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ABSTRACT
We study the problem of distributing the tuples of a rela-
tion to a number of processors organized in an r-dimensional
hypercube, which is an important task for parallel join pro-
cessing. In contrast to previous work, which proposed ran-
domized algorithms for the task, we ask here the question of
how to construct efficient deterministic distribution strate-
gies that can optimally load balance the input relation. We
first present some general lower bounds on the load for any
dimension; these bounds depend not only on the size of the
relation, but also on the maximum frequency of each value
in the relation. We then construct an algorithm for the case
of 1 dimension that is optimal within a constant factor, and
an algorithm for the case of 2 dimensions that is optimal
within a polylogarithmic factor. Our 2-dimensional algo-
rithm is based on an interesting connection with the vector
load balancing problem, a well-studied problem that gener-
alizes classic load balancing.

CCS Concepts
•Information systems → Relational parallel and dis-
tributed DBMSs; •Theory of computation → Paral-
lel computing models;

1. INTRODUCTION
A central task in large-scale data analytics systems [7,

10, 6] is the computation of multi-way joins. To compute a
join efficiently in parallel, the most widely used techniques
are hash-based methods. For example, the standard parallel
hash-join algorithm computes one join at a time, and com-
putes the join between two relations by partitioning each
relation through the application of a hash function on the
join attribute. In recent years there has been a development
of new parallel multi-way join algorithms (the Shares or
HyperCube algorithm [1, 3]), which compute a multi-way
join in a single step by organizing the available servers in the
cluster on a multi-dimensional hypercube and then hashing
each relation on multiple attributes.
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In this family of parallel join algorithms, the core prob-
lem is how to distribute a relation R(X1, . . . , Xα) among
p available servers. These servers have been organized in
an r-dimensional hypercube with dimensions p1, p2, . . . , pr,
such that

∏r
i=1 pi = p. (Choosing the dimensions of the

hypercube is done by the join algorithm and thus the pi’s
are given.) The distribution of the tuples of R must be
performed in such a way that for any two tuples t, t′ if
t.Xi = t′.Xi (i.e. they agree on attribute Xi), then t, t′ must
be located in servers that have the same i-th coordinate.

Since there are multiple ways we can distribute the tu-
ples such that the above condition is satisfied, our goal is
to do this by minimizing the maximum number of tuples,
called the maximum load L, that each server receives; this
achieves the best possible load balancing of the data across
the servers. If the relation R has m tuples and we have p
available servers, ideally we would like to achieve the op-
timal maximum load of L = m/p. However, this is not
always feasible. For example, say that we have a binary re-
lation R(X1, X2), and suppose that a single value appears
at the X1 attribute of all m tuples. It is easy to see that
the problem then becomes equivalent to distributing a unary
relation R′(X2) over p2 servers; hence, the load cannot be
better than m/p2 in this case.

It has been shown in [4] that the optimal load m/p can be
achieved with high probability within a polylogarithmic fac-
tor if the relational instance satisfies certain skew conditions.
For example, in the case of the binary relation, each value
in the X1 attribute must appear at most c ·m/p1 times, and
each value in the X2 attribute must appear at most c ·m/p2

times for some constant c. Then it can be shown that dis-
tributing the tuples by applying a random hash function in-
dependently on each attribute achieves a load of O(m

p
log2 p)

with probability 1− 1/pb for some constant b > 1.
In this paper, we study the following question: can we con-

struct an efficient deterministic algorithm that distributes
the tuples in R such that the load is always as close to the
optimal value as possible? Further, we seek to obtain opti-
mality guarantees under any skew conditions, and not only
for the case of no data skew.

Our contributions. We summarize the contributions.

• We present a general lower bound (Section 3) for the
load. The bound depends not only on the size m and
the number of servers p, but also on the maximum
degrees of each value (or combination of values) in R.

• We present a fast deterministic algorithm, which we
call GreedyBalance, for the case of 1 dimension



(Section 4). The algorithm is optimal within a con-
stant factor of the lower bound.

• We construct and analyze a fast deterministic algo-
rithm, called 2-Balance, for the case of 2 dimensions
(Section 6), which is optimal within a polylogarithmic
factor of the lower bound. Our algorithm uses as com-
ponents the greedy algorithm for one dimension, and
an algorithm for the vector load balancing problem.

We should note here two things. First, even for the case
of one dimension, the problem of finding the optimal distri-
bution is already NP-complete. Thus, our only hope is to
construct fast approximation algorithms. For the case of two
dimensions, we show in Section 3 that we cannot hope for
even a constant approximation. Second, we are interested
in proving that our algorithms achieve a load that is close
to the lower bound that depends on the maximum degrees
in the relation, instead of the optimal value. This is neces-
sary since size information and maximum degrees are used
to optimize the choice of dimensions for the hypercube.

We leave as an open problem whether we can construct
efficient and optimal (or almost-optimal) algorithms for the
case of more than 2 dimensions.

2. BACKGROUND
Let R(X1, . . . , Xα) be a relation of arity α. Throughout

this paper, we use m to denote the number of tuples in R.
We denote by adom(Xi) the active domain of Xi, which is all
possible values that attribute Xi can take in R. For a given
value a of attribute Xi, we define the degree of a, denoted
di(a), as di(a) = |{t ∈ R | t.Xi = a}|. More generally,
given a tuple ~a over a set of attributes U ⊆ {X1, . . . , Xr},
we define the degree of ~a as dU (~a) = |{t ∈ R | ∀Xi ∈ U :
t.Xi = a.Xi}|. We assume that there are p processors, which
are organized in an r-dimensional hypercube (1 ≤ r ≤ α)
with dimensions p1, p2, . . . , pr, such that

∏r
i=1 pi = p. Each

server s is identified with a point in the r-dimensional space
P = [p1]× [p2]× · · · × [pr].

Definition 2.1 (Distribution Strategy). A distri-
bution strategy D is a mapping from each tuple of R to
P, such that for any two tuples t1, t2 ∈ R, if for some
i = 1, . . . , r we have t1.Xi = t2.Xi then D(t1)[i] = D(t2)[i].

In other words, when two tuples have the same value for
attribute Xi, they must be mapped to servers that have the
same i-th coordinate in the hypercube. This type of restric-
tion is necessary in order to allow us to perform correctly
join queries on the input relations (for example see the Hy-
perCube algorithm), since we have to make sure that two
tuples from different relations that join on some attribute
will meet in a common server. Notice also that we use only
the first r attributes to distribute the relation; we can as-
sume this without any loss of generality.

Given a distribution strategy D, the load of a server s,
denoted Ls is defined as: Ls = |{t ∈ R | D(t) = s}|.

Definition 2.2 (Load). The maximum load L of a dis-
tribution strategy D is defined as the maximum number of
tuples that are assigned to any server, L = maxs{Ls}.

In this paper we examine the following question. Given a
relation R, can we compute efficiently a distribution strategy
over an r-dimensional hypercube P that achieves the mini-
mum possible load L?

2.1 Randomized Algorithm
In previous work [4], a simple randomized distribution

strategy was proposed. The strategy picks independently
for each i = 1, . . . ,m a perfectly random hash function
hi : adom(Xi) → {1, . . . , pi}. Then, we send each tuple
R(a1, . . . , ar, . . . ) to the server with coordinates specified
by the hash functions: (h1(a1), . . . , hr(ar)). The following
result can be shown about the load achieved:

Theorem 2.1. [4] Suppose that for every set of attributes
U ⊆ {X1, . . . , Xr}, any tuple ~a over U has degree dU (~a) ≤
c ·m/pU for some constant c, where pU =

∏
i:Xi∈U pi. Then,

the randomized distribution strategy achieves maximum load
O(m/p · lnr(p)) with high probability.

In other words, if the degrees of each value, or combination
of values, is small enough, the randomized strategy will give
an almost optimal load (up to a polylogarithmic factor),
since m/p is a lower bound. In this work we will focus on
deterministic distribution strategies.

2.2 Vector Load Balancing
We discuss here the problem of vector load balancing (vlb).

Vector load balancing is a special type of load balancing
where we do not distribute scalar values, but vectors of
values. The problem was first introduced by Chekuri and
Khanna [5]. Later work [8, 2, 9] approached vector load
balancing from an online perspective.

Definition 2.3 (Vector Load Balancing). There ex-
ist n machines, each with d components. A job j is associ-
ated with a d-dimensional vector aj, where the kth coordinate
akj denotes the load placed on component k by job j. Let lki
denote the sum of akj over all jobs j that are assigned to ma-
chine i. The goal is to assign jobs to machines such that we
minimize the makespan maxi,k l

k
i .

The authors in [5] show that it is hard to approximate vlb
to within any constant when the number of components d
can be arbitrarily large. Subsequent work [9] showed that
an online algorithm (where in this case we look at one job at
a time and we have to allocate this job to a machine irrevo-
cably) can achieve a O(log d) competitive ratio. This result
implies an offline algorithm with the same approximation ra-
tio. [8] improves the competitive ratio to O(log d/ log log d),
and proves that it is tight.

3. LOWER BOUNDS AND HARDNESS
In this section, we provide lower bounds for the optimal

load of any (deterministic or randomized) distribution strat-
egy, and also show some hardness results. The lower bound
depends not only on the size of the relation m and the num-
ber of servers p, but also on the maximum degrees of each
value in the relation. For any subset of attributes U , let us
denote dU = max~a{dU (~a)}.

It is straightforward to see that an immediate lower bound
for the maximum load for any r ≥ 1 is L ≥ m/p. However,
by using the maximum degree information (which captures
the amount of skew), we can obtain better lower bounds.

Lemma 3.1. Any distribution strategy on an r-dimensional
hypercube with dimensions p1, . . . , pr requires load

L ≥ max

(
m

p
,max

U

dU · pU
p

)
(1)



For the case of one dimension, where we distribute a rela-
tion R(X, . . . ) using only the attribute X, the lemma gives
a lower bound L ≥ max(m/p, dX). In the case of a 2-
dimensional hypercube that distributes the first two attributes
of the relation R(X,Y, . . . ), the above lemma gives similarly

a lower bound of L ≥ max
(
m
p
, dX
pY
, dY
pX
, dXY

)
.

Lemma 3.2. Any distribution strategy on an r-dimensional
hypercube with dimensions p1, . . . , pr requires load L ≥ m

mini pi
.

Moreover, there exists a data distribution for R for which
the above lower bound is tight.

Regarding the hardness of computing an optimal solution,
we can show that the problem is already NP-complete for
the case of one dimension.

Lemma 3.3. Computing the optimal strategy for distribut-
ing R along a 1-dimensional hypercube is NP-complete.

For the case of two dimensions or more, we can show an
even stronger result, which is that it is not possible to ap-
proximate the optimal solution within a constant. We prove
this result by a reduction from vector load balancing.

Lemma 3.4. Unless NP = ZPP , for any constant c > 1,
there is no deterministic polynomial algorithm that approx-
imates the optimal value of Eq.(1) to within a factor of c.

4. THE GREEDY ALGORITHM
In this section, we present a deterministic distribution

strategy that achieves a load that is only a constant factor
away from the lower bound in the 1-dimensional case. We
call this algorithm GreedyBalance; we will further use
this strategy as a component of our algorithm for 2 dimen-
sions. GreedyBalance takes as input a relation R(X1, . . . )
of size m, and distributes the tuples along a 1-dimensional
hypercube (where dimension X1 has size p).

GreedyBalance iterates in an arbitrary order through
all a ∈ adom(X1); for each a, it allocates all tuples with
t.X1 = a to the first X1-coordinate with load < m/p.

Algorithm 1 GreedyBalance

1: i← 1
2: for all a ∈ adom(X1) do
3: if L(i) ≤ m/p then
4: for all t ∈ R s.t. t.X1 = a do
5: D(t)← (i)

6: else i← i+ 1

Lemma 4.1. GreedyBalance allocates all tuples in R
to some processor and achieves maximum load L ≤ m

p
+dX1 .

Since m
p

+dX1 ≤ 2 max(m
p
, dX1), GreedyBalance achieves

a load that is a factor 2 away from the lower bound. The
example below shows that this factor is essentially tight.

Example 4.1. Consider an instance with the following
structure. We have |adom(X1)| = p + 1, where p values
have degree m

p
− m

p2
and one value has degree m

p
(observe

that the total number of tuples is m). GreedyBalance in
this case will achieve a load of at most 2m

p
. Now, since

we have p + 1 values, at least two of these values must be
allocated to the same X1 coordinate; hence the load cannot
be smaller than 2(m

p
− m

p2
) = 2m

p
(1 − 1/p). Notice that as

p grows, this lower bound in the limit becomes 2m
p

, which
implies that GreedyBalance is asymptotically optimal.

5. VECTOR LOAD BALANCING
To see how vector load balancing is related to the problem

of finding a distribution strategy, consider the 2-dimensional
hypercube, and suppose that we are already given a par-
titioning of the tuples in R(X,Y, . . . ) according to the Y
attribute into the pY coordinates. To complete the distribu-
tion strategy, we need to specify how to partition the values
in adom(X) to the X coordinates of the hypercube. We can
now view each value j ∈ adom(X) as a job of vlb, and each
one of the pX coordinates as a machine. The k-th coordinate
akj of job j in this case is the number of tuples of the form
R(j, b, . . . ) for which b is assigned to the k-th Y coordinate.
Observe that by solving the vector load balancing problem
we seek to find the minimum makespan, which is equivalent
to minimizing the maximum load L.

For our application of vector load balancing, we use a
restricted version of vlb, for which we have additional con-
straints on the vector structure. In particular, we assume
there exists a parameter Λ such that:

Λ ≥ max

(
max
j,k

akj ,max
k

(∑
j

akj

)
/n

)
We denote this instance of vector load balancing Λ-vlb.

We will next solve this restricted version of vector load bal-
ancing by applying a simple modified version of the algo-
rithm of [9]. Notice that the choice of Λ is not arbitrary.
In particular, Λ is a lower bound for the best possible load
that any algorithm can achieve. We will use this bound as
an estimation of the optimal load for the algorithm. Let
β = (1 + 1

γ
)1/Λ for some constant γ > 1. We use lki (j) to

denote the load on component k of machine i once the jobs
up to job j have been assigned.

Algorithm 2 Online Algorithm for Λ-vlb

1: β ← (1 + 1
γ

)1/Λ

2: for all jobs j do
3: assign job j to machine

s = arg min
i

d∑
k=1

[
βl

k
i (j−1)+akj − βl

k
i (j−1)

]
4: For all k, let lks (j)← lks (j − 1) + akj

We prove the following theorem on the makespan of the
algorithm in the full version of this paper.

Theorem 5.1. Algorithm 2 always achieves a makespan
of Λ ·O(lognd) for the Λ-vlb problem.

6. AN ALGORITHM FOR 2 DIMENSIONS
In this section, we present a deterministic algorithm, which

we call 2-Balance, that constructs a distribution strat-
egy that approximates the optimal lower bound within a
polylogarithmic factor for the case of two dimensions. We
assume a relation R(X,Y, . . . ) which we distribute across



a 2-dimensional hypercube (rectangle) using the X,Y at-
tributes. The rectangle has pX rows and pY columns. The
total number of processors is p = pX · pY .

Let the degree of the X attribute be at most dX and the
degree of Y attribute be at most dY . We need to make
two additional assumptions: (a) m ≥ p3/2, in other words
the number of tuples is much larger than the number of
processors, and (b) dXY = 1, in other words each pair a, b
for the X,Y attributes appears exactly once. The second
assumption is equivalent to the case where the relation R
contains only X,Y and so it is of the form R(X,Y ).

Let us assume without loss of generality that pX ≥ pY .
The algorithm 2-Balance first splits the values in adom(X)
into two disjoint subsets:

1. Heavy (RH): values for which dX(a) ≥ pY .

2. Light (RL): values for which dX(a) < pY .

The key idea is as follows. We will first decide the distribu-
tion of the values in adom(X), and then we will use vector
load balancing to distribute the values in adom(Y ) condi-
tioned on the assignment of the X values. To distribute the
values in adom(X), we will use the splitting into heavy and
light values. The values in the heavy set this case will be
partitioned using GreedyBalance. As for the light val-
ues, we will partition first according to the Y coordinate
(i.e. columns) using GreedyBalance, and then apply vec-
tor load balancing algorithm to distribute the light X values
along the rows. We next present a detailed description and
analysis of 2-Balance.

Distributing Heavy X. We apply GreedyBalance to
assign each tuple to a specific row based on its X attribute
(hence all tuples having that value for X are assigned to the
same row). Lemma 4.1 implies that the total load on each
row will be at most 2 max( m

pX
, dX). Moreover:

Lemma 6.1. If we apply GreedyBalance to distribute
RH according to the X attribute, every value in adom(Y )

appears at most 2 max(m
p
, dX
pY

) times in each row.

Distributing Light X. To distribute properly the heavy
values of adom(X), we start by assigning tuples to columns
according to the Y attribute by applying GreedyBalance.
As we noted in the previous section, we can now view this as
an instance of vlb, where each job j corresponds to a value
in adom(X), each component to a column of the rectangle,
and the value akj of a job vector is the number of tuples t such
that t.X = j and t is distributed to column k. The bound on
the total load of each column guaranteed by GreedyBal-
ance implies that for all k,

∑
j a

k
j ≤ 2 max( m

pY
, dY ). We

next show that akj will be appropriately bounded as well.

Lemma 6.2. If we apply GreedyBalance to distribute
RL according to the Y attribute, every value in adom(X)

appears at most 2 max(m
p
, dY
pX

) times in each column.

Thus, for every j, k we have akj ≤ 2 max{m
p
, dY
pX
}. The

number of machines for vlb is now n′ = pX and the number
of components d′ = pY . Consequently, we have an instance
of the Λ′-vlb problem for Λ′ = 2 max(m

p
, dY
pX

). Thus, if we

run the algorithm for Λ′-vlb to distribute the light X values,
from Lemma 5.1 we obtain that the maximum load will be

L = Λ′ ·O(log(n′d′)) = max

(
m

p
,
dY
pX

)
·O(log p).

This implies that for the distribution of the light values, ev-
ery value in adom(Y ) appears at most max(m

p
, dY
pX

) ·O(log p)

times in each row. Also, the load per row will be at most
max( m

pX
, dY
pX
pY ) ·O(log p).

Distributing Y . We have thus far provided a distribution
of both the heavy and light values in adom(X). We use this
distribution and apply vlb along the columns. In this case,
each job is a value in adom(Y ), each component of the job is
a row of the rectangle (hence d = pX), and akj is the number
of tuples t such that t.Y = j and t is distributed to row k.
We also have n = pY . Let Λ = O(log p) ·max(m

p
, dX
pY
, dY
pX

).

Our analysis so far guarantees that for each j, k we have
akj ≤ Λ, and also for each k,

∑
j a

k
j ≤ Λ · pY . We can now

apply Lemma 5.1 to obtain that after we run the algorithm
for Λ-vlb to distribute the Y values, the load is Λ·O(lognd).

Theorem 6.3. Suppose we have a binary relation R(X,Y )

with size m ≥ p3/2. Then, 2-Balance describes a determin-
istic distribution strategy that achieves maximum load

L = max

(
m

p
,
dY
pX

,
dX
pY

)
·O(log2 p)

Following directly from the above theorem, we see that
our algorithm is optimal within a O(log2 p) factor.

7. CONCLUSION
We studied the problem of distributing a relation to a

number of processors organized in an r-dimensional hyper-
cube. We make progress by discussing lower bounds, and
constructing algorithms for the case of 1 and 2 dimensions.
There are several open questions. For example, can we ex-
tend our techniques to construct an algorithm that works
for dimensions ≥ 3? Also, although our algorithms are very
efficient, they still require centralized decisions in order to
distribute the data. This raises the challenge of designing
deterministic strategies that work well in a distributed set-
ting, where the coordination must be minimal.
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