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ABSTRACT 

Manually designed workflows can be error-prone and inefficient. 

Workflow provenance contains fine-grained data processing 

information that can be used to detect workflow design problems. 

In this paper, we propose a provenance-driven workflow analysis 

framework that exploits both prospective and retrospective 

provenance. We show how provenance information can help the 

user gain a deeper understanding of a workflow and provide the 

user with insights into how to improve workflow design. 

Categories and Subject Descriptors 

H.4.1 [Information Systems Applications]: Office Automation – 

Workflow Management; 

H.3 [Information Storage and Retrieval]: Miscellaneous  

General Terms 

Management, Design. 

Keywords 

Workflow Analysis; Workflow Design; Data Curation 

1. INTRODUCTION 
Electronic data is rife with quality issues like inaccuracy, 

inconsistency or incompleteness [2]. Therefore, data curation is 

increasingly important in data sharing, integration and use. 

Workflow technologies can be employed to automate and 

facilitate data-curation pipelines using workflow management 

systems [1]. On the other hand, given a library of data-curation 

actors, the workflow design process can be time-consuming and 

error-prone, especially for scientists with little programming 

experience. Further, correcting problematic workflows or 

improving inefficient workflows once again relies on the user's 

programming abilities. Usually, the user, like a data collection 

manager, has a dataset in hand but does not have a clear idea on 

how to design and develop a workflow to perform certain data-

curation tasks. Thus, the user tries to put together a working 

workflow and runs it against some test datasets multiple times in 

order to modify and improve the workflow until it can accomplish 

expected data-curation tasks.   

However, this approach can be inefficient and limited because 1) 

the result of a workflow run and the workflow graph itself may 

not contain enough information that can provide the user with 

insights into how to correct or improve the workflow; 2) a 

workflow may contain some design problems or can be designed 

in a more efficient way but the user may not be aware of those 

issues; and 3) data-driven workflows such as data-curation 

workflows are highly data intensive and so running a data-

curation workflow on large datasets or even test datasets is time-

consuming and inefficient. Collection-oriented workflow models 

provide nested data model and scope configuration which have 

proven advantageous for workflow design, e.g., improving 

reusability, simplicity, predictability and ease of use [22]. 

Nonetheless, the workflow design process is not necessarily 

simplified since some of the fine-grained data dependency 

information is hidden from workflow graphs and the user needs to 

link workflow graphs with actor configurations and input data in 

order to fully understand the data flow of a workflow and find and 

correct possible workflow design problems. 

In order to tackle these and related problems, we propose a 

provenance-driven data-curation workflow analysis framework 

that helps the user build a problem-free and optimized workflow 

more efficiently. Specifically, the proposed framework provides 

the following features: 

• Perform analysis on the abstract provenance of a workflow to 

detect workflow design problems ahead of execution 

• Detect problems and possible errors in the result of a workflow 

run by exploiting runtime provenance 

• Link runtime provenance to abstract provenance to detect 

unexpected runtime behaviors of a workflow 

We show that our proposed framework improves on the current 

approaches from the following aspects: 1) analysis and querying 

on the runtime provenance can help the user better understand the 

result and find possible problems of a workflow run, therefore, 

this provides insights into correcting or improving the workflow; 

2) workflow analysis can help the user detect workflow design 

issues and suggest ways to improve; 3) since the user can get a 

better understanding of a workflow through workflow analysis, 

less tests need to be run and some of tests can even be avoided 

since static analysis can be performed to detect possible design 

problems ahead of execution. Our previous work [23] has 

proposed some ideas to perform better workflow analysis and 

optimization on data-curation workflows using abstract 

provenance graphs [30]. This paper formalizes and extends our 

previous approach with analysis on both prospective and 

retrospective provenance and the interaction between them. As a 

research proposal, we introduce the terminologies we use, 

describe how the proposed framework works, and give examples 

to demonstrate the ideas in this paper. 

2. DATA CURATION EXAMPLE 
Data curation involves an active and on-going management of 

data throughout its lifecycle. One of the key components of data 

curation is improving and maintaining data quality and workflows 

can be used to automate such processes. Here, we show an 
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example of data curation that deals with the problem of data 

incompleteness. Imagine a user such as a natural science 

collection data manager who curates datasets that are typically 

standardized using the Darwin Core [28] term set as a data 

curator. The user wants to run a data-curation workflow on a 

dataset to check the validity of the dataset and curate data quality 

issues if any exist. An example dataset is shown in Figure 1(a), 

and the expected result after running some data-curation tasks is 

shown in Figure 1(b). Note that some of the values in the result 

are changed. For example, the “Event Date” of the record with id 

“SCAN.13224” is changed from an empty value to “1968-05-18”. 

The updated value is constructed from atomic data attributes 

including “Year”, “Month” and “Day” (“Month” and “Day” not 

shown). The “Event Date” of this record is no longer empty after 

data curation, which is an improvement on the completeness of 

this record.  

3. PRELIMINARIES, TERMINOLOGIES 

3.1 Workflow Model 
Typically, the input to a data-curation workflow is structured as a 

data stream, which consists of a set of records. Each record 

contains a set of attribute-value pairs (or data items). In our 

workflow model, a workflow consists of interconnected actors; 

connections between actors indicate how data flows. Each data 

validation actor can have a "black-box" and a configuration. The 

black-box implements the actual data-processing logic, which is 

wrapped with a well-defined configuration that includes a set of 

"read scope" functions for selecting relevant parts of the input 

data stream and a set of "write scope" functions for combining the 

result of the black-box with the unselected part of the data stream 

to form the output of the actor. Each black-box has a set of input 

ports and a set of output ports. For each data item read by a black-

box on its input ports, the black-box either validates the data item 

and updates it or reads this data item only for reference during 

validation of other data items. The unselected part of the data 

stream is transported, bypassing the black-box. Note that 

workflows in our simplified model are linear by default, i.e., they 

exclude branching and feedback loops. Such features can be 

handled implicitly within actors if needed, or added to the 

framework as in COMAD [20]. More details about the workflow 

model can be found in [23]. 

3.2 Provenance Model 
Provenance contains information about the origin context, 

derivation, ownership, or history of data artifacts [7]. There are 

two forms of provenance: prospective and retrospective 

provenance [8]. Prospective provenance, or abstract provenance, 

which captures the specification of computational tasks, indicates 

how data products should be generated. Abstract provenance can 

be constructed from workflow specification, actor configuration 

and input data schema. Retrospective provenance, or runtime 

provenance, which captures the workflow execution information, 

indicates how data products are derived during runtime. In our 

model, runtime provenance is captured at attribute level and is 

attached to each record. That is, the provenance information about 

a data-curation task (i.e., an invocation of a data-curation actor on 

a record) is stored as a separate set of data attributes that will be 

added to the record. We propose a graph-based provenance model 

including two types of provenance graphs: Abstract Data 

Dependency Graphs (ADG) and Concrete Data Dependency 

Graphs (CDG), which capture prospective and retrospective 

provenance respectively.  

An ADG is a type of abstract provenance graph [30]. An ADG has 

a set of nodes, N, that represent data items and a set of edges, E, 

that represent dependencies among data items. Since different 

types of dependencies are created by actors, each edge has a label, 

D:A, that indicates what type of dependency, D, the edge 

represents and which actor, A, creates this dependency. An 

example ADG is shown in Figure 2(b) (actor name not shown), 

and its corresponding workflow is shown in Figure 2(a). A CDG 

captures actual data dependencies created during a workflow run. 

In a CDG, we use a graph notation similar to that in an ADG, 

except that each node in a CDG has a label, T:V:S, that indicates 

the data type, T, the data value, V, and the curation status, S, of 

the data item. Note that one CDG is associated with one record 

since one record in the result of a workflow run can be seen as one 

invocation of the workflow. Figure 2(c) shows an example CDG 

(actor name and data type not shown) of the record with id 

"SCAN.436021" in Figure 1(b). In some of the following 

examples, for simplicity, the data type of nodes in a CDG and the 

actor name of edges in a ADG or CDG are not shown (e.g., 

“1966-04-10 : Unable_Curate” instead of “EventDate : 1966-04-

10 : Unable_Curate” and “update” instead of “Event Date 

Validator : Update”). Different background colors of data items in 

a CDG indicate the curation status of a data item. We have 

identified four different curation statuses: 

• Valid (Green): The data item is valid after checking against a 

standard. 

• Curated (Blue): Issues have been found in the data item or the 

original value was missing, and this data item has been updated 

with a corrected (valid) value. 

(a) 

 

(b) 

 

Figure 1. Example collection dataset: (a) the original dataset with data quality issues, (b) the expected result after data curation 
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• Unable_Curate (Red): Issues have been found in the data item or 

the original value was missing, but the system failed to find a 

valid value to update it with. 

•  Unable_Detemine_Validity (Grey): The workflow failed to 

make an assertion on the validity of the data item due to lack of 

information or system errors. 

3.3 Workflow Patterns and Graph Query 
In order to perform workflow analysis, we use data-curation 

workflow patterns to encode workflow design problems. We use 

the term workflow anti-patterns to represent design issues. That is, 

if a workflow contains a certain anti-pattern, then the workflow 

has the design issue this anti-pattern represents. In contrast, a 

workflow pro-pattern is a type of workflow pattern that a 

workflow must contain. For example, a workflow should be 

connected in most cases, thus a pro-pattern “The workflow is 

connected” can be enforced in such cases to make sure the 

workflow is connected.  

In the proposed framework, analysis is performed based on a set 

of selected anti-patterns and pro-patterns. Once invoked, a set of 

built-in workflow anti-patterns and pro-patterns is provided to the 

user. Those patterns can be selected and then enforced in the 

workflow analysis. If a provenance graph contains a selected anti-

pattern or doesn’t contain a selected pro-pattern, the matching 

anti-pattern will be highlighted in the visualized graph or the 

missing pro-pattern will be returned. Any other workflow patterns 

that are not selected are allowed implicitly by default. 

As our first prototype, we define workflow patterns using Regular 

Path Query (RPQ) [29] which can be used to query provenance 

graphs. We adopt Regular Data Path Query (RDPQ) [18] as an 

extension of RPQ, which can be used to query not only edges but 

also nodes in a provenance graph. We also adopt subgraph 

matching algorithm [11] to find out whether two provenance 

graphs conflict or not.  

 

Figure 3. Overview of the proposed data-curation workflow 

analysis framework 

4. PROPOSED WORKFLOW ANALYSIS 

FRAMEWORK 
An overview of the proposed workflow analysis framework is 

shown in Figure 3. Starting with a workflow as the input to the 

framework, workflow analysis is performed on the provenance 

information of the input workflow, which helps the user find 

possible workflow design problems in order to improve workflow 

workflow Analysis

Modification

Workflow 

Patterns

Execution

ADG

CDG

 

Figure 2. (a) Example data-curation workflow with three actors; (b) Example ADG of the workflow (c) Example CDG of a 

workflow run 
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design. The analysis component shown in the figure can be 

invoked with an ADG, a CDG or both. A set of built-in workflow 

patterns is provided by the framework for the user to choose from. 

The user can also define their own workflow patterns. Our 

framework also provides a GUI that visualizes workflows and 

provenance graphs showing possible design problems, which 

allows the user to modify and interact with workflows. 

4.1 ADG Analysis 
In our proposed framework, static analysis is performed on a 

given workflow in order to detect design problems ahead of 

workflow execution. Some of the fine-grained data dependency 

information is hidden from a workflow graph, which can be 

discovered by constructing an ADG. An ADG can be constructed 

by combining workflow graph, actor configurations and input 

dataset schema. A set of selected workflow patterns will be used 

to query the constructed ADG to detect workflow design issues.  

Example. In some cases, a particular order of the actors in a 

workflow needs to be maintained. Figure 4 shows two different 

orders of the actors in a workflow. In this example, “Flowering 

Time Validator” reads “SciName” as a reference to validate 

"RepCon", so “SciName” should be validated first in order to 

avoid generating incorrect results. An anti-pattern “Update After 

Read” can be enforced to detect this issue, which can be 

formulated as "read-1.bypass*.update". The ADG shown in Figure 

4(b) has a match for that query, which indicates that the workflow 

has the actor order issue this query represents. 

4.2 CDG Analysis 
By looking at the result of a workflow run alone (e.g., the example 

result in Figure 1(b)), the user may find it difficult to understand 

how the result is derived and why the workflow asserts certain 

curation in the result. In the proposed framework, not only the 

result of a workflow run but also the runtime provenance are 

given back to the user after a workflow execution, i.e., a CDG is 

constructed, which gives the user more information about the 

result. A set of workflow patterns can be selected and enforced 

such that workflow runtime problems can be detected by querying 

the constructed CDG. 

Example. In some cases, even though a data item has a curation 

status “Valid”, it can be a “false positive” case. This may be 

because if an actor reads a data item that has an “Unable_Curate” 

status during invocation, then the output result could be 

problematic. To detect this problem, an anti-pattern “Green After 

Red” can be enforced to check whether among all the data items 

in the result that have a “Valid” status, there exist some data item 

that used a reference data item with a “Unable_Curate” status 

during curation. This pattern can be formulated as 

∃(i, j) ∈ 𝑅𝑅𝐷𝑃𝑄 = read. (𝑎𝑛𝑦. bypass)∗. Valid. output,

ρ(i) = Unable_Curate1 

Figure 5(b) shows an example CDG that has a match of this anti-

pattern, which indicates that the result may have issues and the 

user may need to modify the workflow in order to avoid this 

problematic result. 

 

Figure 5. Example CDG analysis where incorrect result is 

yielded due to invalid reference  

4.3 ADG and CDG Interaction 
An ADG can be seen as a prediction of the runtime behavior of a 

workflow, and a CDG contains information about the actual 

runtime behavior of a workflow. If the runtime behavior of a 

workflow is as expected, then the CDG of a workflow should 

have the same structure as the ADG of the workflow. Otherwise, 

some unexpected problems happened during runtime. Therefore, 

some workflow runtime problems can be discovered by linking 

CDGs with ADGs, i.e., comparing prospective and retrospective 

provenance. There are different reasons why the ADG and the 

CDG of a workflow have different structures. For example, some 

actor is misconfigured (i.e., different than the actor declaration), 

or some of the actors are not invoked during runtime due to 

missing input data items or incompatible data types. In the 

proposed framework, we use subgraph-matching algorithms to 

find out whether the CDG matches the ADG of a workflow. If 

conflict exists, the differences between a CDG and an ADG are 

highlighted, which gives the user insights into why unexpected 

problems occurred during runtime.  

Example. Figure 6 shows a conflict between the CDG and the 

ADG of a workflow due to incorrect configuration of “Flowering 

Time Validator”. As the declaration of this actor indicates, the 

                                                                 

1RRDPQ is the result of evaluating a regular data path query. “read”, 

“bypass” and “output” are edge labels (type of data dependency) 

and “any” and “Valid” are node labels (curation status of data 

items) in a CDG. ρ: N → S, is a function that maps a node to its 

curation status.  

 

Figure 4. Example ADG analysis where certain order of actors must be maintained 
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actor should read “SciName” and “RepCon”. But the actor may be 

misconfigured in the way that it read the data item labeled 

“EventDate” instead of “SciName” during runtime, which yielded 

incorrect dependencies during runtime. Therefore, the result of 

this workflow run is likely to have problems. 

 

Figure 6. Example ADG and CDG conflict due to 

configuration error 

4.4 Implementation 
We have developed our first prototype of the analysis component 

in the proposed framework in Datalog using the DLV system [17], 

with a wrapper written in Java as the interface to interact with 

other components in the framework. Workflow specification, 

provenance graphs and workflow patterns are encoded as Datalog 

rules. A RPQ evaluation tool in Datalog [24] is used to evaluate 

workflow patterns on provenance graphs. 

5. RELATED WORK  
Some existing workflow systems like Kepler [19] and VisTrails 

[6] for example provide user friendly GUIs where workflows are 

visualized as data-flow graphs and the user can easily understand 

the structure of the workflow and make changes accordingly. 

Some workflow design steps are automated in some workflow 

systems like Wings [15], and several other frameworks [4, 10] has 

been proposed to facilitate workflow design. Graph-based 

workflow analysis has been widely studied [9], as well as in the 

domain of business process management [5] and process-aware 

information systems [27]. Various aspects of runtime workflow 

analysis including real time analysis [16] and execution 

monitoring [25] for example have been studied. Efficient 

provenance storage and querying techniques have been proposed 

for workflows [13] that makes it possible for the user to interpret, 

validate, debug and reproduce workflow execution by querying 

provenance [3]. However, little work has been done for data-

curation workflows or collection-oriented workflows [21] in 

general. And to the best of our knowledge, our proposed 

framework is the first work that combines retrospective and 

prospective provenance to perform workflow analysis. In this 

way, some of the workflow design problems that may be hidden 

by exploiting one type of provenance can be discovered. Existing 

data-curation workflow packages or systems like Kurator 1.0 [14], 

BioVel [26] and Nadeef [12] for example provide a library of 

data-curation actors and workflows for the user to choose from. 

However, little support for workflow design and analysis is 

provided. Even modifying an existing curation workflow requires 

detailed knowledge about the underlying workflow system. 

6. CONCLUSION AND FUTURE WORK 
We propose a provenance-driven data-curation workflow analysis 

framework that helps the user develop and improve data-curation 

workflows more efficiently. Both prospective and retrospective 

provenance is exploited in order to capture fine-grained data 

dependency information of a workflow. Graph queries and 

subgraph matching algorithms are applied to analyze provenance 

graphs in order to detect workflow design problem.  

Our first prototype only contains limited functionalities (e.g., 

small number of encoded patterns). We will continue developing 

our framework and one of our future works is to develop (semi-) 

automated workflow pattern discovery mechanism through the 

analysis process. At the same time, we simplify our workflow 

model to a common use case but the model is restricted in the way 

that some of the use cases cannot be handled. So our future work 

will include generalizing the workflow model to make the 

framework compatible with more use cases. 
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