an algorithm for
the similarity search problem by combining the above ingre-
dients. Finally, in Section 8, we present many experiments
to justify our proposed algorithm, and compare with other
state-of-the-arts algorithms. We conclude our paper in Sec-
tion 9.

3. NEW COMPUTATIONAL FRAMEWORK
OF SIMRANK

In this section, we introduce a new computational frame-
work of SimRank. Our framework introduces the linear re-
cursive formulation of SimRank (5) (see below) to “decom-
pose” the computational difficulty of SimRank. The frame-
work immediately leads to an efficient deterministic algo-
rithm for SimRank (see Subsection 3.2) and a very efficient
randomized algorithm for SimRank (see Section 4). Fur-
thermore, since the framework is easy to analyze, we can
establish some upper bounds for SimRank (see Section 6),
which are very useful to prune the similarity search. This
pruning results in a much faster algorithm.

3.1 Linear recursive formulation
We first introduce a matrix notation of SimRank. Let P

be a transition matrix of the transposed graph G⊤, i.e.,

Pij =

{
1/|δ−(j)| (i, j) ∈ E,

0 (i, j) ̸∈ E.

Let S := (s(i, j))ij be a matrix whose (i, j) entry is the
SimRank score of i and j (such a matrix S is called a Sim-
Rank matrix). Then the SimRank equation (1) is simply
represented by

S = (cP⊤SP ) ∨ I, (4)

where ∨ denotes the entry-wise maximum, i.e., (A∨B)ij :=
max{Aij , Bij}.
The difficulty of computing SimRank stems from the re-

cursion (4). This is hard to compute because we have to fig-

ure out the entry-wise maximum each time (i.e., non-linear
recursion)3.

In order to overcome this obstacle, the first main idea of
this paper is to establish the linear recursive formulation of
SimRank, which consists of only linear operations as follows.
Let us introduce the diagonal matrix D such that

S = cP⊤SP +D. (5)

Such a matrix always exists because we can take D := S −
cP⊤SP for the SimRank matrix defined by (4). We call this
matrix D the diagonal correction matrix. Using the notion
of the diagonal correction matrix, we can define SimRank as
follows:

SimRank matrix is a matrix that satisfies (5)
with some diagonal matrix D and Sii = 1 for
all i ∈ V .

This important point of this formulation is the following
proposition, whose proof will be given in Appendix.

Proposition 1. If a matrix S′ satisfies (5) for some di-
agonal matrix D, and S′

ii = 1 for i ∈ V then S′ is equal to
the SimRank matrix S. The converse is also true.

We can also bound the range of D as follows.

Proposition 2.

(1− c) ≤ Dii ≤ 1. (6)

For the proof of Propositions 2, see Appendix.
We here show an example to illustrate the linear formula-

tion of SimRank (5).

Example 1. Consider the star graph of order 4 (i.e., a
claw). The transition matrix (of the transposed graph) is

P =


0 1 1 1

1/3 0 0 0
1/3 0 0 0
1/3 0 0 0

 ,

and SimRank for c = 0.8 is

S =


1 0 0 0
0 1 4/5 4/5
0 4/5 1 4/5
0 4/5 4/5 1

 .

Since

S − cP⊤SP = diag(23/75, 1/5, 1/5, 1/5),

we can take D = diag(23/75, 1/5, 1/5, 1/5) for (5). Let us
emphasis that D ̸= (1− c)I.

3.2 Computing SimRank
Having defined our linear recursive formulation (5), we are

ready to mention our way to compute SimRank.
For the equation (5), by substituting the left-hand side to

the right-hand side recursively, we obtain the (converging)
series:

S = D + cP⊤DP + c2P⊤2DP 2 + · · · . (7)

3This is the exactly the place where the papers (e.g., [10,12,
19,35,36]) made mistakes. See Subsection 3.3
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Therefore the SimRank score s(u, v) is obtained from (u, v)
component of (7) by

s(u, v) = e⊤u Sev

= e⊤uDev + c(Peu)
⊤DPev + c2(P 2eu)

⊤DP 2ev + · · · .
(8)

Let s(T )(u, v) be the sum of T -th terms of the above equa-
tion:

s(T )(u, v) :=e⊤uDev + c(Peu)
⊤DPev

+ · · ·+ cT−1(PT−1eu)
⊤DPT−1ev. (9)

Then s(T )(u, v) converges to s(u, v) with rate cT . More pre-
cisely, it is straightforward to see that

0 ≤ s(u, v)− s(T )(u, v) ≤ cT

1− c
. (10)

This implies that if we want to compute s(u, v) with accu-

racy less than ϵ > 0, we just need to compute s(T )(u, v) by
taking T = ⌈log(ϵ(1 − c))/ log c⌉. This yields an algorithm
whose time and space complexity is O(Tm) and O(n) space,
respectively.
As claimed in Section 1, we would like to make this time

complexity faster. For this purpose, in the rest of the paper
we focus on computing s(T )(u, v), instead of s(u, v).

3.3 Estimating diagonal correction matrix
Estimating the diagonal correction matrix D is a hard

task. Indeed it is as difficult as computing the SimRank
matrix S itself. Hence we need an easily computable ap-
proximation of D.
Recall that some papers use the following SimRank “defi-

nition”, which is indeed incorrect:

S′ = cP⊤S′P + (1− c)I. (11)

(e.g., equation (2) in [19], equation (2) in [12], equation (3)
in [36], and equation (2) in [10]). This recursion does not
provide the original SimRank because S′ does not necessary
satisfy S′

ii = 1 (i = 1, . . . , n); see Example 1 for a counterex-
ample.
However, if we regard (11) as an “approximation” of D,

i.e., D ≃ (1 − c)I, the situation is much better for the
similarity search problem. Because, in practice, this ap-
proximation does not much affect top-k similarity rankings
(“approximate” SimRank scores could be different from the
“exact” SimRank scores, though), in this paper, we sim-
ply approximate D ≃ (1 − c)I, as other papers did (e.g.,
[10, 12, 19, 35, 36]). We now give practical justifications for
approximating D ≃ (1 − c)I. Figure 1 shows the scatter
plot of exact SimRank scores and approximated SimRank
scores (based on (5)) for highly similar vertices. We can see
that the points are in a straight line of slope one (in log-log
plot). This means that the approximation D ≃ (1−c)I only
changes the scale of each SimRank score and hence it does
not affect the similarity ranking.
Note that our proposed method does not depend on the

approximation D ≃ (1− c)I. Hence if we estimate D more
accurately, the result also becomes more precisely. There-
fore, in the rest of the paper we keep using the symbol “D”
to denote (1− c)I, to emphasize this point.

Remark 1. Since our definition (5) is linear in D, the
top-k similarity ranking does not change under the scaling

of D. Therefore if the “exact” diagonal correction matrix D
is proportional to the identity matrix I, we can exactly finds
the top-k similarity ranking by approximating D ≃ (1− c)I.
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Figure 1: Correlation of exact SimRank scores and approx-
imated SimRank scores

4. MONTE CARLO ALGORITHM FOR
SINGLE-PAIR SIMRANK

The computational method based on (9) (described in
Subsection 3.2) is more efficient than any previously pro-
posed algorithm (indeed this is the first linear time algorithm
(O(Tm)), and the first linear space algorithm to compute
SimRank score for a single pair of vertices).

However, since we are interested in much faster compu-
tation for the top-k similarity search problem for a single
vertex, this is not enough, because we consider that the
computation time O(Tm) is still expensive. To be more
precise, we would like to solve the top-k similarity search
problem for all vertices. In this case, the above algorithm
would only yield an O(Tmn) algorithm, which is definitely
too expensive.

Here we propose a Monte-Carlo algorithm for the Single
source SimRank, which is based on the random-walk inter-
pretation of formula (9). The algorithm requires only a small
number of samples. This algorithm yields a much faster al-
gorithm for the top-k similarity search problem for a single
vertex.

Let us consider a random walk that starts from u ∈ V and
that follows its in-links, and let u(t) be a random variable
for the t-th position of this random walk. Then we observe
that

P teu = E[eu(t) ]. (12)

Therefore, by plugging (12) to (9), we obtain

s(T )(u, v) =Duv + cE[eu(1) ]
⊤DE[ev(1) ]

+ · · ·+ cT−1E[eu(T−1) ]
⊤DE[ev(T−1) ]. (13)

Our algorithm computes the expectations in the right hand
side of (13) by Monte-Carlo simulation as follows: Consider

R independent random walks u
(t)
1 , . . . , u

(t)
R that start from

u ∈ V , and R independent random walks v
(t)
1 , . . . , v

(t)
R that

start from v ∈ V with u ̸= v. Then each t-th term of (13)
can be estimated as

ctE[eu(t) ]
⊤DE[ev(t) ] ≃

ct

R2

R∑
r=1

R∑
r′=1

D
u
(t)
r v

(t)

r′
. (14)

We compute the right hand side of (14). Specifically by

maintaining the positions of u
(t)
1 , . . . , u

(t)
R and v

(t)
1 , . . . , v

(t)
R

by hash tables, it can be evaluated in O(R) time. Therefore
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the total time complexity to evaluate (13) is O(TR). The
algorithm is shown in Algorithm 1. We emphasize that this
time complexity is independent of the size of networks (i.e,
n,m) Hence this algorithm can scale to very large networks.

Algorithm 1 Monte-Carlo Single-pair SimRank

1: procedure SinglePair(u,v)
2: u1 ← u, . . . , uR ← u, v1 ← v, . . . , vR ← v
3: σ = 0
4: for t = 0, 1, . . . , T − 1 do
5: for w ∈ {u1, . . . , uR} ∩ {v1 . . . , vR} do
6: α← #{r : ur = w, r = 1, . . . , R}
7: β ← #{r : vr = w, r = 1, . . . , R}
8: σ ← σ + ctDwwαβ/R

2

9: end for
10: for r = 1, . . . , R do
11: ur ← δ−(ur), vr ← δ−(vr), randomly
12: end for
13: end for
14: return σ
15: end procedure

We give estimation of the number of samples to compute
(13) accurately, with high probability. We use the Hoeffding
inequality to show the following.

Proposition 3. Let s̃(T )(u, v) be the output of the algo-
rithm. Then

P
{
|s̃(T )(u, v)− s(T )(u, v)| ≥ ϵ

}
≤ 4nT exp

(
−ϵ2R/2(1− c)2

)
.

(15)

The proof of of Proposition 3 will be given in Appendix. By
Proposition 3, we have the following.

Corollary 1. Algorithm 1 computes the SimRank score
s(T )(u, v) with accuracy 0 < ϵ < 1 with probability 0 < δ < 1
by setting R = 2(1− c)2 log(4nT/δ)/ϵ2.

Remark 2. Fogaras and Balázs [9] also proposed a Monte-
Carlo based single-pair SimRank algorithm but their algo-
rithm and our algorithm are conceptually different. Their
algorithm is based on the random surfer-pair model of Sim-
Rank (3). The issue to evaluate (3) is: how to maintain the
random walks, i.e., it requires some path-maintaining data
structure. Fogaras and Balázs used the fingerprint tree data
structure for this purpose. However, the data structure is
much more complicated and hence it becomes a computa-
tional bottleneck.
On the other hand, our algorithm is based on (13). To

evaluate (13), we only have to store the t-th position of ran-
dom walks and hence (13) can be computed very efficient.

5. DISTANCE CORRELATION OF SIMRANK
Our top k similarity search algorithm performs single-pair

SimRank computations for a given source vertex u and for
other vertices v, but we save the time complexity by prun-
ing. In order to perform this pruning, we need some upper
bounds. This section and the next section are devoted to
establish the upper bounds.
The important observation of SimRank is

SimRank score s(u, v) decays very fast as the pair
u, v goes away.

In this section, we empirically verify this fact in some real
networks, and in the next section, we develop the upper
bounds that only depend on distance.

Let us look at Figure 2. We randomly chose 100 vertices
u and enumerate top-1000 similar vertices with respect to
to a query vertex u (note that these top-1000 vertices are
“exact”, not ‘approximate”). Each point denotes the average
distance of the k-th similar vertex. To convince the reader,
we also give the average distance between two vertices for
each network by the blue line.

Figure 2 clearly shows much intuitive information. If we
only need to compute top-10 vertices, all of them are within
distance two, three, or four. In real applications, it is un-
likely that we need to compute top-1000 vertices, but even
for this case, most of them are within distance four or five.
We emphasize that these distances are smaller than the av-
erage distance of two vertices in each network. Thus we can
conclude that the “candidates” of highly similar vertices are
screened by distances very well.
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Figure 2: Distance correlation of similarity ranking. The
red points are for distance of top-1000 similar vertices and
the blue line is for average distance of two vertices in each
network

There is one remark we would like to make from Fig-
ure 2. The top-10 highest SimRank vertices in Web graphs
are much closer to a query vertex than social networks. Thus
we can also claim that our algorithm would work better for
Web graphs than for social networks, because we only look
at subgraphs induced by vertices of distance within three
(or even two) from a query vertex. This claim is verified in
Section 8.

6. TIGHT UPPER BOUNDS
In the previous section, we observe that highly similar

vertices with respect to a query vertex are within small dis-
tance from u. This observation allows us to propose our
efficient algorithm for the top-k similarity search problem
for a single vertex (i.e., Problem 1). In order to obtain this
algorithm, we need to establish the upper bounds of Sim-
Rank that depend only on distance, which will be done in
this section.
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Let us observe that by definition, SimRank score is bounded
by the decay factor to the power of the distance:

s(u, v) ≤ cd(u,v)

Since almost all high SimRank score vertices with respect
to a query vertex u are located within distance three from
u (see Figure 2), we obtain s(u, v) ≤ c3 = 0.216. But this is
too large for our purpose (indeed, our further experiments
to compare actual SimRank scores with this bound confirm
that it is too large).
Here we propose two upper bounds, called “L1 bound”

and“L2 bound”. Our algorithm, described in a later section,
combines these two bounds to perform “pruning”, which re-
sults in a much faster algorithm.

6.1 L1 bound
The first bound is based on the following inequality: for

a vector x and a stochastic vector y,

x⊤y ≤ max
w∈supp(y)

x⊤ew, (16)

where supp(y) := {w ∈ V : y(w) > 0} is a positive support
of y. We bound (P teu)

⊤D(P tev) by this inequality.
Fix a query vertex u. Let us define

α(u, d, t) := max
w∈V,d(u,w)=d

(P teu)
⊤Dew (17)

for d = 1, . . . , dmax and t = 1, . . . , T , and

β(u, d) :=

T−1∑
t=0

ct max
d−t≤d′≤d+t

α(u, d′, t) (18)

for t = 1, . . . , T . Here dmax is distance such that if d(u, v) >
dmax then s(u, v) is too small to take into account. (We
usually set dmax = T ).

Proposition 4. For a vertex v with d(u, v) = d, we have

s(T )(u, v) ≤ β(u, d) (19)

The proof will be given in Appendix.

Remark 3. α(u, d, t) has the following probabilistic rep-
resentation:

α(u, d, t) = max
d(u,w)=d

DwwP{u(t) = w}

where u(t) denotes the position of a random walk that starts
from u and follows its in-links.

To compute α(u, d, t) and β(u, d), we can use Monte-Carlo
simulation for P teu as shown in Algorithm 2.
Similar to Proposition 3, we obtain the following propo-

sition, whose proof will be given in Appendix. This propo-
sition shows that Algorithm 2 can compute α(u, d, t) and
β(u, d).

Proposition 5. Let β̃(u, d) be computed by Algorithm 2.
Then

P
{
|β̃(d, t)− β(d, t)| ≥ ϵ

}
≤ 2ndmaxT exp(−2ϵ2R)

By Proposition 5, we have the following.

Corollary 2. Algorithm 2 computes β(u, d) with accu-
racy less than 0 < ϵ < 1 with probability at least 0 < δ < 1
by setting R = log(2ndmaxT/δ)/(2ϵ

2).

Algorithm 2 Monte-Carlo α(u, d, t), β(u, d) computation

1: procedure ComputeAlphaBeta(u)
2: u1 ← u, . . . , uR ← u
3: for t = 0, 1, . . . , T − 1 do
4: for w ∈ {u1, . . . , uR} do
5: µ← Dww#{r : ur = w, r ∈ [1, R]}/R
6: α(u, d(u,w), t)← max{α(u, d(u,w), t), µ}
7: end for
8: for r = 1, . . . , R do
9: ur ← δ(ur) randomly
10: end for
11: end for
12: for d = 1, . . . , T do
13: β(u, d) =

∑T−1
t=0 ct maxd−t≤d′≤d+t α(u, d

′, t)
14: end for
15: end procedure

6.2 L2 bound
The second bound is based on the Cauchy–Schwartz in-

equality: for nonnegative vectors x and y,

x⊤y ≤ ∥x∥∥y∥. (20)

We also bound (P teu)D(P tev) by this inequality.
Let

γ(u, t) := ∥
√
DP teu∥, (21)

where
√
D = diag(

√
D11, . . . ,

√
Dnn). Note that, since D is

a nonnegative diagonal matrix,
√
D is well-defined.

Proposition 6. For two vertices u and v, we have

s(T )(u, v) ≤
T∑

t=0

ctγ(u, t)γ(v, t) (22)

The proof of Proposition 6 will be given in Appendix.
To compute γ(u, d) for each u, we can use Monte-Carlo

simulation. Let us emphasize that we can compute γ(u, d)
for each u and d ≤ dmax in preprocess.

The following proposition, whose proof will be given in
Appendix, shows that Algorithm 3 can compute γ(u, d).

Proposition 7. Let γ̃(u, t) be computed by Algorithm 3.
Then

P {|γ̃(u, t)− γ(u, t)| ≥ ϵ} ≤ 4n exp
(
−ϵ2R/8

)
.

The proof of of Proposition 7 will be given in Appendix. By
Proposition 7, we have the following.

Corollary 3. Algorithm 3 computes γ(u, t) with accu-
racy less than 0 < ϵ < 1 with probability at least 0 < δ < 1
by setting R = 8 log(4n/δ)/ϵ2.

6.3 Comparison of two bounds
The reason why we need both L1 and L2 bounds is the

following: The L1 bound is more effective for a low degree
query vertex u. This is because if u has low degree then
P teu is sparse. Therefore the bound (25) becomes tighter.

On the other hand, the L2 bound is more effective for
high degree vertex u. This is because if u has high degree
then P teu spreads widely, and hence each entry is small.
Therefore ∥

√
DP teu∥ decrease rapidly.
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Algorithm 3 Monte-Carlo γ(u, t) computation

1: procedure ComputeGamma(u)
2: u1 ← u, . . . , uR ← u
3: for t = 0, 1, . . . , T − 1 do
4: µ = 0
5: for w ∈ {u1, . . . , uR} do
6: µ← µ+Dww#{r : ur = w, r ∈ [1, R]}2/R2

7: end for
8: γ(u, t)← √µ
9: for r = 1, . . . , R do
10: ur ← δ(ur) randomly
11: end for
12: end for
13: end procedure

7. ALGORITHM
We are now ready to provide our whole algorithm for top-

k similarity search. Our algorithm consists of two phases:
preprocess phase and query phase. In the query phase, for a
given vertex u, we compute single-pair SimRanks s(u, v) for
some vertices v that may have high SimRank value (we call
such vertices candidates that are computed in the preprocess
phase), and output k highly similar vertices.
In order to obtain similar vertices accurately, we have to

perform many Monte Carlo simulations in single-pair Sim-
Rank computation (Algorithm 1). Thus, the key of our al-
gorithm is the way to reduce the number of candidates that
are computed in the preprocess phase in Section 7.1.

7.1 Preprocess phase
In the preprocess phase, we precompute γ in (21) for the

L2 bound as described in Algorithm 3. Note that we com-
pute α, β in (17), (18) for the L1 bound in query phase.
After that, for each vertex u, we enumerate “candidates”

of highly similar vertices v. For this purpose, we consider
the following auxiliary bipartite graph H. The left and right
vertices of H are copy of V (i.e., H has 2n vertices). Let
uleft be the copy of u ∈ V in the left vertices and let vright
be the copy of v ∈ V in the right vertices. There is an edge
(uleft, vright) if a random walk that starts from u frequently
reaches v. By this construction, a pair of vertices u and v has
high SimRank score if uleft and vleft share many neighbors.
We construct this bipartite graph H by performing Monte-
Carlo simulations in the original graph G as follows. For
each vertex u, we iterate the following procedure P times to
construct an index for u. We perform a random walk W0 of
length T from u in G. We further perform Q random walks
W1, . . . ,WQ from u. Let v be t-th vertex on W0. Then
we put an edge (uleft, vright) in H if there are at least two
random walks in W1, . . .WQ that contain v at t-th step. The
whole procedure is described in Algorithm 3 below. Here,
for a random walk Wj and t ≥ 0, we denote the vertex at
the t-th step of Wj by Wjt.
In our experiment, we set P = 10, T = 11 and Q = 5. The

time complexity of this preprocess phase is O(n(R+PQ)T ),
where R comes from Algorithm 3 and we set R = 100 in our
experiment. The space complexity is O(nP ), but in practice,
since the number of candidates are usually small, the space
is less smaller than this bound.

7.2 Query phase

Algorithm 4 Proposed algorithm (preprocess)

1: procedure Indexing
2: for u ∈ V do
3: for i = 1, . . . , P do
4: Perform a random walk W0 from u
5: Perform random walks W1,. . .,WQ from u
6: for t = 1, . . . , T do
7: if Wjt = Wkt for some j ≠ k then
8: Add W0t for index of u
9: end if
10: end for
11: end for
12: end for
13: end procedure

We now describe our query phase. For a given vertex u, we
first traverse the auxiliary bipartite graphsH and enumerate
all the vertices v that share the neighbor in H. We then
prune some vertices v by L1 and L2 bounds. After that,
for each candidate v, we compute SimRank scores s(u, v) by
Algorithm 1. Finally we output top k similar vertices as the
solution of similarity search.

To accelerate the above procedure, we use the adaptive
sample technique. For a query vertex u, we first set R = 10
(in Algorithm 1) and estimate SimRank scores roughly for
each candidate v by Monte Carlo simulation (i.e, we only
perform 10 random walks for v by Algorithm 1). Then, we
change R = 100 and re-compute more accurate SimRank
scores for each candidate v that has high estimated Sim-
Rank scores by Monte Carlo simulation (i.e, we perform 100
random walks for v by Algorithm 1). The whole procedure
is described in Algorithm 5.

The overall time complexity of the query phase isO(RT |S|)
where |S| is the number of candidates, since computing Sim-
Rank scores s(u, v) by Algorithm 1 for two vertices u, v takes
O(RT ). The space complexity is O(m+ nP ).

Algorithm 5 Proposed algorithm (query)

1: procedure Query(u)
2: Enumerate S := {v|δH(uleft) ∩ δH(vleft) ̸= ∅}
3: Prune S by L1 and L2 bound
4: for v ∈ S do
5: Perform Algorithm 1 R = 10 times to roughly

estimate s(u, v).
6: if The estimated score s(u, v) is not small then
7: Perform Algorithm 1 R = 100 times to esti-

mate s(u, v) more accurately
8: end if
9: end for
10: Output top k similar vertices
11: end procedure

8. EXPERIMENT
We perform our proposed algorithm for several real net-

works and evaluate performance of our algorithm. We also
compare our algorithm with some state-of-the-art algorithms.

All experiments are conducted on an Intel Xeon E5-2690
2.90GHz CPU with 256GB memory and running Ubuntu
12.04. Our algorithm is implemented in C++ and compiled
with g++v4.6 with -O3 option.
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Table 2: Dataset information5

Dataset n m
ca-GrQc 5,242 14,496
ca-HepTh 9,877 25,998
Wiki-Vote 7,155 103,689
soc-Epinions1 75,879 508,837
soc-SlashDot0811 77,360 905,468
soc-SlashDot0902 82,168 948,464
Cora-direct 225,026 714,266
web-Stanford 281,903 2,312,497
web-NotreDame 325,728 1,497,134
web-Google 875,713 5,105,049
web-BerkStan 685,230 7,600,505
dblp-2011 933,258 6,707,236
in-2004 1,382,908 17,917,053
flickr 1,715,255 22,613,981
soc-LiveJournal1 4,847,571 68,993,773
indochina-2004 7,414,866 194,109,311
it-2004 41,291,549 1,150,725,436
twitter-2010 41,652,230 1,468,365,182

According to discussion in the previous section, we set
the parameters as follows: decay factor c = 0.6, T = 11,
R = 100 for γ (Algorithm 3) and for s(·, ·) (Algorithm 1),
and R = 10000 for α and β (Algorithm 2) that is optimized
by pre-experiment4. We also set P = 10, T = 11 and Q = 5
in our preprocess phase as in Section 7.1.
In addition, we set k = 20 since we are only interested in

small number of similar vertices. To avoid searching vertices
of very small SimRank scores, we set a threshold θ = 0.01 to
terminate the procedure when upper bounds become smaller
than θ.
We use the datasets shown in Table 2.

8.1 Results
We evaluate our proposed algorithm for several real net-

works. The results are summarized in Tables 4.
We first observe that our proposed algorithm can find top-

20 similar vertices in less than a few seconds for graphs of
billions edges (i.e., “it-2004”) and in less than a second for
graphs of one hundred millions edges, respectively.
We can also observe that the query time for our algorithm

does not much depend on the size of networks. For exam-
ple, “indochina-2004” has 8 times more edges than “flickr”
but the query time is twice faster than that. Hence the
computational time of our algorithm depends on the net-
work structure rather than the network size. Specifically,
our algorithm works better for web graphs than for social
networks.

8.2 Analysis of Accuracy
In this subsection, we shall investigate performance of our

algorithm in terms of accuracy. In many applications, we

4These values are much smaller than our theoretical estima-
tions. The reason is that Hoeffding bound is not tight in
this case.
5ca-GrQc, ca-HepTh, Wiki-Vote, soc-SlashDot0811,
soc-SlashDot0902, soc-Epinions1, soc-LiveJournal1 web-
BerkStan web-Google, web-NotreDame, and web-Stanford
data sets are available at http://snap.stanford.edu/
data/index.html [2, 18]. in-2004, indochina-2004, it-2004,
uk-2007-05, twitter-2010, and dblp-2011 data sets are
available at http://law.di.unimi.it/datasets.php [5, 6].
flickr data set is available at http://socialnetworks.
mpi-sws.org/datasets.html [28]. Cora [27] set is available
at http://people.cs.umass.edu/mccallum/data.html.
See the web pages for detailed information of these datasets.

are only interested in very similar vertices. Hence we only
look at vertices that have high SimRank scores.

Specifically, what we do is the following. We first compute,
for a query vertex u, the single source SimRank scores s(u, v)
for all the vertices v (for the whole graph) by the exact
method. Then we pick up all “high score” vertices v with
score at least t from this computation (for t = 0.04, 0.05,
0.06, 0.07). Finally, we compute “high score” vertices v with
respect to the query vertex u by our proposed algorithm.
Let us point out that our algorithm can be easily modified
so that we only output high SimRank score vertices(because
we just need to set up the threshold to prune the similarity
search). We then compute the following value:

# of our high score vertices

# of the optimal high score vertices
.

We also do the same thing for high score vertices computed
by Fogaras and Rácz [9](we used the same parameter R′ =
100 presented in [9]). We perform this operation 100 times,
and take the average. The result is in Table 3. We can see
that our algorithm actually gives very accurate results. In
addition, our algorithm gives better accuracy than Fogaras
and Rácz [9].

8.3 Comparison with existing results
In this subsection, we compare our algorithm with two

state-of-the-art algorithms for computing SimRank, and show
that our algorithm outperforms significantly in terms of scal-
ability.

Comparison with the state-of-the-art all-pairs algorithm.

Yu et al. [37] proposed an efficient all-pairs algorithm;
the time complexity of their algorithm is O(Tnm), and the
space complexity is O(n2), where T is the number of the
iterations. We implemented their algorithm and evaluated
it in comparison with ours. We used the same parameters
presented in [37].

Results are shown in Table 4; the omitted results (—)
mean that their algorithm failed to allocate memory. From
the results, we observe that their algorithm is a little faster
than ours in query time, but our algorithm uses much less
space(15–30 times). In fact, their algorithm failed for graphs
with a million edges, because of memory allocation. More
importantly, their algorithm cannot estimate the memory
usage before running the algorithm. Moreover, since our
all-pairs algorithm can easily be parallelized to multiple ma-
chines, if there are 100 machines, even for graphs of billions
size, our all-pairs algorithm can output all top-20 vertices in
less than 5 days. Thus, our algorithm significantly outper-
forms their algorithm in terms of scalability.

Comparison with the state-of-the-art single-pair and
single-source algorithm.

Fogaras and Rácz [9] proposed an efficient single-pair al-
gorithm that estimates SimRank scores with Monte Carlo
simulation. Like our approach, their algorithm also consists
of two phases, a preprocessing phase and a query phase. In
the preprocessing phase, their algorithm generates R′ ran-
dom walks and stores the walks efficiently; this phase re-
quires O(nR′) time and O(nR′) space. The query phase
phase requires O(TnR′) time, where T is the number of it-
erations. We implemented their algorithm and evaluated
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Table 3: Accuracy

Dataset Threshold Proposed Fogaras and Rácz [9]
ca-GrQc 0.04 0.98665 0.92329

0.05 0.98854 0.92467
0.06 0.99461 0.95225
0.07 0.99554 0.92881

as20000102 0.04 0.97831 0.94643
0.05 0.98727 0.94783
0.06 0.99177 0.94713
0.07 0.99550 0.94760

wiki-Vote 0.04 0.81862 0.93491
0.05 0.88629 0.93760
0.06 0.90801 0.94215
0.07 0.94785 0.97916

ca-HepTh 0.04 0.97142 0.88964
0.05 0.98782 0.94354
0.06 0.99673 0.91848
0.07 0.99746 0.93647

it in comparison with ours. We used the same parameter
R′ = 100 presented in [9].
We can see that their algorithm is faster in query time.

But we suspect that this is due to relaxing accuracy, as in the
previous subsection. In order to obtain the same accuracy
as our algorithm, we suspect that R′ should be 500–1000,
which implies that their algorithm would be at least 5–10
times slower, and require at leats 5–10 times more space.
In this case, their algorithm would fail for graphs with

more than ten millions edges because of memory allocation.
Even for the case R′ = 100, our algorithm uses much less
space(10–20 times), and their algorithm failed for graphs
with more than 70 millions edges because of memory alloca-
tion. Therefore we can conclude that our algorithm signifi-
cantly outperforms their algorithm in terms of scalability.

9. CONCLUSION
In this paper, we consider the similarity search problem

that finds top-k similar vertices from a given vertex u, and
propose a very efficient and scalable algorithm.
Our algorithm is based on the new formulation of Sim-

Rank, called linear recurrence formulation. Due to this
linear recursive formula, single-pair SimRank score s(u, v)
can be computed very efficiently by Monte-Carlo simula-
tion (indeed the time complexity is independent of size of
graphs). We also observe that SimRank score s(u, v) decays
very rapidly as distance of the pair u, v increases. By this
observation, we establish upper bounds of SimRank score
s(u, v) that only depend on distance d(u, v). The upper
bounds can be efficiently computed by Monte-Carlo simu-
lation (in our preprocess). Moreover these upper bounds,
together with some adaptive sample technique, allow us to
effectively prune the similarity search procedure.
Our experiments show that the proposed algorithm can

compute top-20 similar vertices in less than a few seconds for
graphs of billions edges and in less than a second for graphs
of one hundred millions edges, respectively. Our algorithm
requires smaller memory space than any other existing algo-
rithms, which allows our algorithm to scale for much larger
graphs (i.e., graphs with at least a billion edge for the first
time).
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APPENDIX

In Appendix, we give omitted proofs of propositions in the
paper. We first prove the non probablistic results (i.e, Propo-
sitions 1, 2, 4 and 6) and then prove other probablistic re-
sults (concentration bounds).

Proof of Proposition 1. Let S(D) be a matrix that
satisfies

S(D) = cP⊤S(D)P +D. (23)

We first prove that S(D) is well-defined. Let vec : Rn×n →
Rn2

be the vectorization operation defined by vec(A)i+nj =
Aij . Using vec, (23) is written as the linear equation(

I − cP⊤ ⊗ P⊤
)
vec(S(D)) = vec(D). (24)

Since the coefficient matrix of (24) is nonsingular, it a unique
solution. This proves the well-definedness of S(D).

Next, we prove that D is uniquely determined under the
condition S(D)ii = 1 for all i ∈ V . Write this condition by
using (24) with a partitioned system:[

I − cPDD −PDO

−POD I − cPOO

] [
1⃗
u

]
=

[
d
0

]
,

where d denotes diagonal entries of D and u be an arbi-
trary vector. We observe that we can eliminate u from this
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equation. The eliminated system is

d =
(
(I − cPDD)− c2PDD(I − cPOO)

−1POD

)
1⃗.

Since this formula does not depend on u, D is uniquely de-
termined by the diagonal condition of S(D). Note that the
above gives an explicit formula of D.

Proof of Proposition 2. Since D satisfies D = S −
cP⊤SP , we have

Duu = 1− c(Peu)
⊤SPeu.

Since Peu is a stochastic vector, we have

1− cmax
ij

Sij ≤ Duu ≤ 1− cmin
ij

Sij

By the random surfer pair interpretation of SimRank, we
have 0 ≤ Sij ≤ 1. Therefore we obtain 1− c ≤ Duu ≤ 1.

Proof of Proposition 4. Consider (P teu)
⊤D(P tev). Since

P tev is a stochastic vector, by (16), we have

(P teu)
⊤D(P tev) ≤ max

w∈supp(P tev)
(P teu)

⊤Dew, (25)

Since P tev corresponds to a t-step random walk, the support
is contained by a ball of radius t centered at v. Therefore
we have

(P teu)
⊤D(P tev) ≤ max

w∈V :d−t≤d(u,w)≤d+t
(P teu)

⊤Dew

By plugging (17), we have

(P teu)
⊤D(P tev) ≤ max

d−t≤d′≤d+t
α(u, d′, t).

Substitute the above to (9), we obtain (19).

Proof of Proposition 6. Consider ct(P teu)
⊤D(P tev).

By (20), we have

(P teu)
⊤D(P tev) = (

√
DP teu)

⊤(
√
DP tev) ≤ γ(u, t)γ(v, t).

Substitute the above to (9), we obtain (22).

Let us start the proof of concentration bounds. We first
prepare some basic probablistic inequalities.

Lemma 1 (Hoeffding’s inequality). Let X1, . . . , XR

be independent random variables with Xr ∈ [0, 1] for all
r = 1, . . . , R. Let S := (X1 + · · ·+XR)/R. Then

P {|S −E[S]| ≥ ϵ} ≤ 2 exp(−2ϵ2R).

Lemma 2 (Max-Hoeffding’s inequality). For each
f = 1, . . . , F , let Xr(f) (r = 1, . . . , R) be independent ran-
dom variables with Xr(f) ∈ [0, 1]. Let S(f) := (X1(f) +
· · ·+XR(f))/R. Then

P

{
max

f
|S(f)−E[S(f)]| ≥ ϵ

}
≤ 2F exp(−2ϵ2R).

Proof.

P

{
max

f
|S(f)−E[S(f)]| ≥ ϵ

}
≤
∑
f

P {|S(f)−E[S(f)]| ≥ ϵ} ≤ 2F exp(−2ϵ2R).

We write u
(t)
r and v

(t)
r (r = 1, . . . , R) for the t-th positions

of independent random walks start from u and v and fol-

low the in-links, respectively, and X
(t)
u := (1/R)

∑R
r=1 eu(t)

r
,

X
(t)
v := (1/R)

∑R
r=1 ev(t)

r
.

Lemma 3. For each w ∈ V ,

P
{∣∣∣X(t)⊤

u Dew − (P teu)
⊤Dew

∣∣∣ ≥ ϵ
}
≤ 2 exp(−2ϵ2R).

Proof.

P
{∣∣∣X(t)⊤

u Dew − (P teu)
⊤Dew

∣∣∣ ≥ ϵ
}

≤ P
{∣∣∣X(t)⊤

u ew − (P teu)
⊤ew

∣∣∣ ≥ ϵ
}
≤ 2 exp(−2ϵ2R).

Lemma 4.

P
{∣∣∣X(t)⊤

u DX(t)
v − (P teu)

⊤DP tev

∣∣∣ ≥ ϵ
}
≤ 4n exp(−ϵ2R/2).

Proof.

P
{∣∣∣X(t)⊤

u DX(t)
v − (P teu)

⊤DP tev

∣∣∣ ≥ ϵ
}

≤ P
{∣∣∣X(t)⊤

u D
(
X(t)

v − P tev
)∣∣∣ ≥ ϵ/2

}
+P

{∣∣∣∣(X(t)
u − P teu

)⊤
DP tev

∣∣∣∣ ≥ ϵ/2

}
≤ 4n exp(−ϵ2R/2).

Proof of Proposition 3. By Lemma 4, we have

P

{∣∣∣∣∣
(

T−1∑
t=0

ctX(t)⊤
u DX(t)

v

)
− s(T )(u, v)

∣∣∣∣∣ ≥ ϵ

}

≤
T−1∑
t=0

P
{∣∣∣ctX(t)⊤

u DX(t)
v − ct(P teu)

⊤DP tev

∣∣∣ ≥ ctϵ/(1− c)
}

≤4nT exp
(
−ϵ2R/2(1− c)2

)
.

Proof of Proposition 5. We first prove the bound of
α(u, d, t). Note that α(u, d, t) = maxw{P teuDew} and the

algorithm computes α̃(u, d, t) = maxw{X(t)⊤
u Dew}. By Lem-

mas 3 and 2, we have

P
{∣∣∣max

w
X(t)⊤

u Dew −max
w

(P teu)
⊤Dew

∣∣∣ ≥ ϵ
}

≤ P
{
max
w

∣∣∣X(t)⊤
u Dew − (P teu)

⊤Dew

∣∣∣ ≥ ϵ
}

≤ 2n exp(−2ϵ2R).

Using the above estimation, we bound β as

P
{∣∣∣β̃(u, d)− β(u, d)

∣∣∣ ≥ ϵ
}

≤
∑
d,t

P {|α̃(u, d, t)− α(u, d, t)| ≥ ϵ}

≤ 2ndmaxT exp(−2ϵ2R).

Proof of Proposition 7. We first observe that γ(u, t)2 =
(P teu)

⊤D(P teu) and the algorithm estimates this value by

(γ̃(u, t))2 =
1

R2
D

u
(t)
r u

(t)
r

.

Hence, by the same proof as Lemma 4, we have

P
{
|γ̃(u, t)2 − γ(u, t)2| ≥ ϵ

}
≤ 4n exp(−ϵ2R/2).

Therefore

P {|γ̃(u, t)− γ(u, t)| ≥ ϵ}

≤ P

{
|γ̃(u, t)2 − γ(u, t)2| ≥ ϵ

γ̃(u, t) + γ(u, t)

}
≤ P

{
|γ̃(u, t)2 − γ(u, t)2| ≥ ϵ/2

}
≤ 4n exp(−ϵ2R/8).

Here we use the fact that both γ̃(u, t) and γ(u, t) are smaller
than

√
maxw Dww = 1.
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