
SharkDB:An In-Memory Storage System for Massive
Trajectory Data

Haozhou Wang, Kai Zheng, Xiaofang Zhou, Shazia Sadiq
The University of Queensland, Australia

{h.wang16,kevinz,zxf,shazia}@uq.edu.au

ABSTRACT
An increasing amount of motion history data, which is called trajec-
tory, is being collected from different sources such as GPS-enabled
mobile devices, surveillance cameras and social networks. How-
ever it is hard to store and manage trajectory data in traditional
database systems, since its variable lengths and asynchronous sam-
pling rates do not fit disk-based and tuple-oriented structures, which
are the fundamental structures of traditional database systems. We
implement a novel trajectory storage system that is motivated by
the success of column store and recent development of in-memory
based databases. In this storage design, we try to explore the poten-
tial opportunities, which can boost the performance of query pro-
cessing for trajectory data. To achieve this, we partition the trajec-
tories into frames as column-oriented storage in order to store the
sample points of a moving object, which are aligned by the time
interval, within the main memory. Furthermore, the frames can be
highly compressed and well structured to increase the memory uti-
lization ratio and reduce the CPU-cache missing. It is also easier
for parallelizing data processing on the multi-core server since the
frames are mutually independent.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms, Performance

Keywords
Trajectory, in-memory, column-oriented data structure

1. INTRODUCTION
The trajectory of a moving object is typically modelled as a time-

stamped sequence of consecutive locations in a multidimensional
(generally three dimensional) space. Thanks to major advances in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735368.

sensor technology, trajectories are currently generated from GPS-
enabled mobile devices and wireless communications at an increas-
ing rate. Trajectory data offers unprecedented amount of informa-
tion to help understand the behaviour of moving objects. Effective
and efficient technologies to manage large scale trajectory data is
highly demanded as the foundation to serve a variety of application
domains such as geographical information systems, location-based
services, vehicle navigation and so on.

Currently, many commercial relational database management sys-
tems (RMDBS) have started to offer additional components or ex-
tensions to support spatial types and operators. However, only a
few simple spatial data types such as points, lines and polygons
are considered and supported in these RDBMS. On the other hand,
more complex data types are needed to store trajectories. Because
it contains continuous time information and the length of each tra-
jectory is variable (i.e., the number of sample point of each trajec-
tory is different). Traditionally, to solve this problem, it is easy
to consider the trajectory of a moving object as one database ob-
ject. While this approach has a clear semantic meaning for each
trajectory record, it has several obvious drawbacks. Firstly, most
RDBMS cannot handle records of variable lengths well. Secondly,
many trajectory processing operations deal with, explicitly or im-
plicitly, some segments of a trajectory only. For example, to find
a point of interest (POI) closest to a trajectory, ideally only one
part of the trajectory (that contributes to the identification of the
resultant POI) needs to be used should that part be identified (us-
ing some indexing and filtering strategies). Treating a trajectory as
whole cannot support this type of operations efficiently, as it needs
to access the whole trajectory and then discard all but the relevant
segments.

Recently, there is growing interest on column-oriented data struc-
ture such as MonetDB [5], Positional Delta Tree (PDT) [10], and
so on. However they did not consider the trajectory data, which is a
natural multi-dimensional data structure with complex data format.
Meanwhile, the in-memory data management also receives lots of
attention such as memory-based indexing techniques [9, 7, 3] and
in-memory database systems [8, 6, 1, 4, 2]. However, these work
mainly focus on relational data, which means processing spatial-
temporal data (i.e., trajectory data) in memory system cannot be
well supported. To address this problem, we introduce SharkDB,
an in-memory column-oriented storage system for storing massive
trajectory data. We propose a novel read-optimized storage struc-
ture, which combines the advantages of in-memory computing and
column-oriented data structure for analytical tasks. Aligned with
common in-memory database designs, where data compression is
a key factor of consideration, SharkDB also supports compressing
trajectory data effectively and allows processing analytical query

1099

Figure 1: System Architecture

on the compressed data directly without the need to decompress
the whole dataset.

2. SYSTEM OVERVIEW
SharkDB includes three components, the user interface compo-

nent, the in-memory storage component and the trajectory query
processing component. As shown in Fig. 1, the duty of the in-
memory data storage component is to encode and compress the
raw trajectories, and then to store them in the column-oriented data
structure. The trajectory query processing component is respon-
sible for processing trajectory data and answer trajectory-related
queries in real time. The user interface component contains a front
end (GUI) and a back end. The front end receives queries and com-
municate with the back end. Meanwhile, the back end is connected
with the trajectory query processing component. We give a brief
overview of these components in the following:

In-memory Storage System: In this component, we propose a
frame-based and column-oriented data structure to store the trajec-
tory data. We partition the whole trajectory dataset and align them
into fixed time frame. Each time frame is treated as a virtual col-
umn, i.e., all trajectory samples within the same time frame will
be stored consecutively in the main memory. We also borrow the
idea of video compression techniques and use I/P frame encoding
scheme to further reduce the footprint of data in the memory. We
will discuss this part in the technical background section.

Trajectory Query Processing System: We propose a hierarchi-
cal frame based approach, whereas a multi-level frame data struc-
ture has been built, to support efficient trajectory query processing
with flexible time granularity. To take full advantage of multi-core
computing architecture, we also extend this approach to support
parallel processing. We will elaborate this part in technical back-
ground section.

User Interface: We use web-based interface as the front end
such that it can be accessed from most devices, including PC, tablets
and smart phones. Our interface has a control panel to allow users
to specify a trajectory-related query and set different parameters.
Our back end is implemented as web service, which offers the flex-
ibility to incorporate different storage structures and query process-
ing algorithms for comparison purpose. We will discuss this part in
demonstration section.

3. TECHNICAL BACKGROUND
In this section, we first discuss our frame-based data structure as

well as its encoding algorithm, which is used to store the raw tra-
jectory data in the column-oriented data structure. Then we briefly
discuss the query processing on frame-based structure with parallel
processing.

3.1 Frame-based In-memory Storage
Most trajectory-related queries such as window queries, near-

est neighbour queries and similarity queries only care about the
relevant trajectory segment, instead of the whole trajectory. Ap-
parently keeping each single trajectory as one record is not good
storage design for this type of queries, since we need to scan the
whole table to get the query answers. Therefore, we implement
a frame based data structure in the main memory, by leveraging
the column-oriented data structure and the in-memory techniques.
To implement this frame based structure, we first build a sequence
of frames from trajectory data directly. Then each trajectory sam-
ple point is allocated to the related frame based on its timestamp.
In this frame based structure, all trajectory sample points that be-
long to the same time interval are put into the same frame. We
name such time interval as frame rate and a sample point in a frame
is named as a frame point. For instance, as Fig. 2 shows, if we
set the time interval to be 1 minute (i.e. the frame rate is 60 sec-
onds), the time period from 9:01 to 9:05 can be split into 4 frames.
Hence, the sample points in the trajectory T1 = p′1, p

′
2, p

′
3, p

′
4 and

T2 = p1, p2, p3, p4 will be aligned to the related frame. In this ex-
ample, p′1, p1 and p′2, p2 are assigned into Frame1 and Frame2
respectively. However, there are two challenges in our frame-based
data structure. The first one is how to reconstruct the raw trajectory
from time frames efficiently. The other one is how to reduce the
footprint of trajectory data in the memory. We propose I/P frame
data structure to tackle these challenges.

Figure 2: Trajectory Snapshot

1100

There are two steps for building the I/P frame data structure,
namely grouping step and encoding step. In the grouping step, the
whole sequence of frames are split into small groups, called frame
group, and each frame group contains n consecutive frames. Based
on the example in Fig. 2 , if we set n = 4, then the Frame1 to
Frame4 are allocated in one group. For each group, we set the first
frame as I-frame, and the subsequent frames as P-frames. In the
encoding process we use the delta encoding scheme to encode the
P-frame points by calculating the difference between each P-frame
point and its closest prior I-frame point. To increase the recon-
struction performance, we set the length of each P-frame column
the same as the length of I-frame column. To deal with variable
lengths of trajectories, a place-holder Nil will be used once a tra-
jectory segment does not fill a frame group. As shown in Table 1,
if a trajectory segment has one I-frame point and one P-frame point
in a n = 4 frame group, we put Nil codes in the rest of P-frame
columns. As a result, the P-frame points now have the same offset
(and thus the index) as its related I-frame point if they are belong-
ing to the same trajectory. By this means, the P-frame points can be
accessed directly with the index of the related I-frame point with-
out the need to scan the whole P-frame columns. This encoding
scheme also enables the delta encoding to compress the P-frame
points.

Table 1: Example of I/P Frame-based Structure
9:01-9:02 9:02-9:03 9:03-9:04 9:04-9:05

(1,p) (1,∆p) (1,∆p) (1,∆p)
(2,p) (2,∆p) Nil Nil
(3,p) (3,∆p) (3,∆p) Nil
(4,p) (4,∆p) (4,∆p) (4,∆p)

CPU cache optimization is a key factor of consideration for in-
memory based storage system. We implement a hybrid data struc-
ture to optimize the CPU cache utilization. A two dimensional ar-
ray array[x][y] is created for each frame group, where x equals to
the number of I-frame points in this frame group, and y equals to
the number of P-frame columns in this frame group. The value
of x in the array is the index of an I-frame point; the value of
y indicates the column number of a P-frame group; the object at
array[x][y] is the P-frame point. When CPU requests to fetch
an I-frame point, its related P-frame points will be also put into
the same cache line. Later when CPU tries to access the P-frame
points, it can retrieve them directly from its cache that is much
faster than memory access. Our experiments have already veri-
fied that, this mechanism can increase the trajectory reconstruction
speed as well as the whole performance of query processing. As-
suming a memory access reads 3 codes vertically from a P-frame
array. As Fig. 3(a) shows, it will take 3 memory accesses in order
to decode a trajectory segment in a frame group without cache line
optimization , since the other codes in the cache line is not related
to this segment. To the contrary, as Fig. 3(b) shows, it only takes 1
memory access after cache optimization .

3.2 Trajectory Query Processing
In the frame based data structure, sequential scan for I-frame

columns and trajectory reconstruction are the most time consum-
ing operations in the whole query processing. Therefore, reduc-
ing the number of sequential scan and trajectory reconstruction can
significantly increase the system performance. In order to prune
the unnecessary frame groups as much as possible during the se-
quential scan for I-frame columns, we propose a hierarchical frame
based structure, as is shown in Fig. 4.

(a) Non-cache Optimized Structure

(b) Cache Optimized Structure

Figure 3: Example of Cache-aware I/P-frame Structure

First of all, we build hierarchical frame structure in bottom-up
style, where the first level (bottom) of the hierarchical frame struc-
ture is the normal I/P frame data structure that contains all the
frames. Then we only use the I-frame columns from current top
level that form the new top level. Afterwards, we split every n I-
frame columns and put them into a frame group, where n is the
number of frames in a frame group. An advantage of this structure
is that we can use the same encoding methods that are proposed
before to encode the I-frame columns in the new frame groups. In
Fig. 4, an example is provided to illustrate the process. If there are
more levels created in this hierarchical structure, the time interval
of each frame in the top level will increase and may become greater
than the average duration of a trajectory. Therefore if the time du-
ration of frame group is larger than the average time duration of
trajectories at the top level, the construction process can terminate.

Level 1

Level 2

Level 3

��� ��� ��� ��� ��� ��� ��� ��	 ��

��� ��� ���

���

Figure 4: Hierarchical I/P-frame Data Structure

A best-first search paradigm is adopted to traverse the hierar-
chical frame structure. We first initialize a min-heap and push the
top-level frame groups into the heap, of which the time interval of
frame groups are in query time range. The entries in the heap are
ordered by the MINDIST between their MBRs and query location.
Then, for each frame group that is needed to check, we check its
MBR first. If the MBR is out of query range, we can prune this
frame group and remove it from the heap; otherwise we re-insert

1101

Figure 5: Web Interface

it child frames in the hierarchy back into the heap. When an entry
at the bottom level is retrieved from the heap, we decode it to get
the raw trajectory segment and calculate the exact distance to the
query.

As multi-CPU/core is the standard computing architecture nowa-
days, supporting parallel processing becomes necessary. One ad-
vantage of the frame-based data structure is that each frame group
is completely independent and “share nothing” with each others.
This allows us to divide a query into a series of sub-queries and
assign them to different CPUs/cores for processing. Finally, the
results returned from each CPU/cores are merged to get the final
answer.

4. DEMONSTRATION
Currently, we implement three storage structures in this demo

system, the segmented trajectory structure, the I/P frame structure
and I/P frame structure with parallel processing. The last two stor-
age structures are our proposed approaches. The segmented tra-
jectory structure is to simulate a traditional storage, where it con-
siders a trajectory as an object. To increase the performance of
the segmented trajectory structure , we split each trajectory into
small segments, where a segment contains a fixed number of sam-
ple points. Meanwhile, each segment contains its MBR informa-
tion as well as the starting time and ending time. The aim is to pro-
vide an objective time cost comparison among all these structures.
These structures can be either deployed on commercial in-memory
database (e.g., SAP HANA) or by our own implementation. Two
types of trajectory analytic queries are supported at this stage. The
first query is window query, which finds all trajectories in the data
set that are active during a given period and pass a given spatial
region. The other one is kNN query, which finds top-k trajectories
in the trajectory data set that are closest to a given point and active
during a given period of time. The real datasets used for this demo
system is the same as [11]. In this demonstration, we provide a
web-based interface as the front end and web service based back

end to bridge web interface and the query processing component as
a middleware.

The web interface is shown in Fig. 5. The left-hand side is the
control panel that allows user to select the storage structure and the
type of query from the drop-down list. The right-hand side is the
trajectory visualization panel based on Google map, which allows
users to input a query intuitively. A user can either draw a query
circle (for window query) or pin a reference point (for kNN query)
on the map directly. Since our query has the time duration as a
parameter, a user can also adjust the query time interval by sliding
the time bar in the bottom of panel.

We start the demonstration by briefly explaining the work-flow
of our system. Then a user can select the type of queries as well as
the type of storage structures from the left panel. As Fig. 6 shows,
if the window query is selected, then she can use mouse to draw a
circle on the map to specify the query range and adjust the size and
location of that circle. The audience can also adjust the time bar
to select the day and using drop down list to specify the hour and
minute. Upon completion of query input, she can press the “Show
Trajectories" button to issue the query and the results should be
displayed on the Google Map in real time. The system uses differ-
ent colors to help users distinguish the trajectories in the result set.
Fig. 7 demonstrates an example of the window query in previous
example.

After results being shown on the map, the audiences can view the
detail of trajectories by switching the control panel tab to “trajecto-
ries”. Fig. 8 shows an instance of kNN query. In the “trajectories”
view, a table is showing the detail of each trajectory in the results,
which includes the length of trajectory with its start time and end
time. The ID is the rank of the trajectories based on its minimum
distance to the query point. If the user would like to investigate
the individual trajectory, she can simply click the trajectory in the
result table, and the selected trajectory will be highlighted on the
map. For example, in Fig. 9 , if we select the first trajectory that
listed in the table, then the nearest trajectory will be highlighted in
the Map.

1102

Figure 6: Example of Window Query Input

Figure 7: Example of Window Query Results

In addition to showing the results in Google Map, users may
be interested in comparing the performances between these stor-
age structures. To do this, they can click the “Compare” button,
and the query processing time based on each storage structure will
be reported and displayed. An example is shown in Fig. 10, the

(a) Table (b) Map

Figure 8: Example of kNN Query

segmented trajectory storage, the I/P frame structure and I/P frame
structure with parallel processing are denoted as STD, I/P and I/P-
P respectively. The y-axis is showing the query processing time of
each storage structure in milliseconds.

(a) Table (b) Map

Figure 9: Example of Trajectory Selection on Map

Finally, to make more sense for result visualization, our web in-
terface supports the playback function to visualize the motion of
moving objects on the map directly. This function is naturally sup-
ported by the frame-based data structure, since all trajectories are
synchronized and aligned by time. When a user checks the play-
back checkbox and issues the query, the back end will turn into
playback mode. In this mode, it will send the query to our I/P frame
based storage system with playback signal. Then, the system will
get the result trajectories and cache the trajectory id, starting time
and ending time of these trajectories.

When user presses the play button as shown in Fig. 5, the system
searches the frame column by result trajectories’ IDs, where the
timestamp of this frame group matches the beginning of this query
time interval. Then it decodes the frame points to sample points
and sends these them back. After receiving such information, the
front end displays these sample points on the map. The front end
continues to request the sample points in the next frame column
based on the result trajectories’ IDs, and the points on the map

1103

Figure 10: Performance Comparison

will keep moving and represent the motion of the result trajectory.
Users can also jump to the time they are more interested directly.
Moreover, in the playback mode, there is no need to transfer the
whole results set to the client side, so not only the query latency
but also the required memory for client devices are reduced.

5. CONCLUSION
In this demonstration proposal, we propose SharkDB, an in-memory

frame-based storage design for massive trajectory data. Its novel
time-oriented structure is more suitable for processing analytical
queries and can make better use of main memory as the perma-
nent storage medium. It also greatly benefits from convenient data
compression and parallel processing. We have shown by several
demonstration scenarios that SharkDB can process a variant of queries
over large-scale trajectory data efficiently and accurately.

6. ACKNOWLEDGEMENTS
This research is partially supported by the Australian Research

Council (LP130100164, DP120102829 and DE140100215).

7. REFERENCES
[1] A. C. Ammann, M. Hanrahan, and R. Krishnamurthy. Design

of a memory resident DBMS. In COMPCON, pages 54–58,
1985.

[2] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, and S. Haldar.
DataBlitz storage manager: main-memory database
performance for critical applications. In SIGMOD, pages
519–520, 1999.

[3] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory
column stores. In SIGMOD, pages 283–296, 2009.

[4] D. Bitton, M. Hanrahan, and C. Turbyfill. Performance of
complex queries in main memory database systems. In
ICDE, pages 72–81, 1987.

[5] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In CIDR, pages 225–237,
2005.

[6] D. Gawlick and D. Kinkade. Varieties of concurrency control
in IMS/VS fast path. DEB, 8(2):3–10, 1985.

[7] S. Manegold, P. Boncz, and M. L. Kersten. Generic database
cost models for hierarchical memory systems. In PVLDB,
pages 191–202, 2002.

[8] H. Plattner. A common database approach for OLTP and
OLAP using an in-memory column database. In SIGMOD,
pages 1–2, 2009.

[9] J. Rao and K. A. Ross. Making B+- trees cache conscious in
main memory. In SIGMOD, pages 475–486, 2000.

[10] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented DBMS. In PVLDB, pages
553–564, 2005.

[11] H. Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and S. Sadiq.
SharkDB: An in-memory column-oriented trajectory storage.
In CIKM, pages 1409–1418, 2014.

1104

