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ABSTRACT
We transform join ordering into a mixed integer linear pro-
gram (MILP). This allows to address query optimization by
mature MILP solver implementations that have evolved over
decades and steadily improved their performance. They of-
fer features such as anytime optimization and parallel search
that are highly relevant for query optimization.

We present a MILP formulation for searching left-deep
query plans. We use sets of binary variables to represent
join operands and intermediate results, operator implemen-
tation choices or the presence of interesting orders. Linear
constraints restrict value assignments to the ones represent-
ing valid query plans. We approximate the cost of scan
and join operations via linear functions, allowing to increase
approximation precision up to arbitrary degrees. We inte-
grated a prototypical implementation of our approach into
the Postgres optimizer and compare against the original op-
timizer and several variants. Our experimental results are
encouraging: we are able to optimize queries joining 40 ta-
bles within less than one minute of optimization time. Such
query sizes are far beyond the capabilities of traditional
query optimization algorithms with worst case guarantees
on plan quality. Furthermore, as we use an existing solver,
our optimizer implementation is small and can be integrated
with low overhead.

Keywords
Query optimization; integer linear programming

1. INTRODUCTION
From the developer’s perspective, there are two ways of

solving a hard optimization problem on a computer: either
we write optimization code from scratch that is customized
for the problem at hand or we transform the problem into
a popular problem formalism and use existing solver im-
plementations. In principle, the first approach could lead
to more efficient code as it allows to exploit specific prob-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17 May 14-19, 2017, Chicago, IL, USA

c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064039

lem properties. Also, we do not require a transformation
that might blow up the size of the problem representation.
In practice however, our customized code competes against
mature solver implementations for popular problem mod-
els that have been fine-tuned over decades [5], driven by a
multitude of application scenarios. Using an existing solver
reduces the amount of code that needs to be written and we
might obtain desirable features such as parallel optimization
or anytime behavior (i.e., obtaining solutions of increasing
quality as optimization progresses) automatically from the
solver implementation. It is therefore in general advised to
consider and to evaluate both approaches for solving an op-
timization problem.

We apply this generic insight to the problem of database
query optimization. For the last thirty years, the problem of
exhaustive query optimization, more precisely the core prob-
lem of join ordering and operator selection [27], has typically
been solved by customized code inside the query optimizer.
Modern query optimizers are the result of thousands of man
years worth of work [19]. The question arises whether this
development effort is actually necessary or whether we can
transform query optimization into another popular problem
formalisms and use existing solvers. We study that question
in this paper.

We transform the join ordering problem into a mixed inte-
ger linear program (MILP). We select that formalism for its
popularity. Integer programming approaches are currently
the method of choice to solve thousands of optimization
problems from a wide range of areas [21]. Corresponding
software solvers have sometimes evolved over decades and
reached a high level of maturity [5]. Commercial solvers
such as Cplex1 or Gurobi2 are available for MILP as well as
open source alternatives such as SCIP3.

Those solvers offer several features that are useful for
query optimization. First of all, they possess the anytime
property: they produce solutions of increasing quality as op-
timization progresses and are able to provide bounds for how
far the current solution is from the optimum. Chaudhuri re-
cently mentioned the development of anytime algorithms as
one of the relevant research challenges in query optimiza-
tion [8]. Mapping query optimization to MILP immediately
yields an algorithm with that property (note that recently
proposed anytime algorithms for multi-objective query op-
timization [32] are not applicable to traditional query opti-

1http://www.cplex.com
2http://www.gurobi.com/
3http://scip.zib.de/
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mization). Second, MILP solvers already offer support for
parallel optimization which is an active topic of research
in query optimization as well [13, 36, 28, 34]. Finally, the
performance of MILP solvers has improved (hardware- inde-
pendently) by more than factor 450,000 over the past twenty
years [5]. It seems entirely likely that those advances can
speed up query optimization as well (and anticipating our
experimental results, we find indeed classes of query op-
timization problems where a MILP based approach treats
query sizes that are illusory for prior exhaustive query opti-
mization algorithms).

In summary, by connecting query optimization to integer
programming, we benefit from over sixty years of theoret-
ical research and decades of implementation efforts. Even
better, having a mapping from query optimization to MILP
does not only enable us to benefit from past research but
also from all future research and development advances that
originate in the fruitful area of MILP. Performance improve-
ments have been steady in the past [5] and, as several major
software vendors compete in that market, are likely in the
future as well.

Given that integer programming transformations have been
proposed for many optimization problems that connect to
query optimization [1, 2, 11, 26, 37], it is actually surpris-
ing that no such mapping has been proposed for the join
ordering problem itself so far. There are even sub-domains
of query optimization, notably parametric query optimiza-
tion [12, 16, 17] and multi-objective parametric query opti-
mization [33], where it is common to approximate the cost
of query plans via piecewise-linear functions. The purpose
here is however to model the dependency of plan cost on
unknown parameters while traditional approaches such as
dynamic programming are used to find the optimal join or-
der. None of the aforementioned publications transforms the
join ordering problem into a MILP and the same applies for
additional related work that we discuss in Section 2.

A MILP is specified by a set of variables with either con-
tinuous or integer value domain, a set of linear constraints on
those variables, and a linear objective function that needs to
be minimized. An optimal solution to a MILP is an assign-
ment from variables to values that minimizes the objective
function. We sketch out next how we transform the join
ordering problem into a MILP.

Left-deep query plans can be represented as follows (we
simplify by not considering alternative operator implemen-
tations while the extensions are discussed later). For a given
query, we can derive the total number of required join op-
erations from the number of query tables. As we know the
number of required joins in advance, we introduce for each
join operand and for each query table a binary variable in-
dicating whether the table is part of that join operand. We
add linear constraints enforcing for instance that single ta-
bles are selected for the inner join operands (a particularity
of left-deep query plans), that the outer join operands are
the result of the prior join (except for the first join), or that
join operands have no overlap. The result is a MILP where
each solution represents a valid left-deep query plan.

This is not yet useful: we must associate query plans with
cost in order to obtain the optimal plan from the MILP
solver. The cost of a query plan depends on the cardinality
(or byte size) of intermediate results. The cardinality of an

intermediate result depends on the selected tables and on
the evaluated predicates. We introduce a binary variable
for each predicate and each intermediate result, indicating
whether the predicate has been evaluated to reduce cardinal-
ity. Predicate variables are restricted by linear constraints
that make it impossible to evaluate a predicate as long as
not all query tables it refers to are present in the correspond-
ing result. The cardinality of the join of a set of tables on
which predicates have been evaluated is usually estimated
by the product of table cardinalities and predicate selectiv-
ities. As we cannot directly represent a product via linear
constraints, we focus on the logarithm of the cardinality: the
logarithm of a product is the sum of the logarithms of the
factors. Based on our binary variables representing selected
tables and evaluated predicates, we calculate the logarithm
of the cardinality for all intermediate results that appear in
a query plan. Based on the logarithm of the cardinality,
we approximate the cost of query plans via sets of linear
constraints and via auxiliary variables.

We must approximate cost functions since the cost of stan-
dard operators is usually not linear in the logarithm of input
and output cardinalities. We can however choose the ap-
proximation precision by choosing the number of constraints
and auxiliary variables. This allows in principle arbitrary
degrees of precision. Also note that there are entire sub-
domains of query optimization in which it is standard to
approximate plan cost functions via linear functions [12, 16,
17, 33]. Approximating plan cost via linear function is there-
fore a widely-used approach.

Our goal here was to give a first intuition for how our
transformation works and we have therefore considered join
order alone and in a simplified setting. Later we show how
to extend our approach for representing alternative operator
implementations, complex cost models taking into account
interesting orders and the evaluation cost of expensive pred-
icates, or richer query languages.

We formally analyze our transformation in terms of the
resulting number of constraints and variables. We inte-
grated a prototypical implementation of our approach into
the Postgres database system. In our experimental evalua-
tion, we compare our approach against the original Postgres
optimizer and several variants. Our results are encourag-
ing: the MILP approach generates guaranteed near-optimal
query plans for queries joining up to ca. 40 tables within
less than one minute of optimization time in average. Such
query sizes are far beyond the reach of traditional dynamic
programming based optimization algorithms.

The original scientific contributions of this paper are the
following:

• We show how to reformulate query optimization as
MILP problem.

• We analyze the problem mapping and express the num-
ber of variables and constraints as function of the query
dimensions.

• We evaluate our approach experimentally and compare
against a classical dynamic programming based query
optimizer.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we intro-
duce our formal problem model. Section 4 describes how
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we transform join ordering into MILP. Section 5 discusses
several extensions. In Section 6, we describe our prototyp-
ical implementation in the Postgres database system and
experimentally compare our approach against the original
Postgres optimizer and several variants. In Appendix A, we
formally analyze the size of the MILP problems generated
by our approach. Appendix B contains additional experi-
mental results providing more insights on the performance
of the MILP optimizer. We finally present an experimental
study of the impact of MILP optimization on query execu-
tion times in Appendix C.

2. RELATED WORK
MILP representations have been proposed for many op-

timization problems in the database domain, including but
not limited to multiple query optimization [11], index se-
lection [26], materialized view design [37], selection of data
samples [1], or partitioning of data for parallel processing [2].
In the areas of parametric query optimization and multi-
objective parametric query optimization it is common to
model the cost of query plans by linear functions that de-
pend on unknown parameters [12, 16, 17, 33]. None of those
prior publications formalizes however the join ordering and
operator selection problem as MILP.

Query optimization algorithms can be roughly classified
into exhaustive algorithms that formally guarantee to find
optimal query plans and into heuristic algorithms which do
not possess those formal guarantees. Exhaustive query op-
timization algorithms are often based on dynamic program-
ming [27, 35, 22, 23]. We compare against such an approach
in our experimental evaluation.

Our MILP-based approach to query optimization can be
used as an exhaustive query optimization algorithm since
we can configure the MILP solver to return a guaranteed-
optimal solution. The MILP solver can also be configured
to return solutions that are guaranteed near-optimal (i.e.,
the cost of the result plan is within a certain factor of the
optimum) or to return the best possible plan within a given
amount of time. This makes the MILP approach more flex-
ible than typical exhaustive query optimization algorithms.
Furthermore, MILP solvers posses the anytime property,
meaning that they produce multiple plans of decreasing cost
during optimization. The development of anytime algo-
rithms for query optimization has recently been identified
as a research challenge [8]. Transforming query optimization
into MILP immediately yields anytime query optimization.
Note that anytime algorithms for multi-objective query opti-
mization [32] cannot speed up traditional query optimization
with one plan cost metric.

The parallelization of exhaustive query optimization al-
gorithms (not to be confused with query optimization for
parallel execution) is currently an active research topic [13,
14, 28, 36]. MILP solvers such as Cplex or Gurobi are able to
exploit parallelism and transforming query optimization into
MILP hence yields parallel query optimization as well. The
development of parallel query optimizers for new database
systems requires generally significant investments [28]; the
amount of code to be written can be significantly reduced
by using a generic solver as optimizer core.

Various heuristic and randomized algorithms have been
proposed for query optimization [3, 6, 18, 29, 31, 30, 34]. In

contrast to many exhaustive algorithms, most of them pos-
sess the anytime property and generate plans of improving
quality as optimization progresses. Those approaches can
however not give any formal guarantees at any point in time
about how far the current solution is from the optimum.
MILP solvers provide upper-bounds during optimization on
the cost difference between the cost of the current solution
and the theoretical optimum. Such bounds could be used
to stop optimization once the distance reaches a threshold.
Randomized algorithms do not offer that possibility and the
returned solutions may be arbitrarily far from the optimum.

3. MODEL AND ASSUMPTIONS
The goal of query optimization is to find an optimal or

near-optimal plan for a given query. It is common to intro-
duce new query optimization algorithms by means of simpli-
fied problem models. We also use a simple query and query
plan model throughout most of the paper while we discuss
extensions to richer query languages and plan models as well.

In our simplified model, we represent a query as a set Q
of tables that need to be joined together with a set P of
binary predicates that connect the tables in Q (extensions
to nested queries, queries with aggregates, queries with pro-
jections, and queries with non-binary predicates will be dis-
cussed). For each binary predicate p ∈ P , we designate by
T1(p), T2(p) ∈ Q the two tables that the predicate refers to.
Predicates can only be evaluated in relations in which both
tables they refer to have been joined.

We assume in the simplified problem model that one scan
and one binary join operator are available. As we consider
binary joins, a query with n tables requires n − 1 join op-
erations. A query plan is defined by the operands of those
n− 1 join operations, more precisely by the tables that are
present in those operands. We consider left-deep plans. For
left-deep query plans, the inner operand is always a single
table; the outer operand is the result from the previous join
(except for the outer operand of the first join which is a
single table).

Query plans are compared according to their execution
cost. The execution cost of a plan depends on the cardinality
of the intermediate results it produces. We write Card(t) ≥
1 to designate the cardinality of table t and Sel(p) ∈ (0, 1]
to designate the selectivity of predicate p. We assume in
the simplified model that the cardinality of the join between
several tables, after having evaluated a set of join predicates,
corresponds to the product of the table cardinalities and the
predicate selectivities. We hence assume in the simplified
model uncorrelated predicates while extensions to correlated
predicates will be discussed. We generally assume that the
execution cost of a query plan is the sum of the execution
cost of all its operations.

We translate the problem of finding a cost-minimal plan
for a given query into a mixed integer linear programming
problem (MILP). A MILP problem is defined by a set of
variables (that can have either integer or continuous value
domains), a set of linear constraints on those variables, and
a linear objective function on those variables that needs to
be minimized. A solution to a MILP is an assignment from
variables to values from the respective domain such that all
constraints are satisfied. An optimal solution minimizes the
objective function value among all solutions.
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4. JOIN ORDERING APPROACH
The join ordering problem is usually solved by algorithms

that are specialized for that problem and run inside the
query optimizer. We adopt a radically different approach:
we translate the join ordering problem into a MILP problem
that we solve by a generic MILP solver.

MILP is an extremely popular formalism that is used to
solve a variety of problems inside and outside the database
community. By mapping the join ordering problem into a
MILP formulation, we benefit from decades of theoretical
research in the area of MILP as well as from solver im-
plementations that have reached a high level of maturity.
By linking query optimization to MILP, we make sure that
query optimization will from now on indirectly benefit from
all theoretical advances and refined implementations that
become available in the MILP domain.

We explain in the following our mapping from a join or-
dering problem to a MILP. We describe the variables and
constraints by which we represent valid join orders in Sec-
tion 4.1. We show how to model the cardinality of join
operands in Section 4.2. In Section 4.3 we associate plans
with cost values based on the operand cardinalities.

Note that we introduce our mapping by means of a basic
problem model in this section while we discuss extensions to
the query language, plan space, and cost model in Section 5.

4.1 Join Order
A MILP program is characterized by variables with as-

sociated value domains, a set of linear constraints on those
variables, and a linear objective function on those variables
that needs to be minimized. Table 1 summarizes the vari-
ables that we require to model join ordering as MILP prob-
lem and Table 2 summarizes the associated constraints. We
introduce them step-by-step in the following.

We start by discussing the variables and constraints that
we need in order to represent valid left-deep query plans.
Later we discuss the variables and constraints that are re-
quired to estimate the cost of query plans.

We represent left-deep query plans for a query Q as fol-
lows. For the moment, we assume that only one join op-
erator and one scan operator are available while we discuss
extensions in Section 5. Under those assumptions, a query
plan is specified by the join operands. We introduce a set of
binary variables tiotj (short for Table In Outer join operand)
with the semantic that tiotj is one if and only if query ta-
ble t ∈ Q appears in the outer join operand of the j-th join.
Note that we use the term outer operand as synonym for left
join operand (and analogue for the term inner operand). We
numerate joins from 0 to jmax where jmax is determined by
the number of query tables. Analogue to that, we introduce
a set of binary variables tiitj (short for Table In Inner join
operand) indicating whether the corresponding table is in
the inner operand of the j-th join.

The variables representing left-deep plans have binary value
domains. Note that not all possible value combinations rep-
resent a valid left-deep plan. For instance, we could repre-
sent joins with empty join operands. Or we could build plans
that join only a subset of the query tables and are therefore
incomplete. We must impose constraints in order to restrict
the considered value combinations to the ones representing
valid and complete left-deep plans.

Left-deep plans are characterized by the particularity that
the inner operand consists of only one table for each join.
We capture that fact by the constraint

∑
t tiitj = 1 which

we need to introduce for each join j. A similar constraint
restricts the table selections for the outer operand of the first
join (join index j = 0) as only one table can be selected as
initial operand. For the following joins (join index j ≥ 1),
the outer join operand is always the result of the previous
join which is another characteristic of left-deep plans. This
translates into the constraints tiotj = tiit,j−1 + tiot,j−1.

The latter constraint actually excludes the possibility that
the same table appears in both operands of a join (since the
result of the sum between tiit,j−1 + tiot,j−1 cannot exceed
the maximal value of one for tiotj) except for the last join.
We add the constraint tiotjmax + tiitjmax ≤ 1 for the last
join (and optionally for the other joins as well).

The number of joins is one less than the number of query
tables. We join two (different) tables in the first join. After
that, each join adds one new table to the set of joined tables
since the outer operand contains all tables that have been
joined so far, since the inner operand consists of one table,
and since inner and outer join operands do not overlap. As
a result, we can only represent complete query plans that
join all tables.

We could have chosen a different representation of query
plans with less variables. The problem is that we need to be
able to approximate the cost of query plans based on that
representation using linear functions. Our representation of
query plans might at first seem unnecessarily redundant but
it allows to impose the constraints that we discuss next. Also
note that MILP solvers typically try to eliminate unneces-
sary variables and constraints in preprocessing steps. This
makes it less important to reduce the number of variables
and constraints at the cost of readability.

Example 1. We illustrate the representation of left-deep
query plans for the join query R 1 S 1 T . Answering
the query requires two join operations. Hence we introduce
six variables tiotj for t ∈ {R,S, T} and j ∈ {0, 1} to rep-
resent outer join operands and six variables tiitj to repre-
sent inner join operands. The join order (R 1 S) 1 T is
for instance represented by setting tioR0 = tiiS0 = 1 and
tioR1 = tioS1 = tiiT1 = 1 and setting the other variables
representing join operands to zero. This assignment satis-
fies the two constraints that restrict inner operands to single
tables (e.g.,

∑
t∈{R,S,T} tiit1 = 1 for the second join), it sat-

isfies the constraint restricting the outer operand in the first
join to a single table (

∑
t∈{R,S,T} tiot0 = 1), and it satis-

fies the constraints making the outer operand of the second
join equal to the union of the operands in the first join (e.g.,
tioR1 = tioR0 + tiiR0).

4.2 Cardinality
Our goal is to find query plans with minimal cost and

hence we must associate query plans with a cost value. The
execution cost of a query plan depends heavily on the car-
dinality of intermediate results. We need to represent the
cardinality of join operands and join results in order to cal-
culate the cost of query plans. Inner operands consist always
of a single table and calculating their cardinality is straight-
forward: designating by cij (short for Cardinality of Inner
operand) the cardinality of the inner operand of join num-
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Table 1: Variables for formalizing join ordering for left-deep query plans as integer linear program.

Symbol Domain Semantic

tiotj/tiitj {0, 1} If table t is in outer/inner operand of j-th join

paopj {0, 1} If p-th predicate can be evaluated on outer operand of j-th join

lcoj R Logarithm of cardinality of outer operand of j-th join

ctorj {0, 1} If cardinality of outer operand of j-th join reaches r-th threshold

coj/cij R+ Approximated cardinality of outer/inner operand of j-th join

Table 2: Constraints for join ordering in left-deep plan spaces.

Constraint Semantic∑
t tiot0 = 1/∀j :

∑
t tiitj = 1 Select one table for outer operand of first join/for all inner operands

∀j∀t : tiotj + tiitj ≤ 1 The tables in the join operands cannot overlap for the same join

∀j ≥ 1∀t : tiotj = tiit,j−1 + tiot,j−1 Results of prior join are outer operand for next join

∀p∀j : paopj ≤ tioT1(p)j ; paopj ≤ tioT2(p)j Predicates are applicable if both referenced tables are in outer operand

∀j : cij =
∑

t Card(t)tiitj Determines cardinality of inner operand

∀j : lcoj =
∑

t log(Card(t))tiotj+ Determines logarithm of outer operand cardinality,∑
p log(Sel(p))paopj taking into account selected tables and applicable predicates

∀j∀r : lcoj − ctorj · ∞ ≤ log(θr) Activates threshold flag if cardinality reaches threshold

∀j : coj =
∑

r ctorjδθr Translates activated thresholds into approximate cardinality

ber j, we simply set cij =
∑

t tiitjCard(t) where Card(t) is
the cardinality of table t.

Calculating cardinality for outer join operands is however
non-trivial as we can only use linear constraints: the cardi-
nality of a join result is usually estimated as the product of
the cardinalities of the join operands times the selectivity of
all predicates that are applied during the join. The product
is a non-linear function and does not directly translate into
linear constraints.

We circumvent that problem via the following trick. While
cardinality is actually defined as the product of table cardi-
nality values and predicate selectivity values, we represent
the logarithm of the cardinality instead and the logarithm of
a product is the sum of the logarithms of the factors. More
formally, given a set T ⊆ Q of query tables such that the set
of predicates P is applicable to T (i.e., for each binary pred-
icate in P the two tables it refers to are included in T ) and
designating by Card(t) for t ∈ T the cardinality of table t
and by Sel(p) the selectivity of predicate p ∈ P , a cardinal-
ity estimate is given by

∏
t∈T Card(t) ·

∏
p∈P Sel(p) and the

logarithm of the cardinality estimate is
∑

t∈T log(Card(t))+∑
p∈P log(Sel(p)) which is a linear function.
We introduce the set of variables lcoj (short for Loga-

rithmic Cardinality of Outer operand) which represents the
logarithm of the cardinality of the outer operand of the j-
th join. The aforementioned linear formula for calculating
the logarithm of the cardinality depends on the selected ta-
bles as well as on the applicable predicates. The selected
tables are directly given in the variables tiotj . We introduce
additional binary variables to represent the applicable predi-
cates: variable paopj (short for Predicate Applicable in Outer
join operand) captures whether predicate p is applicable in

the outer operand of the j-th join. We currently consider
only binary predicates (we discuss extensions later) and, as
the inner operands consist of single tables, we do not need
to introduce an analogue set of predicate variables for the
inner operands.

We denote by T1(p) and T2(p) the first and the second
table that predicate p refers to. A predicate is applicable
to an operand whose table set T contains T1(p) and T2(p).
We make sure that predicates cannot be applied if one of the
two tables is missing by adding for each predicate p and each
join j a pair of constraints of the form paopj ≤ tioT1(p)j and
paopj ≤ tioT2(p)j . We currently assume that predicate eval-
uations do not incur any cost while extensions are discussed
later. Under this assumption, applying a predicate has only
beneficial effects as it reduces the cardinality of intermedi-
ate results and therefore the cost of the following joins. This
means that we only need to introduce constraints prevent-
ing the solver from using predicates that are inapplicable but
we do not need to add constraints forcing the evaluation of
predicates explicitly.

Using the variables capturing the applicability of predi-
cates, we can now write the logarithm of the join operand
cardinalities. For outer join operands, we set

lcoj =
∑
t

log(Card(t))tiotj +
∑
p

log(Sel(p))paopj

and thereby take into account table cardinalities as well as
predicate selectivities.

Unfortunately, the cost of most operations within a query
plan is not linear in the logarithm of the cardinality values.
In the following, we show how to transform the logarithm
of the cardinality values into an approximation of the raw
cardinality values. This allows to write cost functions that
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are linear in the cardinality of their input and output. This
is sufficient for many but not for all standard operations.
Similar techniques to the ones we describe in the following
can however be used to represent for instance log-linear cost
functions as we describe in more detail in Section 4.3.

We must transform the logarithm of the cardinality into
the cardinality itself. This is not a linear transformation
and hence we resort to approximation. We assume that a
set Θ = {θr} of cardinality threshold values has been de-
fined for integer indices r with 0 ≤ r ≤ rmax. The set of
thresholds can be chosen in order to trade between precision
and optimizer performance: the more thresholds we define,
the closer the approximation becomes while we need to in-
troduce more auxiliary variables (as discussed next).

We introduce a set of binary variables ctorj (short for Car-
dinality Threshold reached by Outer operand) that indicate
for join j and cardinality threshold θr whether the cardinal-
ity of the outer operand reaches the corresponding thresh-
old value. If threshold θr is reached then the corresponding
threshold variable ctorj must take value one and otherwise
value zero. To guarantee that the previous statement holds,
we introduce constraints of the form lcoj−ctorj ·∞ ≤ log(θr)
for each join j where∞ is in practice a sufficiently large con-
stant such that the constraint can be satisfied by setting the
threshold variable ctorj to one. We do not explicitly en-
force that the threshold variable is set to zero in case that
the threshold is not reached. The constraints that we intro-
duce next make however sure that the cardinality estimate
and therefore the cost estimate increase with every thresh-
old variable that is set to one. Hence, the solver will set the
threshold variables to zero wherever it can.

Based on the threshold variables, we approximate cardi-
nality by a step function. We introduce the set of variables
coj representing the raw cardinality of the outer operand of
the j-th join and set coj =

∑
r ctorjδθr where the values δθr

are chosen appropriately such the following holds: if thresh-
old variables cto0j up to ctomj are set to one for join j then
the cardinality variable coj takes a value between θm and
θm+1 (assuming that thresholds are indexed in ascending
order such that ∀r : θr < θr+1). We can for instance set
δθr = θr − θr−1 for r ≥ 1 and δθ0 = θ0.

Example 2. We illustrate how to calculate join operand
cardinalities and continue the previous example with join
query R 1 S 1 T . We have two joins and introduce therefore
four variables (ci0, ci1, co0, and co1) representing operand
cardinalities. Assume that tables R, S, and T have cardi-
nalities 10, 1000, and 100 respectively. We calculate the
cardinality of the two inner join operands by summing over
the variables indicating the presence of a table in an in-
ner operand, weighted by the cardinality values (e.g., ci0 =
10tiiR0 + 1000tiiS0 + 100tiiT0). The cardinality of the outer
operands can depend on predicates. Assume that one predi-
cate p is defined between tables R and S. We introduce two
variables, paop0 and paop1, indicating whether the predicate
can be evaluated in the outer operand of the corresponding
join. Predicates can be evaluated if both referenced tables are
in the corresponding operand. We introduce four constraints
(e.g., paop0 ≤ tioR0 and paop0 ≤ tioS0) forcing the value of
the predicate variable to zero if at least one of the tables is
not present. We introduce two variables storing the loga-
rithm of the outer operand cardinality: lco0 and lco1. We

assume that the selectivity of p is 0.1. Then the logarith-
mic cardinality for the first outer join operand is given by
lco0 = 1tioR0 + 3tioS0 + 2tioT0 − 1paop0, assuming that the
logarithm base is 10. To simplify the example, we assume
that only two cardinality thresholds are considered: θ0 = 10,
and θ1 = 1000. We introduce four variables ctorj with
r ∈ {0, 1} and j ∈ {0, 1} indicating whether the cardinality
of the outer join operand reaches each threshold for the first
or second join. Each threshold variable is constrained by one
constraint (e.g., lco0 −∞ · cto0,0 ≤ 1). Now we define the
cardinality of the outer join operands by constraints such as
co0 = 10cto0,0 +(1000−10)cto1,0. This yields a lower bound
on the cardinality. If we know for instance that cardinality
values are upper-bounded by 100000 due to the query prop-
erties, we can also set co0 = 100cto0,0 + (10000−100)cto1,0.
Then the gap between true and approximate cardinality is at
most one order of magnitude.

4.3 Cost
Now we can for instance sum up the cardinalities over all

intermediate results (
∑

j≥1 cioj) and thereby obtain a simple
cost metric that is equivalent to the Cout cost metric intro-
duced by Cluet and Moerkotte [10]. Join orders minimizing
that cost metric were shown to minimize cost according to
the cost formulas of some of the standard join operators as
well [10]. We will however show in the following how the cost
of all standard join operators, namely hash join, sort-merge
join, and block nested loop join, can be modeled directly.

The standard cost formula for a hash join operation is
linear in the number of pages that the two input operands
consume on disk. The number of pages depends on the car-
dinality of the operands. We have seen in the last subsection
how to approximate cardinality based on threshold variables.
We can approximate the number of disc pages using the
same method: we calculate the number of pages consumed
by an operand as a sum over the cardinality related thresh-
old variables. Considering the page count instead of actual
cardinality only changes the coefficients in that sum. Note
that we simplify by implicitly assuming a constant byte size
for each tuple (otherwise, the cardinality alone would not
lead to the number of disc pages). We show how to relax
that assumption in the next section.

In the worst case, a sort-merge join requires to sort both
inputs, followed by the merge phase. We assume in the fol-
lowing that both inputs must be sorted while we generalize
in the next section. The cost of a sort-merge join consists
of three components in that case (the cost for sorting both
inputs and the cost of the merge). The cost of a merge is
proportional to the page sizes of both operands. Hence, we
can use the same methods as for the hash join to calcu-
late that cost component. The cost of a sort operation is
in general not linear in the size of the input. Nevertheless,
the same approach as before can be used to approximate
arbitrary step functions that are monotone in the logarithm
of the cardinality. Hence, we can approximate the cost of
a sort operation by summing over the threshold variables
approximating cardinality of the corresponding input.

The cost of a block nested loop join is the cost for reading
the outer operand and the cost for reading the inner operand
repeatedly. The cost for reading the outer operand (if no
pipelining is used) is proportional to its size and can be cal-
culated as before. The cost for reading the inner operand is
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Figure 1: Dependencies between variable groups (bi-
nary variables in red, continuous variables in blue)
introduced for one intermediate result.

proportional to the product of the size of the inner operand
and the number of iterations. The number of iterations de-
pends on the size of the outer operand. Assuming a constant
buffer size, we can calculate the number of iterations by a
sum over the threshold variables (the ones representing the
size of the outer operand) again.

The following formula for calculating the cost of a block
nested loop join exploits the fact that the innner operand is
always a single table. We denote by iterj the number of re-
quired iterations when performing join number j via a nested
loop operator. Also, we denote by pages(t) the number of
pages consumed by table t on disc. Now we can express
join cost by the formula

∑
t tiitj · pages(t) · iterj . This is a

weighted sum over products between a binary variable (the
variables tiitj indicating whether table t was selected for the
inner operand of join number j) and an integer variable (the
variables iterj). This formula is hence not directly linear
but the product between a binary variable and a continuous
(or integer) variable can be expressed by introducing one
auxiliary variable and a set of constraints [4]. The only con-
dition for this transformation is that the continuous variable
is non-negative and upper-bounded by a constant. Both is
the case (note that we generally only model a bounded car-
dinality range which implies also an upper bound on the
number of loop iterations).

Figure 1 summarizes the variable groups that we introduce
for each intermediate result. Join operands are described by
binary variables which determine the set of applicable predi-
cates. The logarithm of the join operand cardinality depends
on both. We calculate cardinality thresholds based on log-
arithmic cardinality and approximate cardinality based on
those thresholds. This allows us to estimate execution cost
for various operators (note in particular that we can approxi-
mate non-linear cost functions in the size of input operands).

5. EXTENSIONS
We introduced our mapping for query plans by means of a

basic problem model that focuses on join order. We discuss
extensions of the query language, of the query plan model,
and of the cost model in this section.

Note that not all proposed extensions are necessary in
each scenario: the basic model introduced in the last section
allows for instance to find join orders which minimize the
sum of intermediate result sizes. Such join orders are opti-
mal according to many standard operator cost functions [10].
It is therefore in many scenarios possible to obtain good

query plans based on the join order that was calculated us-
ing the basic model. To transform a join order into a query
plan, we choose optimal operator implementations based on
the cardinality of the join operands, we evaluate predicates
as early as possible (predicate push-down), and we project
out columns as soon as they are not required anymore.

An alternative is to let the MILP solver make some of
the decisions related to projection, predicate evaluation, and
join operator selection. We show how this can be accom-
plished if desired. In addition, we discuss extensions of the
cost and query model.

5.1 Predicate Extensions
We show how to deal with n-ary, correlated, and expensive

predicates. So far we have considered binary predicates. If
a predicate p depends on n tables T1(p) to Tn(p) then we
simply introduce constraints of the form paopj ≤ Ti(p) for
1 ≤ i ≤ n. This forces variables paopj to zero if at least one
required table is not present.

We assume so far that predicates are uncorrelated. Then
the selectivity of a conjunction of predicates is the product
of the selectivity values of its components. Predicate inde-
pendence is a common assumption but not always realistic.
Assume a correlated group Pcor of predicates such that the
selectivity of their conjunction differs significantly from their
selectivity product. We introduce a new predicate g that
represents the correlated predicate group. The selectivity
Sel(g) is chosen in a way such that Sel(g) ·

∏
p∈Pcor

Sel(p)
yields the correct selectivity, taking correlations into ac-
count. So the selectivity of g corrects the erroneous selec-
tivity based on simplifying assumption. We introduce a new
variable paogj for g and integrate it into the formulas for
logarithmic cardinality as if it were just another predicate.
We make sure that g is only activated if all correlated pred-
icates have been evaluated by requiring paogj ≥ 1−|Pcor|+∑

p∈Pcor
paopj and paogj ≤ paopj for each p ∈ Pcor.

Example 3. We extend our running example from Sec-
tion 4 by adding a second predicate q. The previous predicate
p connects tables R and S while q connects S and T . Predi-
cate p still has selectivity 0.1 while predicate q has selectivity
0.01. However, both predicates are correlated such that the
combined predicate p ∧ q has only selectivity 0.005 (instead
of selectivity 0.01 ·0.1 = 0.001). We model correlation by in-
troducing binary variables of the form paogj for each inter-
mediate result j. We refine the formula for calculating the
logarithm of the cardinality of intermediate results by set-
ting lcoj = log(10)tioRj + log(1000)tioSj + log(100)tioTj +
log(0.1)paopj + log(0.01)paoqj + log(5)paogj. We add con-
straints of the form paogj ≤ paopj and paogj ≤ paoqj to
ensure that the correlation factor is only considered if both
predicates are evaluated. Finally, we add constraints of the
form paogj ≥ paopj + paoqj − 1 to ensure that correlation is
considered if both correlated predicates are evaluated.

So far we have assumed that predicate evaluation is not
associated with cost. We constrained the variables paopj
only to zero if required tables are not in the operand. We
did not explicitly force them to one at any point since, as
they reduce cardinality, their evaluation reduces cost and
the MILP solver will generally choose to evaluate them as
early as possible.
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This model is not always appropriate. If predicate evalu-
ations are expensive then it can be preferable to postpone
their evaluation [9, 15, 20]. The predicate-related variables
paopj influence the cardinality estimates of join operands.
They capture whether the corresponding predicate was al-
ready evaluated as otherwise it cannot influence cardinality.
We cannot use those variables directly to incorporate the
cost of predicate evaluations. The effect on cardinality of
having evaluated a predicate once will persist for all future
operations. The evaluation cost needs however only to be
payed once. We introduce additional variables pcopj (short
for Predicate evaluation Cost for Outer operand) and set
pcopj = paop,j+1 − paop,j . Intuitively, the predicate was
evaluated in the current join if it is evaluated in the input to
the next join but not in the input of the current join. The
sum

∑
j pcopjcoj yields the evaluation cost associated with

predicate p (we can additionally weight by a factor that rep-
resents predicate evaluation cost per tuple). This is not a
linear function as we multiply variables. We have however a
product between a binary variable and a continuous variable
again. As before, we can transform such expressions into a
set of linear constraints and a new auxiliary variable [4].

Now that evaluation of predicates is not automatically de-
sirable anymore, we must introduce additional constraints
making sure that all predicates are evaluated at the end of
query execution. Designating by jmax the index of the last
join, we simply set paop,jmax+1 = 1. This means that each
predicate that was not evaluated before the last join must
be evaluated during the last join. We finally introduce con-
straints making sure that no predicate is initially evaluated.

5.2 Projection
Our cost formulas have so far been based on cardinality

alone as we have assumed a constant byte size per tuple.
This is of course a simplification and we must in general
take into account the columns that we project on and their
byte sizes. We designate by L the set of columns over all
query tables. By Byte(l) we denote the number of bytes
per tuple that column l ∈ L requires. We introduce one
variable clojl (short for CoLumn in Outer operand) for each
join j and each column l ∈ L to indicate whether column l
is present in the outer operand of join j (and analogue vari-
ables for the inner operands). Then a refined formula for the
estimated number of bytes consumed by the outer operand
is coj ·

∑
l∈L clojlByte(l). This is the sum over products

between a constant (Byte(l)), a binary variable (clojl), and
a continuous variable that takes only non-negative values
(coj). This formula can be expressed using only linear con-
straints using the same transformations that we used already
before [4]. For the inner operand, we can estimate the byte
size by summing over the column variables, weighted by the
column byte size as well as by the cardinality of the table
that the column belongs to.

We must still constrain the variables clojl to make sure
that only valid query plans can be represented. First of all
we must connect columns to their respective tables. If the ta-
ble associated with a column is not present then the column
cannot be present either in a given operand. If column l is as-
sociated with table t then the constraint clojl ≤ tiotj forces
the column variable to zero if the associated table is not
present. Not selecting any columns would be the most con-
venient way for the optimizer to reduce plan costs. To pre-

vent this from happening, we must enforce that all columns
that the query refers to are in the final result. Also, we must
enforce that all columns that predicates refer to are present
once they are evaluated. We introduced variables indicating
the immediate evaluation of a predicate during a specific
join. Those are the variables that need to be connected
to the columns they require via corresponding constraints.
We must also make sure that a column cannot reappear in
later joins after it has been projected out (otherwise that
would be a convenient way of reducing intermediate result
sizes while still satisfying the constraints requiring certain
columns in the final result). Introducing constraints of the
form clojl ≥ cloj+1,l satisfies that requirement.

5.3 Choosing Operator Implementations
We have already discussed the cost functions of different

join operator implementations in the last section. So far we
have however assumed that only one of those cost functions
is used to calculate the cost for all joins. This allows to
select optimal operator implementations after a good join
order, minimizing intermediate result sizes, has been found.
We can however also task the MILP solver to pick operator
implementations as we outline in the following.

Denote by I the set of join operator implementations. We
have shown how to calculate join cost for each of the stan-
dard join operators. We can introduce a variable pjcji (short
for Potential Join Cost) for each join j and for each operator
implementation i ∈ I representing the cost of the join if that
operator is used. We use the term potential since whether
that cost is actually counted depends on whether or not the
corresponding operator implementation is selected.

We introduce binary variables josji (short for Join Opera-
tor Selected) to indicate for each operator implementation i
and join j whether the operator was used to realize the join.
We require that exactly one implementation is selected for
each join as expressed by the constraint

∑
i josji = 1. Based

on potential cost and operator selections, we introduce for
each operator the actual join cost ajcji. The actual join cost
is zero for a specific operator if that operator is not selected.
Otherwise, the actual join cost equals the potential join cost.
We have the following relationship between potential and ac-
tual join cost ajcji = josji ·pjcji. Here we multiply a binary
with a non-negative continuous variable and can apply the
same linearization as before [4]. The sum over the actual
join cost variables over all operator implementations yields
the cost of each join operation.

Example 4. We extend our running example by consid-
ering two join operators: a hash join (H) and a sort-merge
join (S). To model the choice between those two join oper-
ators, we introduce binary variables of the form josjH and
josjS for each join j ∈ {0, 1}. Exactly one operator must
be selected for each join. We add constraints of the form
josjH + josjS = 1 to express that fact. We also introduce
for each join two continuous variables pjcjH and pjcjS, each
calculating the jost of join j if the corresponding operator im-
plementation is used (that cost can be calculated as described
in Section 4.3). Finally, we introduce two continuous, aux-
iliary variables ajcjH and ajcjS for each join. We constrain
those variables by setting ajcjH = josjH · pjcjH (this for-
mula can be linearized by introducing additional variables,
we omit this transformation due to space restrictions). We
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add join cost over all potential operator implementations to
obtain the cost of join j: ajcjH + ajcjS.

5.4 Intermediate Result Properties
Alternative join operator implementations can sometimes

produce intermediate results with different physical prop-
erties. Tuple orderings are perhaps the most famous ex-
ample [27]. If tuples are produced in an interesting order
then the cost of successive operations can be reduced. Also,
whether an intermediate result is written to disc or remains
in main memory is a physical property that influences the
cost of successive operations.

Assume that we consider a set X of relevant intermediate
result properties. Then we can introduce a binary variable
ohpjx (short for Outer operand Has Property) indicating
whether the outer operand of the j-th join has property x.
We can model the effect of intermediate result properties
in two ways. We can either introduce new join operators
that only become applicable if the operands have certain
properties or we add new terms to the cost functions of join
operators that account for operand properties.

If we introduce new join operators (e.g., a pipelined ver-
sion of the block nested loop join that becomes only ap-
plicable if the outer operand remains in memory) then we
need to constrain their applicability. If josji represents the
choice of a new operator implementation i for a specific join
j then we introduce constraints of the form josji ≤ UB.
Expression UB is one if all required result properties are
present in the join operand and zero or smaller otherwise.
Sometimes, it is more convenient to integrate the effect of
physical result properties into the cost formulas of the oper-
ators. In that case, we need to subtract terms representing
cost savings from the formulas for the potential join cost (see
Section 5.3). We must also constrain the variables represent-
ing result properties. For each variable ohpjx, we introduce
an upper bound that may depend on the selected operator
for join j − 1 and on the properties of the operands for that
join. The bound is one if the combination of join operator
and input guarantees property x and at most zero otherwise.

Example 5. We extend our running example by consid-
ering interesting orders. Assume that the two aforemen-
tioned predicates p and q are equality predicates on column
a of table R. The cost of a sort-merge join with either p or q
as join condition decreases if one or both join operands are
ordered by a. We introduce a binary variable ohp1a indicat-
ing whether the result of the first join (and at the same time
the outer operand of the second join) is ordered by a or not
(we do not introduce a corresponding variable for the second
join as the physical properties of the result cannot speed up
any future operations). We assume no specific tuple order
in the base tables. The result of the first join is ordered if a
sort-merge join is used for the first join and if the join condi-
tion is either p or q. We add the constraints ohp1a ≤ jos0S
and ohp1a ≤ pao1p + pao1q to express that fact. If the outer
operand of the first join is already ordered then we save the
cost of one sort operation. Denote by CS the cost of sort-
ing the result of the first join (CS is a continuous variable
that depends on the cardinality of the operand). We adapt
the cost of the second join by subtracting the term CS ·ohp1a
from the formula for pjc1S that was described in the example
for Section 5.3. The resulting formula can be linearized [4].

Component Language LOC

Postgres optimizer modification C 32

Transformation to MILP Java 281

Greedy optimizer Java 41

Glue & Benchmarking Java 74

Table 3: Breakdown of added lines of code for inte-
ger programming based query optimization.

5.5 Extended Query Languages
We have already implicitly discussed several extensions to

the query language in this section. We discussed how non-
binary predicates and projection are supported. This gives
us a system handling select-project-join (SPJ) queries.

It is common to introduce query optimization algorithms
using SPJ queries for illustration. There are standard tech-
niques by which an optimization algorithm treating SPJ
queries can be extended into an algorithm handling richer
query languages.

The seminal paper by Selinger [27] describes how complex
SQL statements with nested queries can be decomposed into
several simple query blocks that use only selection, projec-
tion, and joins; the join order optimization algorithm is ap-
plied to each query block separately. Later, the problem of
unnesting a complex SQL statement containing aggregates
and sub-queries into simple SPJ blocks has been treated as
a research problem on its own; corresponding publications
focus on the unnesting algorithms and use join order opti-
mization algorithms as a sub-function (e.g., [24]).

6. EXPERIMENTAL EVALUATION
We experimentally evaluated a prototypical implementa-

tion of a MILP based query optimizer inside the Postgres
database system. Section 6.1 describes the prototypical im-
plementation of our approach inside the Postgres optimizer.
Section 6.2 describes and justifies the experimental setup
and Section 6.3 the experimental results.

6.1 Implementation
We integrated the approach described in Section 4 into the

query optimizer of the Postgres database system. The Post-
gres optimizer is often used as fundament to demonstrate
advanced query optimization techniques as it is open source
and highly mature. More precisely, we replaced the function
that determines an optimal join order inside the Postgres op-
timizer. While the original algorithm is based on dynamic
programming, we use an integer programming solver to de-
termine an optimal join order instead. Our implementation
passes on cardinality and selectivity estimates from the Post-
gres optimizer to a transformation function that creates the
corresponding MILP problem. We use Gurobi 6.5.2 to solve
the resulting problem. The transformation function uses the
result of a simple greedy algorithm to bound the cardinality
of the intermediate results that could be part of the optimal
plan. The optimal join order is passed back to the Postgres
optimizer which constructs the corresponding query plan.

Table 3 shows a breakdown of the number of code lines
added. Our implementation consists of less than 450 code
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lines in total. This is already a moderate code size for a
join ordering approach and, as our code is rather optimized
for readability than conciseness, it would have been possible
to make it even more succinct. The relatively low imple-
mentation overhead demonstrates the advantage of reusing
existing optimizer components for join ordering.

Our implementation is prototypical and not yet optimized
for performance. We implemented different parts in differ-
ent languages (in order to leverage existing code) and pass
parameters between Postgres and the Java based implemen-
tation by writing files to disc. The (already impressive) per-
formance results reported in the next sections correspond
therefore to lower bounds on the performance of a more ma-
ture optimizer implementation.

6.2 Experimental Setup
Standard benchmarks such as TPC-H or TPC-DS4 have

been created for evaluating database execution engines and
not specifically for evaluating query optimizers. This is why
queries in those benchmarks are of rather moderate size
(measured by the number of joined tables). Hence, we can-
not use them to demonstrate the ability of query optimiza-
tion algorithms to deal with large search spaces.

Instead, we created several databases with many tables
based on three popular data sets from Kaggle5: a data set
containing detailed play-by-play statistics for the 2015 NFL
season6, data about loans issued by the loan lending club
in the years 2007 to 20157, and results of a large survey
among code developers8. We stored each of those data sets
in a star schema by introducing one dimension table for each
column of the original data set. Each dimension table has
two columns, the key and the associated value. We fill the
value column of a dimension table with the distinct values
encountered in the associated column in the original data
set. We generate unique identifiers for the key column. The
fact table contains as many rows and columns as the original
data set. However, values are replaced by a references to the
key column of the corresponding dimension tables.

We randomly generated queries joining dimension tables
with the fact table. Our queries select all columns, the where
clause is a conjunction of equality join predicates linking
identifiers in the fact table to the key columns of the cor-
responding dimension tables. We do not apply any addi-
tional filter conditions on the dimension tables. We vary
the number of tables in our experiments to show the im-
pact on optimizer performance. The reason that we restrict
ourselves to relatively simple queries (e.g., no aggregation,
no group-by operations, no nested queries) is the following:
our approach replaces only the function in the Postgres op-
timizer that determines join order. The Postgres optimizer
decomposes complex queries into simple SPJ query blocks
and strips away grouping and aggregation operations before
invoking the join ordering component. As the presence of
aggregates and group-bys has therefore no impact on the

4http://www.tpc.org
5https://www.kaggle.com
6https://www.kaggle.com/maxhorowitz/nflplaybyplay2015
7https://www.kaggle.com/wendykan/
lending-club-loan-data
8https://www.kaggle.com/freecodecamp/
2016-new-coder-survey-

performance of the join ordering algorithm, we do not ex-
periment with different variants.

We compare our MILP based query optimizer against the
original dynamic based Postgres optimizer and several mod-
ified versions. A plethora of query optimization algorithms
are nowadays available. They can be roughly divided into
two categories: algorithms that formally guarantee to pro-
duce optimal or near-optimal query plans even in the worst
case (such algorithms must have exponential time complex-
ity [7]) and heuristic or randomized algorithms. The latter
category of algorithms typically has polynomial time com-
plexity and can easily optimize large queries, the average
quality of the generated plans is often satisfactory. However,
the execution cost of the generated query plans can be arbi-
trarily far from the optimum in the worst case. This is why
most commercial database systems nowadays implement ex-
ponential time query optimization algorithms and use them
except for large queries. In order not to compare apples and
oranges, we restrict our baselines to query optimization al-
gorithms that belong to the first category (exponential time
and worst case guarantees).

We use the original version of the dynamic programming
based Postgres optimizer as one of the baselines. Further-
more, we use a modified version of the original optimizer
that restricts search to left-deep query plans. Our last base-
line is a modified version of the Postgres optimizer that
is restricted to left-deep query plans but (unlike the origi-
nal optimizer) also considers Cartesian product joins (which
sometimes lead to optimal query plans). Our MILP based
optimizer considers left-deep query plans and also considers
plans with Cartesian product joins. We model cardinality
with a tolerance of

√
10 ≈ 3.16 (by choosing cardinality

thresholds θr as powers of 10 while approximating values
between thresholds θr and θr+1 by value θr ·

√
10, similar to

Example 2). We can set optimization time bounds for the
ILP solver and will experiment with different values. Note
that, unlike randomized algorithms, an ILP solver can pro-
vide upper bounds on how far the current solution is from
the optimum at most. All of the following experiments are
executed on a Windows computer with 12 GB of main mem-
ory and a 2.5 GHz Intel i7-6500U CPU.

6.3 Experimental Results
We compare the MILP query optimizer against baselines

in terms of optimization time. Figure 2 shows optimization
time in milliseconds for different databases as a function of
the query size (measured as the number of tables).

We compare six optimization algorithms (the semantics of
the green line is discussed later): PG-L is the Postgres op-
timizer, restricting the plan space to left-deep query plans
(and not considering Cartesian product joins as in the origi-
nal optimizer). PG-LC is the Postgres optimizer considering
left-deep query plans and Cartesian product joins. PG is
the original Postgres optimizer which considers bushy query
plans and no Cartesian product joins. IP-500 is the MILP
algorithm with an optimization time budget of at most 500
seconds per query (this setting is suitable for offline opti-
mization of frequently executed queries). IP-50 is the MILP
algorithm with an optimization time budget of at most 50
seconds, IP-5 takes at most five seconds of optimization time
per query (this setting is suitable for run time optimization).
Each data point in Figure 2 and in the following figures, ex-
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Figure 2: Optimization time until memory out for
randomly generated queries on different databases.

cept if noted otherwise, is the median of 15 randomly gen-
erated queries.

Optimization time tends to increase for all algorithms and
databases as the number of joined tables grows. This is ex-
pected as the number of joined tables determines the size
of the search space for query optimization. Per default set-
tings, the Postgres database system abandons exhaustive
query optimization for queries joining at least 12 tables. We
disabled the default setting to evaluate the original and the
two modified versions of the Postgres optimizer for larger
queries. We are able to optimize queries joining up to 17
tables using the original Postgres optimizer and the version
restricted to left-deep query plans. For larger queries, op-
timization does not finish due to memory outs. For the
modified Postgres optimizer that considers Cartesian prod-
uct joins, we receive memory outs already after 16 tables.

This is to be expected as optimizer memory consumption
is proportional to the number of potential intermediate re-
sults that are considered during dynamic programming: the
number of admissible intermediate results increases once we
consider Cartesian product joins.

We compare optimization time for the three versions of the
Postgres optimizer. The original Postgres optimizer, con-
sidering bushy query plans but no Cartesian product joins,
needs most optimization time once larger queries are con-
sidered. The variant considering only left-deep query plans
and no Cartesian product joins is the cheapest in terms of
optimization time. Due to memory outs, we are only able
to evaluate the dynamic programming based optimizer on a
relatively small range of query sizes (which is already far be-
yond the query size that it treats per default setting). This
makes it however difficult to predict optimization time for
larger queries. We have therefore inserted another“baseline”
(named Rels) that is proportional to the number of interme-
diate results considered by a dynamic programming algo-
rithm which does not consider Cartesian product joins (cal-
culated according to the formula by Ono and Lohman [25]).
This baseline is a lower bound on the asymptotic optimiza-
tion time growth of all three Postgres optimizer variants (a
lower bound only, since optimization time per intermediate
result, which is proportional to the number of splits per re-
sult into two join operands, will tend to increase as query
size grows). We scale that baseline to approximately match
optimization time for the fastest Postgres optimizer variant
on the largest queries it can treat (where constant time over-
heads in the optimizer play a less significant role than for
small queries). Assuming that large amounts of memory are
available, this baseline predicts an optimization time of over
eight minutes for the query types we consider as soon as
more than 25 tables are joined.

Using integer programming, we are able to optimize queries
joining up to 40 tables. This is a query size that is typically
considered out of reach for exhaustive query optimization.
Using the simple lower bound on optimization time (for left-
deep plans and without considering Cartesian product joins)
that we established before, optimization time would be 198
days at least for the Postgres optimizer (we would however
need over 500 Gigabytes of main memory for optimization,
even under the overly optimistic assumption that each in-
termediate result with associated query plans requires only
one byte of storage). Note that our MILP based query opti-
mizer even considers Cartesian product joins which increases
the size of the search space significantly (but is sometimes
required to find optimal query plans). For optimizing one
query joining 40 tables, the MILP optimizer needs less than
54 seconds in average without experiencing any timeouts (for
the variant with maximal optimization time budget).

Optimization time seems to grow exponentially for the
MILP based query optimizer as well. This is to be ex-
pected due to the complexity properties of the query opti-
mization problem. The exponent of the exponential growth
seems however to be significantly lower than for traditional
dynamic programming based query optimization. For the
MILP optimizer versions with stricter timeouts, optimiza-
tion time converges towards that timeout for large queries.
Figure 3 shows the accumulated number of timeouts expe-
rienced out of the 45 queries solved per query size. The
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number of timeouts generally tends to increase in the search
space size and in the inverse of the time bound. Note that we
describe tendencies that do not hold in each single case (e.g.,
sometimes the number of timeouts decreases when increas-
ing the query size). This is to be expected as modern integer
programming solvers such as Gurobi employ a plethora of
heuristics to converge to optimal solutions faster. Optimiza-
tion time is therefore determined by various factors, only one
of them being the search space size (even though probably
the most important one). With five seconds of optimization
time, the number of timeouts is negligible (i.e., below 20%)
for up to 20 tables. For 50 seconds of optimization time,
the number of timeouts is negligible for up to 38 tables. As
discussed before, average optimization time for 40 tables is
only 54 seconds and we experience no timeouts with an op-
timization time budget of 500 seconds.

Furthermore, a timeout is in many ways less critical for a
MILP based query optimizer than for dynamic programming
based or even randomized algorithms. After a timeout, a
MILP solver typically returns a solution (i.e., a query plan)
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Figure 5: Relative execution cost of plan generated
by MILP optimizer compared to Postgres optimizer.

together with a bound limiting the maximal distance be-
tween the current solution and a theoretical optimum. This
bound can for instance be used to decide whether to ded-
icate additional optimization time to improve the current
solution or whether the gap between current and optimal
solution is negligible. We generally observed that a query
plan is found quickly in most cases whose cost is guaranteed
to be very close to the optimum. Figure 4 shows the bounds
on plan optimality (i.e., the factor by which the cost of the
current plan is higher than the optimum at most) achieved
until the timeout. Significant deviations from the theoreti-
cal optimum of one can only be observed for five seconds of
optimization time and only for queries of elevated size (up
to 36 tables, we have a gap of at most factor 1.15 for the
loan data set, 3.5 for NFL data, and 3 for Survey data).

The bounds from the previous figure refer to plan cost
in the simplified cost model used by the MILP based query
optimizer (i.e., we approximate cardinality via cardinality
thresholds). We have finally compared the execution cost of
plans generated by the MILP optimizer against plans gen-
erated by the Postgres optimizer according to the sophis-
ticated cost model used by Postgres. Figure 5 shows the
maximal cost overhead (i.e., the ratio of the execution cost
of the MILP plan and the cost of the Postgres optimizer
plan) obtained over all test cases for each query size. Note
that we only obtain optimal plans for queries with up to
16 tables (from the dynamic programming optimizer con-
sidering the same plan space as the MILP optimizer). The
results show a moderate worst case overhead of 30% over all
675 relevant test cases, far below the theoretical maximum
of around factor 3 (due to cardinality approximation).

7. CONCLUSION
We leverage integer programming solvers for join order-

ing, a domain where special-purpose algorithms have so far
been dominating. Integer linear programming solvers have
steadily improved their performance over the past decades
and continue to do so at exponential rates. Our experimen-
tal evaluation shows that we find guaranteed near-optimal
join orders for query sizes that are far beyond the capabilities
of classical dynamic programming based query optimization
algorithms. As we replace the optimizer core by an existing
solver, we obtain a highly configurable query optimizer with
low implementation overhead. Our prototypical implemen-
tation in Postgres shows that the approach is practical and
can be integrated into mature database systems.
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APPENDIX
A. FORMAL ANALYSIS

State-of-the art MILP solvers use a plethora of heuristics
and optimization algorithms which makes it hard to predict
the run time for a given MILP instance. It is however a rea-

1037



0 10 20 30 40

0

2,000

4,000

6,000

Nr. Joined Tables

N
r.

V
a
ri

a
b
le

s Loan

Survey

NFL

3.5 · x2

Figure 6: Size of generated integer linear programs
as measured by the number of variables.

sonable assumption that optimization time tends to increase
in the number of variables and constraints, even if prepro-
cessing steps are sometimes able to eliminate redundant el-
ements. The assumptions that we make here are supported
by the experimental results that we present in Section 6: we
see a strong (even if not perfect) correlation between the
number of variables and constraints and the MILP solver
performance.

For the aforementioned reasons, we study in the following
how the asymptotic number of variables and constraints in
the MILP grows in the dimensions of the query optimiza-
tion problem from which it was derived. We denote in the
following by n = |Q| the number of query tables to join and
by m = |P | the number of predicates. By l = |Θ| we de-
note the number of thresholds that are used to approximate
cardinality values. The following theorems refer to the basic
problem model that was presented in Section 4.

Theorem 1. The MILP has O(n · (n+m+ l)) variables.

Proof. Give n tables to join, each complete query plan
has O(n) joins. We require O(n) binary variables per join
to indicate which tables form the join operands, we require
O(m) binary variables per operand to indicate which predi-
cates can be evaluated, and we require O(l) continuous vari-
ables per operand to calculate cardinality estimates.

Theorem 2. The MILP has O(n·(n+m+l)) constraints.

Proof. For each join operand we need O(n) constraints
to restrict table selections, O(m) constraints to restrict pred-
icate applicability, and O(l) constraints to force the thresh-
old variables to the right value.

B. MORE ON MILP PERFORMANCE
We show additional experimental results on the perfor-

mance of the MILP optimizer and the size of the generated
MILP programs. Figure 6 shows the size of the linear pro-
grams generated for the queries in Section 6. We measure
size as the number of variables and report median size as
a function of the number of joined tables in Figure 6. We
show results for all three scenarios from Section 6. As the
queries have the same structure for each scenario, MILP size
does not vary significantly accross scenarios.

The variable growth is consistent with the asymptotic re-
sults obtained in Section A. We observe close to quadratic
growth in the number of query tables (note that the number
of predicates is also proportional to the number of tables
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Figure 7: Median, minimal, and maximal MILP op-
timization time for different scenarios and timeouts.

as we consider star queries). A constant factor of approx-
imately 3.5 (see black line) makes the asymptotic develop-
ment match the experimental results closely.

Section 6 shows median optimization time for the MILP
optimizer. Figure 7 expands on that and shows minimal
and maximal optimization time for each scenario, timeout
bound, and query size. All three (minimum, maximum, and
median) tend to increase in the number of joined tables.
However, the gap between minimal and maximal optimiza-
tion time for a fixed number of tables can become quite sig-
nificant (in particular for the third scenario). This behavior
can be explained by the fact that MILP solvers use various
heuristics to prioritize their exploration of the search space.
While those heuristics work very well in average, they might
not work in all cases. Setting a timeout for optimization, as
we do in all of our experiments, is therefore important for
MILP based query optimization.

So far, we have optimized queries with star-shaped join
graphs (which are common in practice). Figure 8 shows
results on MILP optimizer performance for different join
garph structures. The queries consist of self-joins of a table
with two columns (source and target) representing edges in
a graph. We filled the table with 3000 randomly generated
edges (we choose source and target node with uniform ran-
dom distribution between 1 and 1000). We generate queries
with chain and cycle join graphs. We connect tables via
equality predicates, connecting the target column of one ta-
ble instance to the source column of its successor (i.e., we
search for paths in the graph). On each table instance, we
restrict with a probability of 0.5 the source column to one
specific, randomly selected, value (i.e., we restrict our atten-
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Figure 8: MILP optimizer performance for self-join
queries with different join graph structures.

tion to paths that pass over specific graph nodes). We set a
timebound of five seconds on optimization time and report
aggregates for 15 randomly generated queries per query size.
While a guaranteed optimal solution is often not found start-
ing from around 20 tables, the cost of the generated plans
is typically within a factor of at most two around the opti-
mum. There are outliers with a significantly weaker guar-
antees. However, as MILP optimizers work incrementally, it
would be possible to continue optimization (based on condi-
tions that weight the cost of additional optimization against
the potential benefit) for those few outliers.

C. IMPACT ON EXECUTION TIME
In Section 6, we evaluate the quality of the plans produced

by our MILP optimizer based on the Postgres optimizer cost
model. In this section, we verify those results by measuring
the real execution times of plans produced by different opti-
mizers. Figure 9 shows execution times for the 22 queries of
the TPC-H benchmark in Postgres 9.6 on a TPC-H database
with default scaling factor. We use the software and hard-
ware platform that was described in Section 6 for those and
the following experiments. We compare the plans generated
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by the original dynamic programming based Postgres opti-
mizer against the plans generated by the MILP optimizer.
Execution times are comparable (median time deviation of
less than 0.3%) for all queries except for one (Q9 with an
overhead of factor two for the MILP optimizer). While the
TPC-H queries are outside of our primary focus (i.e., they
are small enough to be handled by dynamic programming
based optimizers), we consider those results reasonable.

We have shown that our approach leads to reasonable
query plans for Postgres, despite its simplified cost model.
Now, we provide some evidence that the approach can work
in other database management systems as well. Figure 10
shows the results of porting join orders for a couple of ex-
ample queries to a commercial database management sys-
tem that we call DBMS-X in the following. We did not
have access to the source code of that database manage-
ment system but were able to enforce certain join orders by
a query reformulation. We compare execution times of query
plans in DBMS-X for queries on the graph database that we
introduced in Appendix B. We focus on chain and cycle
queries joining ten tables (we also generated queries with
star-shaped join graph according to the same principles as
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chain and cycle queries but were not able to execute a sin-
gle query within several minutes using the original optimizer
of DBMS-X). We compare execution times when using the
original optimizer of DBMS-X against execution times for
the join order generated by the MILP optimizer for Post-
gres. Our goal is not to beat the original optimizer as the
comparison is rather unfair. First, we did not adapt our
MILP formulation to the particularities of DBMS-X. Sec-
ond, as our optimizer is integrated into Postgres, we work
with the cardinality estimates of that system which might
be less precise than the ones of DBMS-X. Third, we consider
only left-deep query plans while the optimizer of DBMS-X
considers bushy plans as well. Figure 10 shows that the join
orders generated by MILP for Postgres lead to execution
plans within factor two of the optimum in most cases and
within factor 3 in only three cases. Even without any spe-
cific tuning for DBMS-X, the join orders generated by MILP
are rather reasonable.

For our final test series, we formulate queries on the pop-
ular Musicbrainz database9. Musicbrainz is a public music
encyclopedia with more than 250,000 users. The data are
stored in an SQL database and the corresponding database
schema consists of several hundreds of tables. We created
several natural queries on that database which require joins
between 10 to 30 tables. We compare different query opti-
mizers by measuring optimization time as well as the execu-
tion time of the generated query plans.

We created six queries retrieving information on artists
and related information such as releases and recordings. To
bound execution time, we restrict the number of considered
artists to 1000 (Musicbrainz contains information on mil-
lions of artists). All queries consist of joins between tables
that form semantic units and are connected via key-foreign
key constraints in the Musicbrainz database schema. The re-
sulting join graphs are irregular and can neither be classified
as cycles, chains, nor star graphs. Our first query joins 10
tables and retrieves information about artists such as their
gender, type, and geographic area. For our second query (14
tables), we join artists additionally with information about
their releases. For our third query (19 tables), we add more
information on those releases such as language, release coun-
try, and packaging. For the fourth query (22 tables), we
include information on associated recordings. For the fifth
query (26 tables), we add more information on recordings
such as recording place and associated URLs. For the sixth
query (30 tables), we add information on the media (e.g.,
format and standard identifiers) connected to the releases.
We execute the following experiments using the Postgres
database since the Musicbrainz scripts for generating the
database schema and for loading data are targeted at that
database management system.

Figure 11 shows the results of a comparison between three
query optimizers. We compare our MILP optimizer (with a
timebound on optimization time of five seconds) against the
genetic algorithm (Geqo in Figure 11) that Postgres would
use by default for the query sizes we consider. The origi-
nal Postgres optimizer searches a space of join orders but
finally uses a heuristic function that may transform a join
order into a bushy query plan. To evaluate the effect of
that transformation, we also include results for a slightly

9https://musicbrainz.org/
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queries on the Musicbrainz database.

modified algorithm that omits the final transformation and
produces only left-deep query plans (algorithm Geqo-Left in
Figure 11).

From the formal perspective, the MILP optimizer is supe-
rior to the randomized algorithms as it is the only algorithm
capable of providing guaranteed optimal or near-optimal so-
lutions. On the other side, it uses a simplified cost model
and considers only left-deep query plans. Figure 11 shows
how those properties manifest in optimization and execution
time. We show the results for five runs and use jitter in or-
der to separate overlapping data points. We use a timeout
of five minutes on execution time for those runs (Postgres
does not return planning time in case of a tiemout which is
why we do not report optimization time for Geqo-Left and
more than 19 tables).

The MILP optimizer uses in general more optimization
time than the other two algorithms. On the other side, the
execution time of the generated plans is in most cases either
minimal or at least close. Considering the sum of optimiza-
tion time and execution time, investing more time into opti-
mization starts paying off from 26 joined tables (where the
overhead in optimization time is approximately matched by
reduced execution time). MILP based optimization is clearly
the better approach for 30 tables where the two randomized
algorithms generate plans taking at least several minutes to
execute while the combined execution and optimization time
is at most 22 seconds for the MILP optimizer.
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