
SLING: A Near-Optimal Index Structure for SimRank

Boyu Tian
Shanghai Jiao Tong University

China
bytian@umich.edu

Xiaokui Xiao
Nanyang Technological University

Singapore
xkxiao@ntu.edu.sg

ABSTRACT

SimRank is a similarity measure for graph nodes that has numerous
applications in practice. Scalable SimRank computation has been
the subject of extensive research for more than a decade, and yet,
none of the existing solutions can efficiently derive SimRank scores
on large graphs with provable accuracy guarantees. In particular,
the state-of-the-art solution requires up to a few seconds to compute
a SimRank score in million-node graphs, and does not offer any
worst-case assurance in terms of the query error.

This paper presents SLING, an efficient index structure for Sim-
Rank computation. SLING guarantees that each SimRank score
returned has at most ε additive error, and it answers any single-
pair and single-source SimRank queries in O(1/ε) and O(n/ε)
time, respectively. These time complexities are near-optimal, and
are significantly better than the asymptotic bounds of the most re-
cent approach. Furthermore, SLING requires only O(n/ε) space
(which is also near-optimal in an asymptotic sense) and O(m/ε +
n log n

δ
/ε2) pre-computation time, where δ is the failure proba-

bility of the preprocessing algorithm. We experimentally evaluate
SLING with a variety of real-world graphs with up to several mil-
lions of nodes. Our results demonstrate that SLING is up to 10000
times (resp. 110 times) faster than competing methods for single-
pair (resp. single-source) SimRank queries, at the cost of higher
space overheads.

1. INTRODUCTION
Assessing the similarity of nodes based on graph topology is

an important problem with numerous applications, including social
network analysis [21], web mining [16], collaborative filtering [5],
natural language processing [26], and spam detection [27]. A num-
ber of similarity measures have been proposed, among which Sim-

Rank [14] is one of the most well-adopted. The formulation of
SimRank is based on two intuitive arguments:

• A node should have the maximum similarity to itself;

• The similarity between two different nodes can be measured
by the average similarity between the two nodes’ neighbors.

Formally, the SimRank score of two nodes vi and vj is defined as:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915243

s(vi, vj) =





1, if vi = vj

c

|I(vi)| · |I(vj)|
∑

a∈I(vi),b∈I(vj)

s(a, b), otherwise

(1)
where I(v) denotes the set of in-neighbors of a node v, and c ∈
(0, 1) is a decay factor typically set to 0.6 or 0.8 [14,23]. Previous
work [5, 8, 16, 21, 22, 26, 27, 33, 35] has applied SimRank (and its
variants) to various problem domains, and has demonstrated that it
often provides high-quality measurements of node similarity.

1.1 Motivation
Despite of the effectiveness of SimRank, computing SimRank

scores efficiently on large graphs is a challenging task, and has been
the subject of extensive research for more than a decade. In par-
ticular, Jeh and Widom [14] propose the first SimRank algorithm,
which returns the SimRank scores of all pairs of nodes in the in-
put graph G. The algorithm incurs prohibitive costs: it requires
O
(
n2

)
space and O

(
m2 log 1

ε

)
time, where n and m denote the

numbers of nodes and edges in G, respectively, and ε is the maxi-
mum additive error allowed in any SimRank score. Subsequently,
Lizorkin et al. [23] improve the time complexity of the algorithm
to O

(
log 1

ε
·min{nm,n3/ log n}

)
, which is further improved to

O
(
log 1

ε
·min{nm,nω}

)
by Yu et al. [34], where ω ≈ 2.373.

However, the space complexity of the algorithm remains O
(
n2

)
, as

is inherent in any algorithm that computes all-pair SimRank scores.
Fogaras and Rácz [8] present the first study on single-pair

SimRank computation, and propose a Monte-Carlo method that
requires O

(
n log 1

δ
/ε2

)
pre-computation time and space. The

method returns the SimRank score of any node pair in O
(
log 1

δ
/ε2

)

time, where δ is the failure probability of the Monte-Carlo method.
Subsequently, Li et al. [20] propose a deterministic algorithm for
single-pair SimRank queries; it has the same time complexity with
Jeh and Widom’s solution [14], but provides much better practi-
cal efficiency. However, existing work [24] show that neither Li
et al.’s [20] nor Fogaras and Rácz’s solution [8] is able to handle
million-node graphs in reasonable time and space. There is a line
of research [10, 13, 19, 30–32] that attempts to mitigate this effi-
ciency issue based on an alternative formulation of SimRank, but
the formulation is shown to be incorrect [17], in that it does not
return the same SimRank scores as defined in Equation (1).

The most recent approach to SimRank computation is the lin-

earization technique [24] by Maehara et al., which is shown to
considerably outperform existing solutions in terms of efficiency
and scalability. Nevertheless, it still requires up to a few seconds
to answer a single-pair SimRank query on sizable graphs, which
is inadequate for large-scale applications. More importantly, the

1859

Table 1: Comparison of SimRank computation methods with at most ε additive error and at least 1 − δ success probability.

Algorithm
Query Time

Space Overhead Preprocessing Time
Single Pair Single Source

Fogaras and Rácz [8] O
(

log 1
ε
log n

δ
/ε2

)

O
(

n log 1
ε
log n

δ
/ε2

)

O
(

n log 1
ε
log n

δ
/ε2

)

O
(

n log 1
ε
log n

δ
/ε2

)

Maehara et al. [24]
(under heuristic assumptions)

O
(

m log 1
ε

)

O
(

m log2 1
ε

)

O(n+m) no formal result

this paper O(1/ε)
O(n/ε) (Algorithm 3)

O(n/ε) O
(

m/ε + n log n
δ
/ε2

)

O
(

m log2 1
ε

)

(Algorithm 6)

lower bound Ω(1) Ω(n) Ω(n) -

technique is unable to provide any worst-case guarantee in terms
of query accuracy. In particular, the technique has a preprocessing
step that requires solving a system L of linear equations; assum-
ing that the solution to L is exact, Maehara et al. [24] show that
the technique can ensure ε worst-case query error, and can answer
any single-pair and single-source SimRank queries in O

(
m log 1

ε

)

and O
(
m log2 1

ε

)
time, respectively. (A single-source SimRank

query from a node vi asks for the SimRank score between vi and
every other node.) Unfortunately, as we discuss in Section 3.3, the
linearization technique cannot precisely solve L, nor can it offer
non-trivial guarantees in terms of the query errors incurred by the
imprecision of L’s solution. Consequently, the technique in [24]
only provides heuristic solutions to SimRank computation. In sum-
mary, after more than tens years of research on SimRank, there is
still no solution for efficient SimRank computation on large graphs
with provable accuracy guarantees.

1.2 Contributions and Organization
This paper presents SLING (SimRank via Local Updates and

Sampling), an efficient index structure for SimRank computation.
SLING guarantees that each SimRank score returned has at most ε
additive error, and answers any single-pair and single-source Sim-
Rank queries in O(1/ε) and O(n/ε) time, respectively. These
time complexities are near-optimal, since any SimRank method re-
quires Ω(1) (resp. Ω(n)) time to output the result of any single-
pair (resp. single-source) query. In addition, they are significantly
better than the asymptotic bounds of the states of the art (includ-
ing Maehara et al.’s technique [24] under their heuristic assump-
tions), as we show in Table 1. Furthermore, SLING requires only
O(n/ε) space (which is also near-optimal in an asymptotic sense)
and O(m/ε+n log n

δ
) pre-computation time, where δ is the failure

probability of the preprocessing algorithm.
Apart from its superior asymptotic bounds, SLING also incorpo-

rates several optimization techniques to enhance its practical per-
formance. In particular, we show that its preprocessing algorithm
can be improved with a technique that estimates the expectation
of a Bernoulli variable using an asymptotically optimal number of
samples. Additionally, its space consumption can be heuristically
reduced without affecting its theoretical guarantees, while its em-
pirical efficiency for single-source SimRank queries can be consid-
erably improved, at the cost of a slight increase in its query time
complexity. Last but not least, its construction algorithms can be
easily parallelized, and it can efficiently process queries even when
its index structure does not fit in the main memory.

We experimentally evaluate SLING with a variety of real-world
graphs with up to several millions of nodes, and show that it sig-
nificantly outperforms the the states of the art in terms of query
efficiency. Specifically, SLING requires at most 2.3 milliseconds
to process a single-pair SimRank query on our datasets, and is up
to 10000 times faster than the linearization method [24]. To our

knowledge, this is the first result in the literature that demonstrates
millisecond-scale query time for single-pair SimRank computa-
tion on million-node graphs. For single-source SimRank queries,
SLING is up to 110 times more efficient than the linearization
method. As a tradeoff, SLING incurs larger space overheads than
the linearization method, but it is a still much more favorable choice
in the common scenario where query time and accuracy (instead of
space consumption) are the main concern.

The remainder of the paper is organized as follows. Section 2
defines the problem that we study. Section 3 discusses the major
existing methods for SimRank computation. Section 4 presents the
SLING index, with a focus on single-pair queries. Section 5 pro-
poses techniques to optimize the practical performance of SLING.
Section 6 details how SLING supports single-source queries. Sec-
tion 7 experimentally evaluates SLING against the stats of the art

2. PRELIMINARIES
Let G be a directed and unweighted graph with n nodes and m

edges. We aim to construct an index structure on G to support
single-pair and single-source SimRank queries, which are defined
as follows:

• A single-pair SimRank query takes as input two nodes u and
v in G, and returns their SimRank score s(u, v) (see Equa-
tion 1).

• A single-source SimRank query takes as input a node u, and
returns s(u, v) for each node v in G.

Following previous work [8, 23, 24, 33], we allow an additive er-
ror of at most ε ∈ (0, 1) in each SimRank score returned for any
SimRank query.

For ease of exposition, we focus on single-pair SimRank queries
in Sections 3-5, and then discuss single-source queries in Section 6.
Table 2 shows the notations frequently used in the paper. Unless
otherwise specified, all logarithms in this paper are to base e.

3. ANALYSIS OF EXISTING METHODS
This section revisits the three major approaches to SimRank

computation: the power method [14], the Monte Carlo method [8],
and the linearization method [17, 24, 25, 33]. The asymptotic per-
formance of the Monte Carlo method and the linearization method
has been studied in literature, but to our knowledge, there is no
formal analysis regarding their space and time complexities when
ensuring ε worst-case errors. We remedy this issue with detailed
discussions on each method’s asymptotic bounds and limitations.

3.1 The Power Method
The power method [14] is an iterative method for computing the

SimRank scores of all pairs of nodes in an input graph. The method

1860

Table 2: Table of notations.

Notation Description

G the input graph

n,m the numbers of nodes and edges in G

vi the i-th node in G

I(v) the set of in-neighbors of a node v in G

s(vi, vj) the SimRank score of two nodes vi and vj in G

c the decay factor in the definition of SimRank

ε the maximum additive error allowed in a SimRank score

δ the failure probability of a Monte-Carlo algorithm

M(i, j) the entry on the i-th row and j-th column of a matrix M

dk the correction factor for node vk

hℓ(vi, vj) the hitting probability (HP) from node vi to node vj at
step ℓ (see Section 4.2)

uses a n × n matrix S, where the element S(i, j) on the i-th row
and j-th column (i, j ∈ [1, n]) denotes the SimRank score of the
i-th node vi and j-th node vj . Initially, the method sets

S(i, j) =

{
1, if i = j

0, otherwise

After that, in the t-th (t ≥ 1) iteration, the method updates S based
on the following equation:

S(i, j) =





1, if i = j

c

|I(vi)||I(vj)|
∑

vk∈I(vi),vℓ∈I(vj)

S(k, ℓ), otherwise

Let S(t) denote the version of S right after the t-th iteration. Li-
zorkin et al. [23] establish the following connection between t and
the errors in the SimRank scores in S(t):

LEMMA 1 ([23]). If t ≥ logc(ε · (1− c))− 1, then for any

i, j ∈ [1, n], we have

∣∣∣S(t)(i, j) − s(vi, vj)
∣∣∣ ≤ ε . �

Based on Lemma 1 and the fact that each iteration of the power
method takes O

(
m2

)
time, we conclude that the power method

runs in O
(
m2 log 1

ε

)
time when ensuring ε worst-case error. In

addition, it requires O
(
n2

)
space (caused by S). These large com-

plexities in time and space make the power method only applicable
on small graphs.

3.2 The Monte Carlo Method
The Monte Carlo method [8] is motivated by an alternative def-

inition of SimRank scores [14] that utilizes the concept of reverse

random walks. Given a node w0 in G, a reverse random walk from
w0 is a sequence of nodes W = 〈w0, w1, w2, . . .〉, such that wi+1

(i ≥ 0) is selected uniformly at random from the in-neighbors of
wi. We refer to wi as the i-th step of W .

Suppose that we have two reverse random walks Wi and Wj that
start from two nodes vi and vj , respectively, and they first meet at
the τ -th step. That is, the τ -th steps of Wi and Wj are identical,
but for any ℓ ∈ [0, τ), the ℓ-th step of Wi differs from the ℓ-th step
of Wj . Jeh and Widom [14] establishes the following connection
between τ and the SimRank score of vi and vj :

s(vi, vj) = E[cτ], (2)

where E[·] denotes the expectation of a random variable.

Based on Equation (2), the Monte Carlo method [8] pre-
computes a set Wi of reverse random walks from each node vi
in G, such that (i) each set Wi has the same number nw of walks,
and (ii) each walk in Wi is truncated at step t, i.e., the nodes after
the t-th step are omitted. (This truncation is necessary to ensure
that the walk is computed efficiently.) Then, given two nodes vi
and vj , the method estimates their SimRank score as

ŝ(vi, vj) =
1

nw

nw∑

ℓ=0

cτℓ ,

where τℓ denotes the step at which the ℓ-th walk in Wi first meets
with the ℓ-th walk in Wj . Fogaras and Rácz [8] show that, with at
least 1− 2 exp(− 6

7
nwε

2) probability,

∣∣ŝ(vi, vj)− E [ŝ(vi, vj)]
∣∣ ≤ ε. (3)

However, we note that E [ŝ(vi, vj)] 6= s(vi, vj), due to the trun-
cation imposed on the reverse random walks in Wi and Wj . To
address this issue, we present the following inequality:
∣∣∣E [s(vi, vj)]− ŝ(vi, vj)

∣∣∣ =
∣∣∣E

[
cτ
]
− Pr[τ ≤ t] · E

[
cτ | τ ≤ t

]∣∣∣

=
∣∣Pr[τ > t

]
· E[cτ | τ > t]|

≤ ct+1
(4)

By Equations (3) and (4) and the union bound, it can be verified
that when t > logc

ε
2

and nw ≥ 14
3ε2

(
log 2

δ
+ 2 log n

)
,

∣∣ŝ(vi, vj)− s(vi, vj)
∣∣ ≤ ε

holds for all pairs of vi and vj with at least 1 − δ probability. In
that case, the space and preprocessing time complexities of the
Monte Carlo method are both O(nw · t) = O

(
n

ε2
log 1

ε
log n

δ

)
.

In addition, the method takes O
(

1
ε2

log 1
ε
log n

δ

)
time to answer a

single-pair SimRank query, and O
(

n

ε2
log 1

ε
log n

δ

)
time to process

a single-source SimRank query. These space and time complex-
ities are rather unfavorable under typical settings of ε in practice
(e.g., ε = 0.01). Fogaras and Rácz [8] alleviate this issue with
a coupling technique, which improves the practical performance
of the Monte Carlo method in terms of pre-computation time and
space consumption. Nevertheless, the method still incurs signif-
icant overheads, due to which it is unable to handle graphs with
over one million nodes, as we show in Section 7.

3.3 The Linearization Method
Let S and P be two n×n matrices, with S(i, j) = s(vi, vj) and

P (i, j) =

{
1/|I(vj)|, if vi ∈ I(vj)

0, otherwise
(5)

Yu et al. [34] show that Equation (1) (i.e., the definition of Sim-
Rank) can be rewritten as

S = (cP⊤SP) ∨ I, (6)

where I is an n × n identity matrix, P⊤ is the trans-
pose of P , and ∨ is the element-wise maximum operator, i.e.,
(A ∨B)(i, j) = max{A(i, j), B(i, j)} for any two matrices A
and B and any i, j.

Maehara et al. [24] point out that solving Equation (6) is difficult
since it is a non-linear problem due to the ∨ operator. To circum-
vent this difficulty, they prove that there exists a n × n diagonal
matrix D (referred to as the diagonal correction matrix), such that

S = cP⊤SP +D. (7)

1861

Furthermore, once D is given, one can uniquely derive S based on
the following lemma by Maehara et al. [24]:

LEMMA 2 ([24]). Given the diagonal correction matrix D,

S =
+∞∑

ℓ=0

cℓ
(
P ℓ

)⊤
DP ℓ, (8)

where P ℓ denotes the ℓ-th power of P . �

Given Lemma 2, Maehara et al. [24] propose the linearization
method, which pre-computes D and then uses it to answer Sim-
Rank queries based on Equation (8). In particular, for any two
nodes vi and vj , Equation (8) leads to

s(vi, vj) =

+∞∑

ℓ=0

cℓ
(
P ℓ · ~ei

)⊤
D

(
P ℓ · ~ej

)
, (9)

where ~ek denotes a n-element column vector where the k-th ele-
ment equals 1 and all other elements equal 0. To avoid the infi-
nite series in Equation (9), the linearization method approximates
s(vi, vj) with

s̃(vi, vj) =
t∑

ℓ=0

cℓ
(
P ℓ · ~ei

)⊤
D

(
P ℓ · ~ej

)
, (10)

which can be computed in O(m · t) time. It can be shown that if D
is precise and t ≥ logc(ε · (1− c))− 1, then

∣∣s̃(vi, vj)− s(vi, vj)
∣∣ ≤ ε. (11)

Therefore, given an exact D, the linearization method answers any
single-pair SimRank query in O(m log 1

ε
) time. With a slight mod-

ification of Equation 10, the method can also process any single-
source SimRank query in O(m log2 1

ε
) time.

Unfortunately, the linearization method do not precisely derive
D, due to which the above time complexities does not hold in gen-
eral. Specifically, Maehara et al. [24] formulate D as the solution
to a linear system, and propose to solve an approximate version of

the system to derive an estimation D̃ of D. However, there is no

formal analysis on the errors in D̃ and their effects on the accuracy
of SimRank computation. In addition, the technique used to solve
the approximate linear system does not guarantee to converge, i.e.,

it may not return D̃ in bounded time. Furthermore, even if the
technique does converge, its time complexity relies on a parame-
ter that is unknown in advance, and may even dominate n, m, and
1/ε. This makes it rather difficult to analyze the pre-computation
time of the linearization method. We refer interested readers to
Appendix A for detailed discussions on these issues.

In summary, the linearization method by Maehara et al. [24] does
not guarantee ε worst-case error in each SimRank score returned,
and there is no non-trivial bound on its preprocessing time. This
problem is partially addressed in recent work [33] by Yu and Mc-
Cann, who propose a variant of the linearization method that does
not pre-compute the diagonal correction matrix D, but implicitly
derives D during query processing. Yu and McCann’s technique
is able to ensure ε worst-case error in SimRank computation, but
as a trade-off, it requires O

(
mn log 1

ε

)
time to answer a single-pair

SimRank query, which renders it inapplicable on any sizable graph.

4. OUR SOLUTION
This section presents our SLING index for SimRank queries.

SLING is based on a new interpretation of SimRank scores, which
we clarify in Section 4.1. After that, Sections 4.3-4.5 provide de-
tails of SLING and analyze its theoretical guarantees.

4.1 New Interpretation of SimRank
Let c be the decay factor in the definition of SimRank (see Equa-

tion (1)). Suppose that we perform a reverse random walk from any
node u in G, such that

• At each step of the walk, we stop with 1−√
c probability;

• With the other
√
c probability, we inspect the in-neighbors of

the node at the current step, and select one of them uniformly
at random as the next step.

We refer to such a reverse random walk as a
√
c-walk from u. In

addition, we say that two
√
c-walks meet, if for a certain ℓ ≥ 0,

the ℓ-th steps of the two walks are identical. (Note the 0-th step
of a

√
c-walk is its starting node.) The following lemma shows an

interesting connection between
√
c-walks and SimRank.

LEMMA 3. Let Wi and Wj be two
√
c-walks from two nodes

vi and vj , respectively. Then, s(vi, vj) equals the probability that

Wi and Wj meet. �

The above formulation of SimRank is similar in spirit to the one
used in the Monte Carlo method [8] (see Section 3.2), but differs
in one crucial aspect: each

√
c-walk in our formulation has an ex-

pected length of 1
1−√

c
, whereas each reverse random walk in the

previous formulation is infinite. As a consequence, if we are to es-
timate s(vi, vj) using a sample set of

√
c-walks from vi and vj ,

we do not need to truncate any
√
c-walk for efficiency; in contrast,

the Monte Carlo method [8] must trim each reverse random walk to
trade estimation accuracy for bounded computation time. In fact,
if we incorporate

√
c-walks into the Monte Carlo method, then its

query time complexities are immediately improved by a factor of
log 1

ε
. Nonetheless, the space and time overheads of this revised

method still leave much room for improvement, since it requires
O(log n

δ
/ε2)

√
c-walks for each node, where δ is the upper bound

on the method’s failure probability. This motivates us to develop
the SLING method for more efficient SimRank computation, which
we elaborate in the following sections.

4.2 Key Idea of SLING

Let h(ℓ)(va, vb) denote the probability that a
√
c-walk from va

arrives at vb in its ℓ-th step. We refer to h(ℓ)(va, vb) as the hitting

probability (HP) from va to vb at step ℓ. Observe that, for any two√
c-walks Wi and Wj from two nodes vi and vj , respectively, the

probability that they meet at vk at the ℓ-th step is

h(ℓ)(vi, vk) · h(ℓ)(vj , vk).

Since s(vi, vj) equals the probability that Wi and Wj meet, one
may attempt to compute s(vi, vj) by taking the the probability that
Wi and Wj meet over all combinations of meeting nodes and meet-
ing steps, i.e.,

s∗(vi, vj) =

+∞∑

ℓ=0

n∑

k=1

(
h(ℓ)(vi, vk) · h(ℓ)(vj , vk)

)
. (12)

However, this formulation is incorrect, because the events that “Wi

and Wj meet at node vx at step ℓ” and “Wi and Wj meet at node
vy at step ℓ′ > ℓ” are not mutually exclusive. For example, assume
that vi = vj , and vi has only in-neighbor vk . In that case, Wi

and Wj have 100% probability to meet at vi at the 0-th step, and
a non-zero probability to meet at vk at the first step. This leads to
s∗(vi, vj) > 1, whereas s(vi, vj) = 1 by definition.

Interestingly, Equation (12) can be fixed if we substitute
h(ℓ)(vi, vk) · h(ℓ)(vj , vk) with the probability of the event that
“Wi and Wj meet at vk at step ℓ, but never meet again afterwards”.

1862

To explain this, observe that the above event indicates that Wi and
Wj last meet at vk at step ℓ. If we change vk (resp. ℓ) in the event,
then Wi and Wj should last meet at a different node (resp. step),
in which case the changed event and the original one are mutually
exclusive. Based on this observation, the following lemma presents
a remedy to Equaiton (12).

LEMMA 4. Let dk be the probability that two
√
c-walks from

node vk do not meet each other after the 0-th step. Then, for any

two nodes vi and vj ,

s(vi, vj) =
∞∑

ℓ=0

n∑

k=1

(
h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)

)
. (13)

In what follows, we refer to dk as the correction factor for vk.
Based on Lemma 4, we propose to pre-compute approximate

versions of dk and HPs h(ℓ)(vi, vk), and then use them to estimate
SimRank scores based on Equation (4). The immediate problem
here is that there exists an infinite number of HPs h(ℓ)(vi, vk) to
approximate, since we need to consider all ℓ ≥ 0. However, we
observe that if we allow an additive error in the approximate val-
ues, then most of the HPs can be estimated as zero and be omitted.
In particular, we have the following observation:

OBSERVATION 1. For any node vi and ℓ ≥ 0, there exist at

most (
√
c)ℓ/εh nodes vk such that h(ℓ)(vj , vk) ≥ εh. �

To understand this, recall that each
√
c-walk has only (

√
c)ℓ

probability to not stop before the ℓ-th step, i.e.,

n∑

k=1

h(ℓ)(vj , vk) = (
√
c)ℓ.

Therefore, at most (
√
c)ℓ/εh of the HPs at step ℓ can be larger than

εh. Even if we take into account all ℓ ≥ 0, the total number of HPs
above εh is only

+∞∑

ℓ=0

(
√
c)ℓ/εh = O(1/εh).

In other words, we only need to retain a constant number of HPs
for each node, if we permit a constant additive error in each HP.

Based on the above analysis, we propose the SLING index, which
pre-computes an approximate version d̃k of each correction fac-
tor dk, as well as a constant-size set H(vi) of approximate HPs
for each node vi. To derive the SimRank score of two nodes vi
and vj , SLING first retrieves d̃k, H(vi), and H(vj), and then esti-
mates s(vi, vj) in constant time based on an approximate version of
Equation (13). The challenge in the design of SLING is threefold.
First, how can we derive an accurate estimation of d̃k? Second,
how can we efficiently construct H(vi) without iterating over all

HPs? Third, how do we ensure that all d̃k and H(vi) can jointly
guarantee ε worst-case error in each SimRank score computed? In
Sections 4.3-4.5, we elaborate how we address these challenges.

Before we proceed, we note that there is an interesting connec-
tion between Lemmas 2 and 4:

LEMMA 5. Let P and D be as in Lemma 2, and dk and

h(ℓ)(vi, vk) be as in Lemma 4. For any i, k ∈ [1, n], h(ℓ)(vi, vk) =

(
√
c)

ℓ · P (k, i), and dk equals the k-th diagonal element in D. �

In other words, h(ℓ)(vi, vk) (resp. dk) can be regarded as a random-
walk-based interpretation of the entries in P (resp. diagonal ele-
ments in D). Therefore, Lemmas 2 and 4 are different interpreta-
tions of the same result. The main advantage of our new interpreta-
tion is that it gives a physical meaning to dk which, as we show in

Algorithm 1: A sampling method for estimating dk
Input: a node vk , an error bound εd, and a failure probability δd
Output: an estimation version d̃k of dk with at most εd error, with at

least 1− δd probability

1 Let nr =
2c2 + c · εd

ε2
d

log
2

δd
;

2 Let cnt = 0;
3 for x = 1, 2, · · · , nr do

4 Select two nodes vi and vj from I(vk) uniformly at random;
5 if vi 6= vj then

6 Generate two
√
c-walks from vi and vj , respectively;

7 if the two
√
c-walks meet then

8 cnt = cnt+ 1;

9 return d̃k = 1− c

|I(vi)|
− c · cnt

nr

;

Section 4.3, enables us to devise a simple and rigorous algorithm to
estimate dk to any desired precision. In contrast, the only existing
method for approximating D [24] fails to provide any non-trivial
guarantees in terms of accuracy and efficiency, as we discuss in
Section 3.3.

4.3 Estimation of dk

Let W and W ′ be two
√
c-walks from vk . By definition, 1− dk

is the probability that any of the following events occurs:

1. W and W ′ meet at the first step.

2. In the first step, W and W ′ arrive at two different nodes vi
and vj , respectively; but sometime after the first step, W and
W ′ meet.

Note that the above two events are mutually exclusive, and the first
event occurs with c

|I(vk)| probability. For the second event, if we

fix a pair of vi and vj , then the probability that W and W ′ meet
after the first step equals the probability that a

√
c-walk from vi

meets a
√
c-walk from vj ; by Lemma 3, this probability is exactly

s(vi, vj). Therefore, we have

dk = 1− c

|I(vk)|
− c

|I(vk)|2
∑

vi,vj∈I(vk)
vi 6=vj

s(vi, vj). (14)

Equation (14) indicates that, if we are to estimate dk, it suffices to
derive an estimation of

µ =
1

|I(vk)|2
∑

vi,vj∈I(vk)∧vi 6=vj

s(vi, vj) (15)

by sampling
√
c-walks from vi and vj . In particular, as long as µ is

estimated with an error no more than εd/c, the resulting estimation
of dk would have at most εd error. Motivated by this, we propose a
sampling method for approximating dk, as shown in Algorithm 1.

In a nutshell, Algorithm 1 generates nr pairs of
√
c-walks, such

that each walk starts from a randomly selected node in I(vk); after
that, the algorithm counts the number cnt of pairs that meet at or
after the first step; finally, it returns d̃k = 1− c

|I(vi)| − c · cnt
nr

as

an estimation of dk. By the Chernoff bound (see Appendix D) and
the properties of

√
c-walks, we have the following lemma on the

theoretical guarantees of Algorithm 1.

LEMMA 6. Algorithm 1 runs in O
(

1
ε2
d

log 1
δd

)
expected time,

and returns d̃k such that |d̃k − d| ≤ εd holds with at least 1 − δd
probability. �

1863

Algorithm 2: A local update method for constructing H(vi)

Input: G and a threshold θ
Output: A set H(vi) of approximate HPs for each node vi in G

1 Initialize H(vi) = ∅ for each node vi;
2 for each node vk in G do

3 Initialize a set Rk = ∅ for storing approximate HPs;

4 Insert h̃(0)(vk, vk) = 1 into Rk;
5 for ℓ = 0, 1, 2, . . . do

6 for each h̃(ℓ)(vx, vk) ∈ Rk do

7 if h̃(ℓ)(vx, vk) ≤ θ then

8 remove h̃(ℓ)(vx, vk) from Rk ;
9 continue;

10 for each out-neighbor vi of vx do

11 if h̃(ℓ)(vi, vk) /∈ Rk then

12 Insert h̃(ℓ+1)(vi, vk) =
√
c · h̃(ℓ)(vx,vk)

|I(vi)| into

Rk;

13 else

14 Increase h̃(ℓ+1)(vi, vk) by
√
c · h̃(ℓ)(vx,vk)

|I(vi)| ;

15 if Rk does not contain any HP at step ℓ+ 1 then
16 break;

17 for each h̃(ℓ)(vi, vk) ∈ Rk do

18 Insert h̃(ℓ)(vi, vk) into H(vi);

4.4 Construction of H(vi)
As mentioned in Section 4.2, we aim to construct a constant-

size set H(vi) for each node vi, such that H(vi) contains an ap-

proximate version h̃(ℓ)(vi, vx) of each HP h(ℓ)(vi, vx) that is suf-
ficiently large. Towards this end, a relatively straightforward solu-
tion is to sample a set Wi of

√
c-walks from each vi, and then use

Wi to derive approximate HPs. This solution, however, requires
O(1/εh

2) walks in Wi to ensure that the additive error in each

h̃(ℓ)(vi, vx) is at most εh, which leads to considerable computa-
tion costs when εh is small.

Instead of sampling
√
c-walks, we devise a deterministic method

for constructing all H(vi) in O(m/εh) time while allowing at most
εh additive error in each approximate HP. The key idea of our
method is to utilize the following equation on HPs:

h(ℓ+1)(vi, vk) =

√
c

|I(vi)|
∑

vx∈I(vi)

h(ℓ)(vx, vk), (16)

for any ℓ ≥ 0. Intuitively, Equation (16) indicates that once we
have derived the HPs to vk at step ℓ, then we can compute the HPs
to vk at step ℓ + 1. Based on this intuition, our method generates
approximate HPs to vk by processing the steps ℓ in ascending order
of ℓ. We note that our method is similar in spirit to the local update

algorithm [4,9,15] for estimating personalized PageRanks [15], and
we refer interested readers to Appendix B for a discussion on the
connections between our method and those in [4, 9, 15].

Algorithm 2 shows the pseudo-code of our method. Given G
and a threshold θ, the algorithm first initializes H(vi) = ∅ for each
node vi (Line 1). After that, for each node vk, the algorithm per-
forms a graph traversal from vk to generates approximate HPs from
other nodes to vk . Specifically, for each vk , it first initializes a set
Rk = ∅, and then inserts an HP h̃(0)(vk, vk) = 1 into Rk , which
captures the fact that every

√
c-walk from vk has 100% probabil-

ity to hit vk itself at the 0-th step (Lines 3-4). Then, the algorithm
enters an iterative process, such that the ℓ-th iteration (ℓ ≥ 0) pro-
cesses the HPs to vk at step ℓ that have been inserted into Rk.

Algorithm 3: An algorithm for single-pair SimRank queries

Input: d̃k , H(vk), and two nodes vi and vj
Output: An approximate SimRank score s̃(vi, vj)

1 Let s̃(vi, vj) = 0;

2 for each h̃(ℓ)(vi, vk) ∈ H(vi) do

3 if there exists h̃(ℓ)(vj , vk) ∈ H(vj) then

4 s̃(vi, vj) = s̃(vi, vj) + h̃(ℓ)(vi, vk) · d̃k · h̃(ℓ)(vj , vk);

5 return s̃(vi, vj);

In particular, in the ℓ-the iteration, the algorithm first identifies
the approximate HPs h̃(ℓ)(vx, vk) in Rk that are at step ℓ, and pro-

cesses each of them in turn (Lines 6-16). If h̃(ℓ)(vx, vk) ≤ θ, then
it is removed from Rk, i.e., the algorithm omits an approximate
HP if it is sufficiently small. Meanwhile, if h̃(ℓ)(vx, vk) > θ, then
the algorithm inspects each out-neighbor vi of vx, and updates the
approximate HP from vi to vk at step ℓ + 1, according to Equa-
tion (16). After all approximate HPs at step ℓ are processed, the al-
gorithm terminates the iterative process on ℓ. Finally, the algorithm
inserts each h̃(ℓ)(vi, vk) ∈ R into H(vi), after which it proceeds
to the next node vk+1.

The following lemma states the guarantees of Algorithm 2.

LEMMA 7. Algorithm 2 runs in O(m/θ) time, and constructs

a set H(vi) of approximate HPs for each node vi, such that

|H(vi)| = O(1/θ). In addition, for each h̃(ℓ)(vi, vk) ∈ H(vi),
we have

0 ≥ h̃(ℓ)(vi, vk)− h(ℓ)(vi, vk) ≥ −1− (
√
c)ℓ

1−√
c

· θ.

4.5 Query Method and Complexity Analysis
Given an approximate correction factor d̃k and a set H(vk) of

approximate HPs for each node vk , we estimate the SimRank score
between any two nodes vi and vj according to a revised version of
Equation (13):

s̃(vi, vj) =

∞∑

ℓ=0

n∑

k=1

(
h̃(ℓ)(vi, vk) · d̃k · h̃(ℓ)(vj , vk)

)
. (17)

Algorithm 3 shows the details of our query processing method.
To analyze the accuracy guarantee of Algorithm 3, we first

present a lemma that quantifies the error in s̃(vi, vj) based on the

errors in d̃k and H(vk).

LEMMA 8. Suppose that

∣∣∣d̃k − dk

∣∣∣ ≤ εd for any k, and

0 ≥ h̃(ℓ)(vk, vx)− h(ℓ)(vk, vx) ≥ −ε
(ℓ)
h ,

for any k, x, ℓ. Then, we have |s̃(vi, vj)− s(vi, vj)| ≤ ε if

εd
1− c

+ 2

+∞∑

ℓ=0

(
(
√
c)ℓ · ε(ℓ)h

)
≤ ε.

Combining Lemmas 6, 7, and 8, we have the following theorem.

THEOREM 1. Suppose that we derive each d̃k using Algo-

rithm 1 with input εd and δd, and we construct each H(vk) using

Algorithm 2 with input θ. If δd ≤ δ/n and

εd
1− c

+
2
√
c

(1−√
c)(1− c)

θ ≤ ε,

then Algorithm 3 incurs an additive error at most ε in each Sim-

Rank score returned, with at least 1− δ probability. �

1864

By Theorem 1, we can ensure ε worst-case error in each Sim-
Rank score by setting εd = O(ε), θ = O(ε), and δd = δ/n.
In that case, our SLING index requires O(m/ε + n log n

δ
) pre-

computation time and O(n/ε) space, and it answers any single-
pair SimRank query in O(1/ε) time. The space (resp. query time)
complexity of SLING is only O(1/ε) times larger than the optimal
value, since any SimRank method (that ensures ε worst-case error)
requires Ω(n) space for storing the information about all nodes,
and takes at least Ω(1) time to output the result of a single-pair
SimRank query.

5. OPTIMIZATIONS
This section presents optimization techniques to (i) improve the

efficiency of estimating each correction factors dk (Section 5.1),
(ii) reduce the space consumption of SLING (Section 5.2), (iii) en-
hance the accuracy of SLING (Section 5.3), and (iv) incorporate
parallel and out-of-core computation into SLING’s index construc-
tion algorithm (Section 5.4).

5.1 Improved Estimation of dk

As discussed in Section 4.3, Algorithm 1 generates an approxi-
mate correction factor d̃k in O

(
ε−2
d log δ−1

d

)
expected time, where

εd is the maximum error allowed in d̃k, and δd is the failure proba-
bility. As the algorithm’s time complexity is quadratic to 1/εd, it is
not particularly efficient when εd is small. This relative inefficiency
is caused by the fact the algorithm requires O

(
ε−2
d log δ−1

d

)
pairs

of
√
c-walks to estimate the value µ (in Equation 15) with εd/c

worst-case error.
However, we observe that we can often use a much smaller

number of
√
c-walk pairs to derive an estimation of µ with at

most εd/c error. Specifically, by the Chernoff bound (see Ap-
pendix D), we only need O

(
(µ+ εd) · ε−2

d log δ−1
d

)
pairs of

√
c-

walks to estimate µ. Apparently, this number is much smaller than
O
(
ε−2
d log δ−1

d

)
when µ ≪ 1 (which is often the case in prac-

tice). For example, if µ ≤ εd, then the number of
√
c-walk pairs

required is only O(ε−1
d log δ−1

d). The main issue here is that we
do not know µ in advance. Nevertheless, if we can derive an up-
per bound of µ, and we use it to decide an appropriate number of√
c-walks needed.
Based on the above observation, we propose an improved algo-

rithm for computing d̃k, as shown in Algorithm 4. The algorithm
first generates nr = O(ε−1

d log δ−1
d) pairs of

√
c-walks from ran-

domly selected nodes in I(vk), and counts the number cnt of pairs
that meet (Lines 1-8). Then, it computes µ̂ = cnt/nr as an es-
timation of µ. If µ̂ ≤ εd, then the algorithm determines that nr

pairs of
√
c-walks are sufficient for an accurate estimation of µ; in

that case, it terminates and returns an estimation of dk based on µ̂
(Lines 9-11).

On the other hand, if µ̂ > εd, then the algorithm proceeds to
generate a larger number of

√
c-walks to derive a more accurate

estimation of µ. Towards this end, it first computes µ∗ = µ̂ +√
µ̂ · ε as an upper bound of µ, and uses µ∗ to decide the total

number n∗
r = O(µ∗ε−2

d log δ−1
d) of

√
c-walk pairs that are needed

(Lines 12-13). After that, it increases the total number of
√
c-walk

pairs to n∗
r , and recounts the number cnt of pairs that meet (Lines

14-19). Finally, it derives ũ = cnt/n∗
r as an improved estimation

of µ, and returns an approximate correction factor d̃k computed
based on µ̃ (Lines 20-21).

The following lemmas establish the asymptotic guarantees of Al-
gorithm 4.

LEMMA 9. With at least 1−δd probability, Algorithm 4 returns

d̃k such that |d̃k − d| ≤ εd holds. �

Algorithm 4: An improved method for estimating dk
Input: a node vk , an error bound εd, and a failure probability δd
Output: an estimation version d̃k of dk with at most εd error, with at

least 1− δd probability

1 Let nr =
14c

3εd
log

4

δd
;

2 Let cnt = 0;
3 for x = 1, 2, · · · , nr do

4 Select two nodes vi and vj from I(vk) uniformly at random;
5 if vi 6= vj then

6 Generate two
√
c-walks from vi and vj , respectively;

7 if the two
√
c-walks meet then

8 cnt = cnt+ 1;

9 Let µ̂ = cnt/nr;
10 if µ̂ ≤ εd then

11 return d̃k = 1− c

|I(vi)|
− c · µ̂;

12 Let µ∗ = µ̂ +
√
µ̂ · εd;

13 Let n∗
r =

2c2 · µ∗ + 2
3
c · εd

ε2d
log

4

δd
;

14 for x = 1, 2, · · · , n∗
r − nr do

15 Select two nodes vi and vj from I(vk) uniformly at random;
16 if vi 6= vj then

17 Generate two
√
c-walks from vi and vj , respectively;

18 if the two
√
c-walks meet then

19 cnt = cnt+ 1;

20 µ̃ = cnt/n∗
r ;

21 return d̃k = 1− c

|I(vi)|
− c · µ̃;

LEMMA 10. Algorithm 4 generates O(µ+εd
ε2
d

log 1
δd
)
√
c-walks

in expectation, and runs in O(µ+εd
ε2
d

log 1
δd
) expected time. �

By Lemma 9, Algorithm 4 uses a number of
√
c-walks that

is roughly max{µ, εd} times the number in Algorithm 1, which
leads to significantly improved efficiency. In addition, we note
that Algorithm 4 can be easily revised into a general method that
estimates the expectation µz of a Bernoulli distribution by taking
O(µz+ε

ε2
log 1

δ
) samples, while ensuring at most ε estimation error

with at least 1− δ success probability. In particular, the only major
change needed is to replace each

√
c-walk pair in Algorithm 4 with

a sample from the Bernoulli distribution. In this context, we can
prove that the number of samples used by Algorithm 4 is asymptot-

ically optimal.
Specifically, let z1, z2, . . . be a sequence of i.i.d. Bernoulli ran-

dom variables, and µZ = E[zi]. Let A be an algorithm that in-
spects zi in ascending order of i, and stops at a certain zj before
returning an estimation µ̃Z of µZ . In addition, for any possible
sequence of zi, A runs in finite expected time, and ensures that
|µ̃Z − µZ | ≤ ε with at least 1 − δ probability. It can be verified
that the revised Algorithm 4 is an instance of A. The following
lemma shows that no other instance of A can be asymptotically
more efficient than Algorithm 4.

LEMMA 11. Any instance of A has Ω(max{µz,ε}
ε2

log 1
δ
) ex-

pected time complexity when µz < 0.5. �

Our proof of Lemma 11 utilizes an important result by Dagum
et al. [7] that establishes a lower bound of the expected time com-
plexity of A, when it provides a worst-case guarantee in terms of
the relative error (instead of absolute error) in µ̃z . Dagum et al. [7]
also provide a sampling algorithm whose time complexity matches

1865

Algorithm 5: An algorithm for constructing H ′(vi)

Input: a node vi
Output: A set H′(vi) of precise HPs from vi at steps 1 and 2

1 Initialize H′(vi) = ∅;

2 Insert h(0)(vi, vi) = 1 into H′(v);
3 for each node vx ∈ I(vi) do

4 Insert h(1)(vi, vx) =
c

|I(vi)| into H′(v);

5 for each node vy ∈ I(vx) do

6 if h(2)(vi, vy) /∈ H′(vi) then

7 Insert h(2)(vi, vy) =
√
c · h(1)(vi,vx)

|I(vx)| into H′(vi);

8 else

9 Increase h(2)(vi, vy) by
√
c · h(1)(vi,vx)

|I(vx)| in H′(vi);

10 return H′(vi)

their lower bound, but the algorithm is inapplicable in our context,
since it requires as input a relative error bound, which cannot be
translated into an absolute error bound unless µz is known.

5.2 Reduction of Space Consumption
Recall that our SLING index pre-computes a set H(vi) of ap-

proximate HPs for each node vi, such that each h̃(ℓ)(vi, vk) ∈
H(vi) is no smaller than a threshold θ = O(ε). The total size
of all H(vi) is O(n/ε), which is asymptotically near-optimal, but
may still be costly from a practical perspective (especially when ε
is small). To address this issue, we aim to reduce the size of H(vi)
without affecting the time complexity of SLING.

We observe that, in each H(vi), a significant portion of the ap-

proximate HPs are in the form of h̃(1)(vi, vk) or h̃(2)(vi, vk), i.e.,
they concern the HPs from vi to the nodes within two hops away
from vi. On the other hand, such HPs can be easily computed using
a two-hop traversal from vi, as we will show shortly. This leads to
the following idea for space reduction: we remove from H(vi) all
approximate HPs that are at steps 1 and 2, and we recompute those
HPs on the fly during query processing. The re-computation may
lead to slightly increased query cost, but as long as it takes O(1/ε)
time, it would not affect the asymptotic performance of SLING. In
the following, we clarify how we implement this idea.

First, we present a simple and precise algorithm for computing
the set H ′(vi) of HPs from node vi to other nodes at steps 1 and
2, as shown in Algorithm 5. The algorithm first initializes a set
H ′(vi) = ∅ for storing HPs, and then inserts h(0)(vi, vi) = 1
into H ′(v). After that, for each in-neighbor vx of vi, it sets

h(1)(vi, vx) =
√

c

|I(vi)| , which is the exact probability that a
√
c-

walk from vi would hit vx at step 1. In turn, for each in-neighbor

vy of vx, the algorithm initializes h(2)(vi, vy) =
√
c · h(1)(vi,vx)

|I(vx)|
in H ′(vi), if it is not yet inserted into H ′(vi); otherwise, the al-

gorithm increases h(2)(vi, vy) by
√
c · h(1)(vi,vx)

|I(vx)| in H ′(vi). This

reason is that if a
√
c-walk from vi hits vx at step 1, then it has√

c

|I(vx)| probability to hit vy at step 2. After all of vi’s in-neighbors

are processed, the algorithm terminates and returns H ′(vi).
Algorithm 5 runs in time linear to the total number η(vi) of in-

coming edges of vi and its in-neighbors, i.e.,

η(vi) = |I(vi)|+
∑

vx∈I(vi)

|I(vx)|.

If η(vi) = O(1/ε), then we can omit all step-1 and step-2 approx-
imate HPs in H(vi), and compute them with Algorithm 5 during
query processing without degrading the time complexity of SLING;

otherwise, we need to retain all approximate HPs in H(vi). In our
implementation of SLING, we set a constant γ = 10, and we ex-
clude step-1 and step-2 HPs from H(vi) whenever η(vi) ≤ γ/θ,
where θ = Ω(ε) is the HP threshold used in the construction of
H(vi) (see Algorithm 2). Notice that each η(vi) can be computed
in O(|I(vi)|) time by inspecting vi and all of its in-neighbors;
therefore, the total computation cost of all η(vi) is O(m), which
does not affect SLING’s preprocessing time complexity. Further-
more, the on-the-fly computation of step-1 and step-2 HPs does
not degrade SLING’s accuracy guarantee, since all HPs returned by
Algorithm 5 are precise.

5.3 Enhancement of Accuracy
The approximation error of each H(vi) arises from the fact that

it omits the HPs from vi that are smaller than a threshold θ. A
straightforward solution to reduce this error is to decrease θ, but
it would degrade the space overhead of H(vi). Instead, we pro-
pose to generate additional HPs in H(vi) on-the-fly during query
processing, to increase the accuracy of query results.

Specifically, for each node vi, after H(vi) is constructed (with
the space reduction procedure in Section 5.2 applied), we inspect
the set of approximate HPs h̃(ℓ)(vi, vj) in H(vi) such that vj
has no more than 1/

√
ε in-neighbors, and then mark the 1/

√
ε

largest HPs in the set. After that, whenever a SimRank query
requires utilizing H(vi), we substitute H(vi) with an enhanced
version H∗(vi) constructed on-the-fly. In particular, we first set

H∗(vi) = H(vi). Then, for every marked HP h̃(ℓ)(vi, vj) in
H(vi), we process each in-neighbor vk of vj as follows:

• If there exists h̃(ℓ+1)(vi, vk) in H(vi), then we omit vk;

• If h̃(ℓ+1)(vi, vk) is not in H(vi) and has not been inserted into

H∗(vi), then we set h̃(ℓ+1)(vi, vk) =

√
c

|I(vj)|
h(ℓ)(vi, vj),

and insert it into H∗(vi);

• Otherwise, we update h̃(ℓ+1)(vi, vk) in H∗(vi) as follows:

h̃(ℓ+1)(vi, vk) = h̃(ℓ+1)(vi, vk) +

√
c

|I(vj)|
h(ℓ)(vi, vj).

In other words, if H(vi) does not contain an approximate HP from

vi to vk , then we generate h̃(ℓ+1)(vi, vk) in H∗(vi).

It can be verified that 0 < h̃(ℓ+1)(vi, vk) ≤ h(ℓ+1)(vi, vk), and
hence, H∗(vi) provides higher accuracy than H(vi). In addition,
the construction of H∗(vi) requires only O(1/ε) time, and hence,
it does not affect the O(1/ε) query time complexity of SLING. Fur-
thermore, marking HPs in all H(vi) requires only O(n/

√
ε) space

and O(n log(1/ε)/ε) preprocessing time, which does not degrade
the O(n/ε) space and O

(
m/ε+ n log n

δ
/ε2

)
preprocessing time

complexity of SLING.

5.4 Parallel and Out-of-Core Constructions
The preprocessing algorithms of SLING (i.e., Algorithms 1, 2,

and 4) are embarrassingly parallelizable. In particular, Algo-
rithm 1 (and Algorithm 4) can be simultaneously applied to multi-
ple nodes vk to compute the corresponding approximate correction
factors d̃k. Meanwhile, the main loop of Algorithm 2 (i.e., Lines
2-16) can be parallelized to construct the “reverse” HP sets Rk for
multiple nodes vk at the same time.

Furthermore, SLING does not require the complete index struc-
ture to fit in the main memory. Instead, we only need to keep all
approximate correction factors ṽk (k ∈ [1, n]) in the memory, but
can store the approximate HP set H(vx) for each node vx on the
disk. To process a single-pair SimRank query on two nodes vi and

1866

vj , we retrieve H(vi) and H(vj) from the disk and combine them
with ṽk to derive the query result, which incurs a constant I/O cost,
since H(vi) and H(vj) takes only O(1/ε) space. In addition, the
index construction process of SLING does not require maintaining
all HP sets H(vx) simultaneously in the memory. Specifically, in
Algorithm 2, we can construct each “reverse” HP set Rk in turn
and write them to the disk; after that, we can construct all approx-
imate HP sets H(vx) in a batch, by using an external sorting al-

gorithm to sort all HPs h̃(ℓ)(vx, vk) by vx. This process requires
only O(n

ε
log n

ε
) I/O accesses, since the total size of all H(vx) is

O(n/ε).

6. EXTENSION TO SINGLE-SOURCE

QUERIES
Given the SLING index introduced in Sections 4, we can easily

answer any single-source SimRank query from a node vi, by in-
voking Algorithm 3 n times to compute s(vi, vj) for each node vj .
This leads to a total query cost of O(n/ε), which is near-optimal
since any single-source SimRank method requires Ω(n) time to
output the results. This straightforward algorithm, however, can be
improved in terms of practical efficiency. To explain this, let us
consider two nodes vi and vj , such that H(vi) and H(vj) do not
contain any HPs to the same node at the same step, i.e.,

∄vk, ℓ, h̃(ℓ)(vi, vk) ∈ H(vi) ∧ h̃(ℓ)(vj , vk) ∈ H(vj).

Then, SLING would return s̃(vi, vj) = 0. We say that H(vi) and
H(vj) do not intersect in this case. Intuitively, if we can avoid
accessing those HP sets H(vj) that do not intersect with H(vi),
then we can improve the efficiency of the single-source SimRank
query from vi. For this purpose, a straightforward approach is to
maintain, for each combination of vk and ℓ, an inverted list L(vk, ℓ)

that records the approximate HPs h̃(ℓ)(vx, vk) from any node vx to
vk . Then, to process a single-source SimRank query from node vi,
we first examine each approximate HP h̃(ℓ)(vi, vk) ∈ H(vi) and
retrieve L(vk, ℓ), based on which we compute s̃(vi, vj) for any
node vj with s̃(vi, vj) > 0.

Although the inverted list approach improves efficiency for
single-source SimRank queries, it doubles the space consumption
of SLING, since the inverted lists have the same total size as the
approximate HP sets H(vi). Furthermore, the approach cannot be
combined with the space reduction technique in Section 5.2, be-
cause the former requires storing all approximate HPs in the in-
verted lists, whereas the latter aims to omit certain HPs to save
space. To address this issue, we propose a single-source SimRank
algorithm for SLING that finds a middle ground between the in-
verted list approach and the straightforward approach. The basic
idea is that, given node vi, we first retrieve all approximate HPs
h̃(ℓ)(vi, vk) ∈ H(vi), and then apply a variant of Algorithm 2 to
compute the HPs from other nodes to each vk; after that, we com-
bine all HPs obtained to derive the query results. In other words,
we construct the inverted lists relevant for the single-source query
on the fly, instead of pre-computing them in advance.

Algorithm 6 shows the details of our method. It takes as input a
query node vi and the threshold θ used in constructing H(vi) (see
Algorithm 2), and returns an approximate SimRank score s̃(vi, vj)
for each node vj . The algorithm starts by initializing s̃(vi, vj) = 0
for all vj (Line 1). Then, it identifies the steps ℓ such that there is at
least one step-ℓ approximate HP in H(vi); after that, it processes
each of those steps in turn (Lines 2-10). The general idea of pro-
cessing is as follows. By Equation 13, if vi has a positive HP to
a node vk at step ℓ, then for any other node vj with a positive HP
to vk at step ℓ, we have s(vi, vj) > 0. To identify such nodes vj

Algorithm 6: An algorithm for single-source SimRank queries

Input: query node vi and threshold θ
Output: an approximate SimRank score s̃(vi, vj) for each node vj

1 Initialize s̃(vi, vj) = 0 for all vj ;
2 for each ℓ such that H(vi) contains some approximate HP at step ℓ do

3 for each node vk such that h̃(ℓ)(vi, vk) ∈ H(vi) do

4 Initialize ρ(0)(vk) = h̃(ℓ)(vi, vk) · dk;

5 for t = 1 to ℓ do

6 for each node vx such that ρ(t−1)(vx) > (
√
c)ℓ · θ do

7 for each out-neighbor vy of vx do

8 if ρ(t)(vy) does not exist then

9 ρ(t)(vy) =
√

c

|I(vy)| · ρ
(t−1)(vx);

10 else

11 ρ(t)(vy) = ρ(t)(vy) +
√

c

|I(vy)| · ρ
(t−1)(vx);

12 for each vj such that ρ(ℓ)(vj) > 0 do

13 s̃(vi, vj) = s̃(vi, vj) + ρ(ℓ)(vj);

14 return s̃(vi, vj) for each node vj ;

and their SimRank scores with vi, we can apply the local update
approach in Algorithm 2 to traverse ℓ steps from vk; however, the
local update procedure needs to be slightly modified to deal with
the fact that we may need to traverse from multiple vk simultane-
ously, i.e., when vi have positive HPs to multiple nodes at step ℓ.

Specifically, for each particular ℓ, Algorithm 6 first identifies
each node vk such that h̃(ℓ)(vi, vk) ∈ H(vi), and initializes a tem-

porary score ρ(0)(vk) = h̃(ℓ)(vi, vk) for vk (Line 3). After that,
it traverses ℓ steps from all vk simultaneously (Lines 5-8). In the
t-th step (t ∈ [1, ℓ]), it inspects the temporary scores created in the
(t−1)-th step, and omit those scores that are no larger than (

√
c)ℓ·θ

(Line 6). This omission is similar to the pruning of HPs applied
in Algorithm 2, except that the threshold used here is (

√
c)ℓ times

smaller than the threshold θ used in Algorithm 2. The reason is that
the local update procedure in Algorithm 2 starts from a node whose
approximate HP equals 1, whereas the procedure in Algorithm 6
begins from a node whose temporary score ρ(0)(vk) ≤ (

√
c)ℓ, due

to which we need to scale down the threshold to ensure accuracy.
For each temporary score ρ(t−1)(vx) that is above the thresh-

old, Algorithm 2 examines each out-neighbor vy of vx, and checks
whether the temporary score of vy at step t (denoted as ρ(t)(vy))
exists. If it does not exist, then the algorithm initializes it as

ρ(t)(vy) =
√
c

|I(vy)| · ρ(t−1)(vx); otherwise, the algorithm increases

it by
√

c

|I(vy)| ·ρ
(t−1)(vx) (Lines 7-11). (Observe that this update rule

is identical to that in Algorithm 2.) Finally, after the ℓ-step traver-
sal is finished, the algorithm adds each temporary score ρ(ℓ)(vj) at
step ℓ into s̃(vi, vj), and then proceeds to consider the next ℓ (Lines
12-14). Once all steps ℓ are processed, the algorithm returns each
s̃(vi, vj) as the final result.

We have the following lemma regarding the theoretical guaran-
tees of Algorithm 6.

LEMMA 12. Algorithm 6 runs in O
(
m log2 1

ε

)
time, and en-

sures that each SimRank score returned has ε worst-case error. �

The time complexity of Algorithm 6 is not as attractive as those
of the inverted list approach and the straightforward approach, but
is roughly comparable to the latter when m = O(n/ε) (as is of-
ten the case in practice). In addition, we note that the time com-
plexity of Algorithm 6 matches that of the more recent method for
single-source SimRank queries [24], even though the latter relies on
heuristic assumptions that do not hold in general (see Section 3.3).

1867

MCSLING Linearize

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

GrQc AS Wiki-Vote HepTh Enron Slashdot EuAll NotreDame Google In-2004 LiveJournal Indochina

running time (ms)

Figure 1: Average query costs for single-pair SimRank queries.

MCSLING (Alg. 6) Linearize SLING (Alg. 3)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

GrQc AS Wiki-Vote HepTh Enron Slashdot EuAll NotreDame Google In-2004 LiveJournal Indochina

running time (ms)

Figure 2: Average query costs for single-source SimRank queries.

Table 3: Datasets.

Dataset Type n m

GrQc undirected 5,242 14,496
AS undirected 6,474 13,895
Wiki-Vote directed 7,155 103,689
HepTh undirected 9,877 25,998
Enron undirected 36,692 183,831
Slashdot directed 77,360 905,468
EuAll directed 265,214 400,045
NotreDame directed 325,728 1,497,134
Google directed 875,713 5,105,049
In-2004 directed 1,382,908 17,917,053
LiveJournal directed 4,847,571 68,993,773
Indochina directed 7,414,866 194,109,311

7. EXPERIMENTS
This section experimentally evaluates SLING. Section 7.1 clari-

fies the experimental settings, and Section 7.2 presents the experi-
mental results.

7.1 Experimental Settings

Datasets and Environment. We use twelve graph datasets that
are publicly available from [1, 2] and are commonly used in the
literature. Table 3 shows the statistics of each graph. We conduct
all of experiments on a Linux machine with a 2.6GHz CPU and
64GB memory. All methods tested are implemented in C++. (Our
code is available at [3].)

Methods and Parameters. We compare SLING against two state-
of-the-art methods for SimRank computation: the linearization
method [24, 25] (referred to as Linearize) and the Monte Carlo
method [8] (referred to as MC). Linearize has three parameters
T , R, and L. Following the recommendations in [24], we set
T = 11, R = 100, and L = 3. In addition, we set the decay
factor c in the SimRank model to 0.6, as suggested in previous
work [23,24,31–33]. Under this setting, Linearize ensures a worst-
case error ε = cT /(1 − c) ≈ 0.01 in each SimRank score, if it is

able to derive an exact diagonal correction matrix D. However, as
we discuss in Section 3.3, Linearize utilizes an approximate version
of D that provides no quality assurance, due to which the above er-
ror bound does not hold.

For SLING, we set its maximum error ε = 0.025, which is
roughly comparable to the quality assurance of the linearization
method given a precise D. Towards this end, we set εd = 0.005
and θ = 0.000725, which ensures ε < 0.025 by Theorem 1. In ad-
dition, we set δd = 1/n2, which guarantees that the preprocessing
algorithm of SLING succeeds with at least 1−1/n probability. For
MC, we set ε = 0.025, as in SLING.

7.2 Experimental Results
In the first set of experiments, we randomly generate 1000

single-pair SimRank queries on each dataset, and evaluate the av-
erage computation time of each method in answering the queries.
Figure 1 shows the results. We omit MC on all but the four small-
est datasets, since its index size exceeds 64GB on the large graphs.
Observe that the query time of SLING is at most 2.2ms in all cases,
and is often several orders of magnitude smaller than that of Lin-

earize. In particular, on LiveJournal, SLING is around 10000 times
faster than Linearize. This is consistent with the fact that SLING

and Linearize has O(1/ε) and O(m log 1
ε
) query time complex-

ities, respectively. Meanwhile, Linearize incurs a smaller query
cost than MC on the four smallest datasets, which is also observed
in previous work [24].

Our second set of experiments evaluates the average computation
cost of each method in answering 500 random single-source Sim-
Rank queries. For SLING, we consider two different methods: one
that directly uses Algorithm 6, and another one that invokes Algo-
rithm 3 once for each node. Figure 2 illustrates the results. Notice
that the method that applies Algorithm 3 is significantly slower than
Algorithm 6, even though the former (resp. latter) runs in O(n/ε)
time (resp. O(m log2 1

ε
) time). This is in accordance with our

analysis in Section 6, which shows that adopting Algorithm 3 for
single-source queries would incur unnecessary overheads and lead
to inferior query time. Since the method that employs Algorithm 3
is not competitive, we omit it on all but the four smallest datasets.

Among all methods for single-source SimRank queries, SLING

(with Algorithm 6) achieves the best performance, but its improve-
ment over Linearize is less pronounced when compared with the
case of single-pair queries. This, as we mention in Section 6, is
because the local update procedure in Algorithm 6 incurs super-
linear overheads, due to which the algorihtm’s time complexity is
the same as Linearize’s. Nonetheless, SLING is still at least 9 times

1868

MCSLING Linearize

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

GrQc AS Wiki-Vote HepTh Enron Slashdot EuAll NotreDame Google In-2004 LiveJournal Indochina

preprocessing time (seconds)

Figure 3: Preprocessing cost of each method.

MCSLING Linearize

10
0

10
1

10
2

10
3

10
4

10
5

GrQc AS Wiki-Vote HepTh Enron Slashdot EuAll NotreDame Google In-2004 LiveJournal Indochina

space (MB)

Figure 4: Space consumption of each method.

SLING Linearize MC

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7 8 9 10

maximum error

run

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7 8 9 10

maximum error

run

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7 8 9 10

maximum error

run

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7 8 9 10

maximum error

run

(a) GrQc (b) AS (c) Wiki-Vote (d) HepTh

Figure 5: Maximum SimRank error of each method measured in 10 different runs.

faster than Linearize on 7 out of the 12 datasets, and is 110 times
more efficient on Slashdot. Meanwhile, MC is consistently outper-
formed by Linearize.

Next, we plot the the preprocessing cost (resp. space consump-
tion) of each method in Figure 3 (resp. Figure 4). Linearize incurs
a smaller pre-computation cost than SLING does; in turn, SLING is
more efficient than MC in terms of pre-computation. The index size
of SLING is considerably larger than Linearize, since SLING has an
O(n/ε) space complexity, while Linearize only incurs O(n +m)
space overhead. Nevertheless, SLING outperforms MC in terms of
space efficiency. Overall, SLING is inferior to Linearize in terms
of space overheads and preprocessing costs, but this is justified by
the fact that SLING offers superior query efficiency and rigorous
accuracy guarantee, whereas Linearize incurs significantly larger
query costs and does not offer non-trivial bounds on its query er-
rors. Furthermore, the pre-computation algorithm of SLING can be
easily parallelized, as we discuss in Section 5.4 and demonstrate in
Appendix C.

Our last three experiments focus on the query accuracy of each
method. We first apply the power method (see Section 3.1) on
each of the four smallest graphs to compute the SimRank score
of each node pair, setting the number of iterations in the method to
50 (which results in a worst-case error below 10−11). We take the
SimRank scores thus obtained as the ground truth, and use them
to gauge the error of each method computing all-pair SimRank

scores. We do not repeat this experiment on larger graphs, due to
the tremendous overheads in computing all-pair SimRank results.

Figure 5 illustrates the maximum query error incurred by each
method in all-pair SimRank computation over 10 different runs,
where each run rebuilds the index of each method from scratch.
Observe that the maximum error of SLING is always below 0.0025,
which is considerably smaller than the stipulated error bound ε =
0.025. MC’s maximum error is also below ε = 0.025, but is con-
sistently larger than that of SLING, and is over 0.01 on Wiki-Vote.
In contrast, the maximum error of Linearize is above 0.025 in most
runs on GrQc, AS, and Hepth, which is consistent with our analysis
that Linearize does not offer any worst-case guarantee in terms of
query accuracy.

To further assess each method’s query accuracy, we divide the
ground-truth SimRank scores into three groups S1, S2, and S3,
such that S1 (resp. S2) contains SimRank scores in the range
of [0.1, 1] (resp. [0.01, 0.1]), while S3 concerns SimRank scores
smaller than 0.01. Intuitively, the scores in S1 and S2 are more
important than those in S3, since the former correspond to node
pairs that are highly similar. Figure 6 shows the average query er-
rors of each method for S1, S2, and S3. Observe that, compared
with Linearize, SLING incurs much smaller (resp. slightly smaller)
errors on S1 (resp. S2). This indicates that SLING is more effective
than Linearize in measuring the similarity of important node pairs.
Meanwhile, MC is less accurate than SLING on S1, and is consid-
erably outperformed by both SLING and Linearize on Wiki-Vote.

1869

SLING Linearize MC

10
-6

10
-5

10
-4

10
-3

10
-2

S1 S2 S3

average error

SimRank group

10
-5

10
-4

10
-3

10
-2

S1 S2 S3

average error

SimRank group

10
-7

10
-6

10
-5

10
-4

10
-3

S1 S2 S3

average error

SimRank group

10
-6

10
-5

10
-4

10
-3

10
-2

S1 S2 S3

average error

SimRank group

(a) GrQc (b) AS (c) Wiki-Vote (d) HepTh

Figure 6: Average SimRank error vs. SimRank group.

MCSLING Linearize

 0.95

 0.96

 0.97

 0.98

 0.99

 1

400 800 1200 1600 2000

precision

k

 0.95

 0.96

 0.97

 0.98

 0.99

 1

400 800 1200 1600 2000

precision

k

 0.95

 0.96

 0.97

 0.98

 0.99

 1

400 800 1200 1600 2000

precision

k

 0.95

 0.96

 0.97

 0.98

 0.99

 1

400 800 1200 1600 2000

precision

k

(a) GrQc (b) AS (c) Wiki-Vote (d) HepTh

Figure 7: Precision of the top-k SimRank pairs returned by each method.

Finally, we use the all-pair SimRank scores computed by each
method to identify the k node pairs with the highest SimRank
scores1, and we measure the precision of those k pairs, i.e., the
fraction of them among the ground-truth top-k pairs. Figure 7 il-
lustrates the results when k varies from 400 to 2000. The precision
of SLING is never worse than that of Linearize, and is up to 4%
higher than the latter in many cases. This is consistent with our
results in Figure 6 that, for node pairs with large SimRank scores,
SLING provides much higher accuracy than Linearize does. Mean-
while, MC yields lower accuracy than SLING does, and is signif-
icantly outperformed by both SLING and Linearize on Wiki-Vote.
These results are also in agreement with those in Figure 6.

8. OTHER RELATED WORK
The previous sections have discussed the existing techniques that

are most relevant to ours. In what follows, we survey other re-
lated work on SimRank computation. First, there is a line of re-
search [10,13,19,30–32] on SimRank queries based on the follow-
ing formulation of SimRank:

S = cP⊤SP + (1− c)I,

where S, P , and T are n×n matrices such that S(i, j) = s(vi, vj)
for any i, j, P is as defined in Equation 5, and I is an identity
matrix. However, as point out by Kusumoto et al. [17], the above
formulation is incorrect since it assumes that (1 − c)I equals the
diagonal correction matrix D (see Equation 7), which does not hold
in general. As a consequence, the methods in [10,13,19,30–32] fail
to offer any guarantees in terms of the accuracy of SimRank scores,
due to which we do not consider them in this paper.

Second, several variants [5, 8, 22, 33, 35] of SimRank have been
proposed to enhance the quality of similarity measure and miti-
gate certain limitations of SimRank. Antonellis et al. [5] present

1Note that we ignore any node pair containing two nodes that are
identical.

SimRank++, which extends SimRank by taking into account the
weights of edges and prior knowledge of node similarities. Jin et
al. [16] introduce RoleSim, which guarantees to recognize automor-
phically or structurally equivalent nodes. Fogaras and Rácz [8] pro-
pose PSimRank, which improves the quality of SimRank by allow-
ing random walks that are close to each other to have a higher prob-
ability to meet. Yu and McCann [33] present SimRank#, which
defines the similarity between two nodes based on the consine sim-

ilarity of their neighbors. Zhao et al. [35] introduce P-Rank, which
consider both in-neighbors and out-neighbors of two nodes when
measuring their similarity.

Finally, there is existing work [10, 17, 18, 25, 28, 36] that studies
top-k SimRank queries and SimRank similarity joins. In particular,
a top-k SimRank queries takes as input a node vi, and asks for the
k nodes vj with the largest SimRank score s(vi, vj). Meanwhile,
a SimRank similarity join asks for all pairs of nodes whose Sim-
Rank scores are among the largest k, or are larger than a predefined
threshold. Techniques designed for these two types of queries are
generally inapplicable for single-pair and single-source SimRank
queries.

9. CONCLUSIONS
This paper presents the SLING index for answering single-

pair and single-source SimRank queries with ε worst-case er-
ror in each SimRank score. SLING requires O(n/ε) space and
O(m/ε+ n log n

δ
/ε2) pre-computation time, and it handles any

single-pair (resp. single-source) query in O(1/ε) (resp. O(n/ε))
time. The space and query time complexities of SLING are near-
optimal, and are significantly better than those of the existing so-
lutions. In addition, SLING incorporates several optimization tech-
niques that considerably improves its practical performance. Our
experiments show that SLING provides superior query efficiency
against the states of the art. For future work, we plan to (i) investi-
gate techniques to reduce the index size of SLING, and (ii) extend
SLING to handle other similarity measures for graphs.

1870

10. REFERENCES
[1] http://snap.stanford.edu/data/index.html.

[2] http://law.di.unimi.it/datasets.php.

[3] https://sourceforge.net/projects/slingsimrank/.

[4] R. Andersen, F. R. K. Chung, and K. J. Lang. Local graph
partitioning using pagerank vectors. In FOCS, pages 475–486, 2006.

[5] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: query
rewriting through link analysis of the click graph. PVLDB,
1(1):408–421, 2008.

[6] F. R. K. Chung and L. Lu. Concentration inequalities and martingale
inequalities: A survey. Internet Mathematics, 3(1):79–127, 2006.

[7] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An optimal
algorithm for monte carlo estimation. SIAM J. Comput.,
29(5):1484–1496, 2000.

[8] D. Fogaras and B. Rácz. Scaling link-based similarity search. In
WWW, pages 641–650, 2005.

[9] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and
experiments. Internet Mathematics, 2(3):333–358, 2005.

[10] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka. Efficient
search algorithm for simrank. In ICDE, pages 589–600, 2013.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins University Press, 3 edition, 2012.

[12] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. WTF:
the who to follow service at twitter. In WWW, pages 505–514, 2013.

[13] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank computation on
large graphs with iterative aggregation. In KDD, pages 543–552,
2010.

[14] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In SIGKDD, pages 538–543, 2002.

[15] G. Jeh and J. Widom. Scaling personalized web search. In WWW,
pages 271–279, 2003.

[16] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of network role
similarity. In KDD, pages 922–930, 2011.

[17] M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scalable
similarity search for simrank. In SIGMOD, pages 325–336, 2014.

[18] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k structural
similarity search. In ICDE, pages 774–785, 2012.

[19] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of simrank for static and dynamic information networks.
In EDBT, pages 465–476, 2010.

[20] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair simrank
computation. In SDM, pages 571–582, 2010.

[21] D. Liben-Nowell and J. M. Kleinberg. The link-prediction problem
for social networks. JASIST, 58(7):1019–1031, 2007.

[22] Z. Lin, M. R. Lyu, and I. King. Matchsim: a novel similarity measure
based on maximum neighborhood matching. KAIS, 32(1):141–166,
2012.

[23] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov. Accuracy
estimate and optimization techniques for simrank computation.
VLDB J., 19(1):45–66, 2010.

[24] T. Maehara, M. Kusumoto, and K. Kawarabayashi. Efficient simrank
computation via linearization. CoRR, abs/1411.7228, 2014.

[25] T. Maehara, M. Kusumoto, and K. Kawarabayashi. Scalable simrank
join algorithm. In ICDE, pages 603–614, 2015.

[26] S. Rothe and H. Schütze. Cosimrank: A flexible & efficient
graph-theoretic similarity measure. In ACL, pages 1392–1402, 2014.

[27] N. Spirin and J. Han. Survey on web spam detection: principles and
algorithms. SIGKDD Explorations, 13(2):50–64, 2011.

[28] W. Tao, M. Yu, and G. Li. Efficient top-k simrank-based similarity
join. PVLDB, 8(3):317–328, 2014.

[29] B. Tian and X. Xiao. SLING: A near-optimal index structure for
simrank. CoRR, abs/1604.04185, 2016.

[30] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank on
link-evolving graphs. In ICDE, pages 304–315, 2014.

[31] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is simpler:
Effectively and efficiently assessing node-pair similarities based on
hyperlinks. PVLDB, 7(1):13–24, 2013.

[32] W. Yu and J. A. McCann. Efficient partial-pairs simrank search for
large networks. PVLDB, 8(5):569–580, 2015.

v1

v2

v3

v4

Figure 8: An adversarial case for the linearization method.

[33] W. Yu and J. A. McCann. High quality graph-based similarity search.
In SIGIR, pages 83–92, 2015.

[34] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le. A space and time
efficient algorithm for simrank computation. World Wide Web,
15(3):327–353, 2012.

[35] P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive structural
similarity measure over information networks. In CIKM, pages
553–562, 2009.

[36] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient
simrank-based similarity join over large graphs. PVLDB,
6(7):493–504, 2013.

APPENDIX

A. LIMITATIONS OF THE LINEARIZA-

TION METHOD
Recall that the linearization method [24] requires pre-computing

the diagonal correction matrix D. Maehara et al. [24] prove that
the diagonal elements in D satisfy the following linear system:

for all k ∈ [1, n],
∞∑

ℓ=0

n∑

i=1

cℓ
(
p
(ℓ)
k,i

)2

D(i, i) = 1, (18)

where p
(ℓ)
k,i is the probability that vi is the ℓ-th step of a reverse

random walk from vk . Based on this, the linearization method es-
timates p

(ℓ)
k,i with a set of reverse random walks, and then incorpo-

rates the estimated values into a truncated version of Equation (18):

for all k ∈ [1, n],
t∑

ℓ=0

n∑

i=1

cℓ
(
p̃
(ℓ)
k,i

)2

D(i, i) = 1, (19)

where p̃
(ℓ)
k,i denotes the estimated version of p

(ℓ)
k,i. After that, it ap-

plies the Gauss-Seidel technique [11] to solve Equation (19), and

obtains an n× n diagonal matrix D̃ that approximates D.

The above approach for deriving D̃ is interesting, but it fails to
provide any worst-case guarantee in terms of the pre-computation
time and the accuracy of SimRank queries, due to the following

reasons. First, because of the sampling error in p̃
(ℓ)
k,i and the trunca-

tion applied in Equation (19), D̃ could differ considerably from D,
which may in turn lead to significant errors in SimRank computa-

tion. There is no formal result on how large the error in D̃ could be.

Instead, Maehara et al. [24] only show that the error in p̃
(ℓ)
k,i can be

bounded by using a sufficiently large sample set of reverse random
walks; however, it does not translate into any accuracy guarantee

on D̃.
Second, even if p̃

(ℓ)
k,i = p

(ℓ)
k,i and Equation (19) is not truncated,

the Gauss-Seidel technique [11] used by the linearization method
to solve Equation (19) may not converge. In particular, if we define
an n× n matrix M as

M(k, i) =
∞∑

ℓ=0

n∑

i=1

cℓ
(
p
(ℓ)
k,i

)2

,

then the linearization method requires that M should be diagonally
dominant, i.e., for any i, |M(i, i)| ≥ ∑

j 6=i |M(i, j)|. However,
this requirement is not always satisfied. For example, consider the
graph in Figure 8. The linear system corresponding to the graph is

1871

50

100

200

400

800

1 2 4 8 16

preprocessing time (s)

number of threads

200

400

800

1600

3200

1 2 4 8 16

preprocessing time (s)

number of threads

1000

2000

4000

8000

16000

1 2 4 8 16

preprocessing time (s)

number of threads

1000

2000

4000

8000

16000

1 2 4 8 16

preprocessing time (s)

number of threads

(a) Google (b) In-2004 (c) LiveJournal (d) Indochina

Figure 9: Preprocessing time vs. number of threads.

 0
 100
 200
 300
 400
 500
 600
 700
 800

256 512 1024 2048 all

preprocessing time (s)

memory buffer size (MB)

 0

 500

 1000

 1500

 2000

 2500

256 512 1024 2048 all

preprocessing time (s)

memory buffer size (MB)

 0

 2000

 4000

 6000

 8000

 10000

 12000

256 512 1024 2048 all

preprocessing time (s)

memory buffer size (MB)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

256 512 1024 2048 all

preprocessing time (s)

memory buffer size (MB)

(a) Google (b) In-2004 (c) LiveJournal (d) Indochina

Figure 10: Preprocessing time vs. memory buffer size.

1

1− c4




1 c c2 c3

c3 1 c c2

c2 c3 1 c
c c2 c3 1







D(1, 1)
D(2, 2)
D(3, 3)
D(4, 4)


 =




1
1
1
1




It can be verified the matrix 4 × 4 matrix M on the left hand side
is not diagonally dominant when c = 0.6.

Finally, the number of iterations required by the Gauss-Seidel
method is O(log ε∗/ log ρ), where ε∗ is the maximum error al-
lowed in the solution to the linear system, and ρ is the spectral
radius of the iteration matrix used by the method [11]. The value
of ρ depends on the input graph, and might be very close to 1, in
which case log ε∗/ log ρ can be an extremely large number.

B. HITTING PROBABILITIES VS. PER-

SONALIZED PAGERANKS
Suppose that we start a random walk from a node vi following

the outgoing edges of each node, with 1 − cp probability to stop
at each step. The probability that the walk stops at a node vj is
referred to as the personalized PageRank (PPR) [15] from vi to
vj . PPR is well-adopted as a metric for measuring the relevance

of nodes with respect to the input node vi, and it has important
applications in web search [15] and social network analysis [12].

Our notion of hitting probabilities (HP) bears similarity to PPR,
but differs in the following aspect:

1. HP concerns the probability that the random walk reaches
node vj at a particular step ℓ, but disregards whether the ran-
dom walk stops at vj ;

2. PPR only concerns the endpoint vj of the random walk, and
disregards all nodes before it.

Our Algorithm 2 for computing approximate HPs is inspired by
the local update algorithm [4, 9, 15] proposed for computing ap-
proximate PPRs. Specifically, given a node vj and an error bound

ε, the local update algorithm returns an approximate version of the
PPRs from other nodes to vj , with ε worst-case errors. The al-
gorithm starts by assigning a residual 1 to vj , and 0 to any other
node. Subsequently, the algorithm iteratively propagates the resid-
ual of each node to its in-neighbors, during which it computes the
approximate PPR from each node to vj . When the largest resid-
ual in all nodes is smaller than ε, the algorithm terminates. This
algorithm is similar in spirit to our Algorithm 2, but it cannot be
directly applied in our context, due to the inherent differences be-
tween PPRs and HPs.

C. ADDITIONAL EXPERIMENTS
In this section, we evaluate the parallel and out-of-core algo-

rithms for constructing the index structures of SLING (presented in
Section 5.4), using the four largest datasets in Table 3. First, we im-
plement a multi-threaded version of SLING’s pre-computation al-
gorithm, and measure its running time when the number of threads
varies from 1 to 16 and all 64GB main memory on our machine is
available. (The total number of CPU cores on our machine is 16.)
Figure 9 illustrates the results. Observe that the algorithm achieves
a near-linear speed-up as the number of threads increases, which
is consistent with our analysis (in Section 5.4) that SLING prepro-
cessing algorithm is embarrassingly parallelizable.

Next, we implement an I/O-efficient version of SLING’s prepro-
cessing algorithm, based on our discussions in Section 5.4. Then,
we measure the running time of the algorithm when it uses one
CPU core along with a memory buffer of a pre-defined size. (We
assume that the input graph is memory-resident, and we exclude it
when calculating the memory buffer size.) Figure 10 shows the pro-
cessing time of the algorithm as the buffer size varies. Observe that
the algorithm can efficiently process all tested graphs even when
the buffer size is as small as 256MB. In addition, the overhead of
the algorithm does not increase significantly when the buffer size
decreases, since the algorithm is CPU-bound. In particular, its only
I/O cost is incurred by (i) writing each entry in the index once to
the disk, and (ii) performing an external sort on the entries.

1872

D. CONCENTRATION INEQUALITIES
This section introduces the concentration inequalities used in our

proofs. We start from the classic Chernoff bound.

LEMMA 13 (CHERNOFF BOUND [6]). For any set {xi} (i ∈
[1, nx]) of i.i.d. random variables with mean µ and xi ∈ [0, 1],

Pr

{∣∣∣∣∣

nx∑

i=1

xi − nxµ

∣∣∣∣∣ ≥ nxε

}
≤ exp

(
− nx · ε2

2
3
ε+ 2µ

)
.

Our proofs also use a concentration bound on martingales, as
detailed in the following.

DEFINITION 1 (MARTINGALE). A sequence of random vari-

ables y1, y2, y3, · · · is a martingale if and only if E[yi] < +∞ and

E[yi+1|y1, y2, · · · , yi] = yi for any i. �

LEMMA 14 ([6]). Let y1, y2, y3, · · · be a martingale, such

that |y1| ≤ a, |yj+1 − yj | ≤ a for any j ∈ [1, i− 1], and

Var[y1] +
i∑

j=2

Var[yj | y1, y2, · · · , yj − 1] ≤ bi,

where Var[·] denotes the variance of a random variable. Then, for

any λ > 0,

Pr {yi − E[yi] ≥ λ} ≤ exp

(
− λ2

2
3
aλ+ 2bi

)

E. PROOFS
This section presents the proofs of the theorems and lemmas in

the paper. Due to space constraints, we omit the proofs of Lemmas
9-12 but include them in our technical report [29].

Proof of Lemma 3. Let s′(vi, vj) be the probability that Wi and
Wj meet. If vi = vj , then s′(vi, vj) = 1, since Wi and Wj always
meet at the first step. Suppose that vi 6= vj . Then, s′(vi, vj) is
the probability that Wi and Wj meet at or after the second step.
Assume without loss of generality that the second steps of Wi and
Wj are vk and vℓ, respectively. By definition, s′(vk, vℓ) equals the
probability that Wi and Wj meet at or after vk and vℓ. Taking into
account all possible second steps of Wi and Wj , we have

s′(vi, vj) =
∑

vk∈I(vi),vℓ∈I(vj)

√
c

|I(vi)|
·

√
c

|I(vj)|
· s′(vk, vℓ)

=
c

|I(vi)| · |I(vj)|
∑

vk∈I(vi),vℓ∈I(vj)

s′(vk, vℓ).

As such, s′(vi, vj) have the same definition as s(vi, vj) (see Equa-
tion (1)), which indicates that s′(vi, vj) = s(vi, vj). �

Proof of Lemma 4. First, we define the following events:

• E(vi, vj) : Two
√
c-walks starting from vi and vj , respec-

tively, meet each other.

• L(vi, vj , vk, ℓ) : Two
√
c-walks starting from vi and vj , re-

spectively, last meet each other at the ℓ-th step at vk.

As we discuss in Section 4.2, two different events L(vi, vj , vk, ℓ)
and L(vi, vj , v

′
k, ℓ

′) are mutually exclusive whenever vk 6= v′k or
ℓ 6= ℓ′. Therefore,

Pr{E(vi, vj)} =
+∞∑

ℓ=0

n∑

k=1

Pr{L(vi, vj , vk, ℓ)}

Observe that the probability of L(vi, vj , vk, ℓ) can be computed
by multiplying the following two probabilities:

1. The probability that two
√
c-walks Wi and Wj from vi and

vj , respectively, meet at vk at step ℓ.

2. Given that Wi and Wj meet at vk step ℓ, the probability that
they do not meet at steps ℓ+ 1, ℓ+ 2,

The first probability equals h(ℓ)(vi, vk) · h(ℓ)(vi, vk). Meanwhile,
since the (x + 1)-th step of any

√
c-walk depends only on its x-th

step, the second probability should equal the probability that two√
c-walks from vk never meet after the 0-th step, which in turn

equals dk. Hence, we have

s(vi, vj) = Pr{E(vi, vj)} =

+∞∑

ℓ=0

n∑

k=1

Pr{L(vi, vj , vk, ℓ)}

=
+∞∑

ℓ=0

n∑

k=1

(
h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)

)
,

which completes the proof. �

Proof of Lemma 5. Let R =
√
c · P , and Rℓ be the ℓ-th power of

R. We have

R0(k, i) =

{
1 if i = k

0 otherwise

Hence, R0(k, i) = h(0)(vi, vk) for all vi and vk. Assume that for a

certain ℓ, we have Rℓ(k, i) = h(ℓ)(vi, vk) for all vi and vk . Then,

Rℓ+1(k, i) =
(√

c · P ·Rℓ
)
(k, i)

=

n∑

j=1

(√
c · P (k, j) · Rℓ(j, i)

)

=
∑

each out-neighbor vj of vk

(√
c

|I(vj)|
· h(ℓ)(vi, vj)

)

= h(ℓ+1)(vi, vk).

Therefore, Rℓ(k, i) = h(ℓ)(vi, vk) for all vi, vk , and ℓ.

Let D̃ be the n×n diagonal matrix whose k-th diagonal element
is dk. Then, Equation (13) can be written as:

S =

+∞∑

ℓ=0

((
Rℓ

)⊤
D̃Rℓ

)

By multiplying R⊤ and R on the left and right, respectively, on
both side of the equation, we have

S = R⊤SR + D̃ = cP⊤SP + D̃.

This indicates that D̃ is a diagonal correction matrix. Since the
diagonal correction matrix is unique [24], we have D̃ = D. �

Proof of Lemma 6. By the Chernoff Bound in Lemma 13,

Pr

{∣∣∣∣
cnt

nr

− µ

∣∣∣∣ ≥ ε/c

}
≤ 2 exp

(
− nr(ε/c)

2

2
3
ε/c+ 2µ

)

= 2 exp

(
−

2
3
ε/c+ 2

2
3
ε/c+ 2µ

log
2

δd

)

= δd

Therefore, |d̃k − dk| = c · | cnt
nr

− µ| ≤ ε with at least 1 − δd
probability. �

1873

Proof of Lemma 7. According to Algorithm 2, for all
h̃(ℓ)(vi, vj) ∈ H(vi), we have

θ ≤ h̃(ℓ)(vi, vj) ≤ h(ℓ)(vi, vj).

Then, for each node vi and each step ℓ,
∑

vj∈V

h̃(ℓ)(vi, vj) ≤
∑

vj∈V

h(ℓ)(vi, vj) =
√
c
ℓ

Therefore, there are at most (
√
c)ℓ/θ nodes vj such that

h̃(ℓ)(vi, vj) ∈ H(vi). Therefore, the size of H(vi) is

|H(vi)| ≤
+∞∑

ℓ=0

(
√
c)

ℓ

θ
= O(1/θ)

Let d̄ be the average out-degree of the G. Since a local update is
performed on each entry h̃(ℓ)(vi, vj) ∈ H(vi), the running time of
the algorithm is O(d̄n/θ) = O(m/θ).

Let εℓ be the upper bound of |h̃(ℓ)(vi, vj)− h(ℓ)(vi, vj)| for all

nodes vi and vj at step ℓ. When ℓ = 0, we have ε0 ≤ 1− (
√
c)

0

1−√
c

θ.

Assume that εℓ ≤ 1− (
√
c)

ℓ

1−√
c

θ holds for a certain ℓ. Then,

εℓ+1 ≤
√
c · εℓ + θ =

1−√
c
ℓ+1

1−√
c

θ.

Thus, the lemma is proved. �

Proof of Lemma 8. Given that
∣∣∣d̃k − dk

∣∣∣ ≤ εd and

−ε
(ℓ)
h ≤ h̃(ℓ)(vk, vx)− h(ℓ)(vk, vx) ≤ 0 for any k, x, ℓ, we have

h̃(ℓ)(vi, vk) · d̃ · h̃(ℓ)(vj , vk)− h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)

≤ h(ℓ)(vi, vk) · d̃k · h(ℓ)(vj , vk)− h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)

≤ h(ℓ)(vi, vk) · εd · h(ℓ)(vj , vk).

Therefore,

s̃(vi, vj)− s(vi, vj) ≤
+∞∑

ℓ=0

n∑

k=1

h(ℓ)(vi, vk) · εd · h(ℓ)(vj , vk)

≤
+∞∑

ℓ=0

εd · (√c)ℓ · (√c
ℓ
) =

εd
1− c

.

Meanwhile,

h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)− h̃(ℓ)(vi, vk) · d̃ · h̃(ℓ)(vj , vk)

≤ h(ℓ)(vi, vk) · dk · h(ℓ)(vj , vk)

−
(
h(ℓ)(vi, vk)− ε

(ℓ)
h

)
· (dk − εd) ·

(
h(ℓ)(vj , vk)− ε

(ℓ)
h

)

=
(
h(ℓ)(vi, vk)− ε

(ℓ)
h

)
· εd ·

(
h(ℓ)(vj , vk)− ε

(ℓ)
h

)

+ ε
(ℓ)
h · dk ·

(
h(ℓ)(vj , vk)− ε

(ℓ)
h

)
+ εd · ε(ℓ)h · h(ℓ)(vi, vk)

Hence,

s(vi, vj)− s̃(vi, vj)

=

+∞∑

ℓ=0

n∑

k=1

((
h(ℓ)(vi, vk)− ε

(ℓ)
h

)
· εd ·

(
h(ℓ)(vj , vk)− ε

(ℓ)
h

)

+ ε
(ℓ)
h · dk ·

(
h(ℓ)(vj , vk)− ε

(ℓ)
h

)
+ εd · ε(ℓ)h · h(ℓ)(vi, vk)

)

≤
+∞∑

ℓ=0

(
(
√
c)ℓ · εd · (

√
c
ℓ
) + 2 · ε(ℓ)h · (

√
c)ℓ

)

=
εd

1− c
+ 2

+∞∑

ℓ=0

(
(
√
c
ℓ
) · ε(ℓ)h

)
.

This completes the proof. �

Proof of Theorem 1. By Lemma 7, for all k, x, l,

−1− (
√
c)ℓ

1−√
c

θ ≤ h̃(ℓ)(vk, vx)− h(ℓ)(vk, vx) ≤ 0.

Then,

εd
1− c

+ 2
+∞∑

ℓ=0

(
(
√
c)ℓ · ε(ℓ)h

)

=
εd

1− c
+ 2

+∞∑

ℓ=0

(
(
√
c)ℓ · 1− (

√
c)ℓ

1−√
c

θ

)

=
εd

1− c
+

2
√
c

(1− c)(1−√
c)
θ.

By Lemma 6,
∣∣∣d̃k − dk

∣∣∣ ≤ εd holds with at least 1−δd probability.

Since δd ≤ δ/n, with at least 1− δ probability,
∣∣∣d̃k − dk

∣∣∣ < εd , for all k

Therefore, By Lemma 8, |s̃(vi, vj) − s(vi, vj)| ≤ ε holds with at
least 1− δ probability. �

1874

