
Provenance-Driven Data Curation Workflow Analysis
Tianhong Song

Department of Computer Science, University of California, Davis
One Shields Avenue, Davis, CA, USA (530) 752-7004

thsong@ucdavis.edu
Advisor: Bertram Ludäscher

ABSTRACT

Manually designed workflows can be error-prone and inefficient.

Workflow provenance contains fine-grained data processing

information that can be used to detect workflow design problems.

In this paper, we propose a provenance-driven workflow analysis

framework that exploits both prospective and retrospective

provenance. We show how provenance information can help the

user gain a deeper understanding of a workflow and provide the

user with insights into how to improve workflow design.

Categories and Subject Descriptors

H.4.1 [Information Systems Applications]: Office Automation –

Workflow Management;

H.3 [Information Storage and Retrieval]: Miscellaneous

General Terms

Management, Design.

Keywords

Workflow Analysis; Workflow Design; Data Curation

1. INTRODUCTION
Electronic data is rife with quality issues like inaccuracy,

inconsistency or incompleteness [2]. Therefore, data curation is

increasingly important in data sharing, integration and use.

Workflow technologies can be employed to automate and

facilitate data-curation pipelines using workflow management

systems [1]. On the other hand, given a library of data-curation

actors, the workflow design process can be time-consuming and

error-prone, especially for scientists with little programming

experience. Further, correcting problematic workflows or

improving inefficient workflows once again relies on the user's

programming abilities. Usually, the user, like a data collection

manager, has a dataset in hand but does not have a clear idea on

how to design and develop a workflow to perform certain data-

curation tasks. Thus, the user tries to put together a working

workflow and runs it against some test datasets multiple times in

order to modify and improve the workflow until it can accomplish

expected data-curation tasks.

However, this approach can be inefficient and limited because 1)

the result of a workflow run and the workflow graph itself may

not contain enough information that can provide the user with

insights into how to correct or improve the workflow; 2) a

workflow may contain some design problems or can be designed

in a more efficient way but the user may not be aware of those

issues; and 3) data-driven workflows such as data-curation

workflows are highly data intensive and so running a data-

curation workflow on large datasets or even test datasets is time-

consuming and inefficient. Collection-oriented workflow models

provide nested data model and scope configuration which have

proven advantageous for workflow design, e.g., improving

reusability, simplicity, predictability and ease of use [22].

Nonetheless, the workflow design process is not necessarily

simplified since some of the fine-grained data dependency

information is hidden from workflow graphs and the user needs to

link workflow graphs with actor configurations and input data in

order to fully understand the data flow of a workflow and find and

correct possible workflow design problems.

In order to tackle these and related problems, we propose a

provenance-driven data-curation workflow analysis framework

that helps the user build a problem-free and optimized workflow

more efficiently. Specifically, the proposed framework provides

the following features:

• Perform analysis on the abstract provenance of a workflow to

detect workflow design problems ahead of execution

• Detect problems and possible errors in the result of a workflow

run by exploiting runtime provenance

• Link runtime provenance to abstract provenance to detect

unexpected runtime behaviors of a workflow

We show that our proposed framework improves on the current

approaches from the following aspects: 1) analysis and querying

on the runtime provenance can help the user better understand the

result and find possible problems of a workflow run, therefore,

this provides insights into correcting or improving the workflow;

2) workflow analysis can help the user detect workflow design

issues and suggest ways to improve; 3) since the user can get a

better understanding of a workflow through workflow analysis,

less tests need to be run and some of tests can even be avoided

since static analysis can be performed to detect possible design

problems ahead of execution. Our previous work [23] has

proposed some ideas to perform better workflow analysis and

optimization on data-curation workflows using abstract

provenance graphs [30]. This paper formalizes and extends our

previous approach with analysis on both prospective and

retrospective provenance and the interaction between them. As a

research proposal, we introduce the terminologies we use,

describe how the proposed framework works, and give examples

to demonstrate the ideas in this paper.

2. DATA CURATION EXAMPLE
Data curation involves an active and on-going management of

data throughout its lifecycle. One of the key components of data

curation is improving and maintaining data quality and workflows

can be used to automate such processes. Here, we show an

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

SIGMOD’15 PhD Symposium, May 31, 2015, Melbourne, Victoria, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3529-4/15/05…$15.00.

http://dx.doi.org/10.1145/2744680.2744691

45

http://dx.doi.org/10.1145/2744680.2744691

example of data curation that deals with the problem of data

incompleteness. Imagine a user such as a natural science

collection data manager who curates datasets that are typically

standardized using the Darwin Core [28] term set as a data

curator. The user wants to run a data-curation workflow on a

dataset to check the validity of the dataset and curate data quality

issues if any exist. An example dataset is shown in Figure 1(a),

and the expected result after running some data-curation tasks is

shown in Figure 1(b). Note that some of the values in the result

are changed. For example, the “Event Date” of the record with id

“SCAN.13224” is changed from an empty value to “1968-05-18”.

The updated value is constructed from atomic data attributes

including “Year”, “Month” and “Day” (“Month” and “Day” not

shown). The “Event Date” of this record is no longer empty after

data curation, which is an improvement on the completeness of

this record.

3. PRELIMINARIES, TERMINOLOGIES

3.1 Workflow Model
Typically, the input to a data-curation workflow is structured as a

data stream, which consists of a set of records. Each record

contains a set of attribute-value pairs (or data items). In our

workflow model, a workflow consists of interconnected actors;

connections between actors indicate how data flows. Each data

validation actor can have a "black-box" and a configuration. The

black-box implements the actual data-processing logic, which is

wrapped with a well-defined configuration that includes a set of

"read scope" functions for selecting relevant parts of the input

data stream and a set of "write scope" functions for combining the

result of the black-box with the unselected part of the data stream

to form the output of the actor. Each black-box has a set of input

ports and a set of output ports. For each data item read by a black-

box on its input ports, the black-box either validates the data item

and updates it or reads this data item only for reference during

validation of other data items. The unselected part of the data

stream is transported, bypassing the black-box. Note that

workflows in our simplified model are linear by default, i.e., they

exclude branching and feedback loops. Such features can be

handled implicitly within actors if needed, or added to the

framework as in COMAD [20]. More details about the workflow

model can be found in [23].

3.2 Provenance Model
Provenance contains information about the origin context,

derivation, ownership, or history of data artifacts [7]. There are

two forms of provenance: prospective and retrospective

provenance [8]. Prospective provenance, or abstract provenance,

which captures the specification of computational tasks, indicates

how data products should be generated. Abstract provenance can

be constructed from workflow specification, actor configuration

and input data schema. Retrospective provenance, or runtime

provenance, which captures the workflow execution information,

indicates how data products are derived during runtime. In our

model, runtime provenance is captured at attribute level and is

attached to each record. That is, the provenance information about

a data-curation task (i.e., an invocation of a data-curation actor on

a record) is stored as a separate set of data attributes that will be

added to the record. We propose a graph-based provenance model

including two types of provenance graphs: Abstract Data

Dependency Graphs (ADG) and Concrete Data Dependency

Graphs (CDG), which capture prospective and retrospective

provenance respectively.

An ADG is a type of abstract provenance graph [30]. An ADG has

a set of nodes, N, that represent data items and a set of edges, E,

that represent dependencies among data items. Since different

types of dependencies are created by actors, each edge has a label,

D:A, that indicates what type of dependency, D, the edge

represents and which actor, A, creates this dependency. An

example ADG is shown in Figure 2(b) (actor name not shown),

and its corresponding workflow is shown in Figure 2(a). A CDG

captures actual data dependencies created during a workflow run.

In a CDG, we use a graph notation similar to that in an ADG,

except that each node in a CDG has a label, T:V:S, that indicates

the data type, T, the data value, V, and the curation status, S, of

the data item. Note that one CDG is associated with one record

since one record in the result of a workflow run can be seen as one

invocation of the workflow. Figure 2(c) shows an example CDG

(actor name and data type not shown) of the record with id

"SCAN.436021" in Figure 1(b). In some of the following

examples, for simplicity, the data type of nodes in a CDG and the

actor name of edges in a ADG or CDG are not shown (e.g.,

“1966-04-10 : Unable_Curate” instead of “EventDate : 1966-04-

10 : Unable_Curate” and “update” instead of “Event Date

Validator : Update”). Different background colors of data items in

a CDG indicate the curation status of a data item. We have

identified four different curation statuses:

• Valid (Green): The data item is valid after checking against a

standard.

• Curated (Blue): Issues have been found in the data item or the

original value was missing, and this data item has been updated

with a corrected (valid) value.

(a)

(b)

Figure 1. Example collection dataset: (a) the original dataset with data quality issues, (b) the expected result after data curation

46

• Unable_Curate (Red): Issues have been found in the data item or

the original value was missing, but the system failed to find a

valid value to update it with.

• Unable_Detemine_Validity (Grey): The workflow failed to

make an assertion on the validity of the data item due to lack of

information or system errors.

3.3 Workflow Patterns and Graph Query
In order to perform workflow analysis, we use data-curation

workflow patterns to encode workflow design problems. We use

the term workflow anti-patterns to represent design issues. That is,

if a workflow contains a certain anti-pattern, then the workflow

has the design issue this anti-pattern represents. In contrast, a

workflow pro-pattern is a type of workflow pattern that a

workflow must contain. For example, a workflow should be

connected in most cases, thus a pro-pattern “The workflow is

connected” can be enforced in such cases to make sure the

workflow is connected.

In the proposed framework, analysis is performed based on a set

of selected anti-patterns and pro-patterns. Once invoked, a set of

built-in workflow anti-patterns and pro-patterns is provided to the

user. Those patterns can be selected and then enforced in the

workflow analysis. If a provenance graph contains a selected anti-

pattern or doesn’t contain a selected pro-pattern, the matching

anti-pattern will be highlighted in the visualized graph or the

missing pro-pattern will be returned. Any other workflow patterns

that are not selected are allowed implicitly by default.

As our first prototype, we define workflow patterns using Regular

Path Query (RPQ) [29] which can be used to query provenance

graphs. We adopt Regular Data Path Query (RDPQ) [18] as an

extension of RPQ, which can be used to query not only edges but

also nodes in a provenance graph. We also adopt subgraph

matching algorithm [11] to find out whether two provenance

graphs conflict or not.

Figure 3. Overview of the proposed data-curation workflow

analysis framework

4. PROPOSED WORKFLOW ANALYSIS

FRAMEWORK
An overview of the proposed workflow analysis framework is

shown in Figure 3. Starting with a workflow as the input to the

framework, workflow analysis is performed on the provenance

information of the input workflow, which helps the user find

possible workflow design problems in order to improve workflow

workflow Analysis

Modification

Workflow

Patterns

Execution

ADG

CDG

Figure 2. (a) Example data-curation workflow with three actors; (b) Example ADG of the workflow (c) Example CDG of a

workflow run

47

design. The analysis component shown in the figure can be

invoked with an ADG, a CDG or both. A set of built-in workflow

patterns is provided by the framework for the user to choose from.

The user can also define their own workflow patterns. Our

framework also provides a GUI that visualizes workflows and

provenance graphs showing possible design problems, which

allows the user to modify and interact with workflows.

4.1 ADG Analysis
In our proposed framework, static analysis is performed on a

given workflow in order to detect design problems ahead of

workflow execution. Some of the fine-grained data dependency

information is hidden from a workflow graph, which can be

discovered by constructing an ADG. An ADG can be constructed

by combining workflow graph, actor configurations and input

dataset schema. A set of selected workflow patterns will be used

to query the constructed ADG to detect workflow design issues.

Example. In some cases, a particular order of the actors in a

workflow needs to be maintained. Figure 4 shows two different

orders of the actors in a workflow. In this example, “Flowering

Time Validator” reads “SciName” as a reference to validate

"RepCon", so “SciName” should be validated first in order to

avoid generating incorrect results. An anti-pattern “Update After

Read” can be enforced to detect this issue, which can be

formulated as "read-1.bypass*.update". The ADG shown in Figure

4(b) has a match for that query, which indicates that the workflow

has the actor order issue this query represents.

4.2 CDG Analysis
By looking at the result of a workflow run alone (e.g., the example

result in Figure 1(b)), the user may find it difficult to understand

how the result is derived and why the workflow asserts certain

curation in the result. In the proposed framework, not only the

result of a workflow run but also the runtime provenance are

given back to the user after a workflow execution, i.e., a CDG is

constructed, which gives the user more information about the

result. A set of workflow patterns can be selected and enforced

such that workflow runtime problems can be detected by querying

the constructed CDG.

Example. In some cases, even though a data item has a curation

status “Valid”, it can be a “false positive” case. This may be

because if an actor reads a data item that has an “Unable_Curate”

status during invocation, then the output result could be

problematic. To detect this problem, an anti-pattern “Green After

Red” can be enforced to check whether among all the data items

in the result that have a “Valid” status, there exist some data item

that used a reference data item with a “Unable_Curate” status

during curation. This pattern can be formulated as

∃(i, j) ∈ 𝑅𝑅𝐷𝑃𝑄 = read. (𝑎𝑛𝑦. bypass)∗. Valid. output,

ρ(i) = Unable_Curate1

Figure 5(b) shows an example CDG that has a match of this anti-

pattern, which indicates that the result may have issues and the

user may need to modify the workflow in order to avoid this

problematic result.

Figure 5. Example CDG analysis where incorrect result is

yielded due to invalid reference

4.3 ADG and CDG Interaction
An ADG can be seen as a prediction of the runtime behavior of a

workflow, and a CDG contains information about the actual

runtime behavior of a workflow. If the runtime behavior of a

workflow is as expected, then the CDG of a workflow should

have the same structure as the ADG of the workflow. Otherwise,

some unexpected problems happened during runtime. Therefore,

some workflow runtime problems can be discovered by linking

CDGs with ADGs, i.e., comparing prospective and retrospective

provenance. There are different reasons why the ADG and the

CDG of a workflow have different structures. For example, some

actor is misconfigured (i.e., different than the actor declaration),

or some of the actors are not invoked during runtime due to

missing input data items or incompatible data types. In the

proposed framework, we use subgraph-matching algorithms to

find out whether the CDG matches the ADG of a workflow. If

conflict exists, the differences between a CDG and an ADG are

highlighted, which gives the user insights into why unexpected

problems occurred during runtime.

Example. Figure 6 shows a conflict between the CDG and the

ADG of a workflow due to incorrect configuration of “Flowering

Time Validator”. As the declaration of this actor indicates, the

1RRDPQ is the result of evaluating a regular data path query. “read”,

“bypass” and “output” are edge labels (type of data dependency)

and “any” and “Valid” are node labels (curation status of data

items) in a CDG. ρ: N → S, is a function that maps a node to its

curation status.

Figure 4. Example ADG analysis where certain order of actors must be maintained

48

actor should read “SciName” and “RepCon”. But the actor may be

misconfigured in the way that it read the data item labeled

“EventDate” instead of “SciName” during runtime, which yielded

incorrect dependencies during runtime. Therefore, the result of

this workflow run is likely to have problems.

Figure 6. Example ADG and CDG conflict due to

configuration error

4.4 Implementation
We have developed our first prototype of the analysis component

in the proposed framework in Datalog using the DLV system [17],

with a wrapper written in Java as the interface to interact with

other components in the framework. Workflow specification,

provenance graphs and workflow patterns are encoded as Datalog

rules. A RPQ evaluation tool in Datalog [24] is used to evaluate

workflow patterns on provenance graphs.

5. RELATED WORK
Some existing workflow systems like Kepler [19] and VisTrails

[6] for example provide user friendly GUIs where workflows are

visualized as data-flow graphs and the user can easily understand

the structure of the workflow and make changes accordingly.

Some workflow design steps are automated in some workflow

systems like Wings [15], and several other frameworks [4, 10] has

been proposed to facilitate workflow design. Graph-based

workflow analysis has been widely studied [9], as well as in the

domain of business process management [5] and process-aware

information systems [27]. Various aspects of runtime workflow

analysis including real time analysis [16] and execution

monitoring [25] for example have been studied. Efficient

provenance storage and querying techniques have been proposed

for workflows [13] that makes it possible for the user to interpret,

validate, debug and reproduce workflow execution by querying

provenance [3]. However, little work has been done for data-

curation workflows or collection-oriented workflows [21] in

general. And to the best of our knowledge, our proposed

framework is the first work that combines retrospective and

prospective provenance to perform workflow analysis. In this

way, some of the workflow design problems that may be hidden

by exploiting one type of provenance can be discovered. Existing

data-curation workflow packages or systems like Kurator 1.0 [14],

BioVel [26] and Nadeef [12] for example provide a library of

data-curation actors and workflows for the user to choose from.

However, little support for workflow design and analysis is

provided. Even modifying an existing curation workflow requires

detailed knowledge about the underlying workflow system.

6. CONCLUSION AND FUTURE WORK
We propose a provenance-driven data-curation workflow analysis

framework that helps the user develop and improve data-curation

workflows more efficiently. Both prospective and retrospective

provenance is exploited in order to capture fine-grained data

dependency information of a workflow. Graph queries and

subgraph matching algorithms are applied to analyze provenance

graphs in order to detect workflow design problem.

Our first prototype only contains limited functionalities (e.g.,

small number of encoded patterns). We will continue developing

our framework and one of our future works is to develop (semi-)

automated workflow pattern discovery mechanism through the

analysis process. At the same time, we simplify our workflow

model to a common use case but the model is restricted in the way

that some of the use cases cannot be handled. So our future work

will include generalizing the workflow model to make the

framework compatible with more use cases.

7. REFERENCES
[1] Barker, A. and Hemert, J. Van Scientific workflow: a survey

and research directions. Parallel Processing and Applied

Mathematics. (2008), 746–753.

[2] Batini, C. and Scannapieco, M. Data quality: concepts,

methodologies and techniques. Springer, 2006.

[3] Bowers, S. Scientific Workflow, Provenance, and Data

Modeling Challenges and Approaches. Journal on Data

Semantics. 1, 1 (Apr. 2012), 19–30.

[4] Bowers, S. and Ludäscher, B. Actor-oriented design of

scientific workflows. Lecture Notes in Computer Science.

3716, (2005), 369–384.

[5] Brogi, A., Corfini, S. and Popescu, R. Semantics-based

composition-oriented discovery of Web services. ACM

Transactions on Internet Technology. 8, 4 (Sep. 2008), 1–39.

[6] Callahan, S.P., Freire, J., Santos, E., et al. VisTrails:

visualization meets data management. Proceedings of the

2006 ACM SIGMOD international conference on

management of data. (2006), 745–747.

[7] Cheney, J., Finkelstein, A., Ludäscher, B., et al. Principles of

Provenance (Dagstuhl Seminar 12091). Dagstuhl Reports. 2,

2 (2012).

[8] Clifford, B. and Foster, I. Tracking provenance in a virtual

data grid. Concurrency and Computation: Practice and

Experience. 20, 5 (2008), 565–575.

[9] Cohen-Boulakia, S., Chen, J., Missier, P., et al. Distilling

structure in Taverna scientific workflows: a refactoring

approach. BMC bioinformatics. 15, Suppl 1 (Jan. 2014), S12.

[10] Consortium, B. Interoperability with Moby 1.0—It’s better

than sharing your toothbrush! Briefings in bioinformatics. 9,

3 (2008), 220–231.

[11] Cordella, L. and Foggia, P. A (sub) graph isomorphism

algorithm for matching large graphs. Pattern Analysis and

Machine Intelligence, IEEE Transactions. 26, 10 (2004),

1367–1372.

[12] Dallachiesa, M., Ebaid, A., Eldawy, A., et al. NADEEF: a

commodity data cleaning system. Proceedings of the 2013

ACM SIGMOD international conference on management of

data (New York, New York, USA, Jun. 2013), 541–552.

[13] Davidson, S.B. and Freire, J. Provenance and scientific

workflows: challenges and opportunities. Proceedings of the

49

2008 ACM SIGMOD international conference on

management of data (2008), 1345–1350.

[14] Dou, L., Cao, G., Morris, P.J., et al. Kurator: A Kepler

package for data curation workflows. Procedia Computer

Science. 9, (Jan. 2012), 1614–1619.

[15] Gil, Y., Ratnakar, V. and Kim, J. Wings: Intelligent

workflow-based design of computational experiments. IEEE

Intelligent Systems. (2010), 62–72.

[16] Gunter, D., Deelman, E., Samak, T., et al. Online workflow

management and performance analysis with stampede.

Proceedings of the 7th International Conference on Network

and Services Management. (2011), 152–161.

[17] Leone, N., Pfeifer, G., Faber, W., et al. The DLV system.

[18] Libkin, L. and Vrgoc, D. Regular path queries on graphs with

data. Proceedings of the 15th International Conference on

Database Theory. (2012), 74–85.

[19] Ludäscher, B., Altintas, I., Berkley, C., et al. Scientific

workflow management and the Kepler system. Concurrency

and Computation: Practice and Experience. 18, 10 (Aug.

2006), 1039–1065.

[20] McPhillips, T. and Bowers, S. An approach for pipelining

nested collections in scientific workflows. ACM SIGMOD

Record. 34, 3 (Sep. 2005), 12–17.

[21] McPhillips, T., Bowers, S. and Ludäscher, B. Collection-

oriented scientific workflows for integrating and analyzing

biological data. Data Integration in the Life Sciences. 4075,

(2006), 248–263.

[22] McPhillips, T., Bowers, S., Zinn, D., et al. Scientific

workflow design for mere mortals. Future Generation

Computer Systems. 25, 5 (2009), 541–551.

[23] Song, T., Köhler, S. and Ludäscher, B. Towards automated

design, analysis and optimization of declarative curation

workflows. International Journal of Digital Curation. 9, 2

(2014), 111–122.

[24] Tekle, K.T., Gorbovitski, M. and Liu, Y.A. Graph queries

through datalog optimizations. Proceedings of the 12th

international ACM SIGPLAN symposium on Principles and

practice of declarative programming (New York, New York,

USA, Jul. 2010), 25–34.

[25] Vahi, K., Harvey, I., Samak, T., et al. A general approach to

real-time workflow monitoring. High Performance

Computing, Networking, Storage and Analysis (SCC). (2012),

108–118.

[26] Vicario, S., Hardisty, A. and Haitas, N. BioVeL: Biodiversity

virtual e-Laboratory. EMBnet.journal. 17, 2 (Sep. 2011), 5–6.

[27] Weber, B., Reichert, M. and Rinderle-Ma, S. Change patterns

and change support features–enhancing flexibility in process-

aware information systems. Data & knowledge engineering.

66, 3 (2008), 438–466.

[28] Wieczorek, J., Bloom, D., Guralnick, R., et al. Darwin Core:

an evolving community-developed biodiversity data standard.

PloS one. 7, 1 (Jan. 2012), e29715.

[29] Wood, P.T. Query languages for graph databases. ACM

SIGMOD Record. 41, 1 (Apr. 2012), 50–60.

[30] Zinn, D. and Ludäscher, B. Abstract provenance graphs:

anticipating and exploiting schema-level data provenance.

Provenance and Annotation of Data and Processes. (2010),

206–215.

50

