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ABSTRACT
Modern computing tasks such as real-time analytics require
refresh of query results under high update rates. Incremen-
tal View Maintenance (IVM) approaches this problem by
materializing results in order to avoid recomputation. IVM
naturally induces a trade-off between the space needed to
maintain the materialized results and the time used to pro-
cess updates. In this paper, we show that the full material-
ization of results is a barrier for more general optimization
strategies. In particular, we present a new approach for
evaluating queries under updates. Instead of the material-
ization of results, we require a data structure that allows: (1)
linear time maintenance under updates, (2) constant-delay
enumeration of the output, (3) constant-time lookups in the
output, while (4) using only linear space in the size of the
database. We call such a structure a Dynamic Constant-
delay Linear Representation (DCLR) for the query. We
show that Dyn, a dynamic version of the Yannakakis al-
gorithm, yields DCLRs for the class of free-connex acyclic
CQs. We show that this is optimal in the sense that no
DCLR can exist for CQs that are not free-connex acyclic.
Moreover, we identify a sub-class of queries for which Dyn
features constant-time update per tuple and show that this
class is maximal. Finally, using the TPC-H and TPC-DS
benchmarks, we experimentally compare Dyn and a higher-
order IVM (HIVM) engine. Our approach is not only more
efficient in terms of memory consumption (as expected), but
is also consistently faster in processing updates.

KEYWORDS
Incremental View Maintenance; Dynamic query processing;
Acyclic joins

1. INTRODUCTION
Real-time analytics find applications in Financial Systems
, Industrial Control Systems, Business Intelligence and On-
line Machine Learning, among many others (see [15] for a
survey). Generally, the analytical results that need to be
kept up-to-date, or at least their basic elements, are specified
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in a query language. The main task is then to efficiently
update the query results under frequent data updates.

In this paper, we focus on the problem of dynamic query
evaluation, where a given queryQ has to be evaluated against
a database that is constantly updated. In this setting, when
database db is updated to database db + u under update
u, the objective is to efficiently compute Q(db + u), tak-
ing into consideration that Q(db) was already evaluated and
re-computations could be avoided. Dynamic query evalu-
ation has traditionally been approached from Incremental
View Maintenance (IVM) [13]. IVM techniques materialize
Q(db) and evaluate delta queries. These take as input db,
u and the materialized Q(db), and return the set of tuples
to add/delete from Q(db) to obtain Q(db + u). If u is small
w.r.t. db, this is expected to be faster than recomputing
Q(db + u) from scratch. Research in this area has recently
received a big boost with the introduction of Higher-Order
IVM (HIVM) [25,26,30]. Given a query Q, HIVM not only
defines the delta query ∆Q, but also materializes it. Mo re-
over, it defines higher-order delta queries (i.e., delta queries
for delta queries, denoted ∆2Q,∆3Q, . . . ), where every ∆jQ
describes how the materialization of ∆j−1Q should change
under updates. This method is highly efficient in practice,
and is formally in a lower complexity class than IVM [25].

(H)IVM present important drawbacks, however. First,
materialization of Q(db) requires Ω(‖Q(db) ‖) space, where
‖db‖ denotes the size of db. Therefore, when Q(db) is large
compared to db, materializing Q(db) quickly becomes im-
practical, especially for main-memory based systems. HIVM
is even more affected by this problem than IVM since it not
only materializes the result of Q but also the results of the
higher-order delta queries. Second, IVM and HIVM only
exploit the information provided by the materialized views
to process updates, while additional forms of information
could result in better update rates. Consider for example
the query Q = R(A,B) 1 S(B,C) and a database with N
tuples in R and N tuples in S, all with the same B value.
The materialization of Q(db) in this case uses Θ(N2) space
and is useless for re-computing Q under updates. In con-
trast, a simple index on B for R and S would allow for
efficient enumeration of the set of tuples that need to be
added/removed from Q(db) to obtain Q(db + u). It is im-
portant to note that even for queries whose result is smaller
than the database, aggressive materialization of higher-order
delta queries in HIVM can still cause these problems to ap-
pear. Indeed, some higher-order delta queries are partial
join results, which can be larger than both db and Q(db).

While these problems are inherent to (H)IVM methods
based on materialization, they can be avoided by taking a
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different approach to dynamic query evaluation: instead of
maintaining Q(db), we could maintain a data structure from
which Q(db) can be generated as efficiently as if it were
materialized. This notion is formalized by the theoretical
database community by requiring that the output Q(db)
can be enumerated from the data structure with constant
delay [5]. Intuitively, data structures that feature constant-
delay enumeration (CDE for short) are aimed at represent-
ing data in compressed form yet have a streaming decom-
pression algorithm that can spend only a constant amount
of work to produce each new output tuple [37].

While there is increasing work on query evaluation with
constant-delay enumeration [5, 7, 10, 31, 37], known results
either present (involved) theoretical algorithms, or study
the static setting without updates. In this paper, there-
fore, we are concerned with designing a practical algorithm
for dynamic query evaluation based on constant-delay enu-
meration. In particular, to dynamically process a query Q
we desire a Dynamic Constant-delay Linear Representation
(DCLR) of Q, meaning that for every database db we can
compute a data structure Ddb with the following properties:

- (P1) Ddb allows to enumerate Q(db) with constant delay.
- (P2) For any tuple ~t, we can use Ddb to check whether
~t ∈ Q(db) in constant time.

- (P3) Ddb requires only O(‖db ‖) space. As such Ddb de-
pends only on db and is independent of the size of Q(db).

- (P4) Ddb features efficient maintenance under updates:
given Ddb and update u to database db, we can compute
Ddb+ u in time O(‖db ‖ + ‖u ‖). In contrast, both IVM
and HIVM may require Ω(‖u‖ + ‖Q(db +u)‖) time in the
worst case.

It is important to note that we consider query evaluation
in main memory and measure time and space under data
complexity [38]. That is, the query is considered to be fixed
and not part of the input. This makes sense under dynamic
query evaluation, where the query is known in advance and
the data is constantly changing. In particular, the number
of relations to be queried, their arity, and the length of the
query are all constant.

Our contributions are as follows. We focus on the class
of conjunctive aggregate queries (CAQ) evaluated under mul-
tiset semantics. Conjunctive aggregate queries are queries
that compute aggregates (e.g., SUM, AVG, . . . ) over the
result of a conjunctive query (CQ, also known as select-
project-join query). As a first contribution we discuss how
to modify the Yannakakis algorithm [39] to obtain a static
query evaluation algorithm that satisfies properties P1 and
P3 for the restricted class of acyclic join queries. We call
this variant CDY, for Constant Delay Yannakakis. We then
introduce Dyn, a dynamic version of CDY, and show that it
yields DCLRs (properties P1–P4) for the acyclic join queries.
Dyn is a good algorithmic core to build practical dynamic
algorithms on, for the following reasons.

(1) Like standard Yannakakis, Dyn is a conceptually sim-
ple algorithm, and therefore easy to implement.

(2) We show that Dyn can support not only join queries
(which do not allow projection), but also CQs (with pro-
jection) that belong to the class of free-connex acyclic CQs.
This is optimal, in the sense that results by Bagan et al. [5]
and Brault-Baron [10] for the static setting imply that, un-
der certain complexity-theoretic assumptions, a DCLR can
exist for a CQ Q only if Q is free-connex acyclic. In other

words, Dyn is able to evaluate the most general subclass of
conjunctive queries satisfying P1–P4.

(3) Furthermore, in very recent work Berkholz et al [7]
have characterized the class of self-join free CQs that feature
CDE and that can be maintained in O(1) time under single-
tuple updates. They show that this class corresponds to
the class of so-called q-hierarchical queries, a strict subclass
of the free-connex acyclic queries. We match their lower
bound: for (not necessarily self-join free) q-hierarchical CQs
the Dyn algorithm processes single-tuple updates in con-
stant time. For non q-hierarchical queries, Berkholz et al.’s
result yields it unlikely that single-tuple updates can be
processsed in constant time. While for such queries, Dyn
hence naturally also requires more processing time, our ex-
periments show that it remains highly effective.

(4) For single-tuple updates, Dyn also allows us to enu-
merate the delta resultQ(db+u)−Q(db) with constant delay.
This result is relevant for push-based query processing sys-
tems, where users do not ping the system for the complete
current query answer, but instead ask to be notified of the
changes to the query results when the database changes.

Building on Dyn, we present an extended algorithm that
allows for dynamic evaluation of acyclic CAQs. In partic-
ular, for an CAQ Q whose join Q′ is acyclic but not free-
connex, we obtain a dynamic query processing method that
is based on delta-enumeration of a free-connex projection of
Q′ to materialize the resulting aggregates Q(db). We hence
require O(‖db ‖ + ‖Q(db) ‖) memory in this case, just like
IVM methods.

Finally, we experimentally compare our approach against
HIVM on the industry-standard benchmarks TPC-H and
TPC-DS. Our experiments show that, for the class of acyclic
CAQs, our method is up to one order of magnitude more effi-
cient than HIVM, both in terms of update time and memory
consumption. At the same time, our experiments show that
the enumeration of Q(db) from Ddb is as fast (and some-
times, even faster) as when Q(db) was materialized as an
array.

Organization. This paper is further organized as follows.
We discuss additional related work in Section 2 and intro-
duce background concepts in Section 3. Dyn is developed
in Section 4 and experimentally evaluated in Section 5. Be-
cause of space constraints, full proofs are deferred to the full
version of this paper, but cruxes of some key results may be
found in the Appendix.

2. RELATED WORK
Incremental View Maintenance. The problem of incre-
mentally maintaining materialized answers to conjunctive
queries under updates has been extensively studied [3, 8, 9,
11, 12, 20, 26, 30, 33], and has been adapted to support dif-
ferent types of aggregates [28, 35]. A natural extension of
IVM is the maintenance of auxiliary views [24, 34], which
have been also adapted to allow for aggregate queries [21].
IVM has been influential to several other areas of databases
(see [13] for a recent survey). Our work differs from IVM in
that we maintain data structures that do not fully materi-
alize query results.

Factorized Databases. Factorized Databases are ingenious
succinct representations of relational tables [31]. They al-
low for constant-delay enumeration and do not only reduce
memory consumption, but can also avoid redundancy and
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speed up query processing [6,31,36]. While factorized query
evaluation is not limited to acyclic queries (as we are), it has
only been studied in the static setting without updates.

Join algorithms. The well-known Yannakakis algorithm
evaluates acyclic join queries in O(‖db‖ + ‖Q(db)‖) by using
a join tree of such query [39]. Worst-case optimal algorithms
have been developed for more general classes of queries by
inspecting other forms of query decompositions (see [29] for
a survey). Recently, join algorithms derived from query de-
compositions have been identified to use intermediate data
structures similar to factorized databases [31]. These data
structures, however, are designed for the static setting and
not to react to updates. Recent work has also extended
known join algorithms to allow for multiple aggregations on
top of join queries [2, 23] in the static setting.

The Generalized Distributed Law. The Generalized Dis-
tributed Law (GDL) is an algorithm for solving the marginal-
ize a product function (MPF) problem [4]. It has been re-
cently shown to be equivalent to algorithms for computing
aggregate-join queries with one aggregate [23]. The algo-
rithm Dyn developed in this paper can be seen as a strategy
for solving the MPF problem under the dynamic setting.

3. PRELIMINARIES
We adopt the data model of Generalized Multiset Relations
(GMRs for short) [25, 26]. A GMR is a relation in which
each tuple is associated to an integer in Z. Figure 1 shows
several examples. Note that in a GMR, in contrast to clas-
sical multisets, the multiplicity of a tuple can be negative.
This allows to treat insertions and deletions symmetrically,
as we will later see. To avoid ambiguity, we give a formal
definition of GMRs that will be used throughout this paper.

Tuples. We first introduce some notation for tuples. Let x
be a set of variables (also commonly known as column names
or attributes). We write T[x] for the universe of all possible
tuples over x. If ~t ∈ T[x] and y is a variable in x then we
write ~t(y) for the value assigned to y by ~t. If y ⊆ x then we
write ~t[y] for the tuple over y obtained from ~t by removing
all variables in x \ y. For example, if ~t = 〈A : 5, B : 4, C : 3〉
then ~t(A) = 5 and ~t[B,C] = 〈B : 4, C : 3〉.
GMRs. A generalized multiset relation (GMR) over x is
a function R : T[x] → Z from relation tuples over x to in-
tegers. Every GMR R is a total function from the (pos-
sibly infinite) set T[x] to Z and hence, conceptually, is an
infinite object. However, every GMR is required to have
finite support supp(R) := {~t ∈ T[x] | R(~t) 6= 0}. Intu-
itively, R(~t) = 0 indicates that ~t is absent from R. The fact
that R must have finite support indicates that R is a finite
relation. To illustrate, in Figure 1, R(〈a, b〉) = 2, hence
present, while R(〈a, b′〉) = 0, hence absent (and not shown).
In what follows, we abuse notation and write (~t, µ) ∈ R to
indicate that ~t ∈ supp(R) and R(~t) = µ; ~t ∈ R to indicate
~T ∈ supp(R); and |R| for |supp(R)|. We say that R is empty
if supp(R) = ∅. The set of all GMRs over x is denoted by
GMR[x]. A GMR is positive if R(~t) > 0 for all ~t ∈ supp(R).

Operations on GMRs. Let R and S be GMRs over x, T
a GMR over y, and z ⊆ x. The operations union (R + S),
minus (R − S), join (R 1 T ) and projection (πz R) over
GMRs are defined as follows.

R+ S ∈ GMR[x] : ~t 7→ R(~t) + S(~t)

R− S ∈ GMR[x] : ~t 7→ R(~t)− S(~t)

R
A B Z
a b 2
a′ b′ 3

S
A B Z
a b 5
a b′ 4

T
A C Z
a c 4
a b′ 5

πA(S)
A Z
a 9

R + S
A B Z
a b 7
a′ b′ 3
a b′ 4

R− S
A B Z
a b −3
a′ b′ 3
a b′ −4

R 1 T
A B C Z
a b c 8
a b c′ 15

Figure 1: Operations on GMRs

R 1 T ∈ GMR[x ∪ y] : ~t 7→ R(~t[x])× S(~t[y])

πz R ∈ GMR[z] : ~t 7→
∑
~s∈T[x],~s[z]=~tR(~s)

Figure 1 illustrates these operations. Note that GMRs there
are positive, modeling standard multisets. Hence union,
join, and projection correspond to the classical operations
from relational algebra under multiset (i.e., bag) semantics.
Minus is not relational difference, since it simply subtracts
multiplicities (notice this could yield negative multiplicities).

Query Language. Conjunctive Queries (CQs) are expres-
sions of the form

Q = πy
(
r1(x1) 1 · · · 1 rn(xn)

)
.

Here, r1, . . . , rn are relation symbols; x1, . . . , xn are sets of
variables, and y ⊆ x1∪· · ·∪xn is the set of output variables,
also denoted by out(Q). If y = x1 ∪ · · · ∪xn then Q is a join
query and simply denoted as r1(x1) 1 · · · 1 rn(xn). The
pairs ri(xi) are called atomic queries (or simply atoms).

A database over a set A of atoms is a function db that
maps every atom r(x) ∈ A to a positive GMR dbr(x) over x.
Given a database db over the atoms occurring in query Q,
the evaluation of Q over db, denoted Q(db), is the GMR over
y constructed in the expected way: substitute each atom
r(x) in Q by dbr(x), and subsequently apply the operations
according to the structure of Q.

Discussion. For ease of notation in the rest of the paper,
we have not included relational selection σθ(r(x)) in queries.
This is without loss of generality, as to dynamically process a
Select-Project-Join query we can always filter out irrelevant
tuples. For example, for Q = πz

(
σθ1(r(x)) 1 σθ2(s(y))

)
we

can consider new relation symbols r′ and s′ and dynamically
process Q′ = πz(r

′(x) 1 s′(y)) instead. Then, whenever r
and/or s are updated, it suffices to discard the tuples that
do not satisfy the corresponding filter, and propagate the
rest of the updates to relations r′ and s′ to update Q′.

Updates and deltas. An update to a GMR R is simply a
GMR ∆R over the same variables as R. Applying update
∆R to R yields the GMR R+ ∆R. An update to a database
db is a collection u of (not necessarily positive) GMRs, one
GMR ur(x) for every atom r(x) of db, such that dbr(x) + ur(x)
is positive. We write db +u for the database obtained by ap-
plying u to each atom of db, i.e., (db +u)r(x) = dbr(x) +ur(x),
for every atom r(x) of db. For every query Q, every database
db and every update u to db, we define the delta query
∆Q(db, u) of Q w.r.t. db and u by

∆Q(db, u) := Q(db + u)−Q(db).

As such, ∆Q(db, u) is the update that we need to apply to
Q(db) in order to obtain Q(db + u).
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R(x, y, z)

(T1)

S(x, y, u) T (y, v, w)

U(y, v, p)

R(x, y, z)

(T2)

S(x, y, u) [y, v]

T (y, v, w) U(y, v, p)

[y]

(T3)

[x, y, z]

R(x, y, z) S(x, y, u)

[y, v]

T (y, v, w) U(y, v, p)

[y]

(T4)

[x, y]

R(x, y, z) S(x, y, u)

[y, v]

T (y, v, w) U(y, v, p)

Figure 2: Width-one GHDs for {R(x, y, z), S(x, y, u), T (y, v, w), U(y, v, p)}. T1 is a traditional join tree, T3 and T4 are generalized join
trees. In addition, T4 is simple.

3.1 Acyclicity
Throughout the paper we focus on the class of acyclic queries.
While there are many equivalent ways of defining acyclic
queries [1] we will use here a characterization of the acyclic
queries in terms of those queries that have a Generalized Hy-
pertree Decomposition (GHD for short) of width one [19].
Width-one GHDs generalize traditional join trees [1] by also
allowing partial hyperedges to occur as nodes in the tree.
Intuitively, these partial hyperedges represent projections of
single atoms. The importance of this feature will become
clear at the end of Section 4, where we show the existence of
acyclic queries for which traditional join trees (where only
full hyperedges can occur) do not induce optimal complexity
algorithms under the setting of dynamic query evaluation.

To simplify notation, we denote the set of all variables
(resp. the set of all atoms) that occur in a mathematical
object X (such as a query) by var(X) (resp. at(X)). In
particular, if X is itself a set of variables, then var(X) = X.

Definition 3.1 (Width-1 GHD). Let A be a finite set of
atoms. A hyperedge in A is a set x of variables such that
x ⊆ var(a) for some atom a ∈ A. We call x full in A
if x = var(a) for some a ∈ A, and partial otherwise. A
Generalized Hypertree Decomposition (GHD) of width one
for A is a directed tree T = (V,E) such that:1

- All nodes of T are either atoms or hyperedges in A. More-
over, every atom in A occurs in T .

- Whenever the same variable x occurs in two nodesm and n
of T , then x occurs in each node on the unique undirected
path linking m and n.

If all nodes in T are atoms, then T is a traditional join tree.

To illustrate, Figure 2 shows four width-one GHDs for
{R(x, y, z), S(x, y, u), T (y, v, w), U(y, v, p)}. T1 is traditional
while the others are not.

Definition 3.2 (Acyclicity). A CQ Q is acyclic if there
exists a width-one GHD T for at(Q), and is cyclic otherwise.

For example the width-one GHDs of Figure 2 show that
R(x, y, z) 1 S(x, y, u) 1 T (y, v, w) 1 U(y, v, p) is acyclic. In
contrast, R(x, y) 1 S(y, z) 1 T (x, z), the triangle query, is
the prototypical cyclic join query.

For the rest of the paper, it will be convenient to focus
on width-one GHDs of a particular form. We call such re-
stricted GHDs generalized join trees.

Definition 3.3 (Generalized Join Tree). A generalized join
tree for set of atoms A is a width-one GHD T for A in which
all atoms occur as leafs. Moreover, every interior node n
must have at least one child c such that var(n) ⊆ var(c).
1Readers familiar with the usual definition of GHDs of ar-
bitrary width may find a discussion of the correspondence
between our definition and the usual one in Appendix A.

In Figure 2, trees T3 and T4 are generalized join trees;
trees T1 and T2 are not. The following proposition (proof
in Appendix A) shows that we may restrict our attention to
generalized join trees without loss of generality.

Proposition 3.4. If there exists a width-one GHD for set of
atoms A, then there also exists a generalized join tree for A.
Consequently, a CQ Q is acyclic iff at(Q) has a generalized
join tree.

In what follows, we will refer to generalized join trees sim-
ply as join trees. When n is a node of a join tree T , c is a
child of n, and var(n) ⊆ var(c), we call c a guard of n. By
definition, there is a guard for every hyperedge. We denote
by grd(n) the set of guards of n, by ch(n) the set of children
of n, and by ng(n) the set ch(n) \ grd(n) of non-guards of
n. Finally, we define pvar(c) to be the set of variables that
c has in common with its parent (pvar(c) = ∅ for the root).
For example, in T3 of Figure 2, pvar(S(x, y, u)) = {x, y}.

3.2 Computational Model
We focus on dynamic query evaluation in main-memory and
analyze performance under data complexity [38]. We assume
a model of computation where tuple values and integers take
O(1) space and arithmetic operations on integers as well as
memory lookups are O(1) operations. We further assume
that every GMR R can be represented by a data structure
that allows (1) enumeration of R with constant delay (as de-
fined in Section 4.1); (2) multiplicity lookups R(~t) in O(1)
time given ~t; (3) single-tuple insertions and deletions in O(1)
time; while (4) having size that is proportional to the num-
ber of tuples in the support of R. We further assume the
existence of dynamic data structures that can be used to
index GMRs on a subset of their variables. Concretely if R
is a GMR over x and I is an index of R on y ⊆ x then we
assume that for every y-tuple ~s we can retrieve in O(1) time
a pointer to the GMR I(~s) ∈ GMR[x] consisting of all tuples
that project to ~s, as formally defined by

I(~s) ∈ GMR[x] : ~t 7→

{
R(~t) if ~t[y] = ~s

0 otherwise

Moreover, we assume that single-tuple insertions and dele-
tions to R can be reflected in the index in O(1) time and
that an index takes space linear in the support of R. Essen-
tially, our assumptions amount to perfect hashing of linear
size [14]. Although this is not realistic for practical com-
puters [32], it is well known that complexity results for this
model can be translated, through amortized analysis, to av-
erage complexity in real-life implementations [14].
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4. DYNAMIC YANNAKAKIS
In this section we develop Dyn, a dynamic version of the
Yannakakis algorithm. In Section 4.1, we introduce the no-
tion of constant-delay enumeration. Then, in Section 4.2 we
show that, for acyclic join queries, a representation satisfying
properties P1 and P3 of the Introduction can be obtained by
slightly modifying the Yannakakis algorithm. We introduce
Dyn in Section 4.3, and show in Sections 4.4- 4.5 that this
also gives DCLRs for CQs that are free-connex acyclic. We
show that this is optimal in two distinct ways in Section 4.6.

4.1 Constant delay enumeration
Definition 4.1. A data structure D supports enumeration
of a set E if there is a routine enum such that enum(D) out-
puts each element of E exactly once. Moreover, D supports
constant-delay enumeration (CDE) of E if, when enum(D)
is invoked, the time until the output of the first element;
the time between any two consecutive elements; and the
time between the output of the last element and the termi-
nation of enum(D), are all constant. In particular, these
times cannot depend on the size of D nor on the size of
E. We say that D supports constant-delay enumeration of
a GMR R if D supports constant-delay enumeration of the
set ER = {(~t,R(~t)) | ~t ∈ supp(R)}.

As a trivial example of CDE of a GMR R, assume that the
pairs (~t,R(~t)) of ER are stored in an array A (without dupli-
cates). Then A supports CDE of R: enum(A) simply iter-
ates over each element in A, one by one, always outputting
the current element. To see that this is correct, first observe
that all pairs of ER will be output exactly once. Moreover,
the time required to output the first pair is the time required
to fetch the first array element, hence constant. Similarly,
the time required to produce each subsequent output tuple
is the time required to fetch the next array element, again
constant. Finally, checking whether we have reached the end
of ER amounts to checking whether we have reached the end
of the array, again taking constant time.

This example shows that in order to do CDE of the re-
sult Q(db) of a query Q on input database db, we can always
(naively) materialize Q(db) in an in-memory array A. Unfor-
tunately, A then requires memory proportional to ‖Q(db) ‖
which, depending on the query, can be of size polynomial in
‖db ‖. We hence search for other data structures that can
represent Q(db) using less space, while still allowing enumer-
ation with the same (worst-case) complexity as enumeration
from a materialized array A: namely, with constant delay.
The key idea to obtain this is delayed evaluation. To illus-
trate this, consider that we are asked to compute the Carte-
sian product of R and S. Then it suffices to simply store
R and S, requiring O(‖R ‖ + ‖S ‖) = O(‖db ‖) memory.
To enumerate R × S, enum simply executes a nested-loop
based Cartesian product over R and S. This satisfies the
properties of CDE. Indeed, every element of R × S will be
output exactly once. Moreover, the time required to output
the first element of R × S is the time required to initialize
a pointer to the first elements of R and S (hence constant).
The time required to produce each subsequent element is
bounded by the time required to either advance the pointer
in S, or advance the pointer in R and reset the pointer in
S to the beginning. In both cases, this is constant. Finally,
checking whether we have reached the end of R × S again
takes constant time.

The situation becomes more complex for queries that in-
volve joins instead of Cartesian products. Consider for ex-
ample the query Q = R(A,B) 1 S(B,C). Simply delaying
evaluation does not yield constant-delay enumeration. In-
deed, suppose that we evaluate Q using a simple in-memory
hash join with R as build relation and S as probe relation.
Assume that the corresponding index of R on B (i.e. the
hash table) has already been computed. When iterating
over S to probe the hash table, we may have to visit an
unbounded number of S-tuples that do not join with any
of the R-tuples. Consequently, there is no constant that
bounds the delay between consecutive outputs. A similar
analysis shows that other join algorithms, such as the sort-
merge join, do not yield enumeration with constant delay.

In essence, therefore, a data structure that allows CDE of
Q(db) must be able to produce all output tuples and their
multiplicities without spending any extra time in building
auxiliary data structures to help in enumeration (such as
hash tables or sorted versions of the input relations), nor
can it afford to waste time in processing input tuples that
in the end do not appear in Q(db).

How do we obtain CDE for R(A,B) 1 S(B,C)? Intu-
itively speaking, if in our hash join algorithm we can ensure
to only iterate over those S-tuples that have matching R-
records, we trivially obtain a CDE algorithm. In a broader
sense, we need to maintain under updates, for the relations
that are used as probe relations, the set of tuples that will
match the corresponding build relation(s). We call these
tuples the live tuples. In the following sections we gradu-
ally devise a more general algorithm that follows this idea.
Intuitively, this algorithm dynamically maintains the hash
tables and the live values for a query in a DCLR.

4.2 Constant Delay Yannakakis
Acyclic full join queries are evaluated in O(‖db‖ + ‖Q(db)‖)
time by the well-known Yannakakis algorithm. For future
reference, we recall the operation of the Yannakakis algo-
rithm [39], formulated in our setting. We first need to intro-
duce the semi-join operation for GMRs.

Definition 4.2. The semijoin RnS of a GMR R[x] by a
GMR S is the GMR over x defined by

RnS ∈ GMR[x] : ~s 7→

{
R(~s) if ~s ∈ πx(R 1 S)

0 otherwise.

Classical Yannakakis. In its standard formulation, Yan-
nakakis takes as input a traditional join tree T for a join
query Q and a database db on Q. The algorithm starts by
assigning a GMR Rn over var(n) to each node n in T . Ini-
tially, Rn := dbn. The algorithm then works in three stages.
(1) The nodes of T are visited in some bottom-up traversal

order of T . When node n is visited in this order, its par-
ent p is considered and Rp is updated to Rp := RpnRn.

(2) The nodes of T are visited in a top-down traversal order.
When node n is visited in this order, each child c of n
is considered, and Rc is updated to Rc := RcnRn.

(3) The interior nodes of T are again visited in a bottom-
up order. In this stage, however, the actual join results
are computed: when node n with children c1, . . . , ck is
visited, its GMR is updated to Rn := Rc1 1 · · · 1 Rck .

After the final stage, the GMR materialized at the root is
precisely Q(db). The initialization together with stages (1)
and (2) run in time O(‖db‖) while stage 3 can be shown to
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run in time O(‖Q(db) ‖). It is worth noting that the Yan-
nakakis algorithm fully materializes the query result Q(db)
at the root, requiring O(‖Q(db) ‖) space. Notice also that
this algorithm works over the static setting, and does not
consider updates.

To extend Yannakakis to work on generalized join trees in
addition to traditional join trees, one only needs to modify
the initialization step as follows. If n is a hyperedge, simply
set Rn := πvar(n)Rc for some arbitrary but fixed c ∈ grd(n)
(which we may assume to have been initialized before if we
initialize in a bottom-up fashion). It is not difficult to see
that, with this initalization, every hyperedge n has Rn =
πvar(n) dba for some descendant atom a of n. In other words,
Rn is the projection of some input atom. This ensures that,
even on generalized join trees, Yannakakis exhibits the same
complexity guarantees.

Yannakakis with constant delay enumeration (CDY).
Our dynamic query processing algorithm is based on the
simple observation that, after the first bottom-up traversal
stage, the join query result Q(db) can be enumerated with
constant delay. As such, there is no need to materialize the
query result in stage 3. To illustrate this claim, consider
the following variant of the Classical Yannakakis algorithm,
called CDY for Constant Delay Yannakakis.
(1) Do the first stage of Classical Yannakakis.
(2) For each node n construct an index Ln of Rn on pvar(n).

Given this pre-processing, the constant-delay enumeration
method enum is essentially a multi-way hash join, where the
GMR materialized at the root is used as probe relation, and
the other Rn as build relations, with the hash tables given
by Ln. Because of the way in which Rn is computed, we
are ensured that for every probe we will have matching join
tuples, ensuring constant-delay enumeration. Note, more-
over, that the GMRs materialized after the first step of the
Yannakakis algorithm, as well as the constructed indexes,
require O(‖db ‖) space. We delay a formal definition of the
enumeration algorithm until Section 4.5, but illustrate its
working by means of the following example.

Example 4.3. Consider generalized join tree T3 of Figure 2.
enum works as follows. Let ~s be the empty tuple. Then
enum is defined by:

for each ~t[y] ∈ L[y](~s) do

for each ~t[x,y,z] ∈ L[x,y,z](~t[y]) do

for each (~tR, µR) ∈ LR(x,y,z)(~t[x,y,z]) do

for each (~tS , µS) ∈ LS(y,v,w)(~t[y,v,w][y, v]) do

for each ~t[y,v] ∈ L[y,v](~t[y]) do

for each (~tT , µT ) ∈ LT [y,v,w](~t[y,v]) do

for each (~tU , µT ) ∈ LU [y,v,p](~t[y,v]) do

output ( ~tR ~tS ~tT ~tU , µR ∗ µS ∗ µT ∗ µU )

From our discussion so far, we obain:

Proposition 4.4. Given an acyclic full join query Q, a join
tree T of Q and a database db, CDY (T, db) runs in time
O(‖db ‖) using space O(‖db ‖). Once CDY has completed,
enum effectively enumerates Q(db) with constant delay.

4.3 Dynamic Yannakakis
Definition 4.5. Let T be a join tree and db a database. Let
Rn, for n ∈ T , be the GMR associated to n after executing

the first stage of the Yannakakis algorithm. A tuple ~t is
called live in (db, n) w.r.t. T if ~t ∈ Rn.2

CDY shows that we can suitably index the live tuples to
enumerate Q(db) with constant delay. To turn CDY into
a dynamic algorithm, it hence suffices to maintain the live
tuples and indices under updates. A naive approach for do-
ing this would be to re-run CDY from scratch whenever the
database is updated. This would spend time linear in the
size of the updated database. Of course, this naive approach
introduces unnecessary overhead. Indeed, consider an up-
date that inserts a single tuple to an atom a. In that case,
only the set of live tuples associated to a and its ancestors
in join tree T can change, while the rest of the nodes would
remain unchanged. Moreover, the new set of live tuples of
a and its ancestors can be computed incrementally. In At
the end of Section 5, we will see in particular that avoiding
naive recomputation is highly effective in practice.

In order to be able to explain how we maintain the live
tuples incrementally, we require the following definitions.

Definition 4.6. Let T be a join tree. To every node n of
T we associate two queries, ΛTn and ΨT

n , over var(n) and
pvar(n), respectively. To every hyperedge n of T we also
associate an additional query ΓTn over var(n). The definition
of these queries is recursive: for each atom a we define ΛTa
simply as a, and ΨT

a := πpvar(a) a. Then, in a bottom-up
traversal order, for every hyperedge n we define

ΛTn := ΓTn 1 1c∈ng(n) ΨT
c ΨT

n := πpvar(n) ΛTn

ΓTn := 1c∈grd(n) Ψc

We often omit the superscript if it is clear from the con-
text. Intuitively, Λn contains the set of live tuples of n, while
Ψn and Γn are auxiliary queries that will help maintain Λn
under updates. The following proposition shows that, in-
deed, the queries Λn characterize the live tuples. The proof
(omitted) is by induction on the height of node n in T .

Proposition 4.7. A tuple ~t is live in (db, n) w.r.t. join tree
T if, and only if, ~t ∈ ΛTn (db).

We can now define the data structure maintained by Dyn.

Definition 4.8 (T -representation). Let T be a join tree and
let db be a database. A T -representation (T -rep for short) of
db is a data structure D that for each node n of T contains:
- an index Ln of Λn(db) on pvar(n);
- a GMR Pn that materializes Ψn(db), i.e., Pn = Ψn(db);
- a GMR Gn that materializes Γn(db), i.e., Gn = Γn(db);
- for every non-guard child c ∈ ng(n), an index Gn,c of Gn

on pvar(c).

Example 4.9. Consider join tree T3 from Figure 2. In
Figure 3, we show the T3-rep D for the database db consist-
ing of the GMRs R(x, y, z), S(x, y, u), T (y, v, w), U(y, v, p)
presented at the leaves of Figure 3. For each node n, the
live tuples Ln = Λn(db) are given by the white-colored ta-
bles (shown below n) while Pn = Ψn(db) is given by the
gray-colored tables (shown above n on the edge from n to
its parent). For reasons of parsimony, we do not show the
Gn: for [y] and [y, v] this equals Ln; for [x, y, z] this equals
LR(x,y,z). The indexes are likewise not shown.

A first important feature of T -representations is that they
use only linear space.

2Recall that ~t ∈ S indicates that S(~t) 6= 0.
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[y]
2 8

[x, y, z]
1 2 3 2

R(x, y, z)
1 2 3 1
1 5 6 1
1 5 7 1

S(x, y, u)
1 2 5 2
1 3 5 3

[y, v]
2 4 4
5 6 6

T (y, v, w)
2 4 6 2
3 5 6 3
5 6 7 2

U(y, v, p)
2 4 7 1
2 4 8 1
5 6 8 3

() 8

2 2
2 4
5 6

1 2 2
1 3 3

2 4 2
5 6 3

2 4 2
5 6 2

1 2 3 1
1 5 6 1
1 5 7 1

Figure 3: Illustration of T -representations (Example 4.9).

Proposition 4.10. Let T be a join tree and D a T-rep of
db. Then ‖D‖= O(‖db‖).

The crux to prove this proposition lies in observing that,
as illustrated in Figure 3, for all nodes n, if ~t is in Λn(db),
Ψn(db), or Γn(db), then there is some descendant atom a ∈
T such that ~t ∈ πx(dba) with x = var(n) or x = pvar(n).
Therefore, Λn(db), Ψn(db), and Γn(db) as well as indexes
thereon, all take space O(‖db‖).
Dynamic Yannakakis. We now describe the Dynamic Yan-
nakakis algorithm (Dyn) presented in Algorithm 1. Dyn
maintains T -representations under updates. To explicitly
assert the join-tree over which Dyn operates we write DynT .

Like classical Yannakakis, DynT traverses the nodes of T
in a bottom-up fashion upon update u. During this traver-
sal, the goal is to materialize, for each node n, the deltas
∆Λn(db, u), ∆Ψn(db, u), and ∆Γn(db, u) into GMRs ∆Ln,
∆Pn, and ∆Gn, respectively. These represent the updates
that we need to apply to D’s components in order to obtain
a T -rep for db + u. This application happens in lines 6–10.

The delta GMRs are computed as follows. When n is an
atom a, DynT uses the update u to compute ∆La = ua

and ∆Pa = πpvar(a) ua. The latter projection can be done
using a simple hash-based aggregation algorithm. When n
is a hyperedge, DynT uses Algorithm 2 to compute ∆Ln,
∆Pn and ∆Gn. This algorithm uses the materialized index
of Λn(db) on pvar(n), and the materialized GMRs Pn =
Ψn(db) and Gn = Γn(db), which are already available in D.
In addition, it uses the delta GMRs ∆Pc for each child c
of n, which was previously computed when visiting c. In
order to compute ∆Ln, ∆Pn, and ∆Gn efficiently, we use
the following insight, proven in the Appendix B.

Lemma 4.11. If ~t ∈ ∆Γn(db, u) then ~t ∈ ∆Ψc(db, u) for
some guard c ∈ grd(n). Moreover, if ~t ∈ ∆Λn(db, u) then
either (1) ~t ∈ ∆Ψc(db, u) for some guard c ∈ grd(n) or (2)
~t ∈ (Γn(db)n∆Ψc(db, u)) for some child c ∈ ng(n).

Algorithm 2 uses Lemma 4.11 to compute a bound on
supp (∆Λn(db, u)). In particular, in lines 2–4 it computes

U =
⋃

c∈grd(n)

supp(∆Pc) ∪
⋃

c∈ng(n)

supp(Gnn∆Pc).

As such, U contains all tuples that can appear in ∆Γn(db, u)
or ∆Λn(db, u). Lines 5–8 compute ∆Gn = ∆Γn(db, u),
∆Ln = ∆Λn(db, u) and ∆Pn = ∆Ψn(db, u) by iterating
over the tuples in U and using the fact that Ψc(db + u)(~s) =
Pc(~s) + ∆Pc(~s), for every tuple ~s. From Lemma 4.11 and
our explanation so far, we hence obtain:

Algorithm 1 DynT : Update trigger maintaining T -rep D
under update u

1: Assume: T is a join tree
2: Input: T -rep D for (db); and update u
3: Output: T-rep for db + u.

4: for each node n ∈ T , visited in bottom-up order do
5: compute ∆Ln, ∆Pn, and ∆Gn (if applicable)

6: for each node n ∈ T do
7: Ln+=∆Ln; Pn+=∆Pn
8: if n is a hyperedge then
9: Gn+=∆Gn

10: for each c ∈ ng(n) do Gn,c+=∆Gn

Algorithm 2 Delta computation for hyperedge n

1: Initialize ∆Ln,∆Pn and ∆Gn to the empty GMRs
2: Initialize U :=

⋃
c∈grd(n) supp(∆Pc)

3: for each c ∈ ng(n) and each ~tc ∈ ∆Pc do
4: U := U ∪ supp(Gn,c[~tc])

5: for each ~t ∈ U do
6: ∆Gn[~t]:=

∏
c∈grd(n)(Pc + ∆Pc)[~t]−Gn[~t]

7: ∆Ln[~t]:=
∏
c∈ch(n)(Pc + ∆Pc)[~t[pvar(c)]]− Ln[~t]

8: ∆Pn[~t[pvar(n)]] += ∆Ln[~t]

Theorem 4.12. Let D be a T -rep for db and let u be an
update to db. DynT (D, u) produces a T-rep for db + u.

4.4 Complexity of Dynamic Yannakakis
Next, we study the efficiency with which DynT maintains
T -reps under updates. Towards this end, we first illustrate
DynT ’s operation by example.

Example 4.13. Consider join tree T3 from Figure 2 and
the T3-rep D shown in Figure 3 that we discussed in Ex-
ample 4.9. Consider the update {(1, 5, 9) 7→ 2} on S (i.e.,
tuple (1, 5, 9) is inserted into S(x, y, u) with multiplicity 2).
When DynT3 executes, it will compute empty delta GMRs
for all nodes, except for S(x, y, u) and its ancestors. In par-
ticular, when Algorithm 2 is run on hyperedge [x, y, z], it
operates as follows. First observe that [x, y, z] has only one
guard child, namely R(x, y, z). Hence G[x,y,z] = PR(x,y,z) =
LR(x,y,z) = R. Since R is not updated, U is initialized to
∅ in line 2. Then, in lines 3 and 4, Algorithm 2 uses the
index G[x,y,z],S[x,y,u] of G[x,y,z] on [x, y] to directly retrieve
all tuples in R(x, y, z) that satisfy x = 1 and y = 5. This
is the main purpose of the indexes Gn,c: we do not have
to iterate over the entire GMR Gn nor check for equalities.
During the rest of its computation, Algorithm 2 then calcu-
lates ∆G[x,y,z] = ∅, ∆L[x,y,z] = {(1, 5, 6) 7→ 2, (1, 5, 7) 7→ 2},
and ∆P[x,y,z] = {(5) 7→ 4}. When processing [y], we have
to propagate ∆P[x,y,z] from [x, y, z] to [y]. This is done by
initializing U = {(5)} in line 2 of Algorithm 2, after which
∆G[y] = ∆L[y] = {(5) 7→ 24} and ∆P[y] = {() 7→ 24}.

It is important to observe that in this example the single-
tuple update {(1, 5, 9) 7→ 2} on S triggers multiple tuples
to become live in [x, y, z]. This occurs simply because the
variable z of [x, y, z] is not in S(x, y, u); therefore a single-
tuple update to S can match many tuples in G[x,y,z] with
different z values. In fact, in the worst case, it may cause
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as many tuples to become live in [x, y, z] as there are tu-
ples in G[x,y,z] = R. In contrast, single-tuple updates into
R(x, y, z), T (y, v, w), or U(y, v, p), can cause at most 1 tuple
to become live in any of their parents. This is because R’s
(resp. T ’s and U ’s) parent contains only variables that are
also mentioned in R (resp. T , resp. U). Likewise, updates
to [x, y, z] (resp. [y, v]) that we need to propagate to [y] can
only cause as many [y] tuples to become live as have become
live in [x, y, z] (resp. [y, v]).

So, the fact that a node contains all variables mentioned
in its parent makes it efficient to propagate updates from
that node to its parent. Trees for which all nodes (except
for the root) contain all variables mentioned in their parent
are called simple trees.

Definition 4.14 (Simplicity). A width-one GHD T is sim-
ple if every child node in T is a guard of its parent. A query
Q is simple if it has a simple join tree.

For example, T4 of Figure 2 is simple, but T3 is not since
S(x, y, u) is a child but not a guard of [x, y, z].

Because in simple trees the number of tuples that can
propagate from a child update to its parent is bounded by
the size of the child update, we obtain that, for a simple tree
T , DynT maintains a T -rep under update u in time linear
in u, independent of the databse db.

Theorem 4.15. DynT (D, u) produces a T-rep for db + u
in time O(‖u ‖) for every database db and every update u if,
and only if, T is simple.

The technical proof is deferred to the full version of this
paper because of space constraints.

Theorem 4.15 indicates that, before using Dyn to dynam-
ically process Q, it is important to check for the existence
of a generalized simple join tree for Q.

On non-simple trees T , such as the tree T3 from Exam-
ple 4.13, DynT is less efficient in the worst case. Indeed, as
already illustrated above, a single-tuple update can trigger
multiple-tuple updates to its ancestors and in the worst case
the parent update may be as big as ‖db‖. In principle, the
multiple-tuple update to the parent may cause an even big-
ger update to the grand-parent (assuming that the latter is
not a guard of the grand-parent). The number of tuples in
an update to a node can be shown to be always bounded by
‖db‖ + ‖u ‖, however. Using this observation, we can show:

Proposition 4.16. Let T be a join tree, D a T -rep for db
and u an update to db. DynT (D, u) produces a T-rep for
db + u in time O(‖db‖ + ‖u ‖).

In other words, in the worst case, DynT runs in time
O(‖db‖ + ‖u ‖), which is unfortunately similar to recomput-
ing everything from scratch using CDY after every update.
Fortunately, while recomputing everything from scratch will
always cost Ω(‖ db + u ‖) time, in practice Dyn performs
much better than its O(‖db‖ + ‖u ‖) upper bound. This is
discussed at the end of Section 5.

4.5 Enumeration
In this section, we show that a T -rep D for db, with T a
join tree for join query Q can be used not only to enumerate
Q(db) with constant delay, but also some of its projections
πxQ(db). In particular, CDE of projections is possible if
there exists a subtree of T that includes the root and con-
tains precisely the set x of projected variables. Intuitively, if

Algorithm 3 enum(T,N)(D)

1: for each (~tn1 , µn1) ∈ Ln1([ ]) do
2: for each (~tn2 , µn2) ∈ Ln2(~tp(n2)[xn2 ]) do

3: for each (~tn3 , µn3) ∈ Ln3(~tp(n3)[xn3 ]) do
4: . . .
5: for each (~tnk , µnk ) ∈ Lnk (~tp(nk)[xnk ]) do

6: let µ = µc1 ∗ · · · ∗ µcl ∗Πm∈MPm(~tp(m)[xm])

7: output (~tc1~tc2 . . .~tcl , µ)

such subtree exists, the enumeration algorithm will be able
to traverse D to find the required values of x without travers-
ing tuples containing variables in var(Q)\x, which may cause
unbounded delays in the enumeration. Essentially the same
idea has been used before in the context of static CDE [5]
(as discussed in Section 4.6), factorized databases [6], and
worst-case optimal algorithms [23]. We proceed formally.

Definition 4.17. Let T = (V,E) be a join tree. A subset
N ⊆ V is connex if it includes the root and the subgraph of
T induced by N is a tree.

To illustrate, {[y], [x, y, z], [y, v]} is a connex subset of the
join tree T3 of Figure 2, but {[y], S(x, y, u)} is not.

For each join tree T and each connex subset N of its
nodes we define enumeration algorithm enum(T,N) as fol-
lows. Let T ′ be the subtree of T induced by N and let
(nk, nk−1, . . . , n1) be a topological sort of T ′. In particu-
lar, n1 is the root of T . Let c1, . . . , cl be the leaf nodes of
T ′. Let p(n) denote the parent of node n and let xn denote
pvar(n). Finally, let M be the subset of all nodes in T that
are not in N , but for which some sibling is in N . With this
notation, enum(T,N) is shown in Algorithm 3. Example 4.3
shows enum(T3,N)(D) for the join tree T3 of Figure 2 with
N consisting of all nodes in T3.

Proposition 4.18. Let T be a join tree for join query Q.
Assume that N is a connex subset of T . Then enum(T,N)(D)
enumerates Q′(db) := πvar(N)Q(db) with constant delay, for
every database db and every T -rep D of db. Moreover, for an
arbitrary tuple ~t, its multiplicity in Q′(db) can be calculated
from D in constant time.

The technical proof is deferred until the full version of this
paper. Note that enumT,V (D) with V the set of all nodes in
T enumerates Q(db). Combining all of our results so far we
obtain that join-tree representations are DCLRs for the class
of all free-connex acyclic CQs, which is defined as follows.

Definition 4.19. (Compatible, Free-Connex Acyclic) Let T
be a join tree. A CQ Q is compatible with T if T is a join tree
for Q and T has a connex subset N with var(N) = out(Q).
A CQ is free-connex acyclic if it has a compatible join tree.

In particular, every acyclic join query is free-connex acyclic.
Let T be a join tree. It now follows that the class of all T -
reps form a DCLR of every CQ Q compatible with T .

Delta-enumeration. Using DynT we can actually also enu-
merate deltas ∆Q(db, u) of Q(db) under single-tuple update
u. This result is relevant for push-based query processing
systems, where users do not ping the system for the com-
plete current query answer, but instead ask to be notified of
the changes to the query results when the database changes.
In addition, as we will discuss in Section 5, it also provides
a key method for dynamic processing of CAQs.
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Definition 4.20 (∆T -rep). Let T be a join tree, db be a
database and let u be an update to db. A ∆T -representation
of (db, u) is a data structure ∆D that contains (1) a T -rep
for db; (2) an index ∆Ln of ∆Λn(db, u) on pvar(n), for every
n ∈ T ; and (3) a GMR ∆Pn that materializes ∆Ψn(db, u),
for every n ∈ T .

Note that DynT needs to compute ∆Ln = ∆Λn(db, u)
and ∆Pn = ∆Ψn(db, u) anyway when processing T -rep D
under update u. Hence, after the bottom-up pass in lines
4–5 of DynT we obtain a ∆T -rep ∆D, provided that we
represent ∆Ln as an index on pvar(n).

Theorem 4.21. Let u be a single-tuple update to database
db. Let ∆D be a ∆T -rep of (db, u) and let Q be compatible
with T . Then ∆Q(db, u) can be enumerated with constant
delay from ∆D.

Due to space constraints, we defer the definition of the
delta-enumeration algorithm to the full version of this pa-
per. How to enumerate ∆Q(db, u) with constant delay for
general, multiple-tuple updates remains an open problem.

4.6 Optimalitiy
In this section we show that Dynamic Yannakakis is optimal
in two aspects. (1) It is able to dynamically process the
largest subclass of CQs for which DCLRs can reasonably be
expected to exist. (2) The class of queries for which Dyn
processes updates in O(‖u ‖) time (Theorem 4.15) is the
largest class of queries for which we can reasonably expect to
have such update processing time as well as CDE of results.

DCLR-optimality. In the static setting without updates,
a query Q is said to be in class CD ◦ LIN if there exists
an algorithm that, for each database db does an O(‖db ‖)-
time precomputation and then proceeds in CDE of Q(db),
evaluated under set semantics. Bagan et al. showed that,
under the so-called binary matrix multiplication conjecture,
an acyclic CQ is in CD ◦LIN if and only if it is free-connex
[5]. Recently, Brault-Baron extended this result under two
assumptions: the triangle hypothesis (checking the presence
of a triangle in a hypergraph with n nodes cannot be done in
time O(n2)) and the tetrahedron hypothesis (for each k > 2,
checking whether a hypergraph contains a k-simplex cannot
be done in time O(n)). Under these assumptions, he shows
that a CQ is in CD ◦ LIN if and only if it is free-connex
acyclic [10]. In Appendix C we prove that this implies:

Proposition 4.22. Under the above-mentioned hypotheses,
a DCLR exists for CQ Q if, and only if, Q is free-connex
acyclic.

Processing-time optimality. Berkholz et al. have recently
characterized the class of self-join free CQs that feature a
representation that allows both CDE of results and O(1)
maintenance under single-tuple updates [7]. In particular,
they show that, under the assumption of hardness of the On-
line Matrix-Vector Multiplication problem [22], the follow-
ing dichotomy holds. When evaluated under set semantics,
a CQ Q without self joins features a representation that sup-
ports CDE and maintenance in O(1) time under single-tuple
updates if, and only if, Q is q-hierarchical. Notice Q can be
maintained in O(1) time under single-tuple updates if, and
only if, it can also be maintained in O(‖u‖) time under ar-
bitrary updates. The definition of q-hierarchical queries is
the following.

Definition 4.23 (q-hierarchicality). Given a CQ Q and a
variable x ∈ var(Q), let at(x) denote the set of all atoms in
which x occurs in Q. Q is called hierarchical if for every pair
of variables x, y ∈ var(Q), either at(x) ⊆ at(y) or at(y) ⊆
at(x) or at(x) ∩ at(y) = ∅. A CQ Q is q-hierarchical if it
is hierarchical and for every two variables x, y ∈ var(Q), if
x ∈ out(Q) and at(x) ( at(y), then y ∈ out(Q).

Example 4.24. Consider the join query Q = R(x, y, z) 1

S(x, y, u) 1 T (y, v, w) 1 U(y, v, p). Q is hierarchical. More-
over, πx,yQ is q-hierarchical. In contrast, πuQ is not q-
hierarchical since u ∈ out(Q), at(u) ( at(y), yet y 6∈ out(Q).

Observe that a join query is q-hierarchical iff it is hierar-
chical. The hierarchical property has actually already played
a central role for efficient query evaluation in various con-
texts [16,17,27], see [7] for a discussion.

The following two propositions (proven in Appendix C)
establish the relationship between Dyn and the dichotomy
of Berkholz et al.

Proposition 4.25. If a CQ Q is q-hierarchical, then it has
a join tree which is both simple and compatible.

It then follows from Theorem 4.15 and Proposition 4.18
that, for q-hierarchical queries, Dyn also processes single-
tuple updates in O(1) time while allowing the query result
to be enumerated with constant delay (given the join tree).
This hence matches the algorithm provided by Berkholz et
al. for processing q-hierarchical queries under updates. Note
that, by Proposition 4.25, all q-hierarchical queries must be
free-connex acyclic.

Proposition 4.26. If a CQ Q has a join tree T which is
both simple and compatible with Q, then Q is q-hierarchical.

This result is to be expected, since from Theorem 4.15 and
Proposition 4.18 we know that for such T we can do CDE
of Q and do maintenance under updates in O(‖u‖) time. If
other than q-hierarhical queries had simple compatible join
trees, Berkholz et al.’s dichotomy would fail. Also observe
that, as seen in Section 4.4, Dyn may process updates in
ω(‖ u ‖) time on non-simple join trees. Berkholz et al.’s
dichotomy implies that this is unavoidable in the worst case.

At this point, we can explain why it is important to work
with join trees based on width-one GHDs rather than clas-
sical join trees (which do not allow partial hyperedges to
occur). Indeed, the following proposition (proven in Ap-
pendix C) shows that there are hierarchical queries for which
no classical join tree is simple. Therefore, if we restrict our-
selves to classical join trees we will fail to obtain an O(‖u ‖)
update time for some q-hierarchical queries.

Proposition 4.27. Let Q be the hierarchical join query
R(x, y, z) 1 S(x, y, u) 1 T (y, v, w) 1 U(y, v, p). Every sim-
ple width-one GHD for Q has at least one partial hyperedge.

5. IMPLEMENTATION AND EXPERIMEN-
TAL VALIDATION

In this section, we experimentally measure the performance
of Dyn, focusing on both throughput and memory consump-
tion. We start by describing how our implementation ad-
dresses some practical issues, then we describe in detail the
operational setup, and finally present the experimental re-
sults.
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5.1 Practical Implementation
We have described how Dyn processes free-connex acyclic
CQs under updates. In this subsection, we first explain how
to use Dyn as an algorithmic core for practical dynamic
query evaluation of the more general class of acyclic con-
junctive aggregate queries (not necessarily free-connex).

Definition 5.1. A conjunctive aggregate query (CAQ) is a
query of the form Q′ = (x, f1, . . . , fn)Q, where Q is a CQ;
x ⊆ out(Q) and fi is an aggregate function over out(Q) for
1 ≤ i ≤ n. Q′ is acyclic if its CQ Q is so.

Example aggregate functions are SUM(u)× 3 or AVG(x),
assuming u, x in out(Q). The semantics of CAQs is best
illustrated by example. Consider Q′ = (x, y,AVG(v))πx,y,v
(R(x, y, z) 1 S(y, z, v)). This query groups the result of
πx,y,v(R(x, y, z) 1 S(y, z, v)) by x, y, and computes AVG(v)
(under multiset semantics) for each group. It should be
noted that we assume that the aggregate functions need to
be streamable. This means that one should be able to update
the aggregate function results by only inspecting the updates
to Q(db) and the previous aggregate value plus, possibly, a
constant amount of extra information per tuple

We can dynamically process an acyclic CAQ Q′ using Dyn
by means of a simple strategy: use Dyn to maintain a DCLR
for the acyclic CQ Q of Q′, but materialize the output of the
CAQ in an array. Use delta-enumeration on Q to maintain
this array under single-tuple updates. Note that, in order to
support delta-enumeration with constant delay, we require
that Q is free-connex (Theorem 4.21). If this is not the case,
(which frequently occurs in practice), we let Dyn maintain
a DCLR for a free-connex acyclic approximation QF of Q.
QF can always be obtained from Q by extending the set
of output variables of Q (in the worst case by adding all
variables to the output). Of course, under this strategy, we
require Ω(‖Q′(db) ‖) space, just like (H)IVM, but we avoid
the (partial) materialization of Q and its deltas. As shown
in Section 5.3, this property actually make Dyn outperform
HIVM in both processing time and space.

An important optimization that our implementation ap-
plies in this context, is that of early computation of ag-
gregate functions that are restricted to variables of a sin-
gle atom. For example, consider Q′ = (x, y, SUM(t))πx,y,t
(R(x, y, t) 1 S(y, z, v)). Our implementation will actually
run Dyn on πx,y(R′(x, y) 1 S(y, z, v)) where R′ is the GMR
that maps tuple (x, y) 7→

∑
t t×R(x, y, t). Note that R′ can

be maintained under updates to R.

Sub-queries Before proceeding to the experimental evalu-
ation of Dyn, we briefly discuss how to evaluate queries with
sub-queries. Recall from Proposition 4.18 that T -reps have
a particularly interesting property: If D is a T -rep and Q
is compatible with T , then the multiplicity of an arbitrary
tuple ~t in Q(db) can be calculated in constant time from
D. This is highly relevant in practice, since when evaluating
queries with IN or EXIST sub-queries, it suffices to main-
tain two DCLRs, one for the subquery and one for the outer
query. From the viewpoint of the outer query, the subquery
DCLR then behaves as an input GMR.

Generalized Join Trees When dynamically processing a
CQ, the join tree under consideration can impact the per-
formance of Dyn. For example, one would expect that when
processing a q-hiearchical query, Dyn performs better using
a simple tree than a non-simple tree. One could measure

Benchmark Query # of tuples

TPC-H

Full joins

FQ1 2,833,827
FQ2 2,617,163
FQ3 2,820,494
FQ4 2,270,494

Aggregate
queries

Q1 7,999,406
Q3 10,199,406
Q4 9,999,406
Q6 7,999,406
Q9 11,346,069
Q12 9,999,406
Q13 2,200,000
Q16’ 1,333,330
Q18 10,199,406

TPC-DS

Full joins FQ5 10,669,570

Aggregate
queries

Q3 11,638,073
Q7 13,559,239
Q19 11,987,115
Q22 36,138,621

Table 1: Number of tuples in the stream file of each query

how simple a tree is by estimating the amount of single-tuple
updates that will be processed in constant time by Dyn. Al-
though there are well-known algorithms for heuristic search
of hypertree decompositions [18], their objective is to find
low-width decompositions, and therefore are not well-suited
for our setting. We have developed a simple cost model for
generalized join trees and have used minimum-cost trees for
experimentation. For the sake of space, the details of this
cost model are left to the full version of the paper.

5.2 Experimental Setup
Queries and update streams. We evaluate the subset
of queries available in the industry-standard benchmarks
TPC-H and TPC-DS that can be evaluated by the meth-
ods described throughout this paper. In particular, we eval-
uate those queries involving only equijoins, whose FROM-
WHERE caluses are acyclic. Queries are divided into acyclic
full-join queries (called FQs) and acyclic aggregate queries.
Acyclic full join queries are generated by taking the FROM
clause of the corresponding queries on the benchmarks. It
is important to mention that we omit the ORDER BY and
LIMIT clauses, we replaced the left-outer join in query Q13
by an equijoin, and modified Q16 to remove an inequality.
We discard those queries using the MIN and MAX aggregate
functions as this is not supported by our current implemen-
tation. We report all the evaluated queries in Appendix D.

Our update streams consist of single-tuple insertions only
and are generated as follows. We use the data-generating
utilities of the benchmarks, namely dbgen for TPC-H and
dsdgen for TPC-DS3. We used scale factor 0.5 and 2 for
the FQs from TPC-H and TPC-DS, respectively, and scale
factor 2 and 4 for the aggregate queries from TPC-H and
TPC-DS, respectively. Notice that the data-generating tools
create datasets for a fixed schema, while most queries do not
use the complete set of relations. The update streams are
generated by randomly selecting the tuples to be inserted
from the relations that occur in each query. To use the
same update streams for evaluating both Dyn and HIVM,
each stream is stored in a file. The number of tuples on each
file is depicted in Table 1.

3dbgen and dsgen are available at http://www.tpc.org/
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Comparison to HIVM. As discussed in the introduction,
HIVM is an efficient method for dynamic query evaluation
that highly improves processing time over IVM [26]. We
compare our implementation against DBToaster [26], a state-
of-the-art HIVM engine. DBToaster is particularly meticu-
lous in that it materializes only useful views, and therefore
it is an interesting implementation for comparison in both
throughput and memory usage. Moreover, DBToaster has
been extensively tested and proven to be more efficient than
a commercial database management system, a commercial
stream processing system and an IVM implementation [26].
DBToaster compiles SQL queries into trigger programs for
different programming languages. We compare against those
in Scala, the same programming language used in our im-
plementation. It is important to mention that programs
compiled by DBToaster use the so-called akka actors4 to
generate update tuples. During our experiments, we have
found that this creates an unnecessary memory overhead by
creating many temporary objects. For a fair comparison we
have therefore removed these actors from DBToaster.

Operational setup. The experiments are performed on a
machine running GNU/Linux with an Intel Core i7 proces-
sor running at 3.07 GHz. We use version 2.11.8 of the Scala
programming language, version 1.8.0 101 of the Java Vir-
tual Machine, and version 2.2 of the DBToaster compiler.
Each query is evaluated 10 times against each of the two en-
gines for measuring time, and two times for measuring mem-
ory; the presented results are the average measurements over
those runs. Every time a query is evaluated, 16 GB of main
memory are freshly allocated to the corresponding program.
To measure memory usage we use the Java Virtual Machine
(JVM) System calls. We measure the memory consumption
every 1000 updates, and consider the maximum value. For
a fair comparison, we call the garbage collector before each
memory measurement. The time used by the garbage col-
lector is not considered in the measurements of throughput.

5.3 Experimental results
Figure 4 depicts the resources used by Dyn as a percentage
of the resources used by DBToaster. For each query, we
plot the percentage of memory used by Dyn considering
that 100% is to the memory used by DBToaster, and the
same is done for processing time. This improves readability
and normalizes the chart. To present the absolute values,
on top of the bars corresponding to each query we write the
memory and time used by DBToaster. Some executions of
DBToaster failed because they required more than 16GB of
main memory. In those cases, we report 16GB of memory
and the time it took the execution to raise an exception. We
mark such queries with an asterisk (*) in Figure 4. Note that
Dyn never runs out of memory, and times reported for Dyn
are the times required to process the entire update stream.

Full-join queries. For full join queries (FQ1-FQ5), Fig-
ure 4 shows that Dyn outperforms DBToaster by close to
one order of magnitude, both in memory consumption and
processing time. The difference in memory consumption is
expected, since the result of full-join queries can be poly-
nomially larger than the input dataset, and DBToaster ma-
terializes these results. The difference in processing time,
then, is a consequence of Dyn’s maintenance of T -reps rather
than the results themselves. The average processing time for

4http://doc.akka.io/docs/akka/snapshot/scala/actors.html

DBToaster over FQ1-FQ5 is 128.49 seconds, while for Dyn it
is 29.85 seconds. This includes FQ1, FQ3, FQ4 and FQ5, for
which DBToaster reached the memory limit. Then, 128.49
seconds is only a lower bound for the average processing time
of DBToaster over FQ1-FQ5. Regarding memory consump-
tion, DBToaster requires in average 14.68 GB for FQ1-FQ5
(considering a limit of 16 GB), compared to the 2.74 GB re-
quired by Dyn. Note that the query presenting the biggest
difference, FQ4, is a q-hierarchical query (see Section 4.4).

Aggregate queries. For aggregate queries, Figure 4 shows
that Dyn can significantly improve the memory consump-
tion of HIVM while improving processing time up to one
order of magnitude for TPC-H Q13’ and TPC-DS Q7.

For TPC-H queries Q1, Q3, and Q6, Dyn equals DBToast-
ers memory consumption. For these queries, the algorithms
used by Dyn and DBToaster are nearly identical which is
why Dyn and DBToaster require the same amount of mem-
ory. The difference in execution time for these queries is due
to implementation specifics. For example we have detected
that DBToaster parses tuple attributes before filtering par-
ticular attributes in the WHERE clause. Our implemen-
tation, in contrast, does lazy parsing, meaning that each
attribute is parsed only when it is used. In particular, if
a certain attribute fails its local condition, then subsequent
attributes are not parsed.

The biggest difference in processing time is observed for
TPC-H query Q13’ and TPC-DS query Q7. Q13’ has a
sub-query that computes the amount of orders processed for
each customer. It then counts the number of customers for
which k orders were processed, for each k. To process this,
DBToaster almost fully recomputes the sub-query each time
a new update arrives, which basically yields a quadratic al-
gorithm. In contrast, our implementation also uses Dyn to
maintain the sub-query as a T -rep, supporting, for this par-
ticular case, constant update time. For Q7, the aggressive
materialization of delta queries causes DBToaster to main-
tain 88 different GMRs. In contrast, to maintain its T -rep,
Dyn only needs to store 5 GMRs and 5 indexes.

Scalability. To show that Dyn performs in a consistent
way against streams of different sizes, we report the pro-
cessing time and memory consumption each time a 10% of
the stream is processed (Figure 6). The results show that
for all queries the memory and time increase linearly with
the amount of tuples processed. We can see that Dyn is
constantly faster and scales more consistently. The same
phenomena occur for memory consumption. Due to space
constraints, we only report the measurements for the TPC-H
queries FQ1, Q3 and Q18.

Enumeration of query results. We know from Section 4.1
that T -reps feature constant delay enumeration, but this
theoretical notion hides a constant factor that could de-
crease performance in practice. To show that this is not the
case, we have measured the time needed for enumerating
and writing to secondary memory the results of FQ1 to FQ4
from their corresponding DCLRs. We use update streams
of different sizes, and for comparison we measure the time
needed to iterate over the materialized set of results (from
an in-memory array) and write them to secondary mem-
ory. The results are depicted in Figure 5. Interestingly, for
larger result sizes, enumerating from a T-rep was slightly
more efficient than enumerating from an in-memory array.
A possible explanation is illustrated by the following exam-
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Resource utilization

FQ1* FQ2 FQ3* FQ4* FQ5* Q1 Q3 Q4 Q6 Q9 Q12 Q13’* Q16’ Q18 Q3 Q7* Q19 Q22

DBToaster (sec) 70.000 26.465 90.000 65.000 391.547 27.355 29.088 26.686 17.581 132.051 27.996 30635.000 8.784 39.000 76.677 10925.000 78.400 437.074

DBToaster (MB) 16000 9389 16000 16000 16000 49 336 221 40 11125 231 546 2146 1071 1742 16000 5149 10599

DYN (sec) 21.158 11.069 15.135 7.557 94.344 10.804 23.005 13.018 12.177 63.792 14.774 6.705 2.761 14.228 38.004 78.157 75.537 277.074

DYN (MB) 2575 1569 1602 641 7327 48 348 92 40 4385 175 352 202 511 1246 6113 4322 8686

% Processing Time 30.23 41.82 16.82 11.63 24.10 39.50 79.09 48.78 69.26 48.31 52.77 0.02 31.44 36.48 49.56 0.72 96.35 63.39

% Memory Consumption 16.09 16.71 10.01 4.01 45.79 97.96 103.57 41.63 100.00 39.42 75.76 64.47 9.41 47.71 71.53 38.21 83.94 81.95

16,000MB 9,389MB 16,000MB 16,000MB 16,000MB 49MB 336MB 221MB 40MB 11,125MB 231MB 546MB 2,146MB 1,071MB 1,742MB 16,000MB 5,149MB 10,599MB
70.0s 26.47s 90.0s 65.0s 391.55s 27.35s 29.09s 26.69s 17.58s 132.05s 28.0s 30635.0s 8.78s 39.0s 76.68s 10925.0s 78.4s 437.07s

FQ1* FQ2 FQ3* FQ4* FQ5* Q1 Q3 Q4 Q6 Q9 Q12 Q13’ Q16’ Q18 Q3 Q7* Q19 Q22

Full-join queries TPC-H Aggregate queries TPC-DS Aggregate queries
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Figure 4: Dyn usage of resources as a percentage of the resources consumed by DBToaster (lower is better).

Output Enumeration Performance

FQ4 - 215.6MB FQ2 - 424.3MB FQ1 - 1.3GB FQ3 - 1.6gb

T-rep 5.364 6.874 36.305 31.725

Array 4.423 6.034 38.344 47.209

En
um

er
at

io
n 

Ti
m

e 
(s

ec
)

0

10

20

30

40

50

Query - Output size (MB)
FQ4 - 215.6MB FQ2 - 424.3MB FQ1 - 1.3GB FQ3 - 1.6gb

T-rep Array

�1

Figure 5: Time for enumerating output (lower is better)

ple. Consider the full-join query R(A,B) 1 S(B,C), and
assume there are several tuples in the join result. It is not
hard to see that given a fixed B value, from a T -rep we
can iterate over the C values corresponding to each A value.
This way, the A and B values are not re-assigned while gen-
erating several tuples. In contrast, every time a tuple is read
from an array each value needs to be read again.

Full query recomputation. In Section 4.3 we mentioned
that, in theory, the worst-case complexity for updating a
T -rep when T is not simple is the same as that of recom-
puting the Yannakakis algorithm from scratch. However,
we can expect Dyn to be much faster than the naive full-
recomputation algorithm as it only updates those portions of
the T -rep that are affected. This is indeed the case in prac-
tice. We tested both strategies over different datasets for
FQ1 and FQ4. In average, the naive recomputation turned
out to process updates 190 times slower than Dyn. Due to
space constraints we do not report the full results.
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Aggregations and joins over annotated relations. In
Proc. of PODS, pages 91–106, 2016.

[24] A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross.
Implementing incremental view maintenance in nested
data models. In Proc. of DBPL, pages 202–221, 1997.

[25] C. Koch. Incremental query evaluation in a ring of
databases. In Proc. of PODS, pages 87–98, 2010.

[26] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic,
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APPENDIX
A. PROOFS FROM SECTION 3
Readers familiar with GHDs of arbitrary width may observe
that GHDs are normally defined as triples (T, χ, λ) with T a
tree; χ a function that assigns a set of variables to each node,
and λ a function that assigns a set of atoms to each node (see
[19]). Since we focus on GHDs of width one, and hence do
not need the full richness of GHDs, we omit χ and λ from our
definition. These can be recovered by fixing χ : n → var(n)
and λ to be the function that maps atoms a 7→ {a} and
hyperedges x 7→ {b} where b is some atom with x ⊆ var(b).
Note that, since under this definition |λ(n)| = 1 for all nodes,
this indeed yields a GHD of width 1.

Proposition 3.4. If there exists a width-one GHD for set of
atoms A, then there also exists a generalized join tree for A.
Consequently, a CQ Q is acyclic iff at(Q) has a generalized
join tree.

Crux. A traditional join tree for A is a width-one GHD T
for A in which all the nodes are atoms in A (no hyperedges
allowed). It is well-known that a width-one GHD exists for
A if, and only if, a traditional join tree T exists for A [19].
It hence suffices to show that every traditional join tree T
for A can be transformed into a generalized join tree T ′ for
A. We do this by this by recursively applying the following
transformation rule to nodes in T , starting at the root:

Let n be the current node being transformed. If hyperedge
var(n) is not yet in T ′, then add var(n) to T ′ and add an edge
from var(n) to var(p) with p the parent of n in T . Finally
(and even if var(n) were already in T ′), add n (which is
an atom) to T and add an edge from n to var(n). Then,
recursively apply this procedure to each child of n in T .

To illustrate, if we apply this procedure to traditional join
tree T1 of Figure 2 then we obtain the following generalized
join tree.

[x, y, z]

R(x, y, z) S(x, y, u) [y, v, w]

T (y, v, w) U(y, v, p)

It is a standard exercise to show that this transformation
indeed always yields a generalized join tree.

B. PROOFS FROM SECTION 4.3
Lemma 4.11. If ~t ∈ ∆Γn(db, u) then ~t ∈ ∆Ψc(db, u) for
some guard c ∈ grd(n). Moreover, if ~t ∈ ∆Λn(db, u) then
either (1) ~t ∈ ∆Ψc(db, u) for some guard c ∈ grd(n) or (2)
~t ∈ (Γn(db)n∆Ψc(db, u)) for some child c ∈ ng(n).

Proof. We only show the reasoning when ~t ∈ ∆Λn(db, u).
The reasoning when ~t ∈ ∆Γn(db, u) is similar.

Suppose that ~t ∈ ∆Λn(db, u). By definition, Λn := Γn 1

1c∈ng(n) Ψc. By definition of join tree, grd(n) is non-empty.

If ng(n) is empty, then in particular, ~t ∈ ∆Λn(db, u) =
∆Γn(db, u). In that case, by the first part of the lemma, we
hence obtain ~t ∈ ∆Ψc(db, u) for some c ∈ grd(n). It remains
to confirm the result when ng(n) is non-empty. Hereto, first
observe that taking deltas distributes over joins as follows.

∆
(
r(x) 1 s(y)

)
(db, u) = ∆r(x)(db, u) 1 s(y)(db)

+ (∆r(x)(db, u) 1 ∆s(y)(db, u)

+ (r(x)(db, u) 1 ∆s(y)(db, u)

By application of this equality to ∆Λn(db, u), we obtain that
there are three cases possible.

• Case ~t ∈ ∆Γn(db, u) 1
(
1c∈ng(n) Ψc

)
(db). Then, ~t ∈

∆Γn(db, u) since Γn has the same schema as Λn. By the
first part of the lemma, we hence obtain ~t ∈ ∆Ψc(db, u)
for some c ∈ grd(n).

• The case ~t ∈ ∆Γn(db, u) 1 ∆
(
1c∈ng(n) Ψc

)
(db, u) is

similar.

• Case ~t ∈ Γn(db) 1 ∆
(
1c∈ng(n) Ψc

)
(db, u). Then in

particular, ~t ∈ Γn(db). Moreover, ~t[
⋃
c∈ng(n) pvar(c)]

is in ∆
(
1c∈ng(n) Ψc

)
(db, u). Then by application of

the above distribution of delta’s over joins on expres-
sion ∆

(
1c∈ng(n) Ψc

)
(db, u) we obtain that there is at

least one c ∈ ng(n) such that ~t[pvar(c)] ∈ ∆Ψc(db, u).
Therefore, ~t ∈ supp(Γc(db)n∆Ψc(db, u)), as desired.

C. PROOFS FROM SECTION 4.6
Proposition 4.22. Under the above-mentioned hypotheses,
a DCLR exists for CQ Q if, and only if, Q is free-connex
acyclic.

Crux. The if direction follows from all of our results so far.
For the only if direction, assume that query Q is not free-
connex acyclic and suppose that a DCLR exists for query Q.
In particular, we can compute, for every database db a data
structure D that represents Q(db), for every database db.
Let U be the algorithm that maintains these datastructures
under updates and let ε be the DCLR that represents the
empty query result (which is obtained when Q is evaluated
on the empty database). Then, starting from ε, U(ε, db)
must construct a DCLR in time O(‖ε‖ + ‖db‖) = O(‖db‖)
since ε is constant. Now enumerate Q(db) from U(ε, db)
with constant delay but do not output tuple multiplicities.
This enumerates Q(db) evaluated under set semantics. Then
Q ∈ CD ◦ LIN, contradicting Brault-Baron [10].

Proposition 4.25. If a CQ Q is q-hierarchical, then it has
a join tree which is both simple and compatible.

Proof. A CQ Q is connected if for any two x, y ∈ var(Q)
there is a path x = z0, . . . , zl = y such that for each j < l
there is an atom a in Q such that {zj , zj+1} ⊆ var(a). It is a
standard observation that every CQ can be written as a join
Q1 1 · · · 1 Qk of connected CQs with pairwise disjoint sets
of output variables. Call these Qi the connected components
of Q. Berkholz et al. show that CQ Q is hierarchical if and
only if every connected component Qi of Q has a q-tree,
which is defined as follows.

Definition C.1. Let Qi be a connected CQ. A q-tree for
Qi is a rooted directed tree FQi = (V,E) with V = var(Q)
s.t. (1) for all atoms a in Qi the set var(a) forms a directed
path in FQ starting at the root, and (2) if out(Qi) 6= ∅, then
out(Qi) is a connected subset in FQi containing the root.
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S(x, y, u, v)

[x, y, w]

R(x, y, w)

Figure 7: Illustration of the proof of Proposition 4.25

To show the proposition, assume that CQ Q is hierarchi-
cal. From the q-trees for the connected components of Q we
can construct a simple join tree T for Q that is compatible
with Q, as follows. For ease of exposition, let us assume
that Q has a single connected component; the general case
is similar. Let FQ be the q-tree for Q. Then, for every node
x in FQ, define p(x) to be set of variables that occur in the
unique path from x to the root in FQ. In particular, p(x)
contains x. By definition of q-trees, p(x) must be a partial
hyperedge of A, the set of atoms in Q. Construct T as fol-
lows. Initially, T contains only the empty hyperedge ∅. For
all variables x ∈ var(Q), add hyperedge p(x) to T . For ev-
ery edge x → y in FQ, add an edge p(x) → p(y) to T . If x
is the root in FQ, then also add the edge p(x) → ∅ to the
root ∅ in T . Next, add all atoms of Q to T , and for each
atom a, add an edge from a to the hyperedge h in T with
h = var(a). (This hyperedge has been generated by p(x)
with x the variable in var(a) that is the lowest among all
variables of var(a) in FQ). Figure 7 illustrates this construc-
tion for Q = πx,y,u(E(x, y) 1 R(x, y, w) 1 S(x, y, u, v)) and
the q-tree FQ shown in Figure 7. Note that in this example,
T is indeed a simple generalized join tree. It can be shown
that this is always the case. It remains to show that T is
compatible with Q. To do so, observe that, by definition of
q-tree, out(Q) is a connected subset of FQ that contains the
root. Then N = {∅}∪{p(x) | x ∈ out(Q)} must be a connex
subset of T with var(N) = out(Q), as desired.

Proposition 4.26. If a CQ Q has a join tree T which is
both simple and compatible with Q, then Q is q-hierarchical.

Proof. Assume that T is a simple join tree for Q that is also
compatible with Q. We first show that Q is hiearchical. Let
x and y be two variables in Q. If at(x) ∩ at(y) = ∅ we are
done. Hence, assume at(x)∩at(y) 6= ∅. Let c ∈ at(x)∩at(y).
We need to show that either at(x) ⊆ at(y) or at(y) ⊆ at(x).
Assume for the purpose of contradiction that neither holds.
Then there exists a ∈ at(x)\at(y) and similarly an atom b ∈
at(y) \ at(x). Since T is a join tree, and since x occurs both
in a and c, we know that x must occur in every node on the
unique undirected path between a and c in T . In particular,
let n be the least common ancestor of a and c. Then x ∈
var(n). Similarly, y must occur in every node on the unique
undirected path between b and c in T . In particular, let m
be the least common ancestor of b and c. Then y ∈ var(m).
Now there are two possibilities. Either (1) n is an ancestor of
m. But then, since T is simple, x ∈ var(n) ⊆ var(m). Since

b is a descendant of m then by simplicity of T hence x ∈
var(n) ⊆ var(m) ⊆ var(b). This contradicts our assumption
that b ∈ at(y) \ at(x). Otherwise, (2) m is an ancestor of m
and we similarly obtain a contradiction to our assumption
that a ∈ at(x) \ at(y).

It remains to show q-hierachicality. Hereto, assume that
at(x) ( at(y) and x ∈ out(Q). We need to show that y ∈
out(Q). Let a ∈ at(x) and let b ∈ at(y)\at(x). In particular,
a contains both x and y, while b contains only y. From
compatibility of T with Q, it follows that there is a connex
subset N of T such that var(N) = out(Q). Let n be the
lowest ancestor node of a in N that contains x. Because
T is simple, all descendants of n hence also have x. As
a consequence, b cannot be a descendant of n. Since a
and b share y, this implies that the unique undirected path
between a and b must pass through n. Because all nodes
on this path must share all variables in common between a
and b, it follows that y ∈ var(n) ⊆ var(N) = out(Q).

Proposition 4.27. Let Q be the hierarchical join query
R(x, y, z) 1 S(x, y, u) 1 T (y, v, w) 1 U(y, v, p). Every sim-
ple width-one GHD for Q has at least one partial hyperedge.

Proof. Let T be a simple width-one GHD for Q and as-
sume, for the purpose of contradiction that T contains only
atoms and full hyperedges. T ’s nodes are hence elements of
{R(x, y, z), S(x, y, u), T (y, v, w), U(y, v, p), [x, y, z], [x, y, u], [y,
v, w], [y, v, p]}. Partition this set into

XY = {R(x, y, z), S(x, y, u), [x, y, z], [x, y, u]}
Y V = {T (y, v, w), U(y, v, p), [y, v, w], [y, v, p]}.

Now consider the unique undirected pathm,n1, n2, . . . , nk, p
between m = R(x, y, z) and p = T (y, v, w). There are two
possibilities: either this undirected path shows that some
node in XY is a parent of a node in Y V , or it shows that
some node in Y V is a parent of some node in XY . In either
case, hierarchicality is violated since nodes in XY all have
variable x while nodes in Y V don’t and, conversely, nodes
in Y V all have variable v while nodes in XY don’t.

D. QUERIES
Full join queries

FQ1
SELECT * FROM orders o, lineitem l, part p , partsupp ps
WHERE o.orderkey = l.orderkey, AND l.partkey = p.partkey
AND l.partkey = ps.partkey AND l.suppkey = ps.suppkey

FQ2
SELECT * FROM lineitem l, orders, customer c, part p , nation n
WHERE l.orderkey = o.orderkey AND o.custkey = c.custkey
AND l.partkey = p.partkey AND c.nationkey = n.nationkey

FQ3
SELECT * FROM orders o, lineitem l,
partsupp ps, supplier s, customer c
WHERE o.orderkey = l.orderkey AND
l.suppkey = ps.suppkey AND
l.suppkey = s.suppkey AND o.custkey = c.custkey

FQ4
SELECT * FROM lineitem l, supplier s, partsupp ps
WHERE l.suppkey = s.suppkey
AND l.suppkey = ps.suppkey

FQ5
SELECT * SELECT * FROM date_dim dd, store_sales ss, item i
WHERE ss.s_item_sk = i.i_item_sk
AND ss.s_date_sk = dd.d_date_sk
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TPC-H

Q1
SELECT l_returnflag, l_linestatus, SUM(l_quantity)
AS sum_qty, SUM(l_extendedprice) AS sum_base_price,
SUM(l_extendedprice * (1 - l_discount)) AS sum_disc_price,
SUM(l_extendedprice * (1 - l_discount) * (1 + l_tax)) AS
sum_charge, AVG(l_quantity) AS AVG_qty, AVG(l_extendedprice)
AS AVG_price, AVG(l_discount) AS AVG_disc, count(*)
AS count_order
FROM lineitem WHERE
l_shipdate <= date ’1998-12-01’ - interval ’108’ day
group by l_returnflag,l_linestatus

Q3
SELECT l_orderkey,SUM(l_extendedprice * (1 - l_discount))
AS revenue,o_orderdate,o_shippriority
FROM customer,orders,lineitem WHERE c_mktsegment = ’AUTOMOBILE’
AND c_custkey = o_custkey AND l_orderkey = o_orderkey
AND o_orderdate < date ’1995-03-13’ AND
l_shipdate > date ’1995-03-13’
group by l_orderkey,o_orderdate,o_shippriority

Q4
SELECT o_orderpriority, count(*) AS order_count
FROM orders WHERE o_orderdate >= date ’1995-01-01’ AND
o_orderdate < date ’1995-01-01’ + interval ’3’ month
AND exists ( SELECT * FROM lineitem WHERE
l_orderkey = o_orderkey AND l_commitdate < l_receiptdate)
group by o_orderpriority

Q6
SELECT SUM(l_extendedprice * l_discount) AS revenue
FROM lineitem
WHERE l_shipdate >= date ’1994-01-01’ AND
l_shipdate < date ’1994-01-01’ + interval ’1’ year
AND l_discount between 0.06 - 0.01 AND
0.06 + 0.01 AND l_quantity < 24;

Q9
SELECT nation,o_year,SUM(amount) AS sum_profit
FROM ( SELECT n_name
AS nation,extract(year FROM o_orderdate) AS o_year,
l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity
AS amount
FROM part,supplier,lineitem,partsupp,
orders,nation WHERE s_suppkey = l_suppkey
AND ps_suppkey = l_suppkey AND
ps_partkey = l_partkey AND p_partkey = l_partkey
AND o_orderkey = l_orderkey
AND s_nationkey = n_nationkey
AND p_name like ’%dim%’) AS profit
group by nation,o_year

Q12
SELECT l_shipmode, SUM(case when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1 else 0 end) AS high_line_count,
SUM(case when o_orderpriority <> ’1-URGENT’
AND o_orderpriority <> ’2-HIGH’ then 1 else 0 end)
AS low_line_count
FROM orders,lineitem
WHERE o_orderkey = l_orderkey AND
l_shipmode in (’RAIL’, ’FOB’) AND
l_commitdate < l_receiptdate AND
l_shipdate < l_commitdate AND
l_receiptdate >= date ’1997-01-01’ AND
l_receiptdate < date ’1997-01-01’ + interval ’1’ year
group by l_shipmode

Q13’
SELECT c_count, COUNT(*) AS custdist
FROM (
SELECT c.custkey AS c_custkey, COUNT(o.orderkey) AS c_count
FROM customer c, orders o
WHERE c.custkey = o.custkey
AND (o.comment NOT LIKE ’%special%requests%’)
group by c.custkey) c_orders
group by c_count;

Q16’
SELECT p_brand, p_type, p_size, count(distinct ps_suppkey)
as supplier_cnt
FROM partsupp, part
WHERE p_partkey = ps_partkey AND p_brand <> ’Brand#34’
AND p_type not like ’LARGE BRUSHED%’
AND p_size in (48, 19, 12, 4, 41, 7, 21, 39)
AND ps_suppkey in ( SELECT s_suppkey FROM supplier
WHERE s_comment not like ’%Customer%Complaints%’ )
GROUP BY p_brand, p_type, p_size

Q18
SELECT c_name,c_custkey,o_orderkey,o_orderdate,
o_totalprice,SUM(l_quantity)
FROM customer,orders,lineitem
WHERE o_orderkey in (SELECT l_orderkey
FROM lineitem
group by l_orderkey having SUM(l_quantity) > 314)
AND c_custkey = o_custkey AND o_orderkey = l_orderkey
group by
c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice

TPC-DS

Q3
SELECT dt.d_year, i.i_brand _id, i.i_brand ,
SUM(ss.ss_ext_sales_price) AS sum_agg
FROM date_dim dt, store_sales ss, item i
WHERE dt.d_date_sk = ss.ss_sold_date_sk
AND ss.ss_item_sk = i.i_item_sk
AND dt.d_moy = 12
AND i.i_manufact_id = 436
group by dt.d_year, i.i_brand , i.i_brand _id;

Q7
SELECT i.i_item_id, AVG(ss.ss_quantity)
AS agg1, AVG(ss.ss_list_price)
AS agg2, AVG(ss.ss_coupon_amt) AS agg3,
AVG(ss.ss_sales_price) AS agg4
FROM store_sales ss, customer_demographics cd,
date_dim d, item i, promotion p
WHERE ss.ss_item_sk = i.i_item_sk
AND ss.ss_sold_date_sk = d.d_date_sk
AND ss.ss_cdemo_sk = cd.cd_demo_sk
AND ss.ss_promo_sk = p.p_promo_sk
AND cd.cd_gender = ’F’
AND cd.cd_marital_status = ’W’
AND (p.p_channel_email = ’N’ OR p.p_channel_event = ’N’)
AND d.d_year = 1998
group by i.i_item_id;

Q19
SELECT i.i_brand_id, i.i_brand , i.i_manufact_id,
i.i_manufact, SUM(ss.ss_ext_sales_price) AS ext_price
FROM date_dim dd, store_sales ss, item i,
customer c, customer_address ca, store s
WHERE dd.d_date_sk = ss.ss_sold_date_sk
AND ss.ss_item_sk = i.i_item_sk
AND i.i_manager_id = 7
AND dd.d_moy = 11
AND dd.d_year = 1999
AND ss.ss_customer_sk = c.c_customer_sk
AND c.c_current_addr_sk = ca.ca_address_sk
AND ss.ss_store_sk = s.s_store_sk
group by
i.i_br , i.i_br, _id, i.i_manufact_id, i.i_manufact;

Q22
SELECT i.i_product_name, i.i_brand ,
i.i_class, i.i_category,
SUM(inv.inv_quantity_on_hand) AS qoh
FROM date_dim dd, inventory inv, item i,
warehouse wh
WHERE dd.d_date_sk = inv.inv_date_sk
AND inv.inv_item_sk = i.i_item_sk
AND inv.inv_warehouse_sk = wh.w_warehouse_sk
AND dd.d_month_seq between 1193 AND 1204
group by
i.i_product_name, i.i_brand , i.i_clASs, i.i_category;
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