
Clustering Provenance

Facilitating provenance exploration through data abstraction

Linus Karsai
University of Sydney

Australia 2006
lkar7536@uni.sydney.edu.au

Alan Fekete
University of Sydney

Australia 2006
alan.fekete@sydney.edu.au

Judy Kay
University of Sydney

Australia 2006
judy.kay@sydney.edu.au

Paolo Missier
Newcastle University

NE1 7RU, United Kingdom
paolo.missier@ncl.ac.uk

ABSTRACT
As digital objects become increasingly important in peo-
ple’s lives, people may need to understand the provenance,
or lineage and history, of an important digital object, to un-
derstand how it was produced. This is particularly impor-
tant for objects created from large, multi-source collections
of personal data. As the metadata describing provenance,
Provenance Data, is commonly represented as a labelled di-
rected acyclic graph, the challenge is to create effective in-
terfaces onto such graphs so that people can understand the
provenance of key digital objects. This unsolved problem is
especially challenging for the case of novice and intermittent
users and complex provenance graphs. We tackle this by cre-
ating an interface based on a clustering approach. This was
designed to enable users to view provenance graphs, and to
simplify complex graphs by combining several nodes. Our
core contribution is the design of a prototype interface that
supports clustering and its analytic evaluation in terms of
desirable properties of visualisation interfaces.

Keywords
Provenance; Visualisation; Large-scale graphs

1. INTRODUCTION
The concept of provenance (from the Latin provenio, “to

come forth”), has been around for a long time [3]. It has
been used in many other fields outside of computer science,
primarily that of art and antiques, where the provenance of
a piece is used as a guide to authenticity and quality. It
has also been used in the field of accounting in relation to
auditing as well as in databases, linking tuples in a query
output to the reasons they exist.

In this paper, provenance is a form of metadata repre-
senting the lineage of a dataset or digital object. This is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939508

similar to the information stored in a version control system
but goes beyond versions and authorship to capture a wider
range of lineage data. Provenance makes it possible to iden-
tify and trace what other pieces of information and activities
have led to a digital object being in its current state.

Large amounts of system-level, observational provenance
can be captured automatically and inexpensively, as in PASS [10,
2]. User-level provenance, however, depends more on the
specific applications like Burrito [8], an application for ex-
perimental scientists.

Burrito, and similar early interfaces, stored provenance
information in a variety of flat file formats. Since 2013, the
PROV specification [4] provides a standard generic model
for provenance, with well-defined domain-specific extension
points and a number of serialisations (RDF, XML, JSON,
PROV-N).

PROV statements express“descriptions of the entities and
activities involved in producing and delivering or otherwise
influencing a given object” and they are underpinned by
three main concepts illustrated in Fig. 1: (i) Entities: Phys-
ical, digital, conceptual objects, (ii) Activities: Elements
that cause an entity to come into existence, and (iii) Agents:
Someone or something that can be assigned responsibility for
an activity taking place.

Figure 1: Key Concepts and relationships from
the PROV standard displayed in a labelled acyclic
graph.

Provenance data has the potential for an individual to un-
derstand and manage the sharing and use of their own data.
Enabling users to understand information such as granular-
ity or aggregation level could be important for citizen sci-

mailto:lkar7536@uni.sydney.edu.au
mailto:alan.fekete@sydney.edu.au
mailto:judy.kay@sydney.edu.au
mailto:paolo.missier@ncl.ac.uk
http://dx.doi.org/10.1145/2939502.2939508

Figure 2: Provenance Data, as viewed in our
ProvOwl prototype. This labelled acyclic graph
shows Bob’s role in creating a report based on his
fitness data.

ence contributions. This is because it is only the individual
user who should decide how their data is used and with this
control they may be more likely to release it. It also has po-
tential roles in personal informatics [9] where a user manages
their own streams of personal data.

Here is an example to illustrate this point. Alice has a
report that describes her current fitness level as well as out-
lining possible improvements. Viewing the provenance of
this report shows which sources have been used (e.g. Fit-
Bit1 data to track steps, Withings2 scale to track weight)
and what processes analysed them. In this case it could
show that Alice’s fitness report was generated using step
data from her FitBit data that had been passed through a
summarisation process that summarises 15 minute interval
data into daily steps. Expanding on this it also allows her to
track information forward in case of errors that need correc-
tion. Alice remembers that she lent her FitBit to a friend
to try for a week, causing errors in her data. Provenance
allows tracing of the erroneous information forward to see
what other processes and entities it effected and will need
to be corrected.

Provenance data, especially of the observational, low-level
kind, quickly grows in size. Whilst the examples in this
paper only show graphs with a small number of nodes, a
provenance file can readily grow to millions of nodes. Be-
cause provenance stores historical data without summarisa-
tion, its grows monotonically over time. The speed of this
increase is directly related to the granularity that the cap-
tured provenance. So, for example, capturing user actions
typically makes the increase slower than is the case for oper-
ating system actions. In both cases, however, handling these

1FitBit is a type of fitness tracker, best known for tracking
steps. https://www.fitbit.com/au
2Withings manufacture a digital scale that uses WiFi or
bluetooth to log your weight. http://www.withings.com/
us/en/products/smart-body-analyzer

Figure 3: The graph of Fig. 2, after the user selected
the Analyse node, with all its children, and clustered
them, as a new node named Analyse group. The user
has selected the Report node, indicated by the red
outline, and its details appear at the top left. Con-
textual actions are show in blue text in the details
panel: Rename node allows the user to change the
name of the node. If multiple nodes where selected
there would be an option to group those nodes.

large graphs causes both technical and usability issues.
From a technical standpoint it becomes resource intensive

to scan a provenance file and display a visualisation of it,
more so if the application reading the file runs analysis or
summarisation of the data.

Even more critically, from a usability perspective, it quickly
becomes difficult for a user to interpret and explore such a
large amount of information. The question then becomes
how to ensure users can readily understand, explore and find
the information they want from a graph. We build on re-
search in both provenance [13, 5] and large scale graphs [12,
1] to tackle this problem by simplifying graphs. We describe
our approach as clustering, meaning that we combine mul-
tiple nodes into a single node. This means that there are
fewer nodes on the screen, with new combination concepts.

Notable amongst prior attempts at adaptive visualization
of provenance graphs is the MapOrbiter [10], which is based
on semantic zoom and applies primarily to low-level system
provenance, like PASS [10]. One limitation of the approach
is that the semantic aspect assumes a priori knowledge of
the type of processes that appear in the provenance trace,
and of their hierarchical relationships.

Figures 2 and 3 illustrate our approach for an entity Re-

port, written by Bob, using information he analysed based
on a Fitness-Summary that was generated by a Summarize

script that joins information from his own fitness feeds,
{Fitbit, GoogleFit, CalorieTracker}. Figure 3 shows the
same provenance graph as Fig. 2 after all the nodes related
to fitness analysis and summarisation have been clustered
into one node Analyse group. Note that these graphs both
still convey the same core concept: Bob has written a report

https://www.fitbit.com/au
http://www.withings.com/us/en/products/smart-body-analyzer
http://www.withings.com/us/en/products/smart-body-analyzer

regarding fitness data he has analysed himself. Even this
small example illustrates clustering can simplify a graph,
potentially making it more useful if the level of abstraction
is right for Bob’s needs.

2. CHALLENGES
This clustering seems promising to reduce the size, and so,

the complexity, of the visible provenance graph in an inter-
face. Many challenges remain about the ways to make the
clustering interface work well for users, so they can do clus-
tering, and then to explore the graph. This section discusses
challenges we have encountered.

2.1 Specification of user-defined clusters
A clustering action takes a set of nodes and combines

them. Our interface follows the established interface method
to select multiple items, hold down ctrl then click each node,
once multiple nodes are selected a contextual hyperlink will
appear in the details panel (like the blue hyperlinks in Fig. 3)
allowing the user to group them. This works well for com-
bining a small number of nodes.

For combining larger numbers of nodes we have imple-
mented a search feature that can be used to group multiple
nodes at once. Searching via the search panel will select
the nodes matching the search phrase which in turn allows
grouping of these nodes. If, for example, you had 20 nodes
named ‘Fitbit-1-Jan-2016’, ‘Fitbit-2-Jan-2016’... ‘Fitbit-20-
Jan-2016’. You want to group each of these nodes together,
instead of clicking on each node individually you can instead
search ‘Fitbit-[1-20]-Jan-2016’ which will select all the Fit-
Bit nodes and allow them to be grouped. Currently this
regex search is done on each attribute of each node. In the
future it would be useful to specify and limit the regex on
particular properties, this way you could search for nodes
with a certain title and/or a certain property3.

This could be further extended beyond features of the
node, to include the relationship between a node and oth-
ers: for example, “cluster all nodes that match the name
‘Fitbit-*’ and are also not used in a particular report.” Fur-
thermore during initial usability tests users requested the
ability to cluster all the children of a certain node.

It may be useful to support parameterised clustering, where
one command creates multiple clusters (for example, “clus-
ter all the Fitbit nodes from each month, separately, into a
month-granularity cluster’). It will be challenging to design
such a language, so that it is both powerful and easy to learn
and use.

Some automation may help, with where the platform sug-
gesting clusterings, based on workloads of provenance queries
recorded (for example, one might cluster nodes which are
frequently accessed together).

2.2 Useful naming
Once nodes have been clustered, it is difficult to automat-

ically generate a name that the user will find meaningful for
the new cluster [12, 1]. Automating this process requires
domain knowledge and it may also need deep models of the
user and their needs. This would be a substantial under-

3Depending on the way the provenance is captured different
properties may be attributed to nodes. The prov standard
allows an arbitrary number of key value properties to be
added to a node.

taking. For example, it may demand recognition that vim,
emacs and nano are all text editors?

Similar problems have been solved in other settings. If
you create a new folder on an iPhone it will automatically be
named with a label appropriate to the applications inside it
(a folder of photography apps may be named ‘photography’).
However in this setting applications are given a category by
their creator when submitted to the app store, whether it
be photography, games or utilities. This metadata allows
for easy naming of clustered items.

In an early version of our prototype, a new cluster-node
was given a short random alpha-numeric name. However,
this made the graph incomprehensible, with users needing to
manually update the name immediately so that they could
understand the graph. Our current, still simple approach
uses the name of the node in the cluster with the shortest
distance from the root with the text “group” appended to
the end.

2.3 Avoiding false dependencies
Clustering is a simple type of graph rewriting, which cre-

ates an abstraction of the graph and in turn simplifies details
of the original graph. This can produce false dependencies:
newly implied lines of lineage, created by clustering, that
falsely suggest one entity had influence upon another. This
violates the main assumption that provenance records the
factual history of data derivation. Conversely the opposite
of this, removing a dependency, is not as large an issue be-
cause it is understood that the ability to observe data trans-
formations is limited and therefore incomplete.

As well as false dependencies circular dependencies may
also occur, along with other violations of the constraints de-
fined in the PROV-CONSTRAINT W3C document [6]. For
example, if the clustering set in the example of Fig. 2 only in-
cluded nodes {fitness-summary, CalorieIntakeFeed}, then
a simple replacement of these nodes with a node x would re-
sult in a circular dependency, namely
〈x wasGeneratedBy summarize〉 and 〈summarize used x〉,
you can see this in Fig. 4.

The undesirable consequences of false dependencies can
include unnecessary checks and recomputation when revis-
ing dependent entities to reflect corrected or changed source
data (like the example from the introduction where Alice is
trying to fix data affected by erroneous FitBit data). Sim-
ilarly, if provenance is used to enforce limits on where and
how data is exposed, a false dependency could lead to some
computations being stopped as they would be considered
(incorrectly) to violate the limits. Conceptually it violates
the intuition that a transitive relationship cannot be circu-
lar.

A theoretical formulation of provenance abstraction by
grouping (clustering) has been proposed in [11] to describe
this and other problems that occur with clustering, along
with simple algorithms for grouping arbitrary sets of nodes.
Essentially, that work showed that to avoid false dependen-
cies, as well as circular data dependencies, one must first
compute a closure operation that extends the user-selected
nodes with all other nodes that sit on any path amongst
these initial clustering nodes. Combining this prior work
with our user-oriented provenance navigation model can lead
to a provably correct clustering mechanism.

There is also the issue of mislabelled relationships. The
labels used on relationships are specific to relationships be-

Figure 4: When grouping on {fitness-summary, Calo-
rieIntakeFeed} a circular dependency is caused be-
tween Fitness-Summary group and Summarize. The
panel on the right can be toggled by the history but-
ton above and shows a list of user actions with the
current state indicated in bold. Users can use the
Undo and Redo buttons to move between actions.

tween different concepts. An Entity was generated by an
Activity or an Activity used an Entity. However clustering
nodes create a fourth concept that uses an unlimited set of
labels for its relationships. This can be confusing to users
and can also reveal information about nodes in a cluster.
However it would also be too restrictive to require every
clustering to only group items that are from a single kind
of concept. Finding suitable rules or interfaces to help the
user cluster without creating mislabelled relationships is a
challenge we hope to tackle in the future.

3. INITIAL INTERFACE
Our interface reads provenance data stored in the PROV

format [4] and renders a directed acyclic graph that users
can explore by zooming, panning, rearranging nodes and
clustering nodes manually.

We implemented this as a web application. We use the
Cytoscape.js4 because it has good support for graph theory.
Files are loaded completely client-side, to reduce bandwidth.
If faster analysis were required, it may require use of a com-
bination of server-side and client-side processing.

3.1 Features
Below we explain the different features of the prototype

application we have built. These are loosely based on the
seven visualisation tasks outlined by Ben Schneiderman [14].
The mechanism for clustering nodes is described in sec-
tion 3.1.3.

3.1.1 Movement and Rearranging
On first opening a provenance graph, the viewport is po-

sitioned to fit the entire graph on screen. This gives users
an overview of the provenance. Users can then move the

4Cytoscape.js: Graph theory library for analysis and visu-
alisation http://js.cytoscape.org/

viewport around by clicking and dragging. Zooming is ac-
complished by using the scroll wheel.

By default the graph’s overall layout is determined us-
ing the JavaScript library dagre5, with other layout options,
such as circle and breadth-first, available using the “Reset
Layout” menu (visible on the top bar, second from the left
in the figures). Users can also re-arrange nodes as they wish
by clicking and dragging on a node.

3.1.2 Details-on-demand
Selecting a node shows the details panel, as in Fig. 3.

This displays other information about the node and contex-
tual functions such as renaming nodes (the blue link at the
bottom of the panel) or clustering nodes.

3.1.3 Clustering
Users can select multiple nodes at once, by clicking on

each whilst holding down ctrl. Once multiple nodes have
been selected, the information panel will contain a link to
group the nodes. Selecting this moves the nodes together,
replacing them with a single composite node, represented by
a light blue oval, with default name based on the name of
the node closest to the root plus the word “group”.

It’s also possible to search and select multiple nodes. Open-
ing the search panel from the header allows the user to enter
a string they would like to select nodes on. Once selected,
nodes can be grouped the same way as above — using the
group link in the information panel.

3.1.4 History
Having the ability to undo and redo actions is critical

to ensure that users can confidently and safely explore the
information, without fear of causing permanent damage [14].
Our interface tracks the movement and clustering of nodes.
Then undo and redo buttons allow users to step through
through these actions. A history pane can be toggled, by
clicking the top right history icon (this pane is visible on
the right of Fig. 4), to show what current step of history a
user is at.

3.1.5 Sharing
The “Export” menu item (in the top bar of the figures)

saves an image of the current graph with all the user modi-
fications. This can either save the entire graph or be limited
to the current viewport, if the user wanted to focus on a
certain section.

3.2 Planned Features
The prototype source code is available on GitHub6. The

interface is also available online where you can test it with
a sample graph7. We describe features under development
to improve usability.

We propose to improve on the regular expression language
to select nodes, as mentioned in the section on challenges.
This will enable users to select nodes in cases such as: (i)
Select all nodes not influencing the “Summarize” node (ii)
Select all children of “Fitness-Summary”. For large graphs,

5Dagre: supports lay out of directed graphs client-side. The
main skeleton of algorithm comes from “A Technique for
Drawing Directed Graphs” [7]
6https://github.com/karsai5/ProvOwl
7http://provowl.com/?file=/prov-examples/provn/
threenode.provn

http://js.cytoscape.org/
https://github.com/karsai5/ProvOwl
http://provowl.com/?file=/prov-examples/provn/threenode.provn
http://provowl.com/?file=/prov-examples/provn/threenode.provn

this could allow for faster user-directed simplification of a
graph.

As an extension of this, the language should describe pa-
rameterised clustering, so users ask for multiple similar clus-
ters to be formed. For example “Create clusters from nodes
the same depth from the root” or even using data inside
the nodes “Create clusters from nodes that have the same
creation date”.

This could also impact the way nodes are automatically
named. If the user created clusters from nodes that all have
the same creation date, the system may infer that the name
for the new node should include the creation date.

We also wish to extend the PROV standard to include
descriptions of cluster nodes. This would allow a user to
cluster nodes manually, export the PROV file with cluster
descriptions and then share with someone else. This extrac-
tion, being able to export your current state of exploration,
would allow further exploration from the current state later
on or even sharing with other users for further analysis.

4. REFERENCES
[1] J. Abello, F. Van Ham, and N. Krishnan.

ASK-GraphView: A large scale graph visualization
system. In IEEE Transactions on Visualization and
Computer Graphics, volume 12, 669–676, 2006.

[2] N. Balakrishnan, T. Bytheway, R. Sohan, and A.
Hopper. OPUS: A Lightweight System for
Observational Provenance in User Space. In USENIX
Workshop on the Theory and Practice of Provenance
(TaPP), 8, 2013.

[3] D. Bearman and R. Lytle. The Power of the Principle
of Provenance. Archivaria, 21(February 1982):14–27,
1985.

[4] K. Belhajjame, H. Deus, D. Garijo, G. Klyne, P.
Missier, S. Soliand-Reyes, and S. Zednik. PROV
Model Primer. In W3C Working Group Note, 2013.

[5] M. A. Borkin, C. S. Yeh, M. Boyd, P. MacKo, K. Z.
Gajos, M. Seltzer, and H. Pfister. Evaluation of
filesystem provenance visualization tools. IEEE
Transactions on Visualization and Computer
Graphics, 19(12):2476–2485, 2013.

[6] J. Cheney, P. Missier, and L. Moreau. Constraints of
the Provenance Data Model. Technical report, 2012.

[7] E. R. Gansner, E. Koutsofios, S. C. North, and K. P.
Vo. A Technique for Drawing Directed Graphs. IEEE
Transactions on Software Engineering, 19(3):214–230,
1993.

[8] P. Guo and M. Seltzer. BURRITO : Wrapping Your
Lab Notebook in Computational Infrastructure. In
USENIX Workshop on the Theory and Practice of
Provenance (TaPP), 4, 2012.

[9] I. Li, Y. Medynskiy, J. Froehlich, and J. E. Larsen.
Personal informatics in practice: improving quality of
life through data. CHI Extended Abstracts on Human
Factors in Computing Systems, 2799–2802, 2012.

[10] P. Macko, M. Chiarini, and M. Seltzer. Collecting
Provenance via the Xen Hypervisor. In USENIX
Workshop on the Theory and Practice of Provenance
(TaPP), 2011.

[11] P. Missier, J. Bryans, C. Gamble, V. Curcin, and R.
Danger. Provabs: Model, policy, and tooling for
abstracting PROV graphs. In International

Provenance & Annotation Workshop (IPAW), 2014.

[12] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill,
S. Dubs, and M. Roseman. Navigating hierarchically
clustered networks through fisheye and full-zoom
methods. ACM Transactions on Computer-Human
Interaction, 3(2):162–188, 1996.

[13] M. Seltzer and P. Macko. Provenance Map Orbiter:
Interactive Exploration of Large Provenance Graphs.
In USENIX Workshop on the Theory and Practice of
Provenance (TaPP), 2011.

[14] B. Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In IEEE
Symposium on Visual Languages, 336–343, 1996.

	Introduction
	Challenges
	Specification of user-defined clusters
	Useful naming
	Avoiding false dependencies

	Initial interface
	Features
	Movement and Rearranging
	Details-on-demand
	Clustering
	History
	Sharing

	Planned Features

	References

