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ABSTRACT
Given a set D of tuples defined on a domain Ω, we study dif-
ferentially private algorithms for constructing a histogram over Ω
to approximate the tuple distribution in D. Existing solutions for
the problem mostly adopt a hierarchical decomposition approach,
which recursively splits Ω into sub-domains and computes a noisy
tuple count for each sub-domain, until all noisy counts are below
a certain threshold. This approach, however, requires that we (i)
impose a limit h on the recursion depth in the splitting of Ω and
(ii) set the noise in each count to be proportional to h. The choice
of h is a serious dilemma: a small h makes the resulting histogram
too coarse-grained, while a large h leads to excessive noise in the
tuple counts used in deciding whether sub-domains should be split.
Furthermore, h cannot be directly tuned based on D; otherwise, the
choice of h itself reveals private information and violates differen-
tial privacy.

To remedy the deficiency of existing solutions, we present
PrivTree, a histogram construction algorithm that adopts hierarchi-
cal decomposition but completely eliminates the dependency on a
pre-defined h. The core of PrivTree is a novel mechanism that (i)
exploits a new analysis on the Laplace distribution and (ii) enables
us to use only a constant amount of noise in deciding whether a
sub-domain should be split, without worrying about the recursion
depth of splitting. We demonstrate the application of PrivTree in
modelling spatial data, and show that it can be extended to han-
dle sequence data (where the decision in sub-domain splitting is
not based on tuple counts but a more sophisticated measure). Our
experiments on a variety of real datasets show that PrivTree con-
siderably outperforms the states of the art in terms of data utility.
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1. INTRODUCTION
Releasing sensitive data while preserving privacy is a problem

that has attracted considerable attention in recent years. The state-
of-the-art paradigm for addressing the problem is differential pri-
vacy [16], which requires that the data released reveals little infor-
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mation about whether any particular individual is present or absent
from the data. To fulfill such a requirement, a typical approach
adopted by the existing solutions is to publish a noisy version of
the data in place of the original one.

In this paper, we consider a fundamental problem that is fre-
quently encountered in differentially private data publishing: Given
a set D of tuples defined over a domain Ω, we aim to decompose Ω
into a set S of sub-domains and publish a noisy count of the tuples
contained in each sub-domain, such that S and the noisy counts
approximate the tuple distribution in D as accurately as possible.
Applications of the problem include:

• Private modelling of spatial data [12, 41] often requires generat-
ing a multi-dimensional histogram of the input data.

• For differentially private data mining (e.g., k-means [48] and re-
gression analysis [29]), one of the general approaches is to first
coarsen the input data and inject noise into it, and then use the
modified data to derive mining results.

• Existing algorithms for sequence data publishing [7] require
identifying frequent patterns (e.g., prefixes) in a given set D of
sequences. This is equivalent to asking for a decomposition of
the sequence domain Ω into a set of disjoint sub-domains, such
that (i) each sub-domain includes all sequences in D containing
a particular pattern, and (ii) the number of sequences included in
each sub-domain is larger than a given threshold.

To address the above decomposition problem, the prior art
mostly adopts a hierarchical approach, which (i) recursively splits
Ω into sub-domains and computes a noisy tuple count for each of
them, and (ii) stops splitting a sub-domain when its noisy count is
smaller than a threshold. This approach, albeit intuitive, requires a
pre-defined limit h on the maximum depth of recursion when split-
ting Ω. The reason is that, to ensure differential privacy, the amount
of noise injected in each tuple count has to be proportional to the
maximum recursion depth, and hence, h must be fixed in advance
so that the algorithm can decide the correct noise amount to use.

Nevertheless, the choice of h is a serious dilemma: for the al-
gorithm to produce fine-grained sub-domains of Ω, h cannot be
small; yet, increasing h would lead to noisier tuple counts, and thus
more errors in deciding whether a sub-domain should be split. As
a consequence, no choice of h could result in an accurate approx-
imation of the input data. Furthermore, we cannot tune h directly
on the input dataset; otherwise, the choice of h itself reveals pri-
vate information and violates differential privacy. To mitigate these
issues, existing work relies on heuristics to select an appropriate
value of h, and to generate fine-grained decompositions even when
h is small. As we show in our experiments, however, those heuris-
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tics are rather ineffective when the input data follows a skewed dis-
tribution (which is often the case in practice).

Contributions. Motivated by the limitations of existing solutions,
we present PrivTree, an algorithm for the decomposition problem
that adopts the hierarchical approach but completely eliminates the
dependency on a pre-defined h. In particular, PrivTree requires
only a constant amount of noise in deciding whether a sub-domain
should be split, which enables it to generate fine-grained decom-
positions without worrying about the recursion depth. Such a sur-
prising improvement is obtained with a novel mechanism for dif-
ferential privacy that exploits a non-trivial analysis on the Laplace
noise [17] to derive an extremely tight privacy bound. Its central
insight is that, in the context of hierarchical decomposition, it is
possible to publish a sequence S of 0/1 values using O(1) noise,
regardless of the sensitivity of S [17]. In contrast, the standard
Laplace mechanism [17] requires that noise amount must be pro-
portional to S’s sensitivity.

To demonstrate the applications of PrivTree, we apply it to the
private modeling of spatial data, and present a non-trivial extension
to tackle sequence data, for which we adopt an advanced Markov
model and utilize a sophisticated measure (instead of tuple counts)
to decide whether a sub-domain should be split. We experimentally
evaluate our algorithms on a variety of real data, and show that they
considerably outperform the states of the art in terms of data utility.

In addition, we present an in-depth analysis on the connec-
tion between PrivTree and the support vector technique (SVT)
[18, 21, 28], a technique widely adopted for data publishing under
differential privacy. We show that there exists a variant of SVT [28]
that could have been used to implement PrivTree, if its privacy
guarantees are as claimed in previous work [28]. Nevertheless, we
prove that the SVT variant [28] does not satisfy differential privacy,
which makes it inapplicable in our context.

In summary, we make the following contributions in this paper:

1. We propose PrivTree, a differentially private algorithm for hi-
erarchical decomposition that eliminates the dependency on a
pre-defined threshold of the recursion depth.

2. We present applications of PrivTree in modeling spatial and se-
quence data. (Sections 3 and 4)

3. We analyze the connection between PrivTree and the SVT, and
point out a misclaim about the latter in [28]. (Section 5)

4. We conduct extensive experiments to demonstrate the superior-
ity of PrivTree over the states of the art. (Section 6)

2. PRELIMINARIES
In this section, we introduce the concepts behind differential pri-

vacy [16], and define the problem of spatial decomposition [14,46],
which we will address with our PrivTree algorithm in Section 3.

2.1 Differential Privacy
Let D be a sensitive dataset with n tuples, and A be a data pub-

lishing algorithm that takes D as input and releases a set of infor-
mation A(D). Differential privacy requires that A(D) should be
insensitive to the presence or absence of any particular tuple in D,
so that an adversary cannot infer much private information from
A(D). More formally, differential privacy is defined based on the
concept of neighboring datasets, as shown in the following.

DEFINITION 2.1 (NEIGHBORING DATASETS [16]). Two
datasets are neighboring if one of them can be obtained by
inserting a tuple into the other.

DEFINITION 2.2 (ε-DIFFERENTIAL PRIVACY [16]). An al-
gorithm A satisfies ε-differential privacy if, for any two neighbor-
ing datasets D and D′ and for any possible output O of A,

ln

(
Pr [A(D) = O]

Pr [A(D′) = O]

)
≤ ε,

where Pr[·] denotes the probability of an event.

There exist several mechanisms [17, 24, 38] for achieving dif-
ferential privacy, among which the most fundamental one is the
Laplace mechanism. Specifically, the Laplace mechanism consid-
ers a function f that takes D as input and outputs a vector of real
numbers, and it aims to release f(D) with differential privacy. To
achieve this objective, it adds i.i.d. noise into each value in f(D),
such that the noise η follows a Laplace distribution with the fol-
lowing probability density function:

Pr[η = x] =
1

2λ
e−|x|/λ. (1)

We denote the above distribution as Lap(λ), and refer to λ as the
scale (since the standard deviation of Lap(λ) is proportional to
λ). Dwork et al. [17] prove that the Laplace mechanism achieves
(S(f)/λ)-differential privacy, where S(f) is the sensitivity of f
defined as follows:

DEFINITION 2.3 (SENSITIVITY [17]). Let f be a function
that maps a dataset D into a vector of real numbers. The global
sensitivity of f is defined as

S(f) = max
D,D′

∥∥f(D)− f(D′)
∥∥
1
,

where D and D′ are any two neighboring datasets, and ‖ · ‖1 de-
notes the L1 norm.

Intuitively, S(f) measures the maximum possible change in f ’s
output when we insert or remove one arbitrary tuple in f ’s input.

An important property of differential private algorithms is that
their composition also ensures differential privacy:

LEMMA 2.1 (COMPOSITION RULE [37]). Let A1, . . . ,Ak

be k algorithms, such that Ai satisfies εi-differential privacy (i ∈
[1, k]). Then, the sequential composition (A1, . . . ,At) satisfies
(
∑k

i=1 εi)-differential privacy.

This lemma is particularly useful in proving that an algorithm en-
sures differential privacy: we can first decompose the algorithm
into a few sequential components, and then analyze each compo-
nent separately; after that, we can apply Lemma 2.1 to establish the
overall privacy guarantee of the algorithm.

2.2 Spatial Decompositions
Let D be a set of data points in a multi-dimensional space Ω.

A spatial decomposition [14, 46] of D consists of a tree-structured
decomposition of Ω into its sub-domains, along with a partition-
ing of the data points among the leaves of the decomposition tree.
For example, Figure 1 illustrates a spatial decomposition of a two-
dimensional dataset D that contains 12 data points. The decompo-
sition tree has 9 nodes, namely, v1, v2, . . . , v9, each of which is as-
sociated with a sub-domain of Ω (denoted as “dom” and visualized
as a black rectangle in Figure 1). We refer to each sub-domain as a
region. The root of the tree, v1, corresponds to a region that covers
the entire Ω; this region is recursively divided into four equal-size
sub-regions in the lower levels of the tree, until each leaf node con-
tains a sufficiently small number of data points.

The spatial decomposition in Figure 1 is referred to as a quadtree
[14, 46], and is widely adopted in spatial databases for efficient
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Figure 1: An illustration of a spatial decomposition tree.

query processing. In particular, suppose that we are to use the
quadtree to answer range count queries, i.e., queries that ask for
the number of data points contained in a rectangle q. In that case,
we can pre-compute, for each node v in the quadtree, the number
of data points contained in v’s region. Then, we can answer any
range count query q with a top-down traversal from the root node
of the quadtree. Specifically, at the beginning of the traversal, we
initialize the query answer as ans = 0. After that, for each node v
that we traverse, we examine v’s region dom(v), and differentiate
four cases:

1. If dom(v) is disjoint from q, we ignore v;

2. If dom(v) is fully contained in q, we increase ans by the point
count pre-computed for v;

3. If dom(v) partially intersects q and v is not a leaf node, then we
visit every child of v with a region not disjoint from q;

4. If dom(v) partially intersects q and v is a leaf node, then we
inspect the data points in dom(v), and add to ans the number of
points contained in q.

After the traversal terminates, we return ans as the result. For
instance, consider a range count query q that corresponds to the
dashed-line rectangle in Figure 1. To answer q, we only need to
examine four nodes, namely, v1, v4, v5, v9; the other nodes are all
ignored since their regions are disjoint from q.

The efficiency of quadtrees results from its adaptiveness to the
underlying distribution, i.e., it grows deep into the dense regions
of Ω where there are a large number of data points (e.g., the re-
gion of v4 in Figure 1), and it ignores those regions that are sparse
(e.g., the regions of v2, v3, v5). Such adaptiveness has motivated
existing work [12] to utilize quadtrees for generating private syn-
opses of spatial data. Specifically, the technique in [12] first applies
a differentially private algorithm to generate a quadtree, and then
employs the Laplace mechanism to inject noise into the point count
of each node. The quadtree and the noisy counts can then be used
to answer any range-count query q using the top-down traversal
algorithm mentioned above, with two minor modifications. First,
whenever we visit a node v whose region is fully contained in q, we
add the noisy count associated with v (instead of the exact count)
to the query answer ans. Second, if v is a leaf node whose region
dom(v) partially intersects q, then we multiply the noisy count of v

by
|q ∩ dom(v)|
|dom(v)| before adding it to ans, where | · | denotes the area of

a region. That is, given only the noisy count of v, we estimate the
number of data points in dom(v) that are contained in q, by assum-
ing that the points follow a uniform distribution. The rationale of
this approach is that, given the adaptiveness of the quadtree, each
leaf node v should cover a region where the data distribution is not
highly skewed; otherwise, v should contain a dense sub-region, in
which case the quadtree construction algorithm should have further
split v (instead of making v a leaf node). This makes it relatively
accurate to adopt a uniform assumption when estimating the contri-
bution of v to the answer of q. In Section 3, we will present a more
detailed analysis of the above quadtree approach, and then use it to
motivate our PrivTree algorithm.

Table 1: Table of notations
Notation Description
n, d the cardinality and dimensionality of the input dataset D

Lap(λ) a random variable following the Laplace distribution
with 0 mean and λ scale

dom(v) the sub-domain of a node v

depth(v) the hop distance from a node v to the root of the tree

θ the threshold used to decide if a node should be split

c(v), ĉ(v) the point count of a node v, and its noisy version

b(v), b̂(v) the biased count of a node v, and its noisy version

ρ(v) the privacy risk of a node v (see Equation (5))

ρ�(v) an upper bound of ρ (see Equation (7))

β the fanout of the spatial decomposition tree

δ the decaying factor used by PrivTree

I the set of distinct items in a given set D of sequences

3. PRIVATE SPATIAL DECOMPOSITIONS
This section presents our solution for constructing private spatial

decompositions. We first revisit the private quadtree approach (in
Section 2.2) and discuss its limitations; after that, we elaborate our
PrivTree algorithm, analyze its guarantees, and discuss its exten-
sions. Table 1 shows the notations that we frequently use.

3.1 Private Quadtrees Revisited
Algorithm 1 presents a generic version of the private quadtree

approach mentioned in Section 2.2. The algorithm takes as input
four parameters: (i) a set D of spatial points defined over a multi-
dimensional domain Ω, (ii) the scale λ of the Laplace noise to be
used in the construction of the quadtree, (iii) the threshold θ used to
decide whether a quadtree node should be split, and (iv) the thresh-
old h on the maximum height of the decomposition tree. The output
of the algorithm is a quadtree T where each node v comes with two
pieces of information: the sub-domain of Ω corresponding to v (de-
noted as dom(v)), and a noisy version of the point count in dom(v)
(denoted as ĉ(v)). We define the depth of v as the hop distance
between v and the root of T , and denote it as depth(v).

The algorithm starts by creating the root note v1 of T , after
which it sets dom(v1) = Ω and marks v1 as unvisited (Lines 1-
2). The subsequent part of the algorithm consists of a number of
iterations (Lines 3-9). In each iteration, we examine if there is an
unvisited node v in T . If such v exists, we mark v as visited, and
employ the Laplace mechanism to generate a noisy version ĉ(v)
of the number of points contained in dom(v) (Lines 4-6). After
that, we split v if the following two conditions simultaneously hold.
First, ĉ(v) > θ, i.e., dom(v) is likely to contain a sufficiently large
number of points. Second, the height of the tree is smaller than
h, which, as we discuss shortly, ensures that the noisy counts gen-
erated by the algorithm would not violate differential privacy. If
both of the above conditions are met, then we generate v’s children
and insert them into T as unvisited nodes (Lines 7-9); otherwise,
v becomes a leaf node of T . When all of the nodes in T become
visited, the algorithm terminates and returns T .
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Algorithm 1: SimpleTree (D, λ, θ, h)

1 initialize a quadtree T with a root node v1;
2 set dom(v1) = Ω, and mark v1 as unvisited;
3 while there exists an unvisited node v do
4 mark v as visited;
5 compute the number c(v) of points in D that are contained in

dom(v);
6 compute a noisy version of c(v): ĉ(v) = c(v) + Lap(λ);
7 if ĉ(v) > θ and depth(v) < h− 1 then
8 split v, and add its children to T ;
9 mark the children of v as unvisited;

10 return T

Privacy and Utility Analysis. Algorithm 1 ensures ε-differential
privacy if λ ≥ h/ε. To understand this, suppose that we insert an
arbitrary point t into D. Then, T has only h nodes whose exact
point counts are affected by the insertion of t, i.e., the h nodes
whose sub-domains contain t. In addition, the point count of those
nodes should change by one after t’s insertion. This indicates that
the sensitivity (see Definition 2.3) of all point counts in T equals
h, and hence, adding i.i.d. Laplace noise of scale λ ≥ h/ε into the
counts would achieve ε-differential privacy.

As we mention in Section 1, however, requiring λ ≥ h/ε
makes it rather difficult for Algorithm 1 to generate high-quality
quadtrees. Specifically, if we set h to a small value, the resulting
quadtree T would not adapt well to the data distribution in D, due
to the restriction on the tree height; meanwhile, increasing h would
also increase the amount of noise in each ĉ(v), which makes Al-
gorithm 1 more error-prone in deciding whether a node should be
split, thus degrading the quality of T . In other words, any choice of
h inevitably leads to inferior data utility. Furthermore, we cannot
directly tune h by (i) testing the performance of Algorithm 1 on
D under different settings of h, and then (ii) selecting the one that
yields the best result. The reason is that such a tuning process vio-
lates differential privacy: when we change the input data from D to
a neighboring dataset D′, the tuning process may select a different
h, in which case Algorithm 1 would use different noise scales for
D and D′, invalidating its privacy guarantee.

To alleviate the above issue, existing work [12, 41, 42, 48] re-
sorts to heuristics to choose h without violating differential privacy,
and to enhance the performance of Algorithm 1, e.g., by avoiding
the generation of noisy counts for certain levels of the decomposi-
tion tree (so that h can be reduced), and by exploiting correlations
among the noisy counts to improve their accuracy [25]. However,
none of those heuristics is able to thoroughly address the limita-
tions of Algorithm 1. As we shown in our experiments in Section 6,
existing approaches tend to provide inferior data utility, especially
when the input data follows a skewed distribution.

3.2 Rationale Behind Our Solution
To remedy the deficiency of Algorithm 1, we aim to eliminate

the requirement that λ ≥ h/ε, and make λ a constant instead. This
would not only resolve the dilemma in choosing h, but also unleash
the potential of quadtrees as the tree height is no longer restricted.
Towards this end, we first make a simple observation: after we
finish constructing the quadtree T in Algorithm 1, we could remove
all noisy counts associated with the intermediate nodes, and release
only the noisy counts for the leaf nodes as well as the sub-domains
of all nodes. The released tree, denoted as T ′, could still be used
for query processing, since we can re-generate an alternative count
for each intermediate node v in T ′ by summing up the published
noisy counts of the leaf nodes under v. Intuitively, T ′ reveals less

information than T does, and hence, we might use less noise in T ′

to achieve ε-differential privacy.
However, the above intuition does not hold in general, as T ′ and

T require the same amount of noise to enforce the same privacy
guarantee. To explain, consider two neighboring datasets D and
D′, such that D is obtained by inserting a point t into D′. Let
v1, v2, . . . , vh be the h nodes in T ′ whose sub-domains contain t.
Then, these h nodes should form a path from the root of T to a leaf
node. Furthermore, for any vi, the point count of vi is decreased by
one when we change the input dataset from D to D′. We use c(vi)
to denote vi’s exact point count on D.

Without loss of generality, assume that vh is a leaf node (i.e.,
v1, . . . , vh−1 are all intermediate nodes). Let Pr[D → T ′] (resp.
Pr[D′ → T ′]) denote the probability that we obtain T ′ from D
(resp. D′) given fixed λ, θ, and h. Then,

ln

(
Pr[D → T ′]

Pr[D′ → T ′]

)
=

h−1∑
i=1

ln

(
Pr[c(vi) + Lap(λ) > θ]

Pr[c(vi)− 1 + Lap(λ) > θ]

)

+ ln

(
Pr[c(vh) + Lap(λ) = ĉ(vh)]

Pr[c(vh)− 1 + Lap(λ) = ĉ(vh)]

)
.

By Equation (1), for any c(vh) < ĉ(vh),

ln

(
Pr[c(vh) + Lap(λ) = ĉ(vh)]

Pr[c(vh)− 1 + Lap(λ) = ĉ(vh)]

)
=

1

λ
. (2)

In addition, for any vi (i ∈ [1, h− 1]) with c(vi) ≤ θ,

ln

(
Pr[c(vi) + Lap(λ) > θ]

Pr[c(vi)− 1 + Lap(λ) > θ]

)
=

1

λ
. (3)

Therefore, when c(vi) ≤ θ holds for every vi (i ∈ [1, h− 1]),

ln

(
Pr[D → T ′]

Pr[D′ → T ′]

)
=

h

λ
. (4)

By Definition 2.2, this indicates that λ must be at least h/ε to en-
sure that T ′ achieves ε-differential privacy.

In summary, T ′ is no better than T in terms of the amount of
noise required, because of the negative result in Equations (2) and
(3). In other words, in the worst case, releasing the boolean result
of c(vi) + Lap(λ) > θ incurs the same privacy cost as releasing
c(vi) + Lap(λ) directly. That said, if c(vi) > θ for some vi, then
Equation (3) does not hold, in which case T ′ could entail a smaller
privacy cost than T does. To illustrate this, we denote the l.h.s. of
Equation (3) as a function ρ of c(vi), i.e.,

ρ(x) = ln

(
Pr[x+ Lap(λ) > θ]

Pr[x− 1 + Lap(λ) > θ]

)
, (5)

and we plot ρ in Figure 2. (Note that the y-axis of Figure 2 is in a
logarithmic scale.) Observe that, when x = c(v) ≥ θ + 1, ρ(x)
decreases exponentially with the increase of x. This indicates that

ln
(

Pr[D→T ′]
Pr[D′→T ′]

)
could be much smaller than h/λ, if c(vi) ≥ θ+1

holds for all i ∈ [1, h − 1]. For example, if ch−1 ≥ θ + 1 and
c(vi)− c(vi+1) is at least a constant for all i ∈ [1, h− 2], then

h−1∑
i=1

ρ
(
c(vi)

)
= Θ

(
1

λ

)
, (6)

due to the exponential decrease of ρ(vi). In that case, we have

ln
(

Pr[D→T ′]
Pr[D′→T ′]

)
= Θ(1/λ) instead of ln

(
Pr[D→T ′]
Pr[D′→T ′]

)
= h/λ,

which would enable us to set λ as a constant independent of h.
The above analysis leads to an interesting question: can we en-

sure that Equation (6) holds for any input dataset? In Section 3.3,
we will give an affirmative answer to this question. The basic
idea of our method is to add a bias term to each c(vi), so that
c(vi)− c(vi+1) (i ∈ [1, h− 2]) is larger than a constant of choice.
In addition, the bias term is independent of the input data, which
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Figure 2: An illustration of ρ(x) and ρ�(x).

guarantees that its usage does not leak any private information. The
derivation of the bias term requires a careful analysis of ρ(x). To
simplify our analysis, we devise a simple upper bound of ρ(x):

LEMMA 3.1. Let ρ� be a function such that

ρ�(x) =

{
1/λ, if x < θ + 1
1
λ
exp

(
θ+1−x

λ

)
, otherwise

(7)

Then, ρ(x) ≤ ρ�(x) for any x.

Figure 2 shows ρ� with a dashed line. Observe that it closely cap-
tures the exponential decrease of ρ when c(v) ≥ θ + 1.

3.3 The PrivTree Algorithm
Algorithm 2 presents our PrivTree technique for private spatial

decomposition. As with Algorithm 1, PrivTree asks for a spatial
dataset D, the scale λ of Laplace noise to be used, and a threshold
θ for deciding whether a node should be split. However, it does
not request a threshold h on the maximum tree height; instead, it
requires a positive number δ, the usage of which will be clarified
shortly. The output of PrivTree is a quadtree T , with the point count
associated with each node removed. That is, T reveals the sub-
domain of each node v, but conceals all information about c(v). In
Section 3.4, we will explain how we obtain the point count of each
node, as well as our choices of θ and δ.

In a nutshell, PrivTree is similar to Algorithm 1 in that it also (i)
generates T by recursively splitting a root node v1 whose region
dom(v1) covers the whole data space Ω, and (ii) decides whether
a node v should be split based on a noisy point count of v. How-
ever, the method for obtaining noisy counts marks the crucial dif-
ference between the two algorithms. Specifically, given a node
v, PrivTree does not generate its noisy count by directly adding
Laplace noise to c(v). Instead, PrivTree first computes a biased
count b(v) = c(v)− depth(v) · δ, and checks if it is smaller than
θ − δ; if it is, then PrivTree increases it to θ − δ. In other words,

b(v) = max
{
θ − δ, c(v)− depth(v) · δ

}
. (8)

After that, PrivTree produces a noisy count b̂(v) = b(v)+ Lap(λ),
and splits v if b̂(v) is larger than the given threshold θ. Notice that
PrivTree does not restrict the height of T , as the decision to split

any node v solely depends on b̂(v).

Privacy Analysis. Consider any quadtree T output by PrivTree,
and any two neighboring datasets D and D′, such that D is ob-
tained by inserting a point t into D′. In what follows, we show that
setting λ = Θ(1/ε) is sufficient for ε-differential privacy, i.e.,

−ε ≤ ln

(
Pr[D → T ]

Pr[D′ → T ]

)
≤ ε. (9)

The proof for the first inequality in Equation (9) is relatively
straightforward. For any node v in T , let c(v) be v’s point count on
D, and b(v) be the biased version of c(v) generated from Equation
(8). Let c′(v) and b′(v) be the counterparts of c(v) and b(v), re-
spectively, given D′ as the input. Then, we have c(v) = c′(v) for
all nodes v in T , except for the nodes whose sub-domains contain

Algorithm 2: PrivTree (D, λ, θ, δ)

1 initialize a quadtree T with a root node v1;
2 set dom(v1) = Ω, and mark v1 as unvisited;
3 while there exists an unvisited node v do
4 mark v as visited;
5 compute a biased point count for v with decaying factor δ:

b(v) = c(v)− depth(v) · δ;
6 adjust b(v) if it is excessively small: b(v) = max {b(v), θ − δ};

7 compute a noisy version of b(v): b̂(v) = b(v) + Lap(λ);
8 if b̂(v) > θ then
9 split v, and add its children to T ;

10 mark the children of v as unvisited;

11 return T with all point counts removed

t. Note that those nodes should form a path from the root of T to a
leaf. Let k be the length of the path, and vi be i-th node in the path,
with v1 denoting the root of T . We have c(vi) = c′(vi) + 1 and

b(vi) =

{
b′(vi) + 1, if b(vi) ≥ θ − δ + 1

b′(vi), otherwise
(10)

Then, by Equation (1),

ln

(
Pr[D → T ]

Pr[D′ → T ]

)
=

k−1∑
i=1

ln

(
Pr[b(vi) + Lap(λ) > θ]

Pr[b′(vi) + Lap(λ) > θ]

)

+ ln

(
Pr[b(vk) + Lap(λ) ≤ θ]

Pr[b′(vk) + Lap(λ) ≤ θ]

)

≥ 0− 1

λ
= − 1

λ
.

This indicates that λ ≥ 1/ε ensures the first inequality in Equa-
tion (9).

Next, we prove the second inequality in Equation (9) by analyz-

ing ln
(

Pr[b(vi)+Lap(λ)>θ]
Pr[b′(vi)+Lap(λ)>θ]

)
, which we refer to as the privacy cost

of vi. The high-level idea of our proof is as follows. First, due to
the way that we generate biased counts, each node vi’s bias count
b(vi) is at least a constant δ smaller than that of its parent vi−1, as
long as b(vi) ≥ θ + 1. Based on this observation and Lemma 3.1,
we show that all nodes vi with b(vi) ≥ θ + 1 incur a total privacy
cost of Θ(1/ε). After that, we prove that the total privacy cost of
the remaining nodes is also Θ(1/ε).

By the definition of v1, . . . , vk, we have c(vi) ≥ c(vi+1) and
depth(vi) = depth(vi+1)− 1 for any i ∈ [1, k− 1]. This indicates
that b(vi) ≥ b(vi+1) ≥ θ − δ, due to Equation (8). Without loss
of generality, assume that there exists m ∈ [1, k − 1], such that
b(vm) ≥ θ − δ + 1 and b(vm+1) = θ − δ. Then,{

b(vi−1) ≥ b(vi) + δ ≥ θ + 1, if i ∈ [2,m]

b(vi) = θ − δ, otherwise
(11)

Combining Equations (10) and (11), we have b′(vi) = b(vi) when
i > m, and b′(vi) = b(vi)− 1 otherwise. Therefore,

ln

(
Pr[D → T ]

Pr[D′ → T ]

)
=

∑k−1

i=1
ln

(
Pr[b(vi) + Lap(λ) > θ]

Pr[b′(vi) + Lap(λ) > θ]

)

+ ln

(
Pr[b(vk) + Lap(λ) ≤ θ]

Pr[b′(vk) + Lap(λ) ≤ θ]

)

≤
∑k−1

i=1
ln

(
Pr[b(vi) + Lap(λ) > θ]

Pr[b′(vi) + Lap(λ) > θ]

)

=
∑m

i=1
ln

(
Pr[b(vi) + Lap(λ) > θ]

Pr[b(vi)− 1 + Lap(λ) > θ]

)

=
∑m

i=1
ρ
(
b(vi)

)
,
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where ρ(·) is as defined in Equation (5). By Lemma 3.1 and Equa-
tion (11),∑m

i=1
ρ
(
b(vi)

)
≤

∑m

i=1
ρ�

(
b(vi)

)

= ρ�
(
b(vm)

)
+

∑m−1

i=1

1

λ
exp

(
θ + 1− b(vi)

λ

)

≤ 1

λ
+

1

λ
· 1

1− exp(−δ/λ)

=
1

λ
· 2e

δ/λ − 1

eδ/λ − 1
.

Therefore, if we set δ = γ · λ, where γ is a constant, then

ln

(
Pr[D → T ]

Pr[D′ → T ]

)
=

m∑
i=1

ρ
(
b(vi)

)
≤ 1

λ
· 2e

γ − 1

eγ − 1
= Θ

(
1

λ

)
.

Summing up the above analysis, we have the following theorem:

THEOREM 3.1. PrivTree satisfies ε-differential privacy if
λ ≥ 2eγ−1

eγ−1
· 1
ε

and δ = γ · λ for some γ > 0.

3.4 Noisy Counts and Parameterization
Generation of Noisy Counts. Recall that PrivTree outputs a
quadtree with the point count for each node removed. However,
if a quadtree with noisy counts is needed, we can easily obtain it
by adding a postprocessing step to PrivTree. In particular, given
a dataset D, we first invoke PrivTree to produce a ε

2
-differentially

private quadtree T . After that, for each leaf node v of T , we pub-
lish a noisy version of v’s point count using Laplace noise of scale
2/ε. It can be verified that this postprocessing step satisfies ε

2
-

differential privacy. Then, by Lemma 2.1, the generation of T and
the noisy counts as a whole achieves ε-differential privacy. Finally,
we compute a noisy count for each intermediate node v in T , by
taking the sum of the noisy counts of all leaf nodes under v.

Choice of δ. As shown in Theorem 3.1, when δ = γ · λ, PrivTree
needs to use a noise scale λ ≥ 2eγ−1

eγ−1
· 1

ε
to achieve ε-differential

privacy. Intuitively, the choice of δ is a balancing act between the
amount of bias and the amount of noise in each biased noisy count

b̂(v) used by PrivTree. In particular, if δ is small with respect to

λ, then the bias term in each b̂(v) is small, but the noise amount

in b̂(v) would need to be large, since 2eγ−1
eγ−1

· 1
ε

increases when

γ = δ/λ decreases. In contrast, if δ is large with respect to λ, then

each b̂(v) would have small noise but a large bias.
That said, we observe that there is a more important factor in

choosing δ. To explain, consider a node v with a biased count
b(v) = θ − δ. Ideally, we would like PrivTree to avoid splitting
such a node v, as its point count is likely to be small. Nevertheless,
if b(v) + Lap(λ) > θ, then PrivTree would split v and insert its
children into the quadtree. In turn, each of v’s children also has a
certain probability to be split, and so on. If δ is excessively small,
then each offspring of v has a relatively large splitting probability,
in which case the splitting process may not converge, i.e., PrivTree
may keep generating offsprings of v and does not terminate.

To address the above issue, we set δ in such a way to ensure that
if b(v) = θ − δ, then in expectation, only 2 nodes would be gener-
ated from the subtree under v (including v itself). Specifically, we
set δ = λ · lnβ, where β denote the fanout of T , i.e., the number
of children that each intermediate node in T has. (For example,
β = 4 if T is a two-dimensional quadtree.) By Equation (1), this
setting of δ guarantees that any node v with b(v) = θ − δ has 1

2β
probability to be split. Formally, we have the following lemma:

LEMMA 3.2. Let T be the output of PrivTree given δ = λ·lnβ,
and T ∗ be the output of PrivTree when it sets b̂(v) = c(v) for each
node v (i.e., no noise or bias is introduced in the split decisions).
Then, E[|T |] ≤ 2 · |T ∗| whenever |T ∗| > 1, where | · | denotes the
number of nodes in a tree.

The above setting of δ leads to the following corollary:

COROLLARY 1. PrivTree satisfies ε-differential privacy if
λ ≥ 2β−1

β−1
· 1
ε

and δ = λ · lnβ, where β is the fanout of T .

Choice of θ. Intuitively, the threshold θ serves the purpose of en-
suring that each leaf node v of T contains a sufficiently large point
count c(v), so that if we choose to output a noisy version of c(v), it
would not overwhelmed by the Laplace noise injected. The choice
of θ, however, is complicated by the fact that PrivTree adds a neg-
ative bias to the point count of a node when it decides whether or
not to split the node. In particular, due to the negative bias, even
θ = 0 could ensure that a node v with b(v) > θ has a sufficient
large point count. Therefore, we use θ = 0 in our implementation
of PrivTree, and we observe that it leads to reasonably good results
in our experiments.

3.5 Extensions
Although we have presented PrivTree in the context of spatial de-

composition, we note that it could be extended in several different
aspects for other applications. First, the decomposition tree used
by PrivTree does not have to be a quadtree, but can be any other
tree structure instead. For example, suppose that we are given a
multi-dimensional dataset D containing both numeric and categor-
ical attributes, and that each categorical attribute has a taxonomy.
Then, we can still apply PrivTree on D to generate a private synop-
sis of D, by splitting each numeric dimension of D according to a
binary tree and each categorical dimension based on its taxonomy.

Second, when PrivTree decides whether or not a node v should
be split, the decision does not have to be based on the count of
tuples contained in dom(v), but can also be based on any other
score function μ(v) that is monotonic, i.e., μ(v) ≤ μ(u) whenever
v is a child node of another node u. The rationale is that, as long
as μ is monotonic, we can add a bias to the score of each node
v to ensure that it is at least a constant smaller that the score of
v’s parent. Then, we can apply Lemma 3.1 to show that PrivTree
guarantees differential privacy, given that λ is properly set based on
the sensitivity of the score function μ. In Section 4, we will apply
this idea to extend PrivTree for private modeling of sequence data.

Finally, although the privacy analysis of PrivTree (in Section 3.3)
assumes that the presence or absence of a tuple t only affects one
leaf node and its ancestors, it can be extended to the case when
multiples leaf nodes and their ancestors are impacted. In particular,
if at most x leaf nodes can be affected, then we can apply PrivTree
with the noise scale λ enlarged x times. The intuition is that each
affected leaf node, along its ancestors, incurs one unit of privacy
cost, which in turn requires one unit of noise to mitigate; as such,
when there are x affected leaf nodes, we need x units of noise for
sufficient privacy protection.

4. PRIVATE MARKOV MODELS
This section presents an extension of PrivTree for constructing

Markov models on sequence data. We first introduce the basic con-
cepts of sequences and Markov models in Section 4.1. After that,
we elaborate our PrivTree extension in Section 4.2, and compare it
with existing solutions in Section 4.3.
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Figure 3: An illustration of a prediction suffix tree (PST).

4.1 Sequence Data and Markov Models
Given a finite alphabet I, a sequence s of length l over I is an

ordered list x1x2 · · ·xl, where each xi (i ∈ [1, l]) is a symbol in I.
For convenience, we abuse notation and write s = $x1x2 · · ·xl&,
where $ and & are two special symbols that mark the beginning
and the end of a sequence, respectively. Sequences are frequently
used to represent user behavioral data, such as trajectories, web
navigation traces, and product purchasing histories.

Markov models are a type of stochastic models commonly used
to characterize sequence data. They assume the Markov prop-
erty [44], i.e., a symbol x in a sequence s is decided by a few
symbols that immediately proceeds x in s, but not any others. A
Markov model over D is often represented as prediction suffix tree
(PST) [3, 44], where each node v is associated with a predictor
string dom(v), as well as a prediction histogram hist(v). In partic-
ular, dom(v) consists of symbols in I ∪{$}, while hist(v) contains
a count for each symbol x in I ∪ {&}. The count, denoted as
hist(v)[x], is computed as follows. We first inspect all occurrences
of dom(v) in the sequences in D, and count the number y of oc-
currences when dom(v) is immediately followed by the symbol x;
after that, we set hist(v)[x] = y. In other words, hist(v)[x] indi-
cates how often an appearance of dom(v) would immediately lead
to an appearance of x in a sequence.

For example, Figure 3 illustrates a PST constructed over a set
D containing four sequences s1, s2, s3, s4, over an alphabet I =
{A,B}. The node v6 has a predictor string dom(v6) = AA, and
prediction histogram hist(v6) that contains a count for each ele-
ment in {A,B,&}. The counts in the histogram sum up to 3, since
the string AA appears 3 times in D, i.e., once in s3 and twice in
s4. In addition, hist(v6)[A] = 1 because, among the 3 occurrences
of AA, only one is immediately followed by A (i.e., the first occur-
rence of AA in s4). The root node v1 has an empty predictor string
dom(v1) = ∅, and its prediction histogram counts the occurrences
of each individual symbol in I ∪ {&}, e.g., hist(v1)[A] = 6 since
the symbol A appears 6 times in total in D.

The nodes in a PST are organized in such a way that each node v
has |I| + 1 children. Furthermore, for each child v′ of v, dom(v′)
is obtained by adding a symbol in I ∪ {$} in the beginning of
dom(v). That is, dom(v) is a suffix of dom(v′). For example, in the
PST in Figure 3, v3 is a parent of v5; accordingly, dom(v5) = $A is
obtained by adding the symbol $ to the beginning of dom(v3) = A.
The intuition here is that (i) each node v in a PST provides a way
to predict the “next symbol” in a sequence based on a “predicate”
dom(v), and (ii) when we split v, each child node would have a
longer “predicate” that provides a more specific predication.

A PST T can be used to support a wide range of queries, such
as estimating the number of times that a query string sq appears in
the sequences in D. Specifically, given sq = x1x2 . . . xl, we first
inspect the root node v1’s prediction histogram hist(v1), and then
initialize a temporary answer ans = hist(v1)[x1]. After that, we
examine xi (i ∈ [2, l]) in ascending order of i. For each xi, we con-
sider the length-(i − 1) prefix of sq , i.e., s∗i = x1x2 . . . xi−1. We
identify the node v in T whose predictor string is the longest suffix
of s∗i . Then, we compute the sum of the counts in v’s prediction

histogram hist(v), referred to as the magnitude of the histogram
and denoted as ‖hist(v)‖1. After that, we set

ans = ans · hist(v)[xi]

‖hist(v)‖1
, (12)

i.e., we multiple ans by the probability that the “next symbol”
equals xi, as predicted by hist(v). When all xi (i ∈ [1, l]) are
examined, we return ans as the query answer.

For example, consider a query sequence sq = AB on the PST
in Figure 3. We first visit the root node v1, and initialize ans =
hist(v1)[A] = 6. After that, we consider the length-1 prefix of sq ,
i.e., s∗2 = A. We identify v3 as the node whose predictor string is

the longest suffix of s∗2, and we set ans = ans · hist(v3)[B]
‖hist(v3)‖1 = 3.

Finally, we return ans = 3 as the answer.
In addition to the aforementioned query type, we can also uti-

lize a PST T to generate a synthetic sequence dataset, by sam-
pling sequences from T one by one. Specifically, to generate a
sequence, we start from an initial sequence s0 = $ and insert sym-
bols into s0 iteratively. In the i-th iteration (i ≥ 1), we inspect
the sequence si−1, and identify the node v in T whose predic-
tor string is the longest suffix of si−1. Then, we sample a sym-
bol xi from the symbol distribution represented by hist(v), i.e.,

Pr[xi = x] = hist(v)[x]
‖hist(v)‖1 . After that, we insert xi to the end of

si−1, and denote the resulting sequence as si. If xi happens to be
&, then we return si as the result.

4.2 Extension of PrivTree
To construct a PST T on a sequence dataset D, we can start

from a root node v1 with a predictor string dom(v1) = ∅, and
then recursively split v1. This motivates us to adopt PrivTree for
the generation of differentially private PSTs. However, we can no
longer use a node v’s noisy count c(v) to decide whether v should
be split, since c(v) is undefined on a PST. Instead, as discussed in
Section 3.5, we can redefine c(v) as a score function that measures
the suitability of v for splitting. In the non-private setting, existing
work [44] typically avoids splitting a node v if any of the following
conditions is satisfied:

C1. dom(v) starts with $. In this case, no more symbol can be
added to the beginning of dom(v); thus, v cannot be split.

C2. The magnitude of hist(v) is small. The rationale is that, when
‖hist(v)‖1 is small, further splitting v results in child nodes v′

whose prediction histograms hist(v′) have even smaller mag-
nitudes. In that case, the symbol distribution captured by
hist(v′) is obtained from a tiny sample set of sequences, which
leads to poor prediction accuracy.

C3. The entropy1 of hist(v) is small. This is because when hist(v)
has a small entropy, there is little uncertainty in the symbol
prediction given by hist(v); as such, there is little benefit in
splitting v. (See v4 in Figure 3 for an example.)

Suppose that we are to adopt the above conditions into PrivTree.

1Here we treat hist(v) as a probability distribution.
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Condition C1 can be straightforwardly applied, since it only de-
pends on dom(v) and does not rely on D, i.e., it does not leak
private information. In contrast, conditions C2 and C3 cannot be
directly adopted since the counts in hist(v) depend on D. To ad-
dress this issue, we aim to design a score function c(·) for PrivTree
with the following two properties:

P1. c(·) is monotonic, i.e., c(v) ≤ c(u) for any node v and its par-
ent u. This, as discussed in Section 3.5, is required to ensure
that PrivTree satisfies differential privacy.

P2. If a node v’s prediction histogram has a small magnitude or a
small entropy, then c(v) tends to be small. This is motivated
by conditions C2 and C3 mentioned above.

Our construction of c(·) is based on the following observation: if
a prediction histogram has a small entropy, it often has one symbol
count that dominates the others, because a small entropy implies
that the distribution of symbols in the histogram is skewed. (v4 in
Figure 3 shows an example.) Motivated by this, we define c(v) as

c(v) = ‖hist(v)‖1 − max
x∈I∪{&}

hist(v)[x], (13)

i.e., c(v) equals the magnitude of hist(v) minus the largest count
in hist(v). The intuition is that if the magnitude of hist(v) is small,
then c(v) must be small, regardless of the largest count in hist(v);
on the other hand, if the entropy of hist(v) is small, then the largest
count in hist(v) tends to be close to the magnitude of hist(v) (since
the count often dominates all other counts in hist(v)), which re-
sults in a small c(v) as well. Thus, c(v) fulfills property P2. The
following lemma show that c(v) also satisfies property P1.

LEMMA 4.1. c(·) is a monotonic function.

In summary, we can construct a private PST on a sequence
dataset D using PrivTree (i.e., Algorithm 2), with three minor
changes. First, in Line 1 of Algorithm 2, T is a PST with a fanout
|I|+1 (instead of a quadtree), and v1 is a PST node with a predictor
string dom(v1) = ∅ and a prediction histogram hist(v1). Second,
in Line 5, c(v) is as defined in Equation (13). Third, in Line 11, we

return T after removing the biased score b̂(v) and the prediction
histogram hist(v) of each node v.

After we obtained the PST T (without prediction histograms)
from the modified PrivTree, we can postprocess T to recover the
prediction histograms. Specifically, for each leaf node v in T , we
derive the prediction histogram hist(v) from D, and then compute

a noisy version of hist(v), denoted as ĥist(v), by adding Laplace
noise into each histogram count. After that, for any non-leaf node

v′, we construct a noisy prediction ĥist(v′), such that for any sym-
bol x ∈ I ∪ {&},

ĥist(v′)[x] =
∑

v is a leaf node under v′
ĥist(v)[x].

Finally, if any noisy histogram in T has a negative count, we reset
the count to zero. This is to ensure that each histogram represents
a distribution of symbols.

Privacy Analysis and Parameterization. To analyze the privacy
guarantee of the modified PrivTree, we first introduce an assump-
tion that is also adopted in prior work [6] on sequence data pub-
lication under differential privacy: we assume that the length of
each sequence in D, when taking into account & but not $, is at
most l�, where l� is a known constant. To explain why this as-
sumption is needed, consider that we insert an infinite sequence s
into D to obtain a neighboring dataset D′. In that case, the inser-
tion of s incurs unbounded changes in the histogram counts of the

PST, which makes it impossible to achieve differential privacy. In
general, if l� is unknown, we may choose an appropriate l� and
truncate any sequences s that is excessively long2. Specifically, if
s = $x1x2 . . . xl�&, then we truncate it to s = $x1x2 . . . xl� ,
i.e., s becomes an open-ended sequence. Note that the removal of
& from s does not affect the construction of the PST.

Given the above assumption, we prove the privacy guarantee of
the modified PrivTree as follows.

THEOREM 4.1. Let β = |I|+1. The modified PrivTree ensures
ε-differential privacy when λ ≥ 2β−1

β−1
· l�

ε
and δ = λ · lnβ.

In addition, we prove that the postprocessing of PrivTree’s out-
put (i.e., adding Laplace noise to the histogram counts of the leaf
nodes) also achieves ε-differential privacy.

THEOREM 4.2. Postprocessing PrivTree’s output with Laplace
noise of scale λ achieves ε-differential privacy, when λ ≥ l�

ε
.

Finally, we clarify how we set θ and divide the privacy bud-
get ε between PrivTree and its postprocessing step. First, we set
θ = 0, following our analysis in Section 3.4. Second, we set
the noise scale in PrivTree and its postprocessing step, such that
PrivTree achieves ε

β
-differential privacy and the postprocessing

procedure ensures
ε·(β−1)

β
-differential privacy. To explain, recall

that in PrivTree, we inject Laplace noise into each node v’s score
c(v), which equals the sum of β − 1 counts in v’s prediction his-
togram hist(v) (i.e., all counts except the largest one). Meanwhile,
in the postprocessing step, we add Laplace noise to each count y
in the prediction histograms of T ’s leaf nodes. Intuitively, c(v) is
roughly β − 1 times more resilient to noise than y. Therefore, we
set the privacy budget for the postprocessing step to be β− 1 times
the budget for PrivTree, so as to balance the relative accuracy of
c(v) and y after noise injection.

4.3 Comparison with Previous Work
There exist two differentially private methods [6, 7] for model-

ing sequence data, and they both utilize hierarchical decomposi-
tions for model construction. However, they considerably differ
from PrivTree in three aspects. First, they model sequences based
on their prefixes [7] or n-grams [6], while PrivTree is based on a
PST representation of the variable length Markov chain model [44].
Second, their algorithms for hierarchical decompositions are sim-
ilar in spirit to Algorithm 1, due to which they also require a pre-
defined threshold h on the maximum height of the decomposition
tree. Consequently, they suffer from similar deficiencies to those
of Algorithm 1, i.e., they cannot generate accurate models because
of the dependency on h. Third, when constructing a decomposi-
tion tree, the methods in [6,7] decide whether a node be split based
only on a count associated with the node, whereas PrivTree adopts
a more advanced strategy that takes into account three conditions
commonly considered in the non-private setting. The above differ-
ences make PrivTree an effective approach for modeling sequence
data, as we demonstrate in our experiments in Section 6.

5. CONNECTIONS TO SVT
In this section, we investigate the connection between PrivTree

and the sparse vector techniques (SVTs) [18, 21, 28], which are a
type of differentially private algorithms widely adopted in the lit-
erature. They take as input a sequence of queries and a threshold

2Such l� can be chosen by first identifying the 90% or 95% quan-
tile of the sequence lengths in D, and then computing a differen-
tially private version of the quantile [54].
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Algorithm 3: BinarySVT (D, Q = {q1, q2, . . .}, θ, λ)

1 compute a noisy version of θ: θ̂ = θ + Lap (λ);
2 for i = 1, 2, . . . do
3 compute a noisy version of qi(D): q̂i(D) = qi(D) + Lap (λ);
4 if q̂i(D) > θ̂ then
5 output oi = 1 and continue;

6 else
7 output oi = 0 and continue;

8 return

θ, and output either a set of queries whose results are likely to be
larger than θ [18, 28], or a noisy version of the answers for such
a query set [21]. Intuitively, SVTs are similar in spirit to PrivTree
since they both aim to identify some elements in a set (e.g., a node
set or a query set) with “scores” above a given threshold. Motivated
by this, in the following, we examine whether SVTs can be adopted
for the hierarchical decomposition problem. Among the three exist-
ing variants of SVTs [18,21,28] that satisfy ε-differential privacy3,
we will focus on a variant dubbed the binary SVT, as it is most rele-
vant to our problem. Interested readers are referred to the technical
report of this paper for discussions on the other two variants.

Algorithm 3 presents a generic version of the binary SVT. Its
input includes (i) a dataset D, (ii) a sequence Q = {q1, q2, . . .}
of queries such that each qi has sensitivity 1, (iii) a threshold θ,
and (iv) a noise scale λ. Its output is a sequence of binary vari-
ables {o1, o2, . . .}, such that oi = 1 indicates that the result of qi
is larger than θ, and oi = 0 indicates otherwise. The algorithm is

fairly simple. It first computes a noisy threshold θ̂ = θ + Lap(λ),
and then, for each query qi in the sequence, it generates a noisy
query answer q̂i(D) using Laplace noise of scale λ (Line 1-3). If
q̂i(D) > θ, then algorithm outputs oi = 1; otherwise, the algo-
rithm outputs oi = 0 (Line 4-7). Previous work [28] makes the
following claim about the privacy assurance of the algorithm:

CLAIM 1. Algorithm 3 ensures ε-differential privacy if λ ≥ 2
ε

.

In other words, the noise scale required by the algorithm is Θ( 1
ε
)

and independent of the number of queries.
If Claim 1 holds, Algorithm 3 could yield highly competitive so-

lutions for the problems that we consider. For example, consider
the spatial decomposition problem studied in Section 3. Given a
threshold θ and a set D of spatial points in a multi-dimensional
space Ω, we first initialize (i) a quadtree T containing only a
root node v1 with dom(v1) = Ω, and (ii) a query sequence
Q = {c(v1)}, i.e., Q contains only one query that asks the num-
ber of points in dom(v1) (we will dynamically append queries to Q
during the construction of the quadtree). After the initialization, we
invoke the binary SVT to inspect each query in Q one by one; if the
binary SVT outputs 1 for a query c(v), then we split the node v in
T , and append a query c(v′) to the end of Q for each child node v′

of v. When all queries in Q are inspected, we return the quadtree T
obtained. By Claim 1, T ensures ε-differential privacy, as long as
the binary SVT uses Laplace noise of scale λ ≥ 2

ε
when generating

the noisy versions of c(vi). In contrast, PrivTree requires injecting
Laplace noise of scale λ ≥ 2β−1

β−1
· 1
ε
> 2

ε
, which indicates that the

solution based on the binary SVT is more favorable.
Unfortunately, we show that Claim 1 does not hold: in the worst

case, Algorithm 3 requires λ = Ω( k
ε
) to achieve ε-differential pri-

vacy, where k denotes the number of queries.

3There exist other variants of SVT that satisfy a relaxed version of
ε-differential privacy [23]. We do not consider those variants.

LEMMA 5.1. There exists a sequence Q of k count queries for
which Algorithm 3 violates ε-differential privacy if λ ≤ k

4ε
.

Lemma 5.1 invalidates all solutions based on the binary SVT, in-
cluding those in previous work [9,28,34]. In concurrent work [11],
Chen and Machanavajjhala present a similar analysis on the binary
SVT, and also come to the conclusion that it is not differentially
private. In the full version of this paper4, we discuss the other two
variants of SVT [18, 21], and show that one of them [21] also vio-
lates differential privacy, while the other [18] does not yield a com-
petitive solution for our problem (even after we improve it with an
optimization that leads to better data utility).

6. EXPERIMENTS
This section evaluates PrivTree against the states of the art on

differentially private modelling of spatial and sequence data.

6.1 Experiments on Spatial Data
Datasets. We make use of four real spatial datasets shown in
Table 2: road [12, 41], where each point represents the latitude
and longitude of a road junction in the states of Washington and
New Mexico; Gowalla [41, 48], which contains check-in locations
shared by users on a location-based social networking website;
NYC5 and Beijing6, which are 4-dimensional datasets that record
the pickup and drop-off locations of NYC and Beijing taxis, re-
spectively. Figure 4 visualizes the points in road and gowalla, as
well as the pickup locations in NYC and Beijing. Observe that the
data distribution in road (resp. NYC) is more skewed than that in
Gowalla (resp. Beijing).

Methods. We compare PrivTree against five state-of-the-art meth-
ods: UG [41, 42, 48], AG [41], Hierarchy [42], DAWA [30], and
Privelet∗ [50]. UG partitions the data domain into md grid cells
of equal size, and releases a noisy count for each cell, with m =
(nε/10)2/(d+2) [48]. AG is an improved version of UG that is
specifically designed for two-dimensional data. It first employs a
coarsened version of UG to produce a set of grid cells; after that,
for each cell whose noisy count is above a threshold, AG further
splits it into smaller cells and releases their noisy counts. Hier-
archy utilizes a multi-level decomposition tree to generate spatial
histograms, with the tree height and fanout heuristically chosen to
minimize the mean squared error in answering range count queries.
DAWA requires as input a workload of range count queries, and it
employs the matrix mechanism [31] to generate a histogram that
is optimized for the given workload. Privelet∗ publishes multi-
dimensional datasets by utilizing the Haar wavelet transformation
to reduce the errors of range count queries.

DAWA and Privelet∗ both require that the input data should have
a discrete domain. Following [30], we discretize the domain of
each dataset into a uniform grid with 220 cells before feeding it to
DAWA and Privelet∗. The other parameters of each method (e.g.,
the height and fanout of the decomposition tree, and the grid gran-
ularity) are set as suggested in the original papers. For PrivTree,
we set its fanout to 4 (resp. 16) for two-dimensional (resp. four-
dimensional) datasets, which is standard for quadtrees.

We adopt the implementations of DAWA and Privelet∗ provided
by their respective authors, and we implement all other methods in
C++. All experiments are conducted on a windows/linux machine
with a 2.4GHz CPU and 16GB main memory.

4http://arxiv.org/abs/1601.03229
5http://publish.illinois.edu/dbwork/open-data/
6http://research.microsoft.com/apps/pubs/?id=152883
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Table 2: Characteristics of spatial datasets.

Name Dimensionality d Cardinality n Description
road 2 1, 634, 165 Coordinates of road intersections in the states of Washington and New Mexico

Gowalla 2 107, 091 Check-in locations shared by users of a location-based social networking website

NYC 4 98, 013 Pickup and drop-off locations of NYC taxis

Beijing 4 30, 000 Pickup and drop-off locations of Beijing taxis

(a) road (b) Gowalla (c) NYC - pickup (d) Beijing - pickup

Figure 4: Visualization of datasets
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(a) road - small queries. (d) Gowalla - small queries. (g) NYC - small queries. (j) Beijing - small queries.
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Figure 5: Results of range count queries on spatial datasets.

Tasks. We apply each method to create private synopses of ev-
ery dataset, and we evaluate the quality of each decomposition by
the accuracy of its answers to range count queries. In particular,
we construct three query sets on each dataset: small, medium, and
large, each of which contains 10, 000 randomly generated range
count queries. Each query in the small, medium, and large set has
a region that cover [0.01%, 0.1%), [0.1%, 1%), and [1%, 10%) of
the data domain, respectively. Following prior work [12, 41], we
measure accuracy of an answer q̂(D) to a query q by its relative
error, defined as

RE (q̂(D)) =
|q̂(D)− q(D)|
max {q(D),Δ} .

where Δ is a smoothing factor set to 0.1% of the dataset cardinality
n [41,50]. We repeat each experiment 100 times, and report the av-
erage relative error of each method for each query set. For DAWA
(which is query-dependent), we allow it to generate a synopsis for
each query set separately, based on a sample set of 500 queries.

Results. Figure 5 illustrates the average relative error of each
method on each dataset as a function of the privacy budget ε. On
road, PrivTree significantly outperforms UG, AG, Hierarchy, and
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Table 3: Characteristics of sequence datasets.

Name |I| Cardinality Avg. sequence length Description l� # of sequences with length > l�

mooc 7 80, 362 13.46 Users’ behavior sequences on a MOOC website 50 3,653

msnbc 17 989, 818 4.75 Users’ web navigation histories on a news portal 20 31,606

Privelet∗, regardless of the query set used and the value of ε. In par-
ticular, on the large query set, the average relative error of PrivTree
is at most 1

4
(resp. 1

10
) of the error of AG (resp. UG and Hierarchy).

This demonstrates the effectiveness of PrivTree in approximating
the distribution of the input data. Meanwhile, AG is superior to
UG and Hierarchy in all cases, which is consistent with the re-
sults in previous work [41]. DAWA is the only method that comes
close to PrivTree, but its relative error is never smaller than that
of PrivTree, and is 2 to 3 times higher than the latter for the small
and medium query sets on road (resp. small query set on Gowalla)
when ε ≥ 0.8. Furthermore, we note that DAWA is given a sample
query set in advance to optimize its query performance, whereas
PrivTree is not given such an advantage.

On Gowalla, PrivTree still consistently achieves the best results,
but the performance gaps between PrivTree and the other methods
are reduced. The reason is that the data distribution in Gowalla is
less skewed than that of road (see Figure 4), which makes Gowalla
easier to dealt with for all methods. DAWA incurs relatively small
errors in all cases, but is noticeably inferior to PrivTree on the small
and medium query sets.

On NYC and Beijing, we omit AG and Hierarchy since (i) AG
is only applicable on two-dimensional data, and (ii) when applied
on a four-dimensional dataset, Hierarchy produces a decomposition
tree with at least 2.18 billion leaf nodes [42], which cannot fit in the
main memory of our machine. As shown in Figures 5g-5l, PrivTree
consistently outperforms all other methods by a large margin on the
highly skewed NYC, because its tree construction mechanism en-
ables it to effectively adapt to the skewness of the data, by growing
the tree tall (resp. short) in the dense (resp. sparse) regions of the
data. On the other hand, on the less skewed Beijing, the accura-
cies of UG and DAWA are considerably improved. Nevertheless,
PrivTree still incurs smaller query errors in all settings. One may
notice that the error of DAWA on NYC only decreases around 2
times when ε increases from 0.05 to 1.6. We find that it is caused
by a “private partitioning” step of DAWA [30], as well as the dis-
cretization of data domain Ω that it requires.

In summary, PrivTree provides better data utility than all base-
lines, especially when the input dataset follows a skewed distribu-
tion. This makes PrivTree a more favorable approach for releasing
spatial data under differential privacy.

6.2 Experiments on Sequence Data

Datasets. We use two real sequence datasets: mooc7 and msnbc
[1, 6]. mooc contains 80, 362 learners’ behavior sequences on a
MOOC platform, and the behaviors are divided into seven cate-
gories: working on assignments, watching videos, accessing other
course objects, accessing the course wiki, accessing the course fo-
rum, navigating to other part of course, and closing the web page.
msnbc consists of 989, 818 sequences of URL categories, each of
which corresponds to a user’s browsing history during a 24-hour
period on msnbc.com. Table 3 shows the key statistics of mooc
and msnbc. Note that the total number |I| of symbols in mooc
(resp. msnbc) is not excessively large. Otherwise (e.g., when
|I| > 1000), the domain of the sequence data would be extremely

7https://www.kddcup2015.com/

sparse, in which case it is enormously difficult to publish useful
information under differential privacy.

Tasks. We consider two analytical tasks on each sequence dataset
D. The first task is to identify the top-k frequent strings in D,
i.e., the k strings that appear the largest number of times in the
sequences in D. This task is an important primitive in sequence
data mining [20], and is also considered in existing work [6] on se-
quence data publishing. Following previous work [6], we measure
the precision of the top-k strings returned by differentially private
algorithm, i.e.,

precision =
|K(D) ∩ A(D)|

k
,

where K(D) is the exact set of top-k frequent strings in D, and
A(D) is the set returned by algorithm A.

The second task is to approximate the distribution of sequence
lengths in D. In particular, we apply PrivTree and other existing
methods to generate synthetic sequence data from D. Then, we
compare the distribution of sequence lengths in the synthetic data
with that in D, and we measure their total variation distance [13],
i.e., half of the L1 distance between the two probability distribu-
tions. For each task, we repeat each experiment 100 times and
report the average measurements.

Methods. For the task of top-k frequent string mining, we compare
PrivTree against two differentially private techniques: N-gram [6]
and EM [38]. In particular, N-gram is the state-of-the-art solution
for sequence data publishing, and it is based on a variable-length n-
gram model. N-gram requires a pre-defined threshold nmax on the
maximum length of n-grams; we set nmax = 5, as suggested in [6].
Meanwhile, EM is a standard application of the exponential mech-
anism [38] in our context. It first initializes a set R that contains
|I| string of length 1, each of which consists of a unique symbol
in I. After that, it invokes the exponential mechanism k times. In
each invocation, it selects the most frequent string r from R with
differential privacy, and then replaces r in R with |I| strings, each
of which is obtained by adding a symbol to the end of r. The k
strings obtained are then returned as the result. For the task of ap-
proximating sequence length distributions, we omit EM since it is
inapplicable.

Note that PrivTree, N-gram, and EM all require that the maxi-
mum sequence length in the input data is bounded by a constant
l� that is not excessively large (see Section 4.2 for a discussion on
the necessity of l�). Following previous work [6], we set l� to
be roughly the 95% quantile of the sequence lengths in the input
data, i.e., only around 5% sequences are truncated (see Table 3).
To illustrate the effects of truncation, we also include in our ex-
periments a baseline approach dubbed Truncate. This approach
directly answers all queries on the truncated dataset, without any
privacy assurance.

Results. Figure 6 shows the precision of each method (for top-
k string mining) as a function of the privacy budget ε. The pre-
cision of Truncate remains unchanged for all ε, since it does not
enforce differential privacy. Among the differentially private meth-
ods, PrivTree consistently outperforms N-gram and EM, in most
cases by a large margin. Furthermore, in Figure 6d-6f, PrivTree has
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Figure 6: Results of top-k frequent string mining.

an even higher precision than Truncate when ε ≥ 0.8. The reason
is that the Markov model adopted by PrivTree is able to recover
some information that is lost due to the truncation of sequences.
For example, suppose that the string aa appears in 5 sequences in
a dataset D and, in each appearance, it is immediately followed by
a symbol b. Assume that one of those 5 sequences (denoted as s)
is truncated, and its suffix aab becomes aa after the truncation. In
that case, the Markov model can be used able to accurately recover
the truncated symbol of s, because, based on the truncated data, it
would predict that the “next symbol” after aa is always b. Intu-
itively, such recovering of information is more effective when the
amount of noise in the Markov model is small, which explains why
PrivTree outperforms Truncate only when ε is large. In contrast,
N-gram never outperforms Truncate, and its precision is lower than
that of PrivTree by more than 10% in most settings. In addition,
EM yields unattractive precision in almost all cases. Its accuracy
degrades with the increases of k, since a larger k requires it to inject
more noise into the selection procession of top-k frequent strings.

In the last set of experiments, we evaluate the accuracy of the
sequence length distribution in the synthetic sequence data gener-
ated by each method. Figure 7 illustrates the total variation dis-
tance of each sequence length distribution. Observe that PrivTree
incurs a small error comparable to that of Truncate, especially when
ε ≥ 0.2. In contrast, N-gram entails an enormous error in all cases.
Based on the results in Figures 6 and 7, we conclude that PrivTree
is a more preferable solution than N-gram to modeling sequential
data under ε-differential privacy.

7. ADDITIONAL RELATED WORK
In Sections 3.1, 4.3, and 6, we have introduced the states-of-
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Figure 7: Errors of sequence length distributions.

the-art solutions [6, 12, 30, 41, 42, 48, 50] for publishing spatial and
sequence data under differential privacy. Besides those solutions,
there are a few other methods for private modeling of spatial and
sequence data. In particular, Xiao et al. [51] present a spatial de-
composition algorithm based on the k-d tree [4]. It first imposes a
uniform grid over the data domain, and then construct a private k-d
tree over the cells in the grid. This method, however, is shown to
be inferior to the UG and AG methods tested in our experiments, in
terms of data utility [41]. Chen et al. [7] consider the publication of
sequence data under differential privacy, and propose an algorithm
that releases a prefix tree of sequences to support count queries and
frequent string mining. Nevertheless, subsequent work by Chen et
al. [6] shows that the prefix-based method is considerably outper-
formed by the N-gram approach in our experiment.

In addition, there is a long line of research on processing aggre-
gate queries in a differentially private manner. Specifically, Barak
et al. [2] investigate the publication of marginals (i.e., projections
of a dataset on subsets of its dimensions), and propose a solution
based on the Fourier transform. Ding et al. [15] publish multi-
ple data cubes with both privacy and consistency guarantees. The
matrix mechanism of Li and Miklau [32, 33] and follow-up ap-
proaches [22, 30, 52, 53] take into account a query workload, and
aim to release a version of the data that maximizes the overall ac-
curacy of the workload. DAWA [30] is the most advanced method
among these approaches, but as shown in our experiments, it is out-
performed by PrivTree in terms of the relative errors of range count
queries on spatial data.

Moreover, there exists extensive work that addresses numerous
other tasks under differential privacy, such as regressions [5, 27,
40, 47, 55, 57], clusterings [48], decision trees [19], recommen-
dation systems [37], time-series data analysis [43], combinato-
rial optimizations [49], frequent itemset mining [35], and graph
queries [10, 26, 36, 56]. Finally, recent research has also studied
the adoption of differential privacy in various systems [8, 39, 45].

8. CONCLUDING REMARKS
In this paper, we study the problem of hierarchical decomposi-

tion under differential privacy, and address the central dilemma of
choosing the maximum height h of the decomposition tree. We
show that the constraint on h can be removed by introducing a
carefully controlled bias in deciding when a node should be split.
Based on this result, we propose PrivTree, a general approach for
hierarchical decomposition on private data, and we showcase its
applications on spatial and sequence data release. Our experimen-
tal results demonstrate that PrivTree significantly outperforms the
states of the art in terms of data utility. For future work, we plan
to extend the idea behind PrivTree to other problems that are based
on a lattice-model instead of a tree-model, such as frequent itemset
mining.
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APPENDIX
A. PROOFS
Proof of Lemma 3.1. By Equations (1) and (5), for any x,

ρ(x) = ln

⎛⎝ ∫ +∞
θ−x

1
2λ

exp
(
− |y|

λ

)
dy∫ +∞

θ+1−x
1
2λ

exp
(
− |y|

λ

)
dy

⎞⎠ ≤ 1

λ
.

Recall that ρ�(x) = 1/λ when c(v) < θ + 1. Therefore, ρ(x) ≤
ρ�(x) holds if x < θ + 1.

Now consider that x ≥ θ + 1. In that case,

ρ(x) = ln

(
1− 1

2
exp

(
θ−x
λ

)
1− 1

2
exp

(
θ+1−x

λ

)) .

For convenience, we let α = 1
2
exp

(
θ+1−x

λ

)
, and define a function

f of α as follows:

f(α) = ρ(x)− 1

λ
exp

(
θ + 1− x

λ

)
= ln

(
1− αe−1/λ

1− α

)
− 2α

λ
.

Observe that α ∈ (0, 1/2] whenever x ≥ θ+1. Therefore, we can
prove the lemma by showing that f(α) ≤ 0 for all α ∈ (0, 1/2].
For this purpose, we first compute the second derivative of f with
respect to α:

f ′′(α) = (e1/λ − 1) · e1/λ + 1− 2α

(1− α)2 · (e1/λ − α)2
.

Given that e1/λ − 1 > 0 and e1/λ + 1 − 2α ≥ e1/λ > 0,
we have f ′′(α) > 0. This indicates that maxα∈(0,1/2] f(α) =
max{f(0), f(1/2)}. Meanwhile, f(0) = 0, and

f(1/2) = ln(2− e−1/λ)− 1

λ

= ln
(
e1/λ −

(
e1/2λ − e−1/2λ

)2 )
− 1

λ

< ln(e1/λ)− 1

λ
= 0.

Therefore, maxα∈(0,1/2] f(α) ≤ 0, which proves the lemma. �

Proof of Theorem 3.1. The theorem directly follows from the pri-
vacy analysis in Section 3.3. �

Proof of Lemma 3.2. Let V be the set of all possible nodes in a
quadtree built on D. We divide the nodes in V into three subsets:
(i) the set V1 of nodes that appear as non-leaf nodes in T ∗, (ii) the
set V2 of the nodes that appear as leaves in T ∗, and (iii) the set V3

of the nodes that do not appear in T ∗. Let g(S) be the expected
number of nodes in a set S that appear in T . Then, we have

E[|T |] = g(V1) + g(V2) + g(V3)

≤ |V1|+ |V2|+ g(V3) = |T ∗|+ g(V3).

Therefore, the lemma can be proved by showing g(V3) ≤ |T ∗|.
Observe that each node in V3 must be the descendant of a node

in V2, i.e., a node that appears as a leaf in T ∗. Therefore, we can
divide the nodes in V3 into |V2| subsets, such that all nodes in the
same subset are descendants of the same node in V2. Consider any
such subset S that corresponds to a node v ∈ V2. Given that v
appears as a leaf in T ∗, we have c(v) ≤ θ. In addition, since
|T ∗| > 1, depth(v) ≥ 1 holds. Therefore,

c(v)− depth(v) · δ ≤ c(v)− δ ≤ θ − δ.

By Equation (8), we have b(v) = θ − δ. Furthermore, for any
v′ ∈ S, we have c(v′) ≤ c(v), which also leads to b(v′) = θ − δ.
Therefore, v and v′ have the same probability ps to be split. Given
δ = λ · lnβ, we have

ps = Pr[θ − δ + Lap(λ) > θ] = Pr[Lap(λ) > δ]

=

∫ ∞

λ·ln β

1

2λ
exp

(
−|y|

λ

)
dy =

1

2β
.

Assume that v appears in T . Then, given that v is split with
1
2β

probability, each child of v has 1
2β

probability to appear in T .
Therefore, in expectation, the number of v’s children that appear in
T should equal β · 1

2β
= 1

2
. In general, for any i ≥ 1, there exist

βi nodes v′ ∈ S with depth(v′)− depth(v) = i, and each such v′

has ( 1
2β

)i probability to appear in T . Hence, the expected number
of nodes in S that appear in T is

g(S) =

+∞∑
i=1

βi ·
(

1

2β

)i

=

+∞∑
i=1

1

2i
= 1.

Since each S uniquely corresponds to a node in V2, we have

g(V3) = |V2| · g(S) = |V2| ≤ |T ∗|.
Therefore, the lemma is proved. �

Proof of Corollary 1. The corollary follows from Theorem 3.1
when γ = lnβ. �

Proof of Lemma 4.1. Let u and v be two nodes in T , such that
u is the parent of v. Then, hist(v)[x] ≤ hist(u)[x] holds for every
symbol x ∈ I ∪ {&}. Let xv (resp. xu) be the symbol that has the
largest count in hist(v) (resp. hist(u)). We have

c(v) = ‖hist(v)‖1 − hist(v)[xv] ≤ ‖hist(v)‖1 − hist(v)[xu]

=
∑
x �=xu

hist(v)[x] ≤
∑
x �=xu

hist(u)[x]

= ‖hist(u)‖1 − hist(u)[xu] = c(u).

Therefore, c(·) is monotonic. �

Proof of Theorem 4.1. Let D and D′ be two neighboring datasets,
such that D is obtained by inserting a sequence s into D′. Assume
that s = $x1 . . . xl, where xi ∈ I ∪{&} for i ∈ [1, l]. To facilitate
our proof, we define l datasets D1, D2, . . . , Dl, such that Di =
D′ ∪ {si} and si = $x1x2 . . . xi is the length-i prefix of s ended
at symbol xi. Observe that Dl = D. For convenience, we define
D0 = D′.

In the following, we will prove that for any i ∈ [1, l] and any
output T of the modified PrivTree,

− ε

l�
≤ ln

(
Pr[Di → T ]

Pr[Di−1 → T ]

)
≤ ε

l�
, (14)
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where Pr[Di → T ] denotes the probability that PrivTree outputs
T given Di. This would prove the theorem because, given that
l ≤ l�,

ln

(
Pr[D → T ]

Pr[D′ → T ]

)
=

l∑
i=1

ln

(
Pr[Di → T ]

Pr[Di−1 → T ]

)
∈ [−ε, ε].

Observe that Di can be obtained by appending a symbol xi to
the end of the sequence si−1 in Di−1. Therefore, when we change
the input data from Di−1 to Di, the only changes in the PST are
the histogram counts that xi contributes to. Observe that if xi

contributes to the prediction histogram hist(v) of a node v, then
dom(v) must be a suffix of si−1, and the only possible change in
hist(v) is that hist(v)[xi] would be increased by one. Then, by the
definition of the PST, all of those nodes v should form a path from
the root of the PST to a leaf. In addition, by Equation (13), the
score c(v) of each of those nodes v is changed by at most one. In
that case, we can prove Equation (14) by reusing the analysis in the
proof of Theorem 3.1.

To explain, recall that the correctness of Theorem 3.1 only
replies on two conditions. First, the score c(v) of each node v
is monotonic. Second, when we change the input data, all of the
nodes affected should form a path from the root of the decompo-
sition tree to a leaf, and the score of each of those nodes should
change by at most one. Notice that all three conditions are satisfied
when we change the input of the modified PrivTree from Di−1 to
Di. Combining this with the fact that the modified PrivTree uses a
noise scale that is l� times that of Algorithm 2, it can be verified
that Equation (14) holds. Therefore, the theorem is proved. �

Proof of Theorem 4.2. Let T be the output of the modified
PrivTree. Let D and D′ be two neighboring datasets, such that
D is obtained by inserting a sequence s into D′. Assume that
s = $x1 . . . xl, where xi ∈ I ∪ {&} for i ∈ [1, l]. Observe that
each symbol xi in s contributes to the prediction histograms of the
nodes whose predictor strings dom(·) are suffixes of $x1 . . . xi−1.
By the definition of PSTs, these nodes form a path from the root
of T to a leaf. This indicates that each xi gets counted in the his-
togram of one leaf node only. Taking into account l ≤ l�, it fol-
lows that the sensitivity of releasing the histogram counts of all leaf
nodes in T is l�. By the property of the Laplace mechanism, the

postprocessing step ensures ε-differential privacy if λ ≥ l�
ε

. �

Proof of Lemma 5.1. Consider three datasets D1 = {a, b},
D2 = {a, b, b}, and D3 = {b, b}, where each tuple is either a
or b. Observe that D1 is a neighboring dataset of D2, while D2 is
a neighboring dataset of D3. Let qa (resp. qb) be a query that asks
for the number of a (resp. b) in a dataset. Let Q be a sequence of
k queries, such that first k/2 queries are all qa, and the remaining
k/2 queries are all qb.

Suppose that we invoke Algorithm 3 on D1, D2, D3, respec-
tively, with Q, a noise scale λ, and a threshold θ = 1. Let E be
the event that Algorithm 3 outputs 1 for the first k/2 queries in Q,
and 0 for the remaining k/2 queries. In addition, let Pr[D → E]
denote the probability that E occurs when the input dataset is D. If
Algorithm 3 satisfies ε-differential privacy, then

Pr[D1 → E]

Pr[D2 → E]
≤ eε,

Pr[D2 → E]

Pr[D3 → E]
≤ eε.

This indicates that

Pr[D1 → E]

Pr[D3 → E]
=

Pr[D1 → E]

Pr[D2 → E]
· Pr[D2 → E]

Pr[D3 → E]
≤ e2ε. (15)

In what follows, we prove the lemma by showing that Equation (15)
does not hold when λ ≤ k/4ε.

Recall that Algorithm 3 generates a noisy threshold θ̂, and out-
puts 1 for a query q only when its noisy answer q̂(D) is larger than

θ̂. Therefore,

Pr[D1 → E]

Pr[D3 → E]

=

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[q̂a(D1) > x] · Pr[q̂b(D1) ≤ x]

) k
2 dx

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[q̂a(D3) > x] · Pr[q̂b(D3) ≤ x]

) k
2 dx

=

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[Lap(λ) > x− 1] · Pr[Lap(λ) ≤ x− 1]

) k
2 dx

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[Lap(λ) > x] · Pr[Lap(λ) ≤ x− 2]

) k
2 dx

Consider any x ∈ (−∞,+∞). If x > 1, then

Pr[Lap(λ) > x− 1] =
1

2
e

1−x
λ = e

1
λ · Pr[Lap(λ) > x],

and Pr[Lap(λ) ≤ x− 1] > Pr[Lap(λ) ≤ x− 2]. This leads to

Pr[Lap(λ) > x− 1] · Pr[Lap(λ) ≤ x− 1]

≥ e
1
λ · Pr[Lap(λ) > x] · Pr[Lap(λ) ≤ x− 2] (16)

Meanwhile, if x ≤ 1, then

Pr[Lap(λ) ≤ x− 1] =
1

2
e

x−1
λ = e

1
λ · Pr[Lap(λ) ≤ x− 2],

and Pr[Lap(λ) > x − 1] > Pr[Lap(λ) > x]. In that case, Equa-
tion (16) still holds.

Given that Equation (16) holds for all x ∈ (−∞,∞), we have

Pr[D1 → E]

Pr[D3 → E]

=

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[Lap(λ) > x− 1] · Pr[Lap(λ) ≤ x− 1]

) k
2 dx

∫∞
−∞ Pr[θ̂ = x] ·

(
Pr[Lap(λ) > x] · Pr[Lap(λ) ≤ x− 2]

) k
2 dx

>
(
e

1
λ

) k
2
= e

k
2λ .

Therefore,
Pr[D1→E]
Pr[D3→E]

> e2ε when λ ≤ k/4ε, which proves the

lemma. �

B. ADDITIONAL EXPERIMENTS
In this section, we evaluate the computation efficiency of

PrivTree, and the impact of β (i.e., tree fanout) on the accuracy
of PrivTree. Table B shows the processing time of PrivTree on
each dataset (averaged over 100 runs), with ε varying from 0.05 to
1.6. The running time of PrivTree on road and msnbc are larger
than that on the other datasets, since road and msnbc are larger in
size than the others. In addition, the computation cost of PrivTree
increases with ε. To understand this, recall that when PrivTree de-
cides whether or not to split a node v, it first subtracts a bias term
depth(v) · δ from the score of v, and then injects noise into the bi-
ased score, after which it splits v if the noisy score is larger than the
threshold θ. As δ is inversely proportional to ε (see Corollary 1),
the bias term increases when ε decreases, in which case the noisy
score of v is less likely to be larger than θ. Therefore, when ε is
small, PrivTree has lower probabilities to split nodes, which leads
to a small running time.

Previously, in Section 6.1, we evaluate the query accuracy of
PrivTree on spatial data with its fanout β set to 2d, where d is
the dataset dimensionality. In that case, whenever PrivTree splits
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(a) road - small queries. (d) Gowalla - small queries. (g) NYC - small queries. (j) Beijing - small queries.
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Figure 8: Impact of fanout on PrivTree.

Table 4: Running time of PrivTree (seconds).

Dataset ε=0.05 ε=0.1 ε=0.2 ε=0.4 ε=0.8 ε=1.6

road 0.97 1.15 1.35 1.61 1.93 2.52
Gowalla 0.044 0.055 0.073 0.093 0.12 0.17
NYC 0.032 0.040 0.051 0.072 0.10 0.15
Beijing 0.0085 0.012 0.013 0.019 0.030 0.047
mooc 0.22 0.26 0.30 0.35 0.41 0.46
msnbc 1.73 2.03 2.21 2.50 2.72 3.05

a node v, the sub-domain dom(v) of v is divided into 2d parts by
bisecting all dimensions of dom(v). Figure 2 illustrates the results
of the same experiments when β varies. In particular, when we set
β = 2i with i < d, PrivTree would split the dimensions of each
node in a round robin fashion, with i dimensions being bisected
each time. Observe that, in general, the query error of PrivTree
slightly increases when β decreases. This is mainly due to the bias

term depth(v)·δ that PrivTree subtracts from the score c(v) of each
node v, when it decides whether v should be split. Specifically, a
decreased β increases the height of PrivTree’s decomposition tree,
in which case the nodes towards the leaf level of the tree would be
given a larger bias term. In turn, the increased bias term renders
it more difficult for PrivTree to correctly decide whether a node
should be split, thus degrading the quality of PrivTree’s output.

Nevertheless, on a few settings on NYC and Beijing, β = 2d/2

entails smaller errors than β = 2d. The reason is that, when β
is large, any incorrect decisions made by PrivTree in node split-
ting would have a more pronounced negative effect, e.g., a quadtree
node with a small count would be divided into a larger number of
child nodes, each of which would have an even smaller count that
is likely to be overwhelmed by the noise subsequently added. The
increased number of noise-dominated nodes would then lead to less
accurate query answers, which explains why β = 2d/2 sometimes
outperforms β = 2d. That said, the overall result in Figure 8 indi-
cates that β = 2d is still a preferable choice for PrivTree.
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