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ABSTRACT
Integrity constraints, guiding the cleaning of dirty data, are
often found to be imprecise as well. Existing studies con-
sider the inaccurate constraints that are oversimplified, and
thus refine the constraints via inserting more predicates (at-
tributes). We note that imprecise constraints may not only
be oversimplified so that correct data are erroneously identi-
fied as violations, but also could be overrefined that the con-
straints overfit the data and fail to identify true violations.
In the latter case, deleting excessive predicates applies.

To address the oversimplified and overrefined constraint
inaccuracies, in this paper, we propose to repair data by al-
lowing a small variation (with both predicate insertion and
deletion) on the constraints. A novel θ-tolerant repair model
is introduced, which returns a (minimum) data repair that
satisfies at least one variant of the constraints (with con-
straint variation no greater than θ compared to the given
constraints). To efficiently repair data among various con-
straint variants, we propose a single round, sharing enabled
approach. Results on real data sets demonstrate that our
proposal can capture more accurate data repairs compared
to the existing methods with/without constraint repairs.
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1. INTRODUCTION
Automatic repairing techniques are often employed for

cleaning dirty data, under the supervision of integrity con-
straints [9]. Typical repairing approaches (minimally) mod-
ify the data towards conformance to the constraints [4].
The repair performance thus heavily relies on trustable con-
straints. Unfortunately, it has been highlighted that both
integrity constraints and data could be variant [18]. Recent
studies [5, 2] also indicate the fact of inaccurate integrity
constraints and inaccurate data co-existence and work on
repairing constraints and data at the same time.
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Existing studies on simultaneously repairing constraints
and data [5, 2] consider imprecise constraints (mainly func-
tional dependencies, fds) that are oversimplified. With such
oversimplified constraints, data repairing may erroneously
identify correct data as violations (see examples below). The
constraint repairing is thus to refine the oversimplified con-
straints, via inserting more predicates (attributes in fds).

As one of the most direct motivations of this study, we first
note that, besides oversimplified, the imprecise constraints
could also be overrefined. That is, too many predicates (at-
tributes) are specified in a constraint so that it overfits the
data. Owing to such overfitting, the overrefined constraints
fail to identify some truly dirty data (also see examples be-
low). In this case, constraint simplification, by deleting ex-
cessive predicates (attributes), may apply.

In this study, we propose to address both constraint vari-
ances, oversimplified and overrefined. By oversimplified, we
mean too few predicates specified in a constraint, such that
many (correct) data will be identified as violations to the
constraint, e.g., ϕ1 in Example 1. On the other hand, by
overrefined, we mean too many predicates specified in a con-
straint, such that no (incorrect) data could be identified as
violations to the constraint, e.g., ϕ3 in Example 1.

Example 1. Consider an example Income relation in Fig-
ure 1(a). To support the order relationships on numeric val-
ues such as Income, Tax, we use a general notation of denial
constraints (dcs) [7]. (See Example 3 for dcs on numerical
attributes. As special cases, fds can be represented by dcs.)

Suppose that the following dc is given.

ϕ1 : ∀tα, tβ ∈ R,¬(tα.Name = tβ .Name ∧ tα.CP 6= tβ .CP)

It states that for any tα, tβ ∈ R, they should not have the
same Name but different CP (Cellphone number), i.e., an
fd Name→CP. This constraint, stating that Name can de-
termine CP, is obviously imprecise. With this oversimplified
ϕ1, many data values (in red) need to be modified in Figure
1(b), most of which are indeed correct.1

Referring to [5, 2], a (refinement) repair of constraint is
performed by adding attributes to the left-hand-side of fds,
i.e., inserting predicates in dcs as shown in ϕ2 below.

ϕ2 :∀tα, tβ ∈ R,¬(tα.Name = tβ .Name

∧ tα.Birthday = tβ .Birthday ∧ tα.CP 6= tβ .CP)

With the additional Birthday, ϕ2 becomes precise. Conse-
quently, the truly dirty values (only a small proportion with
1Assume that the data repair on CP has the minimum
change in this example for simplicity. Repairs on other at-
tributes may be performed in practice.
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Name Birthday CP Year Income Tax
t1 Ayres 8-8-1984 322-573 2007 21k 0
t2 Ayres 5-1-1960 ***-389 2007 22k 0
t3 Ayres 5-1-1960 564-389 2007 22k 0
t4 Stanley 13-8-1987 868-701 2007 23k 3k
t5 Stanley 31-7-1983 ***-198 2007 24k 0
t6 Stanley 31-7-1983 930-198 2008 24k 0
t7 Dustin 2-12-1985 179-924 2008 25k 0
t8 Dustin 5-9-1980 ***-870 2008 100k 21k
t9 Dustin 5-9-1980 824-870 2009 100k 21k
t10 Dustin 9-4-1984 387-215 2009 150k 40k

(a)

· · · CP
t1 · · · 564-389
t2 · · · 564-389
t3 · · · 564-389
t4 · · · 930-198
t5 · · · 930-198
t6 · · · 930-198
t7 · · · 824-870
t8 · · · 824-870
t9 · · · 824-870
t10 · · · 824-870

(b)

· · · CP
t1 · · · 322-573
t2 · · · 564-389
t3 · · · 564-389
t4 · · · 868-701
t5 · · · 930-198
t6 · · · 930-198
t7 · · · 179-924
t8 · · · 824-870
t9 · · · 824-870
t10 · · · 387-215

(c)

· · · CP
t1 · · · 322-573
t2 · · · 564-389
t3 · · · 564-389
t4 · · · 868-701
t5 · · · ***-198
t6 · · · 930-198
t7 · · · 179-924
t8 · · · ***-870
t9 · · · 824-870
t10 · · · 387-215

(d)

Figure 1: (a) dirty data, and possible repairs w.r.t. (b) oversimplified ϕ1, (c) precise ϕ2, (d) overrefined ϕ3

hidden digits ***) are repaired in Figure 1(c). (Note that
predicates may not be inserted arbitrarily, see Section 2.2 for
a detailed discussion on inserting meaningful predicates.)

On the other hand, a given dc could also be overrefined.

ϕ3 :∀tα, tβ ∈ R,¬(tα.Name = tβ .Name ∧ tα.Year = tβ .Year

∧ tα.Birthday = tβ .Birthday ∧ tα.CP 6= tβ .CP)

The Year information is not necessary to identify a person’s
CP. As illustrated in Figure 1(d), ϕ3 overfits the data and
fails to identify the truly dirty data in t5 and t8. By elimi-
nating the excessive predicates on Year from ϕ3, the modified
constraint (i.e., ϕ2 exactly) addresses all the dirty CP values.

Compared to the existing approach [2] (with the trust
parameter τ that controls the portion of trusted data), our
proposal differs in the following aspects: (1) We employ both
predicate insertion and deletion for repairing constraints,
rather than only refining constraints (by insertion) without
addressing overfitting ones; (2) We consider the advanced
refinement with order relationships on numerical values in
addition to the (in)equality relationship, e.g., > refines 6=,
which is not considered in the existing fd-based methods
(see more examples in Example 4); (3) Instead of pre-setting
a parameter τ ahead on the portion of trusted data, we can
try several constraint variations (with different thresholds
θ) and select the repair result having a moderate amount
of changed data, with neither oversimplified nor overrefined
constraints (see more discussions in Section 5.1).

In this paper, we propose a novel θ-tolerant repair model,
with tolerance on constraint variances: Given a set Σ of con-
straints over a data instance I , the θ-tolerant repair model
finds a minimum data repair I ′ that satisfies at least one of
the constraint variants Σ′ whose variation upon the given Σ
(via predicate insertion and deletion) is within θ.

Challenges. Owing to the inherent hardness of data repair-
ing problems [14, 16], it is not surprising to understand the
challenge of the θ-tolerant repair problem (in Section 2.3).

To tackle the θ-tolerant repair problem, a straightforward
approach is to compute the data repair results for each con-
straint variant Σ′ with variation no greater than θ. A poten-
tially large number of possible constraint repairs (variants)
naturally lead to three questions: (1) how to prune the con-
straint variants, (2) how to enable the sharing of data repair
results among different constraint variants, and (3) how to
choose the constraint-variance tolerance threshold θ and the
corresponding repair results.

Existing holistic data repair [8] eliminates only the cur-
rently observed violations, which may introduce new viola-

tions to others; and thus needs multiple rounds of repairing
till no new violations coming up. Directly applying the holis-
tic data repair falls short in the following aspects: (1) the
multi-round repairing could be inefficient and with possibly
unbounded repair cost (so that pruning is not applicable);
(2) the ad-hoc repairing in distinct rounds prevents sharing
the repair computation among different constraint variants.

Contributions. Our major contributions in this paper are
summarized as:

(1) We propose a novel θ-tolerant repair, the first repair
model with tolerance of constraint variances on both predi-
cate insertion and deletion.

(2) We devise efficient pruning of possible constraint vari-
ants Σ′. By revealing the refinement relationships between
constraints, we show that those non-maximal constraint vari-
ants w.r.t. refinement are not necessary to be considered.
Upper and lower bounds of data repair cost further advance
the pruning of candidate constraint variants.

(3) We present a violation-free algorithm for repairing data
given a set of constraints (variants). The proposed method
guarantees one round repairing without introducing new vi-
olations, by putting not only violations but also the suspect
data (that may introduce violations after repairing) into the
repair context. This one round data repairing also enables
sharing repair results among different constraint variants.

(4) Finally, experimental results on real data sets demon-
strate that our constraint-variance tolerant (CVtolerant) re-
pair has significantly higher data repair accuracy than the
state-of-the-art Unified [5] and Relative [2] approaches. In
addition, our proposal shows about 2 orders of magnitude
improvement in time costs compared to Relative. Owing to
the effective pruning techniques, the time cost of CVtoler-
ant is even comparable to the pure Holistic data repair [8]
(which does not consider constraint variants).

2. PROBLEM STATEMENT
Consider a relation scheme R with attributes attr(R). Let

predicate space P be a set of predicates P in the form of
v1φv2 or v1φc with v1, v2 ∈ tx.A, x ∈ {α, β}, tα, tβ ∈ R,
A ∈ attr(R), c is constant, and φ ∈ {=, <,>,≤,≥, 6=} is a
built-in operator2. A denial constraint (dcs) [7]

ϕ : tα, tβ , · · · ∈ R,¬(P1 ∧ · · · ∧ Pm)

2The determination of meaningful predicates in P over the
same attributes or joinable and comparable attribute pairs
has been studied in [7], which is not the focus of this study.
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states that for any tuples tα, tβ , . . . from R, all the predicates
Pi ∈ pred(ϕ), i = 1, . . . ,m, should not be true at the same
time.

For an instance I of R, we say that a list of tuples ti, tj , · · · ∈
I satisfies ϕ, denoted by 〈ti, tj , . . . 〉 � ϕ, if there exists
at least one P ∈ pred(ϕ) that is not satisfied, e.g., having
I (ti.A)φI (tj .B) for a P : tα.Aφtβ .B. Here I (ti.A) denotes
the value of cell ti.A in I , and φ is the inverse of φ (see Table
1). If 〈ti, tj , . . . 〉 satisfies all the predicates in pred(ϕ), it is
a violation of ϕ.

We say that I satisfies ϕ, written as I � ϕ, if all the
distinct tuple lists in I satisfies ϕ. For a set Σ of ϕ, I � Σ if
and only if ∀ϕ ∈ Σ, I � ϕ.

Example 2. For ϕ1 in Example 1, the tuple pair t1, t2 in
Figure 1(a) violates ϕ1 since t1.Name = t2.Name whereas
t1.Income 6= t2.Income, i.e., all predicates in pred(ϕ1) are
true. Instead, tuple pair t1, t4 satisfies ϕ1, i.e., 〈t1, t4〉 � ϕ1,
given t1.Name 6= t4.Name. In conclusion, I in Figure 1(a)
does not satisfy Σ = {ϕ1} in Example 1.

2.1 Data Repair via Value Modification
Data repairing is to find a modification I ′ of I such that all

the violations w.r.t the constraints Σ are eliminated, having
I ′ � Σ. Referring to the minimum change principle [4], the
data repair I ′ is expected to be as close as possible to the
original I , i.e., minimizing the data repair cost below.

Definition 1. Let I ′ denote a repair of I by modifying the
attribute values without adding or deleting tuples. The data
repair cost is evaluated by the distance between I and I ′

∆(I , I ′) =
∑

t∈I ,A∈attr(R)

w(t.A) · dist(I (t.A), I ′(t.A))

where dist(I (t.A), I ′(t.A)) is the distance between two values
on cell t.A in I and I ′, and w(t.A) is the weight of cell t.A.

The data repair cost could be simply the count of cells t.A
such that I (t.A) 6= I ′(t.A), i.e., with dist(I (t.A), I ′(t.A)) =
1, while dist(I (t.A), I ′(t.A)) = 0 if I (t.A) = I ′(t.A). Alter-
natively, the absolute value of difference on numerical values
or the edit distance [17] for string values could be consid-
ered. The weight w(t.A) can either be the confidence of the
original value in cell t.A, or simply an equal 1 if no advanced
knowledge is provided [14].

Note that there may not exist a repair I ′ with values
from the currently known values dom(A) of each attribute
A ∈ attr(R) that eliminates all the violations. Following
the same line in [14], an assignment of fresh variable (fv)
out of the currently known domain dom(A) is necessary. As
stated in [8], a fresh variable fv is a value not in the currently
known domain dom(A) and does not satisfy any of the pred-
icates, i.e., ensures eliminating violations. It is worth noting
that a denial constraint requires all the predicates should
not be true at the same time. That is, tuples do not satisfy
a denial constraint, e.g., ϕ4 below, if they satisfies all the
predicates specified in ϕ4. Therefore, in order to make the
tuples satisfy ϕ4, we need some modification on the tuples
such that they do not satisfy at least one predicate in ϕ4. By
specifying that “an fv does not satisfy any of the predicate”,
it ensures the repaired tuples satisfy the denial constraints.
Usually, a cell is repaired to fv only when there is no other
alternative from dom(A), and is thus associated with higher
cost, having dist(a, b) < dist(a, fv), a, b ∈ dom(A).

Example 3. Consider another ϕ4 over the relation Income:

ϕ4 : ∀tα, tβ ∈ R,¬(tα.Income > tβ .Income ∧ tα.Tax ≤ tβ .Tax)

which states that higher income should pay more tax. Tu-
ples t1 − t7 violate ϕ4 with each other, for instance, having
t2.Income > t1.Income and t2.Tax ≤ t1.Tax, i.e., 〈t2, t1〉 6�
ϕ1. Suppose that there is a data repair I ′ with the following
modifications, on attribute Tax of t2, t3, t5, t6, t7. (As we will
see soon in Example 4, this is not a rational repair owing to
the imprecise ϕ4.)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Tax 0 fv1 fv2 3k fv3 fv4 fv5 21k 21k 40k
Note that I (t1.Tax) = 0 requires I (t2.Tax) > 0 referring to
ϕ4, while I (t4.Tax) = 3k indicates I (t2.Tax) < 3k. However,
there is no value in the current dom(Tax) = {0, 3k, 21k, 40k}
which is > 0 and < 3k. Therefore, the repair I ′(t2.Tax) =
fv1 is assigned by a fresh variable fv1 (out of dom(Tax), e.g.,
denoting unknown or not applicable).

Suppose that the count cost is used, having dist(a, a) =
0, dist(a, b) = 1, dist(a, fv) = 1.1, a 6= b, a, b ∈ dom(A) and
fv is a fresh variable. According to the cost function, the
total modification cost by this I ′ is ∆(I , I ′) = 5.5.

2.2 Constraint Variation via Insertion/Deletion
We consider two types of reasonable constraint variances,

via predicate insertion and deletion, respectively.

2.2.1 Predicate Insertion
First, following the same line of adding attributes for re-

fining fds [5, 2], by adding additional predicates (from pred-
icate space P) into a constraint, some tuples may no longer
violate the modified constraint. However, we should not in-
sert two types of predicates that make the dcs useless, (1)
insertion leading to trivial dcs, and (2) insertion of predi-
cates with constants, which is not an issue for fds.

Specifically, if a Pj : xφjy is inserted, such that there exist
Pi : xφiy ∈ pred(ϕ) having φi ∈ Imp(φj) as defined in Ta-
ble 1, the repaired ϕ′ becomes a trivial dc [7]. Since Pi,Pj
always cannot be true at the same time, ϕ′ is trivially satis-
fied. In other words, no violations can be detected by such a
trivial dc. Similarly, inserting a predicate tα.K = tβ .K over
a declared key attribute K makes any dc trivially satisfied
as well, and thus should be avoided. For the same reason, we
do not consider inserting predicates with constants either.
For instance, inserting a predicate tα < 0 makes all dcs fail
to detect any violation in the Income relation in Figure 1.

2.2.2 Predicate Deletion
On the other hand, besides the oversimplified dcs (need

predicate insertion), the constraints may already overfit the
data (have to remove unnecessary predicates).

However, if too many predicates are eliminated from a dc,
the constraint changes from overrefined to oversimplified.
Indeed, the more the predicates are deleted, the higher the
data repair cost will be (as stated in the following Lemma 1).
Hence, a low cost data repair with moderated predicate dele-
tion is preferred (see details in the problem definition below).

2.2.3 Constraint Variation Cost
It is worth noting that the variation of a constraint may

need both predicate insertion (for fixing over-simplification)
and predicate deletion (for fixing over-refinement).
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For example, consider another ϕ7.

ϕ7 :∀tα, tβ ∈ R,¬(tα.Name = tβ .Name ∧ tα.Year = tβ .Year

∧ tα.CP 6= tβ .CP)

To fix this constraint, we need to remove tα.Year = tβ .Year,
and insert tα.Birthday = tβ .Birthday in the variant ϕ′7 of ϕ7.
While predicate insertion reduces unnecessary data repairs
and the corresponding data repair cost, predicate deletion
identifies new violations and increases the data repair cost.
In this sense, the “common effect” between predicate inser-
tion and deletion is that, the changed data will be smaller
by inserting more predicates (deleting fewer predicates) than
that of inserting fewer predicates (deleting more predicates).
The data repair cost function consider the effect of predi-
cate insertion and deletion holistically in ϕ′7. Similarly, we
need a constraint variation cost function to holistically rep-
resent the effect of predicate insertion and deletion in ϕ′7
as well: (1) To avoid inserting too many predicates such
that the constraints overfit the data (smaller data change),
the constraint variation cost counts positively the predicate
insertion and should be bounded. (2) To reward the con-
tribution of identifying new violations (larger data change),
we count negatively the predicate deletion towards the cost
of constraint variation.

We call Σ′ a variant of Σ if all ϕ′ ∈ Σ′ are obtained by in-
serting/deleting predicates of a corresponding ϕ ∈ Σ. While
∆(I , I ′) denotes the cost on modifying data values, we use
Θ(Σ,Σ′) to represent the modification of constraints, in or-
der to avoid potential confusion between data and constraint
modifications.

Definition 2. For a variant Σ′ of Σ, the constraint varia-
tion cost is defined as

Θ(Σ,Σ′) =
∑
ϕ∈Σ

edit(ϕ,ϕ′)

where ϕ′ is a variant of ϕ, and edit(ϕ,ϕ′) is the correspond-
ing cost.

The cost of changing ϕ into ϕ′ by inserting/deleting pred-
icates is given by

edit(ϕ,ϕ′) =
∑

P∈ϕ\ϕ′
c(P) + λ

∑
P∈ϕ′\ϕ

c(P) (1)

where c(P) denotes the weighted cost of predicate P , and
λ is a weight of a predicate deletion relative to a predicate
insertion, having −1 ≤ λ ≤ 0, e.g., λ = −0.5. It is not
suggested to count predicate deletion by λ = −1 so that
predicate substitution may have 0 cost.

Example 4 (Example 3 continued). Note that ϕ4 is impre-
cise, since low-income people do not have to pay tax (equal
0). To address this scenario, we refine ϕ4 by substituting
predicate tα.Tax ≤ tβ .Tax with tα.Tax < tβ .Tax, having

ϕ′4 : ∀tα, tβ ∈ R,¬(tα.Income > tβ .Income ∧ tα.Tax < tβ .Tax).

By deleting and inserting a predicate in ϕ4, we have the con-
straint variation cost edit(ϕ4, ϕ

′
4) = c({tα.Tax < tβ .Tax})−

1
2

c({tα.Tax ≤ tβ .Tax}) = 1
2

, where each predicate has a unit

cost c(P) = 1 for simplicity and λ = − 1
2

.
Finally, with this repaired ϕ′4, the irrational data repair

I ′ in Example 3 can be avoided. Indeed, the minimum data
repair w.r.t. ϕ′4 only needs to modify one cell, I ′(t4.Tax) = 0.

Besides unit cost, it is possible to employ the distribu-
tion information to distinguish the contribution of attributes
(predicates) when evaluating the constraint variance of adding
and removing predicates. Consider a weighted cost c(P) of
a predicate P w.r.t. a constraint ϕ

c(P) = |Pr(P)− Pr(ϕ)|. (2)

Intuitively, Pr(ϕ) estimates the proportion of tuple pairs
satisfying ϕ, while 1−Pr(P) denotes the proportion of tuple
pairs not satisfying P , or equivalently the proportion of tuple
pairs that will satisfy the constraint by adding P into ϕ
(referring to the denial semantics in the constraint). The
more similar the distributions of tuple pairs satisfying P
and ϕ (leading to more similar Pr(P) and Pr(ϕ) as well),
the more likely the constraint will be true after adding P
into ϕ, i.e., higher contribution or lower cost of P .

For instance, consider ϕ1 with predicate tα.CP 6= tβ .CP
in Example 1. A predicate P : tα.Birthday = tβ .Birthday on
attribute Birthday, which has a distribution coinciding bet-
ter with CP, will leads to more similar Pr(P : tα.Birthday =
tβ .Birthday) and Pr(ϕ : ¬(· · ·∧tα.CP 6= tβ .CP)). That is, the
predicate P on attribute Birthday has higher contribution
to ϕ and lower cost when added into ϕ.

In contrast, t5[Year] 6= t6[Year] but with similar CP values
(or more precisely t5[CP] = t6[CP] in truth data) would con-
tribute negatively in observing similar Pr(tα.Year = tβ .Year)
and Pr(ϕ : ¬(· · · ∧ tα.CP 6= tβ .CP)) values. In other words,
the predicate on attribute Year has lower contribution to ϕ
and higher cost when added into ϕ.

We have weighed costs c(P : tα.Birthday = tβ .Birthday) ≤
c(tα.Year = tβ .Year). The weighted cost similarly applies
to predicate removing, following the intuition that remov-
ing a higher contribution predicate should have higher cost.
Referring to the cost function, for an overrefined ϕ3 in Ex-
ample 1, removing a predicate P : tα.Birthday = tβ .Birthday
on attribute Birthday, which has a distribution coinciding
better with CP, will leads to higher removing cost, i.e.,
λc(tα.Year = tβ .Year) ≤ λc(P : tα.Birthday = tβ .Birthday).

2.3 θ-tolerant Repair Model
Let Φi denote the set of possible variants of a constraint

ϕi by inserting/deleting predicates. Consider D = Φ1×· · ·×
Φ|Σ|, where each Σ′ ∈ D corresponds to a possible variant
of Σ. By θ-tolerant, we mean allowing a small variation on
the constraints Σ, i.e., having constraint variation cost no
greater than θ, Θ(Σ,Σ′) ≤ θ.

We take data repairing cost as objective function (to mini-
mize) and constraint repairing cost as constraint θ, following
two intuitions: (1) to avoid over-refinement, the constraint
variation (cost on inserting and deleting predicates in Defi-
nition 2) should not exceed a threshold θ; (2) to avoid over-
simplification, i.e., identifying too many correct data as vio-
lations, the repairing follows the minimum change principle3

over data.

Problem 1. Given a set Σ of constraints and an instance
I , the θ-tolerant repair problem is to find a data repair I ′ of
I such that (1) ∆(I , I ′) is minimized, and (2) I ′ � Σ′, for
some constraint variant Σ′ of Σ with Θ(Σ,Σ′) ≤ θ.

3The minimum change principle is widely considered in data
cleaning [4], under the assumption that people and machines
always try to make mistakes as few as possible.
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Table 1: Operator inverse and implication
φ = 6= > < ≥ ≤
φ 6= = ≤ ≥ < >

Imp(φ) =,≥,≤ 6= >,≥, 6= <,≤, 6= ≥ ≤

Similar to data value modification that does not allow
adding or deleting tuples, the constraint modification does
not consider inserting or removing entire constraints either.
The definition of denial constraints requires at least one
predicate. Therefore, removing all predicates is not sup-
ported. Indeed, we can hardly imagine the meaning of ¬()
without any predicate.

While turning everything into a fresh variable definitely
forms a feasible repair, it is not necessary. Instead, turn-
ing one attribute value into a fresh variable is sufficient to
eliminate the violation to a denial constraint (recall that an
fv does not satisfy any of the predicate). Referring to the
target of minimizing the repair cost in Problem 1, such a
repair of turning everything into a fresh variable will never
be returned as an optimal repair.

Finding the θ-tolerant minimum repair is highly non-trivial.
Indeed, for a fixed set of dcs, the minimum repair prob-
lem has already been known to be np-hard [16]. Owing
to this inherent hardness (in the case without constraint
modification), it is not surprising to recognize the challenge
in the θ-tolerant repair problem. A straightforward ap-
proach is to obtain all the possible constraint variants Σ′

with Θ(Σ,Σ′) ≤ θ, and find the minimum data repair I ′

w.r.t. each Σ′, respectively.
In the remainder of this paper, we show that not all the

constraint variants need to be considered (in Section 3), and
sharing of data repairs can be enabled among different con-
straint variants (in Section 4). For the determination of the
constraint variance tolerant threshold θ, we introduce some
guideline on the number of repaired cells (in Section 5.1).

3. CONSTRAINT VARIATION
It is worth noting that not all the constraint variants Σ′ ∈

D with cost Θ(Σ,Σ′) ≤ θ are necessarily to be considered. In
the following, we illustrate that some constraint variant may
refine another. It enables the pruning of constraint variants
that will not generate minimum data repairs for sure.

3.1 Maximal Constraint Variants
To capture the refinement relationship among constraints,

we consider the implication between operators [7]. For any
two values a and b, if aφ1b always implies aφ2b, it is said
that φ2 ∈ Imp(φ1). The Imp(φ) of all φ are presented in
Table 1. For example, we have ≤∈ Imp(<) since any a < b
always implies a ≤ b. As restrictions, < is stronger than ≤.
Given the denial semantics, < refines the constraint with ≤,
which belongs to Imp(<). The concept of closure of a set
of predicates, w.r.t. a denial constraint set, is defined and
calculated upon the notation of Imp(φ) in [7], which is out
the scope of this study.

Definition 3. We call ϕ2 a refinement of ϕ1, denoted by
ϕ1 � ϕ2, if for each P : xφ1y ∈ pred(ϕ1), there exists a
Q : xφ2y ∈ pred(ϕ2) such that φ1 ∈ Imp(φ2).

By inserting additional predicates, each variant ϕ′ of ϕ is
a refinement of ϕ.

Definition 4. We call Σ2 a refinement of Σ1, denoted by
Σ1 � Σ2, if for each ϕ2 ∈ Σ2, there exists a ϕ1 ∈ Σ1 such
that ϕ1 � ϕ2.

Intuitively, the more the predicates are inserted, the more
likely the constraints overfit the data. In other words, the
more the constraints are refined (via predicate insertion or
substitution), the less the data need to be changed. For
instance, two tuples with tα.A = tβ .A violating ¬(tα.A ≤
tβ .A) will no longer violate the refinement ¬(tα.A < tβ .A).

Lemma 1. Given two constraint variants Σ1,Σ2 of Σ such
that Σ2 is also a refinement of Σ1, having Σ � Σ1 � Σ2,
it always has ∆(I , I1) ≥ ∆(I , I2), where I1 and I2 are the
minimum data repairs w.r.t. Σ1 and Σ2, respectively.

As a result, given possibly higher data repair cost ∆(I , I1),
the corresponding constraint variant Σ1 can be ignored.

A variant Σ′ of constraint set Σ is said maximal w.r.t. the
constraint-variance bound θ, if there does not exist any Σ′′

such that Σ′ � Σ′′ and Θ(Σ,Σ′′) ≤ θ. Consequently, any
non-maximal Σ′ can be directly removed from D.

Pruning Non-maximal Constraint Variants
We say that a variant ϕ′ of constraint ϕ, ϕ � ϕ′, is maximal,
if there does not exist another variant ϕ′′ such that ϕ′ � ϕ′′
and edit(ϕ,ϕ′′) = edit(ϕ,ϕ′).

It is obvious to see that any ϕ′ must be maximal in a
maximal constraint variant Σ′. (Otherwise, we could build
a Σ′′,Σ′ � Σ′′, by ϕ′′, ϕ′ � ϕ′′, with the same constraint
variation cost.) In other words, we only need to consider
those maximal ϕ′i when obtaining Φi for a ϕi ∈ Σ.

Proposition 2. For any inserted predicate P : xφy ∈ pred(ϕ′)\
pred(ϕ), if φ ∈ {≤,≥, 6=}, then ϕ′ is not maximal.

Instead of inserting all the possible predicates (indicated
in Section 2.2), we only need to consider the predicates with
operators in {<,>,=} when obtaining the possible variants
Φi of a ϕi. The others with ≤,≥, 6= can be ignored.

Example 5. Consider ϕ1 again in Example 1. Besides ϕ2,
we may have other variants for ϕ1, e.g., by inserting predi-
cates on Income.

ϕ5 :∀tα, tβ ∈ R,¬(tα.Name = tβ .Name

∧ tα.Income = tβ .Income ∧ tα.CP 6= tβ .CP)

ϕ6 :∀tα, tβ ∈ R,¬(tα.Name = tβ .Name

∧ tα.Income ≤ tβ .Income ∧ tα.CP 6= tβ .CP)

According to ≤∈ Imp(=) in Table 1 for the predicates on
Income, we have ϕ6 � ϕ5. That is, ϕ5 is a refinement of
ϕ6. According to Proposition 2, the constraint variant ϕ6 by
inserting a predicate with operator ≤ is not maximal.

The minimum data repair w.r.t. ϕ6 is exactly the results
in Figure 1(b), with data repair cost 7 (by count). On the
other hand, the minimum data repair cost w.r.t. ϕ5 is 3 (the
same as the results in Figure 1(c)). It verifies the conclu-
sion in Lemma 1 that for ϕ6 � ϕ5, the minimum data repair
cost w.r.t. ϕ6 is always no less than that of ϕ5 (7>3). Con-
sequently, we can directly ignore the constraint variant ϕ6

without computing its data repair (with cost 7).

3.2 Variants with Bounded Data Repair Cost
This section focuses on pruning/removing the unnecessar-

ily considered candidate constraint variants Σ′ that would
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Figure 2: Conflict hypergraph

never generate the minimum data repair. We obtain δl(Σ
′, I)

and δu(Σ′, I), the lower and upper bounds of possible mini-
mum data repairs of I w.r.t. Σ′, respectively. Intuitively, for
constraint variants Σ′ and Σ′′, if δu(Σ′, I) < δl(Σ

′′, I), then
Σ′′ can be directly discarded.

3.2.1 Conflict Graph for Representing Violations
Given a Σ over I , let us first capture all the violations,

upon which the data repair cost bounds can be derived.

Definition 5. The violation set viol(I , ϕ) = {〈ti, tj , . . . 〉 |
〈ti, tj , . . . 〉 6� ϕ, ti, tj , · · · ∈ I } is a set of tuple lists that
violate ϕ.

The violation set of Σ is viol(I ,Σ) = ∪ϕ∈Σviol(I , ϕ).
We denote cell(tα, tβ , . . . ;ϕ) all the cells that are involved

in the predicates pred(ϕ) of ϕ.

cell(tα, tβ , . . . ;ϕ) ={v1 | P : v1φc ∈ pred(ϕ)}∪
{v1, v2 | P : v1φv2 ∈ pred(ϕ)}

The degree Deg(ϕ) of ϕ is defined as the number of distinct
cells in ϕ, i.e., Deg(ϕ) = |cell(tα, tβ , . . . ;ϕ)|.

Following [8], we represent violations in I w.r.t. Σ by a
conflict hypergraph G, where each vertex is a cell in I . Each
violation tuple list 〈ti, tj , . . . 〉 ∈ viol(I , ϕ) forms a hyper-
edge, consisting of cell(ti, tj , . . . ;ϕ), in the graph. The data
repair problem is thus to find a I ′ such that all the conflict
hyperedge are eliminated.

Example 6. Consider again ϕ′4 in Example 4.

ϕ′4 : ∀tα, tβ ∈ R,¬(tα.Income > tβ .Income ∧ tα.Tax < tβ .Tax).

For the relation I in Figure 1(a), the violation set is

viol(I , ϕ′4) = {〈t5, t4〉, 〈t6, t4〉, 〈t7, t4〉}.

Figure 2 illustrates the conflict hypergraph built upon the
violation set, where each node denotes a cell in the relation.
Each hyperedge corresponds to a violation tuple list (pair).
For instance, the hyperedge for 〈t5, t4〉 ∈ viol(I , ϕ′4) consists
of cell(t5, t4;ϕ′4) = {t5.Income, t4.Income, t5.Tax, t4.Tax}.

3.2.2 Bounds on Minimum Data Repair Cost
To eliminate the violation of a conflict hyperedge, at least

one vertex (cell) in the edge should be repaired. We denote

min
a∈dom(A)

dist(I (t.A), a)

the weight of vertex t.A, i.e., the minimum cost should be
paid to repair t.A.

Let V∗(G) be the minimum weighted vertex cover of the
hypergraph G corresponding to Σ, I , with weight

‖V∗(G)‖ =
∑

t.A∈V∗(G)

min
a∈dom(A)

dist(I (t.A), a).

Lemma 3. For any valid repair I ′ of I , i.e., I ′ � Σ, we
have ∆(I , I ′) ≥ ‖V∗(G)‖.

Since computing V∗ is already known to be np-hard, we
consider an constant factor-f approximation of V∗ [20], i.e.,
‖V(G)‖
‖V∗(G)‖ ≤ f , where f is the maximum degree of hyperedges

and V(G) is an approximation of V∗(G).
Let Deg(Σ) = maxϕ∈Σ Deg(ϕ) be the degree of Σ, i.e., the

maximum degree of ϕ in Σ. It follows ‖V(G)‖ ≤ f‖V∗(G)‖ ≤
Deg(Σ)∆(I , I ′). Therefore, we define the lower bound of
minimum data repair cost as

δl(Σ, I) =
‖V(G)‖
Deg(Σ)

.

Recall that the violation can be eliminated by simply as-
signing any cell in a hyperedge to fresh variable fv . Since
V(G) covers all the hyperedges, assigning all the cells in V(G)
forms a valid data repair. We thus define the upper bound
of the minimum data repair cost as

δu(Σ, I ) =
∑

t.A∈V(G)

dist(I (t.A), fv).

Example 7 (Example 6 continued). Consider the conflict
graph G in Figure 2. Suppose that the count cost is used, hav-
ing dist(a, b) = 1, a 6= b, a, b ∈ dom(A). That is, each vertex
has weight 1. Let AMWVG(G) = {t4.Tax} be an approxi-
mate minimum weighted vertex cover, with ‖AMWVG(G)‖ =
1. Referring to the number of 4 cells in ϕ′4, we have Deg(Σ) =
Deg(ϕ′4) = 4. The lower bound of minimum data repair
cost is δl(Σ, I) = 0.25. Similarly, suppose that dist(a, fv) =
1.1, a ∈ dom(A). The upper bound of minimum data repair
cost can be computed as δu(Σ, I ) = 1.1.

3.3 θ-tolerant Repair Algorithm
Consider a set D of constraint variation candidates Σi for

Σ, whose variations are bounded by θ, Θ(Σ,Σi) ≤ θ. Al-
gorithm 1 returns a data repair Imin = arg minIi

∆(I , Ii),
where Ii is the minimum repair of I w.r.t. Σi, i = 1, . . . , |D|.

First, it is notable that Σ itself, with Θ(Σ,Σ) = 0 ≤ θ,
should be a valid constraint “variation” candidate. There-
fore, the upper bound δmin of the θ-tolerant minimum data
repair can be initialized as δu(Σ, I) in Line 1.

For each variant Σi, if the lower bound δl(Σi, I ) is no
greater than the previously known upper bound δmin (Line
3), the data repair over Σi, I should be processed. (See the
following section for the DataRepair function.) Lines 5-7
update the bound δmin, once a better result Ii is found.

Algorithm 1 θ-TolerantRepair(D,Σ, I )

Input: An instance I , a constraint set Σ, and a set D of con-
straint variants with variation bounded by θ

Output: A minimum data repair Imin w.r.t. D
1: δmin := δu(Σ, I )
2: for each constraint variant Σi ∈ D do
3: if δl(Σi, I ) ≤ δmin then
4: Ii := DataRepair(Σi, I ,V(Gi), δmin)
5: if ∆(I , Ii) < δmin then
6: δmin := ∆(I , Ii)
7: Imin := Ii
8: return Imin

Example 8. Consider the relation in Figure 1(a) and Σ =
{ϕ4} in Example 3. For a θ = 1

2
, suppose that the (pruned)
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constraint variants are D = {Σ1,Σ2} where Σ1 = {ϕ′4} in
Example 4, and Σ2 = {ϕ′′4} contains

ϕ′′4 : ∀tα, tβ ∈ R,¬(tα.Income > tβ .Income ∧ tα.Tax = tβ .Tax).

Note that both Σ1 and Σ2 are maximal w.r.t. θ.
As shown in Example 6, for Σ1, its conflict hypergraph
G1 (in Figure 2) can be obtained. We have δu(Σ1, I ) = 1.1,
referring to Example 7.

Similarly, for Σ2, we obtain conflict hypergraph G2 with
V(G2) = {t2.Tax, t3.Tax, t5.Tax, t6.Tax, t7.Tax}. Referring to
the count cost as introduced in Example 7 and Deg(Σ2) =
Deg(ϕ′4) = 4, it follows δl(Σ2, I ) = 5/4 = 1.25.

With δu(Σ1, I ) < δl(Σ2, I ), the constraint variant Σ2 can
be further pruned without calling DataRepair.

Let ` be the maximum number of tuples |{tα, tβ , . . . }| in-
volved in a ϕ of Σ. The construction of Gi for each Σi ∈ D
costs O(|I |`). As illustrated in the following section, for a
certain set of changing cells V(Gi), the DataRepair algo-
rithm runs inO(|I |`) time. Thereby, the θ-TolerantRepair
algorithm runs in O(|I |`|D|) time. Typical constraints are
with ` = 1 or 2, i.e., involving one or two tuples. For in-
stance, linear denial constraints [16, 1] and constant con-
ditional functional dependencies [3] have ` = 1, declaring
constraints on single tuples. Functional dependencies and
general conditional functional dependencies, with ` = 2, con-
sider constraints involving two tuples. The proposed prun-
ing practically reduces computing time costs but does not
improve the complexity.

4. DATA REPAIR
Next, given a set Σ′ of constraints (variants), we focus

on generating the minimum data repair of I w.r.t. Σ′. In
particular, it is expected to share the computation among
different constraint variants Σ′.

Existing holistic approach [8] is incapable of the aforesaid
sharing, owing to multiple ad-hoc repair rounds. The ratio-
nale is that putting only violations into repair context may
introduce new violations to others after one round repairing.

In this section, to advance data repair with sharing, we
introduce a novel violation-free repair (in Section 4.1) that
ensures no new violations introduced after repairing. The
idea is to consider in repair context not only the violations
but also the suspects that may potentially introduce vio-
lations. This one round data repair thus enables sharing
among various constraint variants (in Section 4.2).

4.1 Violation Free Data Repair
Since the problem of finding the minimum data repair has

already been known to be np-hard [16], we thereby focus on
approximation approaches for repairing. Following the same
line of [8], the repairing starts from heuristically selected
cells, i.e., the aforesaid V(G), denoted by C for simplicity.
To perform the one-round violation-free repair, it is essential
to guarantee that the modification on cells in C will not
introduce new violations (conflict hyperedges).

4.1.1 Suspects of Potential Violations
Let us first capture the “suspects” that may lead to new

violations after modifying the cells in C. Recall that a vio-
lation occurs in a tuple list ti, tj , . . . w.r.t. ϕ, when all the
predicates in ϕ are satisfied. Intuitively, if a predicate of ϕ is

Figure 3: Suspect condition (blue arrow) and repair
context (red arrow with operator inverse)

not satisfied, which does not contain cells from C, the repair-
ing on C will not affect 〈ti, tj , . . . 〉 � ϕ. That is, 〈ti, tj , . . . 〉
does not need to be suspected.

Definition 6. The suspect set susp(C, ϕ) of a ϕ is a set of
tuple lists 〈ti, tj , . . . 〉 satisfying all the predicates in ϕ which
do not involve cells in C.

All the tuple lists 〈ti, tj , . . . 〉 satisfying the following sus-
pect condition sc(ti, tj , . . . ;ϕ) w.r.t. C should be suspected,

sc(tα, tβ , . . . ;ϕ) = {I (v1)φc | P : v1φc ∈ pred(ϕ), v1 6∈ C}∪
{I (v1)φI (v2) | P : v1φv2 ∈ pred(ϕ), v1, v2 6∈ C}

which considers all the predicates on cells in cell(tα, tβ , . . . ;ϕ)
except those ones from C.

To understand the suspect condition more clearly, let us
illustrate an example constraint ϕ declared on two tuples ti
(as tα of ϕ) and tj (as tβ of ϕ) in Figure 3(a). Each circle
denotes a changing cell from C, while a square is a cell not
in C (that will not be modified). The constant associated in
a predicate is represented by a triangle. Each arrow v1 → v2

denotes a predicate declared on two cells v1φv2 (or between
a cell and a constant v1φc). The suspect condition considers
predicates with cells not from C, i.e., blue arrows attached on
two squares or between squares and triangles. For instance,
a suspect condition I (tj .D)φI (tj .C), i.e., 7→8, corresponds
to the satisfaction of predicate tβ .Dφtβ .C ∈ pred(ϕ). Con-
sequently, if all the blue edges specified by predicates in ϕ
are satisfied, i.e., sc(ti, tj ;ϕ) is satisfied, 〈ti, tj〉 becomes a
suspect tuple list (pair).

Lemma 4. For any C, it always has viol(I , ϕ) ⊆ susp(C, ϕ).

Lemma 4 states that any tuple list already in violation is
naturally suspected. In other words, identifying the suspect
set is sufficient to capture all the violations.

Example 9. Consider again ϕ′4 in Example 4 over the rela-
tion in Figure 1(a). Let C = {t4.Tax} be the set of changing
cells, i.e., an V(G) for the conflict hypergraph G in Figure 2.
We have the suspect set susp(C, ϕ′4) = {〈t4, t1〉, 〈t4, t2〉, 〈t4, t3〉,
〈t5, t4〉, 〈t6, t4〉, 〈t7, t4〉, 〈t8, t4〉, 〈t9, t4〉, 〈t10, t4〉}. For instance,
consider 〈t4, t1〉 in Figure 3(b), where t4.Tax ∈ C is denoted
by a circle, while other cells not in C are squares. The pred-
icate t4.Tax < t1.Tax on t4.Tax ∈ C is a red arrow, while the
blue arrow denotes the other t4.Income > t1.Income whose
cells are not in C.

The suspect condition on 〈t4, t1〉 is thus sc(t4, t1, ϕ
′
4) =

{I (t4.Income) > I (t1.Income)}. Referring to Figure 1(a),
we have I (t4.Income) = 3k > I (t1.Income) = 0. That is,
〈t4, t1〉 satisfies all the predicates (blue arrow) in ϕ′4 except
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those (red arrow) with cells from C. Referring to Defini-
tion 6, 〈t4, t1〉 is a suspect tuple pair. It is possible that re-
pairs on t4.Tax may introduce violations to t1.Tax, i.e., when
I ′(t4.Tax) < I (t1.Tax) with all the predicates in ϕ′4 satisfied.

For the violation set viol(I , ϕ′4) = {〈t5, t4〉, 〈t6, t4〉, 〈t7, t4〉}
in Example 6, we have viol(I , ϕ′4) ⊆ susp(C, ϕ′4) by Lemma 4.

4.1.2 Repair Context over Suspects
For each 〈ti, tj , . . . 〉 in the suspect set of ϕ, the following

repair context rc(ti, tj , . . . ;ϕ) ensures that the repaired cells
in C will not satisfy the predicates P : xφy declared on C,
by specifying the inverse φ of φ.

rc(tα, tβ , . . . ;ϕ) = {I ′(v1)φc | P : v1φc ∈ pred(ϕ), v1 ∈ C}∪
{I ′(v1)φI ′(v2) | P : v1φv2 ∈ pred(ϕ), v1, v2 ∈ C}∪
{I ′(v1)φI (v2) | P : v1φv2 ∈ pred(ϕ), v1 ∈ C, v2 6∈ C}∪
{I (v1)φI ′(v2) | P : v1φv2 ∈ pred(ϕ), v1 6∈ C, v2 ∈ C}

Each repair context predicate in rc(tα, tβ , . . . ;ϕ) corre-
sponds to the inverse of a predicate in ϕ with cells from C
(red arrow in Figure 3). For instance, I (tα.D)φI ′(tβ .A), cor-
responding to 3→6, ensures that the predicate tα.Dφtβ .A ∈
pred(ϕ) will not be satisfied after modifying tβ .A ∈ C.

We assemble the repair contexts for each suspect tuple list
〈ti, tj , . . . 〉 of all ϕ ∈ Σ to generate a data repair I ′.

Proposition 5. Any assignment that satisfies all the repair
contexts forms a valid repair I ′ without introducing any new
violations, i.e., I ′ � Σ.

Again, the repair cost is expected to be small.

min
∑
ti.A∈C

dist(I (ti.A), I ′(ti.A)) (3)

s.t. rc(ti, tj , . . . ;ϕ) 〈ti, tj , . . . 〉 ∈ susp(C, ϕ), ϕ ∈ Σ

Existing solver can be employed to efficiently compute
solutions, e.g., liner programming (LP) for numerical values
and value frequency map (VFM) for string types [8].

Example 10 (Example 9 continued). For the suspect tuple
list 〈t4, t1〉 ∈ susp(C, ϕ′4), its repair context rc(t4, t1;ϕ′4) =
{I ′(t4.Tax) ≥ I (t1.Tax)} is obtained by considering the in-
verse of each predicate in ϕ′4 with cells from C, i.e., red ar-
row in Figure 3(b). Similarly, rc(t5, t4;ϕ′4) = {I ′(t5.Tax) ≥
I (t4.Tax)} is obtain from the red arrow in Figure 3(c).

By considering all the tuple pairs in susp(C, ϕ′4), we obtain
the entire repair contexts in formula (3), as shown in Figure
4(a). Given the repair contexts I ′(t4.Tax) ≥ I (t1.Tax) = 0
and I ′(t4.Tax) ≤ I (t5.Tax) = 0, a solution to the problem in
formula (3) is I ′(t4.Tax) = 0 (as shown in Example 4).

4.1.3 Problem Solving with Fresh Variable
As mentioned, there may not exist any assignment from

the currently known values that can satisfy all the repair
contexts. Following the same line of dc-based data repair-
ing [8], we attempt to assign some cells by fresh variable
fv . Recall that fv (denoting values out of the current do-
main such as unknown or not applicable) does not satisfy any
predicate including the repair context predicates. Once a
cell is assigned by fv , all the repair context predicates in-
volving the cell can be removed. Heuristically, we would
select a cell t.A ∈ C with the largest number of appearance
in the repair contexts, to assign fv .

Figure 4: Repair contexts (a) rc1 and (b) rc2

The repairing keeps on assigning fv , i.e., removing repair
context predicates, till the problem with the remaining re-
pair contexts can be solved. The more the repair context
predicates are removed, the more likely the problem can be
solved. The worst case is the assignment of fv for all cells in
C (see more discussions below on performance analysis).

Rather than gradually (slowly) assigning fv in each iter-
ation, we are indeed able to identify ahead some cells t.A
that must be assigned to fv . Let

rc(t.A,Σ) = {
I (v1)φ1I ′(t.A), I ′(t.A)φ2I (v2), I ′(t.A)φ3c ∈ rc(ti, tj , . . . ;ϕ)

| t ∈ {ti, tj , . . . }, v1, v2 6∈ C, 〈ti, tj , . . . 〉 ∈ susp(C, ϕ), ϕ ∈ Σ}

denote all the repair context predicates declared between
t.A and a constant c, or between t.A and cell v1, v2 6∈ C that
cannot be modified. If rc(t.A,Σ) is unsatisfiable, we directly
assign I ′(t.A) = fv .

Example 11. Consider again ϕ4 in Example 3, with C =
V(G) = {t2.Tax, t3.Tax, t5.Tax, t6.Tax, t7.Tax} as illustrated
in Example 8. Following the same line of Example 10, we
compute all the repair contexts for each suspect tuple pair
in susp(C, ϕ4). Now consider the subset of repair contexts
on the cell t2.Tax, i.e., rc(t2.Tax, {ϕ4}) = {I ′(t2.Tax) >
I (t1.Tax), I (t4.Tax) > I ′(t2.Tax), I (t8.Tax) > I ′(t2.Tax),
I (t9.Tax) > I ′(t2.Tax), I (t10.Tax) > I ′(t2.Tax)}. Given that
I (t1.Tax) = 0 and I (t4.Tax) = 3k, rc(t2.Tax, {ϕ4}) indeed
requires 0 < I ′(t2.Tax) < 3k. As presented in Example 3,
since there is not value in the current dom(Tax) that meets
the requirement, we can directly assign I ′(t2.Tax) = fv1 by
fresh variable, without solving the problem in formula (3)
over the entire repair contexts.

4.2 Enabling Sharing among Problem Solving
To enable sharing, we decompose C into a set of compo-

nents C1, . . . ,Cm, such that for any v1 ∈ Ci, v2 ∈ Cj , there
does not exist I ′(v1)φI ′(v2) ∈ rc(ti, tj , . . . ;ϕ), for some tu-
ple list 〈ti, tj , . . . 〉 ∈ susp(C, ϕ), ϕ ∈ Σ. That is, the assign-
ment of v1 ∈ Ci will not affect v2 ∈ Cj . Let

rc(C,Σ) =
⋃

〈ti,tj ,... 〉∈susp(C,ϕ),ϕ∈Σ

rc(ti, tj , . . . ;ϕ)

denote all the repair contexts in formula (3) for short. Since
components are disjoint w.r.t. repair contexts, rc(Ck,Σ) is
indeed a projection of rc(C,Σ) on Ck, having rc(C,Σ) =
rc(C1,Σ) ∪ · · · ∪ rc(Cm,Σ). Consequently, we can solve the
problem by resolving the subproblems w.r.t. rc(Ck,Σ) for
each component Ck individually.

Decomposing into components not only accelerates the
solution computing but also enhances the possibility of result
sharing among (sub)problems. Obviously, the solution can
be directly shared, if rc(Ck,Σ1) = rc(Ck,Σ2).
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To further explore the sharing opportunity, we consider
the following refinement relationship among repair contexts.

Definition 7. We say that rc(Ck,Σ2) refines rc(Ck,Σ1),
denoted by rc(Ck,Σ2) v rc(Ck,Σ1), if for each xφ1y ∈
rc(Ck,Σ1), there exists xφ2y ∈ rc(Ck,Σ2) s.t. φ1 ∈ Imp(φ2).

That is, the repair contexts in rc(Ck,Σ2) are more strict
(refined). For instance, rc2 (with t8.Tax > t4.Tax) in Figure
4(b) refines rc1 (with t8.Tax ≥ t4.Tax) in Figure 4(a).

Proposition 6. For an optimal solution I ′(Ck) of rc(Ck,Σ1),
if I ′(Ck) also satisfies rc(Ck,Σ2) and rc(Ck,Σ2) v rc(Ck,Σ1),
then I ′(Ck) is an optimal solution to rc(Ck,Σ2) w.r.t. the
problem in formula (3).

A natural idea is to materialize the optimal solutions of
the previously solved rc(Ck,Σ1), and reuse them directly
when solving rc(Ck,Σ2). To search the materialized rc(Ck,Σ1)
for rc(Ck,Σ2), efficient filtering can be applied to fast ex-
clude the repair contexts on distinct Ck.

Example 12. Let rc1 = rc({t4 .Tax}, {ϕ′4}) denote all the
repair contexts in Figure 4(a) in Example 10. Suppose that
there is another rc2 of repair contexts on the same C =
{t4.Tax} as shown in Figure 4(b). Note that we have I (t8.Tax) >
I ′(t4.Tax) ∈ rc2, whereas I (t8.Tax) ≥ I ′(t4.Tax) ∈ rc1. It is
similar for t9.Tax and t10.Tax. Referring to ≥∈ Imp(>)
in Table 1, we have rc2 v rc1. Since the optimal solution
I ′(t4.Tax) = 0 for rc1 also satisfies all the repair contexts
in rc2, according to Proposition 6, we can directly conclude
that I ′(t4.Tax) = 0 is an optimal solution for rc2 as well.

5. EXPERIMENTAL STUDY
In this section, we compared our proposed θ-tolerant re-

pair with the state-of-the-art approaches (with/without con-
straint repairs). By default, we consider the unit predicate
cost with c(P) = 1 and λ = −0.5 in formula (1). Details on
experiment preparation can be found in Appendix D.1.

5.1 Evaluating Proposed Techniques
First, we compare our violation-free (Vfree) data repair

algorithm, in Section 4, with the existing Holistic data re-
pair [8]. As dc-based data repair algorithms, both Vfree
and Holistic can work together with our proposed constraint-
variance tolerant repair CVtolerant, in Section 3.

Figure 5 reports the performance under various error rates
(with θ = 1 for CVtolerant, see discussion below on choosing
θ). Generally, our proposed Vfree shows higher accuracy in
Figure 5(c) than Holistic, especially when working with CV-
tolerant. The results verify the effectiveness of considering
suspects rather than only violations in the repair context.

Time cost of Vfree is significantly lower than that of Holis-
tic, either with or without CVtolerant, as shown in Figure
5(d). The rationale is that our Vfree needs only one round
violation-free repair, while Holistic may have multiple rounds
for handling newly introduced violations in each round.

The CVtolerant+Vfree approach can always achieve the
highest accuracy in Figures 5(a)-(c). The time costs of CV-
tolerant increase heavily from error rate 0.6 to 0.7. It is
because the number of calling DataRepair (in Line 6 of Al-
gorithm 1) increases from 1 to 2. The corresponding number
of calling solvers (in Line 9 of Algorithm 2) increases largely
as well, as illustrated in Figure 5(f). Nevertheless, owing to
our efficient pruning and sharing techniques, most tests can
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Figure 5: Vfree vs. Holistic data repairing with and
without constraint variance tolerance (HOSP)

obtain the results by calling DataRepair within 2 times,
and the times of calling solver for CVtolerant are compara-
ble to that of without constraint variance.

An interesting result is the slight increase of accuracy with
the increase of error rate, by approaches without CVtolerant.
The reason is the large number of changed cells by Vfree
and Holistic, as shown in Figure 5(e), most of which are
indeed not noises and negatively repaired by the inaccurate
constraints. With the increase of error rate, some of them
become true noises and thus the repair accuracy increases
a bit. When more accurate constraints are captured via
variance toleration, CVtolerant (either with Vfree or Holistic)
shows accuracy decrease with the increase of error rate.

Figure 6 studies the impact of varying the constraint vari-
ance tolerance level θ (under an error rate of 7%). With the
increase of θ, i.e., with higher tolerance of constraint vari-
ances, many negative repairs can be avoided, and the re-
pairing accuracy (precision as well as f-measure) increases.
However, when θ increases to 3, no data need to be changed,
i.e., the constraints are over-refined and overfit the data.

Observing the number of repaired cells may help in deter-
mining θ. A large number of changed cells (under a small
θ) indicate that data is overrepaired (with imprecise con-
straints). In contrast, an extremely small size of repaired
cells (under a large θ) means that the constraints are over-
refined (overfitting the data without identifying violations).

Similar results are observed over CENSUS, in Figures 7
and 8 analogous to Figures 5 and 6 over HOSP. Specifi-
cally, as shown in Figure 7(b), our CVtolerant methods show
significantly higher accuracy than those without constraint-
variance tolerance. Again, the time cost of Vfree is signif-
icantly lower than that of Holistic, either with or without
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Figure 6: Varying tolerance level θ (HOSP)

CVtolerant, as shown in Figure 7(d). The accuracy results
of Vfree and Holistic are similar, because the constraints
employed in this test are liner DCs where the repairing
w.r.t. suspect set is similar to that on violation set. Sim-
ilar to Figure 6(e) over HOSP, Figure 8(c) illustrates that
the larger the constraint variance tolerance level θ is, the
fewer the number of cells need to be changed. With a mod-
erate θ = 1, i.e., neither oversimplified constraints leading
to many changed cells nor overrefined constraints without
repairing any data, the accuracy is highest in Figure 8(a),
which is also observed in Figure 6(c) over HOSP.

5.2 Comparison to FD-based Repairs
Next, we compared the state-of-the-art approaches using

fds as constraints, over the categorized data HOSP, includ-
ing (1) Vrepair [14] and Holistic [8] without considering con-
straint variances, (2) Unified [5] with a unified cost model for
both data and constraint repairs, (3) Relative [2] considering
the relative trust between data and constraints via a data
repair cost threshold, and (4) our proposed CVtolerant.

Figures 9 and 10 report the performance on various error
rates and data sizes. In general, our CVtolerant approach
shows significantly higher repair accuracy than all the other
approaches. The time cost increases almost linearly in the
number of tuples, in Figure 10(b). The results verify the
complexity analysis (in Sections 3 and 4) of the proposed
θ-tolerant repair approach.

The number of changed cells by Unified decreases sharply
from 6 to 7 in Figure 11(b). It is because the cost of data
repair exceeds that of constraint repair in the unified cost
model. Constraint repair is performed rather than data re-
pair, i.e., the number of changed cells drops. Its correspond-
ing accuracy varies significantly as well, from 7 to 8, in Fig-
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Figure 7: Comparison with and without constraint
variance tolerance (CENSUS)
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Figure 8: Varying tolerance level θ (CENSUS)

ure 10(a). The results verify again that constraints and data
are not equally trustworthy for repairing, as indicated in [2].

The Relative method takes extremely high time costs, as
shown in Figure 10(b), which is also reported in [2]. The
method uses a fixed threshold τ of data repair cost to filter
constraint repairs, rather than the dynamically determined
minimum data repair cost bound δmin in our proposed al-
gorithms. A large number of constraint and data repairs
need to be considered by Relative with very high overhead.
Owing to the extremely high time costs, we stop attempting
the method with data sizes greater than 1000 in Figure 10
(given the clearly lower accuracy under various error rates,
as well as on various # constraints and # attributes below).

In Figures 9(a) and 10(a), CVtolerant with weighted cost
shows a bit higher accuracy than CVtolerant with unit cost,
and significantly better results compared to the existing Uni-
fied and Relative methods. The results verify again that CV-
tolerant with either weighted or unit cost can improve the
state of the art in further selecting the right attribute (predi-
cate) for constraint variation. The improvement of weighted
cost compared to unit cost in CVtolerant is not very signifi-
cant. The reason is that inserting inappropriate predicates,
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Figure 9: Comparison under FD constraints with
various data error rates (HOSP)
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Figure 10: Scalability on number of tuples (HOSP)
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Figure 11: Changed cells (HOSP)

e.g., on attribute Year with worse coincided distribution,
does not help much in refining oversimplified constraints,
and thus the data repair cost is high. Instead, inserting the
right predicates, e.g., on attribute Birthday with better coin-
cided distribution, does refine the oversimplified constraints,
and the corresponding data repair with lower cost will be
returned following the minimum change principle. That is,
CVtolerant with unit cost on predicates achieves consider-
ably good accuracy as well. Nevertheless, by introducing
fine-grain cost of predicates, the right attributes and predi-
cates can be more precisely selected and the repair accuracy
improves as reported in Figures 9 and 10.

5.3 Comparison to DC-based Repairs
This experiment over CENSUS considers numerical data

repairing by dc-based approaches: (1) Greedy [16] using a
modified greedy strategy, (2) Holistic [8] putting violations
into repair context, and (3) our proposed CVtolerant.

As shown in Figures 12(a) and 13(a), the MNAD distance
(between truth and repair) of our CVtolerant is significantly
lower than those of Greedy and Holistic, i.e., more close to
the ground truth. Similarly, for the accuracy relative to
the introduced noises, in Figures 12(b) and 13(b), CVtoler-
ant shows clear improvement as well. Again, the rationale
is that without repairing inaccurate constraints, existing ap-
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Figure 12: Comparison under DC constraints with
various data error rates (CENSUS)
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Figure 13: Scalability on num. of tuples (CENSUS)

proaches change a large number of cells (that are indeed cor-
rect) as illustrated in Figure 13(d). Time costs of CVtolerant
are only a slightly higher than existing methods. Indeed, as
illustrated in Figure 13(c), all the approaches scale well.

5.4 Evaluation over Various Errors
Real errors could be correlated, that is, errors often appear

together in the same tuples on a certain set of attributes,
rather than independently appear in random tuple-attribute
cells. Such error patterns could be prevalent in real-world.
For instance, tuples collected from unreliable sources could
involve multiple errors, e.g., not only the Name value con-
tains error but also Birthday.

Figure 14 presents an experiment on various correlation
levels of errors, by observing different numbers of errors that
appear together in the same tuples with correlations. As
shown in Figure 14(a), the accuracy drops a bit with the
increase of errors in a tuple (higher error appearance corre-
lation). Nevertheless, the proposed method CVtolerant still
clearly outperforms other methods, which is similar to the
previous results in Figure 9(a).
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Figure 14: Comparison over correlated errors ap-
pearing together (HOSP)
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Figure 15: Comparison over real GPS data with er-
rors naturally embedded

The GPS dataset has real errors naturally embedded and
the ground truth values (locations) of errors manually la-
belled. Specifically, we collect GPS readings carrying a smart-
phone and walking along main roads at campus. The GPS
readings are not accurate and may occasionally“jump”away
from the trajectory. Since we know exactly the path of walk-
ing, a number of 243 dirty points are manually identified
(among total 2409 points in the trajectory). The true loca-
tions of these dirty points are also manually labeled, as the
ground truth. Figure 15 reports the results over the GPS
data. As shown, e.g., in Figure 15(b), our proposed method
CVtolerant achieves significantly higher accuracy than that
of Holistic, which is similar to Figure 12 over CENSUS.

6. RELATED WORK
Integrity Constraints. In this paper, we use a general no-
tation of integrity constraints, denial constraints (dcs) [7].
The reason is that dcs are able to express the semantics of
several classes of integrity constraints, e.g., traditional key
constraints and functional dependencies (fds). Since con-
stants can be declared in dcs, the conditional functional de-
pendencies (cfds) [3] can also be expressed with constants
as conditions. The advantage is obvious to employ multiple
classes of constraints, which can identify more violations.

Besides manual specification, dcs are often discovered from
data [7]. The discovery focuses on finding a minimal cover
of dcs that hold in the given training data. Instead, our
constraint variance considers a set of maximal dcs with vari-

ation to the given dcs bounded by θ. The major difference
is that the discovery concerns a concise representation of
precise constraints from (usually clean) data, while the re-
pair explores the variants of inaccurate constraints for the
minimum repair of dirty data.

Data Repair. To eliminate violations to integrity constraints,
the deletion model [6] manages to delete a minimum set of
tuples such that the remaining data can satisfy the con-
straints. Information loss occurs in such deletion.

Rather than deletion, the data modification repair model
[21] proposes to modify data values. Most cleaning tech-
niques adopt this modification model, such as Vrepair [14]
considering fds as constraints, Greedy repair [16] under lin-
ear dcs, and Holistic repair [8] with general dcs. All these
approaches assume that the constraints are accurate, while
our study considers the inaccuracies of both constraints and
data. We experimentally compare these approaches in Sec-
tion 5 to demonstrate the superiority of our proposal.

Constraint Repair. When both constraints and data are
dirty, existing methods simultaneously repair the constraints
and data. Chiang and Miller [5] propose a unified cost model
for both data and constraint repairs. With a model of tuple
patterns, the description length based cost is the number of
tuples not represented by the model (as well as the number
of patterns) times the size of fd. A repair of fd increases its
size but may reduce the number of tuples not represented by
the model (violations to fd). Beskales et al. [2] consider the
relative trust between data and constraints via a threshold
of data repair cost. The idea is to consider potential con-
straint repairs whose bounds of data repair cost are within
a threshold τ . Compared to the existing approaches, our
proposal shows higher repairing accuracy in Section 5.

7. CONCLUSIONS
In this paper, we study the problem of repairing data un-

der imprecise constraints. Besides inserting predicates for
oversimplified constraints (as in existing approaches), we ar-
gue that the constraints could be overrefined as well, and
need predicate deletion. To be tolerant of constraint vari-
ances (with both predicate insertion and deletion), a novel
θ-tolerant repair model is introduced, which finds a mini-
mum data repair by allowing a small variation on the con-
straints (with variation no greater than θ). In particular, our
method addresses repairing over numerical attributes which
are not supported by existing approaches [5, 2].

We devise efficient pruning among different constraint vari-
ations. The one-round, violation-free, repair-cost-bounded
data repair algorithm further enables sharing the repair com-
putation. Experiments on real datasets demonstrate that
our proposal has significantly higher repair accuracy than
the state-of-the-art Unified [5] and Relative [2] approaches
(with consideration of constraint repair), while the corre-
sponding time cost is comparable to the pure Holistic data
repair [8] (which does not consider constraint variant).
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APPENDIX
A. PROOFS

Proof of Lemma 1
Proof. Consider the minimum data repair I1 w.r.t Σ1. Given
I2 as the minimum data repair w.r.t Σ2, the conclusion
∆(I , I1) ≥ ∆(I , I2) is naturally proved by showing that I1 is
also a valid data repair w.r.t Σ2, i.e., to show I1 � Σ2.

First, according to the definition of inverse and implica-
tion in Table 1, for any φ1 ∈ Imp(φ2), it always has φ2 ∈
Imp(φ1). For instance, ≤∈ Imp(<) implies ≥∈ Imp(>).

According to Definition 4 of refinement Σ1 � Σ2, for each
ϕ2 ∈ Σ2, there exists a ϕ1 ∈ Σ1 such that ϕ1 � ϕ2.

Since I1 � Σ1 (i.e., I1 � ϕ1), for any 〈ti, tj〉 ∈ I1, there
must exist some P : xφ1y ∈ pred(ϕ1) such that 〈ti, tj〉 6� P :
xφ1y, which can also be written as 〈ti, tj〉 � xφ1y.

Referring to Definition 3 of refinement ϕ1 � ϕ2, for each
P : xφ1y ∈ pred(ϕ1), there exists a Q : xφ2y ∈ pred(ϕ2)
such that φ1 ∈ Imp(φ2). It follows φ2 ∈ Imp(φ1). In
other words, 〈ti, tj〉 � xφ1y implies 〈ti, tj〉 � xφ2y. We have
〈ti, tj〉 6� Q : xφ2y ∈ pred(ϕ2) as well, i.e., 〈ti, tj〉 � ϕ2.

To sum up, for each ϕ2 ∈ Σ2 and 〈ti, tj〉 ∈ I1, we have
〈ti, tj〉 � ϕ2, i.e., I1 � Σ2. As aforesaid, the conclusion
∆(I , I1) ≥ ∆(I , I2) is proved.

Proof of Proposition 2
Proof. According to the definition of implication in Table 1,
for any φ ∈ {≤,≥, 6=}, we can always find a φ1 such that φ ∈
Imp(φ1), φ 6= φ1. For instance, for the operator ≥, it always
has ≥∈ Imp(>), and similarly ≤∈ Imp(<), 6=∈ Imp(<).

For a P : xφy ∈ pred(ϕ′) \ pred(ϕ), we can always obtain
another ϕ′′ via replacing P of ϕ′ by Q : xφ1y, such that
ϕ′ � ϕ′′ according to Definition 3 of refinement. Their costs
are the same inst(ϕ,ϕ′′) = inst(ϕ,ϕ′). It concludes that ϕ′

is not maximal.

Proof of Lemma 3
Proof. To eliminate the violation of a tuple list 〈ti, tj , . . . 〉 6�
ϕ, at least one cell in cell(ti, tj , . . . ;ϕ) should be modified.
It corresponds to at least one vertex in the hyperedge of
cell(ti, tj ;ϕ).

Considering all the violation tuple lists, any valid data
repair should at least modify one vertex for each hyperedge,
i.e., a vertex cover of the hypergraph.

The minimum cost of modifying a cell is

min
a∈dom(A)

dist(I (t.A), a),

which is exactly the weight of a vertex. In other words, any
valid data repair should have repair cost no less than the
weight of the corresponding vertex cover.

Therefore, the weight of the minimum weighted vertex
cover ‖V∗(G)‖ gives a lower bound of any valid data repair.

Proof of Lemma 4
Proof. For each 〈ti, tj , . . . 〉 in the violation set of ϕ, we have
〈ti, tj , . . . 〉 satisfying all the predicates in ϕ. Referring to
the suspect condition sc(tα, tβ , . . . ;ϕ), 〈ti, tj , . . . 〉 belongs
to suspect set as well.
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Proof of Proposition 5
Proof. The correctness of results I ′ � Σ includes two as-
pects.

First, we show that I ′ eliminates all the violations exist-
ing in I . For any 〈ti, tj , . . . 〉 ∈ I that satisfies all the predi-
cates of a ϕ ∈ Σ, i.e., a violation, there must have a cell in
cell(ti, tj , . . . ;ϕ) that is selected to C (a vertex cover). That
is, there must have a circle (belonging to C) as illustrated
in Figure 3(a).

The repair context rc(ti, tj , . . . ;ϕ) ensures that all the
predicates involving cells from C (red arrows in Figure 3(a))
are not satisfied. In other words, no violation remains in
〈ti, tj , . . . 〉 in the repaired I ′.

Next, for the other tuple lists in the suspect sets, which
satisfy all the predicates that do not contain cells from C
(blue arrows in Figure 3(a)), the aforesaid assignment of
cells in C (circles) guarantees violation-free for each suspect
tuple list as well.

B. DATA REPAIR ALGORITHM
Algorithm 2 presents the violation-free data repair with

the aforesaid sharing enabled. As discussed in Section 4.1.3,
by gradually assigning cells to fv (in Line 16), the algorithm
guarantees to return a solution for each component Ck. Be-
fore calling an existing solver (in Line 9), the program first
searches the materialized subproblems and solutions. If the
conditions in Proposition 6 are satisfied, the materialized
solution can be directly reused (Lines 5-7).

Algorithm 2 DataRepair(Σ, I ,C, δmin)

Input: An instance I , a constraint set Σ, a set C of changing
cells and a bound of data repair cost δmin

Output: An assignment of cells in C for the repair I ′

1: initialize rc(C,Σ) and project into components
2: for each component Ck of C do
3: while Ck 6= ∅ do
4: search materialized subproblems
5: if exists some rc(Ck,Σ′) whose solution satisfies

rc(Ck,Σ) and rc(Ck,Σ) v rc(Ck,Σ′) then
6: I ′(Ck) := the solution of rc(Ck,Σ′)
7: Ck := ∅
8: else
9: solve rc(Ck,Σ) by existing solver

10: if rc(Ck,Σ) is solved then
11: I ′(Ck) := the solution returned by the solver
12: materialize rc(Ck,Σ) with I ′(Ck) for reuse
13: Ck := ∅
14: else
15: t.A := the cell with the largest number of appear-

ance in rc(Ck,Σ)
16: I ′(t.A) := fv
17: Ck := Ck \ {t.A}
18: if ∆(I , I ′) ≥ δmin then
19: return null
20: return I ′

Example 13. Suppose that we are given a set of (repaired)
constraints Σ = {ϕ3, ϕ

′
4} from Examples 1 and 4, and C =

{t2.CP, t5.CP, t8.CP, t4.Tax} in Figure 1(a). The repair con-
texts are rc(C,Σ) = {I ′(t2.CP) = I (t3.CP), I ′(t5.CP) =
I (t6.CP), I ′(t8.CP) = I (t9.CP)} ∪ rc1, where rc1 is the re-
pair contexts in Figure 4(a) computed in Example 10. C
is decomposed into four components C1 = {t2.CP},C2 =
{t5.CP},C3 = {t8.CP},C4 = {t4.Tax} w.r.t. the repair con-
text independence. By separately solving rc(Ck,Σ) for each

Table 2: Approximation performance

Constraints Approximation factor

linear dc/constant cfd d|R|
binary dc/variable cfd/fd 2d|R|

component Ck, the repair results are I ′(t2.CP) = 564-389,
I ′(t5.CP) = 930-198, I ′(t8.CP) = 824-870, I ′(t4.Tax) = 0.

To initialize rc(C,Σ), we need to search suspects in I for
each tuple with cells from C. The cost is O(|I |`), where ` is
the maximum number of tuples |{tα, tβ , . . . }| involved in a ϕ
of Σ, as discussed at the end of Section 3. To solve the prob-
lem in formula (3), existing LP solvers are employed, e.g.,
[12] with cost O(n3.5L), where n is the number of variables,
i.e., |C|, and L is the number of bits of input. Therefore, for
a fixed C, the DataRepair algorithm takes O(|I |`) time.

Constant Factor Approximation
Theorem 7. Algorithms 1 and 2 output a repair I ′ having
∆(I ,I ′)
∆(I ,I∗) ≤ d ·Deg(Σ), where d =

maxa∈dom(A),A∈attr(R) dist(a,fv)

mina,b∈dom(A),A∈attr(R) dist(a,b)

and I ∗ is the optimal θ-tolerant repair with the minimum
data repair cost.

Table 2 reports the performance of our approach under
several typical integrity constraints. For a set Σ of linear
dcs [16, 1], i.e., with all the predicates in the form of vθc,
we have Deg(Σ) ≤ |R|. The approximation bound becomes
d|R|. Similar situation occurs in constant cfd [3], which
also specifies constraints on single tuples. Binary dcs con-
tain only predicates declared on the same attributes of two
tuples, in the form of tα.Aθtβ .A. As special cases of bi-
nary dcs, the constraints, including fds and variable cfds,
share the same bounds 2d|R|. Since all these types of con-
straints are declared on tuple pairs, the number of involved
cells is at most two times the number of attributes, i.e.,
Deg(Σ) ≤ 2|R|. (See Section 6 for a more detailed introduc-
tion of the aforesaid integrity constraint notations.)

In short, for a R with fixed domain, our proposed ap-
proach is a constant factor approximation.

C. DISCUSSION ON USAGE

C.1 Relevance to Real World Usage
In practice, it is already difficult for data curators to un-

derstand and accept data repairs, which are suggested by
tools following the minimum change property. Automatic
repairing techniques (towards constraint satisfaction) play
largely a role of suggesting repairs rather than determin-
ing repairs. In this sense, suggesting multiple possible re-
pairs, instead of only one repair following the minimum
change property and constraint satisfaction, could be help-
ful to data curators in repair selection. Therefore, in order
to enhance the real-world usage, our approach (1) obtains
multiple repair results w.r.t. various constraint variants (in-
stead of one single minimum repair satisfying one fixed set of
constraints), and (2) provides guidelines on evaluating and
selecting the returned multiple repair results. The rationale
is explained as follows.

(1) To reduce the complexity of considering both data re-
pairs and constraint repairs at the same time, existing stud-
ies [5] employ an unified cost function on both data and
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constraint repairs, and the repairing still follows the (uni-
fied) cost minimality. As also observed in our experimental
evaluation, e.g., in Figure 10, the repair result suggested
by unified cost minimality could be doubtful and thus with
lower repair accuracy. In order to overcome the problem
of returning only one minimum repair result, our proposal
considers multiple minimum repair results, suggested by var-
ious constraint variants (constraint repairs) w.r.t. different
constraint variation levels θ.

(2) To practically understand and select data repairs from
the multiple results, one may observe the number of repaired
cells in a data repair result. A large number of changed
cells (under a small θ) indicate that data is over-repaired
(with oversimplified constraints). In contrast, an extremely
small size of repaired cells (under a large θ) means that
the constraints are overrefined (overfitting the data without
identifying violations).

C.2 Prevalence of Imprecise Constraints
The book [18] gives an explanation, together with some

examples, of why both the data and the metadata (such as
integrity constraints) could be inaccurate at the same time.
In particular, the metadata, e.g., constraint on Age ≥ 18,
are often collected from various internal/external sources,
and thus could be inaccurate and incomplete. For instance,
“the metadata (constraints) could be extracted from the re-
lational database directory or catalog in a relational system,
or a COBOL copybook or a PL/1 INCLUDE file that lays
out the data in an IMS or VSAM data source”. Moreover,
“primary key, foreign key, and other referential constraint
information, TRIGGER or STORED PROCEDURE logic
embedded within the relational system, application source
code for programs that insert, delete, and update informa-
tion in the database” are also sources of metadata collection.
Therefore, it is necessary “to verify some of the information
to determine the completeness of (meta)data-gathering and
to identify areas where one may suspect wrong or missing
information”.

C.3 Prevalence of Overrefined Constraints
Overrefined constraints could appear in both manually

specified constraints and automatically discovered constraints,
two common ways of obtaining integrity constraints. (1) For
manually specified constraints, for example, a non-minimal
super key {Name, Department, Birthday} could be declared,
which includes unnecessary attributes to uniquely identify a
tuple. This super key is overrefined, given that a candidate
key {Name, Department} is sufficient to uniquely identify
a tuple. (2) When discovering constraints from data with
noises, it is very like that the discovered constraints may
overfit the data. For instance, an overrefined constraint ϕ3,
i.e., Name,Year,Birthday→CP, could be discovered (with
high confidence) from the given data set in Figure 1(a).
Such discovery of constraints from data with noises, together
with some confidence guarantees, is prevalent when there is
no clean data available for discovery [13]. Similar scenar-
ios of overrefined constraints that overfit the data occur in
sequential dependency discovery [10] and conditional func-
tional dependency discovery [11].

Without addressing these overrefined constraints, as illus-
trated in Example 1, dirty data might not be identified and
repaired. Therefore, special attention on such overrefined
constraints is needed.

C.4 When Errors Fit the Constraints
Real-world errors may fall in the specified constraints,

that is, tuples with errors indeed satisfy the specified con-
straints. There are two cases to take care of: (1) For the case
of overrefined constraints, which fail to identify the errors,
as ϕ3 shown in Example 1, our proposed methods can han-
dle this case by removing excessive predicates; (2) For the
case of constraints that are indeed accurate, the proposed
method of predicate removing or inserting does not help.
Indeed, without further knowledge, all the constraint-based
repairing methods fail to identify and repair such errors,
which satisfy all the (accurate) constraints.

D. ADDITIONAL EXPERIMENTS

D.1 Experiment Preparation
Count cost is employed in evaluating data repair cost,

and an equal weight is associated to each cell (in Defini-
tion 1). All the experiments are performed on a machine
with 2.5GHz CPU and 8GB RAM.

Datasets. The comparison mainly performs over two real
datasets, HOSP and CENSUS. The HOSP dataset includes
14 attributes and 20,442 tuples. The CENSUS dataset is
with 40 attributes and 299,285 tuples. The HOSP dataset,
from US Department of Health & Human Services, mainly
contains categorized data, where up to 6 fds are specified.
The CENSUS dataset, part of the UC Irvine Machine Learn-
ing Repository, comes up with 3 dcs over numerical values
such as Income.

Following the same line of evaluating data repairing [8],
errors are introduced in the datasets by producing noises
with a certain error rate. An error rate e denotes that e%
of cells in the data are changed.

Criteria. For categorized data, we use f-measure to evalu-
ate the accuracy of repairs. Let truth be the set of original
cell values that are changed when introducing noises, and
repair be the set of repair results. The repair accuracy is
given by f-measure= 2 · precision·recall

precision+recall
, where precision =

|truth∩repair|
|repair| and recall = |truth∩repair|

|truth| . Following the same cri-

teria in [8], for the cells repaired by fv , it is counted as a
partial 0.5 rather than 1, in |truth ∩ repair|.

For numerical values, we observe mean normalized abso-
lute distance (MNAD) [15], i.e., the distance between Itruth
(before introducing noises) and Irepair (results after repair-
ing). Since the absolute distance measures do not consider
the variance of introduced noises Inoise, we study the relative

accuracy [19] of repairing, 1− ∆(Irepair,Itruth)

∆(Irepair,Inoise)+∆(Itruth,Inoise)
.

According to triangle inequality on distances, in the worst
case, ∆(Irepair, Itruth) = ∆(Irepair, Inoise)+∆(Itruth, Inoise),
we have the lowest accuracy=0. For the best repair results,
∆(Irepair, Itruth) = 0, we have accuracy=1.

D.2 Experiments on Predicate Deletion
This experiment evaluates the accuracy and effectiveness

of predicate removal. The input constraints are overrefined
with excessive predicates and need removal, denoting by neg-
ative θ of constraint variance tolerance levels.

First, as illustrated in Figure 16(b), without constraint
variance, θ = 0, few data can be correctly repaired (low re-
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Figure 16: Varying tolerance level θ with predicate
removal (HOSP)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1.0 -0.7 -0.5 -0.3 -1.0

F
-m

e
a

s
u

re

Lambda

(a)

CVtolerant

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

-1.0 -0.7 -0.5 -0.3 -1.0

#
 c

h
a

n
g

e
d

 c
e

lls

Lambda

(b)

CVtolerant
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call) under the input overrefined constraints. On the other
hand, if too many predicates are removed, e.g., θ = −2,
the constraints become oversimplified and a large number
of cells will be unnecessarily changed as show in Figure
16(e). Consequently, with a moderate θ = −1.5, i.e., neither
oversimplified constraints leading to many changed cells nor
overrefined constraints without repairing much data, the ac-
curacy is highest in Figure 16(c). Such phenomenon is also
observed in Figure 6(c) of predicate insertion.

D.3 Evaluating the Predicate Deletion Weight
To further distinguish the contributions of predicate inser-

tion and deletion, we conduct another experiment in Figure
17. Instead of a fixed -0.5, we vary the weight λ of predicate
deletion, from 0 to -1, relative to predicate insertion. Gen-
erally, a smaller λ (closer to -1.0) denotes that more predi-
cate insertions could be afforded, given the same predicate
deletion and cost threshold θ. Oversimplified constraints are
more likely to be refined and thus fewer cells will be changed
in repairing, e.g., weight λ = −0.7 as shown in Figure 17(b).
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Figure 18: Varying number of FDs (HOSP)
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Figure 19: Varying number of attributes (HOSP)

However, for an extremely small λ = −1.0, the constraints
become overrefined and few cells will be repaired. The cor-
responding accuracy is low as illustrated in Figure 17(a).
The results verify our suggestion of avoid setting λ = −1.0.
As shown, a weight λ = −0.5 (or -0.7), leading to neither
oversimplified constraints with many changed cells nor over-
refined constraints without repairing much data, achieves
the highest repair accuracy.

D.4 Experiments on Various FDs
Figures 18 and 19 report the performance on various num-

bers of fds and numbers of attributes. Relative method al-
ways tries to repair the data as many as possible (towards
the maximum limit τ) in order to minimizing the constraint
changes. In this sense, increasing the number of fds does
not help much in reducing unnecessary data repairs and thus
has no significant improvement on the repairing accuracy, as
shown in Figure 18(a). In contrast, our proposed CVtolerant
approach benefits when more constraints are provided.

Figure 19(a) illustrates that with more attributes in a re-
lation, the repairing accuracy is not affected largely. The
rationale is that all the constraint repair approaches have
mechanism on avoiding inserting many irrelevant predicates
into the constraints.

Another interesting result is the slow increase of Relative’s
time cost (on # constraints and # attributes) in Figures
18(b) and 19(b), in contrast to the result (on # tuples) in
Figure 10(b). The reason is that the given constraints are
both oversimplified and overrefined, e.g., an fd(State→City)
that needs an insertion of Zipcode and a deletion of State.
Simply considering more attributes (more fds) does not help
much in reducing the violations to this imprecise fd, and
such high (data-repair) cost constraint variants can be effi-
ciently pruned without introducing significantly higher time
costs in Figures 18(b) and 19(b). On the other hand, since
the high cost data repair is inevitable, the time cost of Rela-
tive increases heavily w.r.t. # tuples in Figure 10(b). Never-
theless, our proposed CVtolerant can successfully handle the
aforesaid case, with significantly lower time costs in various
number of tuples, constraints and attributes.
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