
Potential and Pitfalls of Domain-Specific
Information Extraction at Web Scale

Astrid Rheinländer*, Mario Lehmann, Anja Kunkel, Jörg Meier, and Ulf Leser*
Humboldt-Universität zu Berlin, Department of Computer Science, Berlin, Germany

*{rheinlae,leser}@informatik.hu-berlin.de

ABSTRACT
In many domains, a plethora of textual information is avail-
able on the web as news reports, blog posts, community
portals, etc. Information extraction (IE) is the default tech-
nique to turn unstructured text into structured fact data-
bases, but systematically applying IE techniques to web in-
put requires highly complex systems, starting from focused
crawlers over quality assurance methods to cope with the
HTML input to long pipelines of natural language process-
ing and IE algorithms. Although a number of tools for each
of these steps exists, their seamless, flexible, and scalable
combination into a web scale end-to-end text analytics sys-
tem still is a true challenge.

In this paper, we report our experiences from building
such a system for comparing the ”web view” on health re-
lated topics with that derived from a controlled scientific cor-
pus, i.e., Medline. The system combines a focused crawler,
applying shallow text analysis and classification to maintain
focus, with a sophisticated text analytic engine inside the
Big Data processing system Stratosphere. We describe a
practical approach to seed generation which led us crawl a
corpus of ∼1 TB web pages highly enriched for the biomed-
ical domain. Pages were run through a complex pipeline of
best-of-breed tools for a multitude of necessary tasks, such
as HTML repair, boilerplate detection, sentence detection,
linguistic annotation, parsing, and eventually named entity
recognition for several types of entities. Results are com-
pared with those from running the same pipeline (without
the web-related tasks) on a corpus of 24 million scientific
abstracts and a third corpus made of ∼250K scientific full
texts. We evaluate scalability, quality, and robustness of the
employed methods and tools. The focus of this paper is to
provide a large, real-life use case to inspire future research
into robust, easy-to-use, and scalable methods for domain-
specific IE at web scale.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2903736

Keywords
Focused crawling; Information extraction; Massively parallel
data analysis

1. INTRODUCTION
The analysis of information published on the web is valu-

able for a plethora of applications, e.g., to analyze customer
product reviews [21], to investigate relationships between
politicians and their sponsors [12], or to predict flu waves
and assess their treatments [7], to name just a few. Ana-
lyzing web data is not trivial due to its scale, distribution,
heterogeneity, redundancy, and questionable quality. Com-
pared to traditional text analytics, already obtaining the
data to be analyzed is difficult, requiring either access to an
existing (open) large web crawl or the set-up and running of
a proper crawler. For applications requiring domain-specific
texts, like the one we focus on here, special care must be
taken to restrict the crawl to this domain, typically by apply-
ing text classification on the crawl or during the crawling [8].
Another severe issue arises from the extreme heterogeneity
of web documents and their cluttering with navigational el-
ements, advertisements, script code, formatting instructions
etc. [29]. Many projects circumvent this problem by focus-
ing on a single or a few data sources, typically the big social
media platforms such as Twitter, Facebook or Flickr; how-
ever, this excludes literally billions of additional knowledge
sources. Finally, the filtered and cleansed web texts must be
analyzed by information extraction (IE) algorithms to ob-
tain the desired facts, which in itself is a challenging task
when the text collection is large and the requirements re-
garding data quality are high.

In this paper, we report on our experiences from building
a comprehensive system for domain-specific text analytics
on the open web. Building such systems for long was only
possible for large web companies; however, advances in cloud
computing, IE, and crawler techniques together with falling
prices for storage, computing power, and network bandwidth
put such systems – in principle – also into the realm of mid-
size organizations. But putting this theoretical possibility
into practise still is a highly challenging task. Therefore, the
goal of this experience paper not only is to describe such a
system, with a focus on design issues regarding robustness,
data quality, and scalability, but also to pinpoint the most
critical issues that need to be solved when building such
systems, with the ultimate intention to foster more research
into this important and challenging area.

As a concrete use case, we applied the system to crawl a
1 TB collection of web text from the biomedical domain

759

Figure 1: Architecture of a topical crawler based on
Apache Nutch.

with the goal to retrieve a high quality corpus in terms
of precision with respect to our target domain. This cor-
pus was cleansed and filtered by specific modules for web
texts, linguistically preprocessed using methods from sta-
tistical natural language processing (NLP), and eventually
analyzed by a series of domain-specific IE programs to find
mentions of important entities in this field, such as genes,
drugs, or diseases. We then ran the same pipeline on two
much more controlled sets, i.e., all abstracts in the Medline
collection of scientific articles, and a set of approximately
250.000 biomedical full texts. A fourth corpus was built
from all web pages deemed out-of-domain by the focused
crawler. Next, we compared results from a linguistic ana-
lysis and from the domain-specific IE on the four corpora
to each other, finding notable differences in many aspects,
including simple metrics such as average sentence and doc-
ument length, more linguistically motivated properties such
as the use of negation or abbreviations, and, eventually, the
sets and frequencies of occurring domain-specific entities.
The system applies advanced machine learning (ML) in ev-
ery phase of its collection and analysis pipeline, i.e, text
classification during the focused crawling, snipped classifi-
cation for the extraction of net text from HTML pages, se-
quential classification with Hidden Markov Models for the
NLP, and classification, pattern matching and Conditional
Random Fields for the IE tasks. Most notably, the entire
process for web text analysis (excluding the crawling) was
specified, optimized, and executed using a small set of data
flows in a single, homogeneous, and declarative framework
for specifying UDF-heavy data flows, i.e., the Stratosphere
system [2, 23]. Using this framework allowed us to system-
atically evaluate the entire extraction process with respect
to scalability, efficiency, and quality of the involved tools.
We believe our approach implements a notable advance-
ment compared to the current state-of-the-art for building
such systems, which boils down to manually created scripts
implementing an ad-hoc assembly of existing tools. This
practice clearly interferes with today’s needs in Big Data

analytics; instead, we envision complex information acqui-
sition and extraction from the web as an almost effortless
end-to-end task.

The remainder of this paper is structured as follows: Sec-
tion 2 explains the retrieval of biomedical web pages by
means of focused web crawling at large scale. Section 3
reviews the data analytics platform, discusses data flows we
used for analyzing the crawl. Section 4 evaluates efficiency
and scalability of crawling and presents results of our ana-
lysis with respect to language structure and contents of the
crawled documents. Section 5 summarizes lessons learned
in this study and highlights open engineering and research
challenges for efficient text analytics at large scale. We con-
clude this paper in Section 6.

2. FOCUSED CRAWLING: THE BASIS FOR
DOMAIN-SPECIFIC TEXT ANALYTICS

The goal of our research is to perform advanced IE on
domain-specific collections of web documents. A proper way
to obtain such a collection are focused crawlers [8]. A fo-
cused web crawler traverses parts of the web to find docu-
ments relevant for a certain topic. To speed-up the crawling
and to obtain good harvest rates (i.e. a large density of
relevant pages among all crawled pages), a major objective
during focused crawling is to visit only those outgoing links
of a website that appear to be particularly relevant for a
given topic. To decide whether a link is relevant or not,
the assumption is made that relevant pages are most likely
linked to other relevant pages whereas irrelevant pages point
more often to other irrelevant pages and thus constitute an
endpoint during the crawl. To assess the relevance of page, a
focused crawler is equipped with a text classifier trained on
a set of pre-classified documents. We built a focused crawler
which follows this approach: It downloads web pages, classi-
fies them as relevant or not, and only further considers links
outgoing from relevant pages. We did not follow the alterna-
tive approach of classifying links based on its surroundings
because this would require the laborious creation of a train-
ing corpus of links; in contrast, obtaining a training corpus
of relevant documents is comparably simple. For our study,
we trained on a set of randomly selected abstracts from Med-
line1), considered as relevant, and an equal-sized set of ran-
domly selected English documents taken from the common
crawl corpus2), considered as irrelevant. This approach is
cheap and simple; note, however, that it introduces some
bias as a typical Medline abstract is quite different from a
typical web page (see Section 4.3.1).

2.1 Crawler architecture
To obtain a large corpus of reasonable quality, the setup

of the focused crawler is crucial. Web crawlers should be
insusceptible to so-called spider traps, i.e., websites contain-
ing programming errors or dynamically generated links that
cause the crawler to be trapped in an infinite loop. A crawler
also needs to respect the implicit and explicit rules of a do-
main (e.g., maximum number of simultaneous requests, rules
contained in the ”robots.txt” file). Finally, it must be imple-
mented in a distributed manner to allow for using multiple
machines in parallel. There exist a number of frameworks
which implement such functionality; we built our system on

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.commoncrawl.org

760

Figure 2: Consolidated high-level data flow for ana-
lyzing biomedical documents from scientific publica-
tions and the internet. Isochromatic frames indicate
Sopremo operator package.

top of the open-source framework Apache Nutch3. Nutch is
based on Apache Hadoop4 to enable scalable and distributed
crawling. It lacks a component for focusing a crawl, but has
a clean extension interface which we used to plug-in a classi-
fier and the necessary logic. Figure 1 shows the architecture
of Nutch together with our custom extensions. The part
implemented in Nutch (upper part of Fig. 1) is fairly con-
ventional; an injector reads seed URLs from a text file and
adds these to the crawl database (CrawlDB) acting as the
crawl frontier. A set of fetcher threads reads lists of not yet
visited URLs from this database, downloads the respective
web pages and forwards them to a parser for link and content
extraction; unseen links are added to the CrawlDB. Besides,
a link database (LinkDB) stores the graph structure of the
crawled pages.

To add focus to the crawling process, we extended Nutch
with the following components (lower part of Fig. 1): After
parsing a web page, we first check whether it is of textual
content using a MIME type filter. We also remove pages
that are too short and pages that are written in languages
other than English by using an n-gram based language fil-
ter, because subsequent IE tools used in this analysis are
sensitive to language. Afterwards, the main text of a page
is extracted using the tool Boilerpipe [15]. To classify a doc-
ument, its extracted net text is converted to a Bag-of-Words
model and classified for its biomedical relevance. We use a
Näıve Bayes algorithm due to its robustness with respect to
class imbalance (we have no rational guess on the expected
percentage of biomedical pages during a focused crawl) and
its ability to update its model incrementally, although we
currently don’t use this feature. If a page is classified as
relevant, it is added to the corpus and all its outlinks are
added to CrawlDB; otherwise, it is discarded. The crawling
and classification process is repeated iteratively until either
CrawlDB is empty, the desired corpus size is reached, or it
is stopped manually by the user.

2.2 Seed generation
A very important issue in crawling, and especially in fo-

3http://nutch.apache.org
4http://hadoop.apache.org

cused crawling, is the determination of the set of seed URLs
used to initiate the crawl. The typical way of obtaining
a large set of seeds is to issue keyword queries to one or
more search engines. For focused crawling, keywords are
chosen such that they retrieve domain-specific seeds with
high probability. Since all search engine APIs restrict the
number of allowed queries and limit the number of returned
results, one often uses (a) multiple search engines in parallel
and (b) large sets of queries - which creates the necessity
to generate thousands of high quality queries. For our case
study, we utilized five different search engines, namely Bing,
Google, Arxiv, Nature, and Nature blogs. For each search
engine, we generated queries with (a) general biomedical
terms, obtained from National Cancer Institute5 and the
Genetic Alliance glossary6 and (b) highly specific molecular
terms extracted from the Gene Ontology7, Drugbank8, and
the UMLS/MeSH sub-tree for diseases 9. Exemplary key-
words are shown in Table 1 together with the total number
of search terms for each category. Clearly, the chosen queries
give the resulting corpus a certain direction; in our case, we
intended to focus on genetic facts about diseases.

In a first experiment, we used only a subset of keywords
from our data sources (see Table 1, numbers in bracket).
All search results from the different search engines obtained
with these keywords were merged to a single list of 45,227
seed URLs. However, the resulting crawl terminated quickly
due to an emptied CrawlDB, i.e., all pages in the frontier
of pages reachable from these seeds were classified as ir-
relevant. Debugging this crawl, we found several reasons
for this situation. First, the search terms chosen were too
general. For these, the search engines return rather gen-
eral pages, which they considered as authoritative for the
respective topic, such as front pages of portals. These pages
very often immediately were classified as irrelevant, i.e., this
branch of the crawl stopped after just one step. Second, we
found that biomedical sites generally are only weakly linked;
most often, all outgoing links from a page were navigational
leading to pages on the same host (see Sect. 4.1 for details).

Note that not stopping the crawl of such irrelevant pages
immediately but after n steps (e.g., n = 2, n = 3) is a vi-
able alternative to increase the size of the crawl, since many
front pages of portals deemed irrelevant link to relevant con-
tent for our domain. Yet, crawling time will significantly in-
crease since many irrelevant pages will be explored as well.
Since the entire crawling process already stretched to more
than two months while stopping immediately when visiting
an irrelevant page (see Section 4.1 for details), we decided
to increase the set of seed URLs to obtain a larger crawl
instead. Consequently, we performed a second seed genera-
tion run, this time using 15,000 queries resulting in a total
number of 485,462 seed URLs. These seeds were used for
crawl described previously.

3. DATA FLOWS FOR WEB-SCALE
INFORMATION EXTRACTION

Information extraction (IE) and statistical natural lan-
guage processing (NLP) tasks on large text collections are

5http://www.cancer.gov
6http://www.geneticalliance.org.uk/glossary.htm
7http://geneontology.org
8http://www.drugbank.ca
9http://www.nlm.nih.gov/mesh/

761

Category No. of terms Example search terms

general terms 500 (166) cancer, chronic pain
disease-specific 5000 (468) thymoma, nausea, cough
drug-specific 4000 (325) GAD-67, Aspirin
gene-specific 6500 (246) BRCA, Cactin

Table 1: Total number and exemplary search terms
by category used for seed URL retrieval. Numbers
in brackets denote the number of search terms for
the first crawl (see text).

time- and resource-consuming because of the complexity of
the involved tasks [5]. Our aim was to apply state-of-the-art
techniques in biomedical information extraction. This re-
quires the use of several heavy-weight tools and algorithms,
some of which have a runtime complexity that is quadratic
in the text length (see below). Due to the embarrassingly
parallel nature of information extraction at the entity level, a
natural choice to alleviate runtime problems is to parallelize
all analysis on a cluster. To this end, we implemented and
wrapped a variety of IE and NLP tools for use with Strato-
sphere10, a parallel data processing platform for large-scale,
UDF-heavy data analytics. A detailed description of Stra-
tosphere can be found in [2], in the following, we very briefly
summarize key concepts of Stratosphere and then discuss in
detail the data flow we implemented to perform text analyt-
ics on the crawled corpus and other texts.

3.1 Stratosphere
Stratosphere is a system for parallel execution of UDF-

heavy data flows. These data flows are specified in a declar-
ative scripting language called Meteor (note that there also
exist other APIs) [13]. Meteor scripts are composed of prim-
itive operators, which are defined in domain-specific pack-
ages, i.e., self-contained libraries of the operator implemen-
tations, their syntax, and semantic annotations. A Meteor
script is parsed into an algebraic representation, logically op-
timized [23], and compiled into a parallel data flow program
of parallelization primitives (e.g., map, reduce, cross) em-
bracing the operators implementations. Subsequently, the
parallel data flow program is physically optimized, trans-
lated into an execution graph and deployed on the given
hardware [2].

Currently, the system ships more than 60 different opera-
tors organized in four packages, i.e., general purpose (BASE),
information extraction (IE), web analytics (WA), and data
cleansing (DC). The BASE package comprises relational op-
erators, such as filter, projection, transformation, or join.
The IE package includes operators for annotating texts with
syntactic annotations (e.g., sentence boundaries, part-of-
speech tags) and semantic annotations (e.g., mentions of
different entity types, relationships between entities), and
for merging annotations using different schemes. The WA
package contains operators specific to the analysis of web
documents, such as link extraction, markup removal, or
markup repair. Eventually, the DC package brings operators
for data cleansing and data integration, addressing common
challenges in processing dirty or heterogeneous data sources.

10Stratosphere was recently renamed into Flink and is now an
Apache Top-Level project; our code builds on release 0.4.2.

3.2 Data flow for Crawl Analysis
The ultimate goal of our study was to compare the domain-

specific ”information content” of biomedical web pages with
that of a corpus of scientific publications, either as full texts
or as abstracts. Furthermore, we wanted to compute general
linguistic characteristics of the different corpora we studied,
such as average sentence length or frequency of negated sen-
tences. The latter has two purposes: First, we find it of gen-
eral interest to differentiate properties of different types of
texts in a given domain. Second, these properties have con-
sequences on the tools which are used to analyze the texts.
Eventually, we were also interested in the link topology of
the biomedical pages to test some common assumptions on
these structures.

Processing a large set of documents to compute a number
of measures and to extract a variety of different informa-
tion requires a complex set of tasks. Specifically, our sce-
nario encompasses three different sub-problems, namely doc-
ument preprocessing and HTML cleansing, linguistic docu-
ment analysis, and biomedical entity extraction. Each of
these sub-problems requires the use of a bunch of different
tools; for instance, high-quality entity extraction is only pos-
sible using separate and highly optimized tools for each en-
tity class. Furthermore, the different processing steps have
various dependencies. Ideally, all tasks and their dependen-
cies are expressed using a single data flow program to enable
a holistic optimization and seamless analysis. Stratosphere
allows such a concise specification; Fig. 2 displays the high-
level data flow we developed for this case study. The com-
plete data flow comprising all required analysis for this study
consists of 38 elementary operators. Web pages are first fil-
tered to exclude extremely long documents. Next, HTML
markup is detected, errors are repaired, and all markup is
removed from each page. All documents are annotated with
sentence and token boundaries. For linguistic analysis, each
sentence is analyzed for occurrences of pronouns, negation,
and parenthesis using different sets of regular expressions,
and each found mention of any of these categories is added
to the result set together with information on document ID,
sentence ID, and start/end positions. For the biomedical
content analysis, we then annotate three types of biomedi-
cal entities, namely genes, drugs, and diseases.

Note that biomedical IE is considered particularly chal-
lenging because of ambiguous naming conventions, multi-
word names, acronyms, etc., and specialized methods, dic-
tionaries, and models are needed to achieve satisfactory re-
sults with respect to extraction accuracy [18]. The accuracy
of all tools applied to web documents is difficult to pre-
dict, since all current tools were trained and evaluated only
on scientific articles, and mostly only on abstracts. There-
fore, we chose to apply two different extraction methods
for each entity type on the entire data set: A classical fuzzy
dictionary-matching tool, and ML-based entity taggers using
Conditional Random Fields (CRF). In this field, dictionary-
based entity extraction typically achieves good precision yet
low recall because dictionaries are necessarily incomplete in
a field developing as fast as biomedical research. On the
other hand, ML-based extraction methods often show much
improved recall and they also show superior precision. Be-
sides, they usually exhibit a significantly slower processing
speed.

Note that none of the tools we applied was developed for
this study; instead, they were chosen from available open

762

(a) Part-of-speech tagging.

(b) Named entity recognition. Black: ML, red:
dictionary.

Figure 3: Runtimes information extraction tools
with respect to the length of the input texts.

source software following a best-of-breed strategy. For dic-
tionary matching, we used an automaton-based matching
algorithm that quickly retrieves mentions of entities even for
large dictionaries [11]. To account for some variations, we
transformed each dictionary term into a regular expression.
The largest dictionary employed here, that for gene names,
contains more than 700,000 entries; dictionaries for disease
and drug names were significantly smaller with 61,438 and
51,188 entries, respectively. As ML-based tool for drug
names we used ChemSpot [24], for gene names we applied
BANNER [17], and for diseases we integrated a previously
developed tool in our group directly building on the CRF
library Mallet11. Note that also ChemSpot and BANNER
use Mallet.

4. EVALUATION
In this section, we perform a detailed evaluation of the

many facets of our case study in domain-specific web-scale
information extraction. Specifically, we first give a techni-
cal evaluation of the focused crawl itself, which implies as-
sessing the harvest rate of the crawler, the quality of the
text classifier used to keep focus and the quality of the
boilerplate detection algorithm we applied. Next, we focus
on the performance and scalability of the information ex-
traction pipeline, which includes identifying the most time-
consuming steps, contrasting dictionary-based entity recog-
nition with ML-based approaches in terms of recognition
speed, and experiments for showing the scale-out our pipeline
achieves thanks to the underlying processing system Strato-
sphere. Eventually, we provide a detailed analysis of our

11http://mallet.cs.umass.edu

biomedical web corpus in contrast to three other corpora,
i.e., the set of pages classified as irrelevant during the crawl,
the complete set of approximately 21 million abstracts from
Medline (until year 2013), and a set of approximately 250,000
full texts from the PLoS open data mining collection (PMC).

4.1 Quality of the Focused Crawler
The premise of our study is to enable seamless information

extraction on large sets of crawled, domain-specific docu-
ments on a mid-size cluster. We run our crawler on a cluster
of 5 servers, each equipped with at least 32 CPU cores and
connected with a 1 GB line to a 10 GB switch connected to
the Internet backbone. Politeness rules of web servers were
respected and the sizes of host-specific fetch lists was limited
to 500 to prevent threads from blocking each other. Each
downloaded page passing the initial filtering was subjected
to boilerplate removal and to text classification. With this
set-up, our crawler achieved a download rate of 3-4 docu-
ments per second, which is notably slower compared to other
systems (e.g., [20] considers download rates between 10 and
100 pages per second as representative) due to the complex
filtering and classification steps employed in our setup. This
sums up to more than 80 days of pure crawling and classi-
fication for downloading and analyzing approx. 21 million
web pages. The crawl yielded 373 GB presumably relevant
and 607 GB presumably irrelevant pages, which corresponds
to a harvest rate of 38%. This seems to be a typical value
for such systems (e.g., [3, 22] report harvest rates between
25% and 45%). Document pre-selection was very effective:
MIME-type filtering decreased the number of documents to
be analyzed by 9.5%, language filtering by 14%, and docu-
ment length filtering by 17%.

Evaluating a focused crawler is notoriously difficult for
multiple reasons. First, experiments cannot be repeated due
to the highly dynamic nature of the web. Starting a crawl
with exactly the same set of seeds will result in a largely
different result even if the repetition is performed shortly
after the first run, as many pages will have changed leading
to different link chains. Due to this fact, one cannot easily
compare the performance of, for instance, two crawls using
different classifiers, different relevance thresholds, or just dif-
ferent prioritization rules for the fetch queue. Second, the
recall of a crawler cannot be determined; even estimating
it is impossible as this would require a certain set of pages
one expects to be found; but whether or not a crawler finds
them largely depends on the seeds which cannot be set in
an ”unbiased” fashion. Third, yield and harvest rate depend
largely on the seed lists, which usually are not published.

Classifier and Boilerplate Detection. The quality of
the crawled corpus for our purposes, i.e., its specificity for
the biomedical domain, depends on mostly two factors: The
quality of the classifier, and the quality of the boilerplate
detection. We assessed the quality of both components on a
gold standard data set during development and on a small,
randomly drawn sample of the crawl.

Our classifier achieved a precision of 98% at a recall of
83% in 10-fold cross validation on its training corpus. We
then manually checked a randomly drawn set of 100 pages
from the relevant corpus and 100 pages from the irrelevant
corpus. On these 200 pages, precision was estimated at 94%
at a recall of 90%, which roughly confirms the results on
the training data (note that these are quality measures of
the classifier, not of the the entire crawler; see discussion

763

0
10

00
20

00
30

00
40

00

Degree of parallelism / Size of input (GB)

Av
g.

 e
xe

cu
tio

n
tim

e
in

 s
ec

.

1/1 2/2 4/4 8/8 12/12 16/16 20/20 24/24 28/28

Entity extraction
Linguistic analysis

Figure 4: Scale up of linguistic and entity extraction
partial data flows. Ideal scale up is displayed in red.

above). Differences are notable, but in expectable ranges
gives the different characteristics of the texts and the small
sample size. An analysis of the false positives showed that
these are often web pages at the fringe of what we consider
biomedical; for instance, pages describing chemical support
for body builders or technical devices used for medical pur-
poses such as wheel chairs. Note that the classifier model
we used is geared towards high precision as classifier recall
plays a minor role in focused crawling; assuming that the
web is essentially infinite, one can simply let the crawler run
for longer to obtain more relevant documents. Whether this
assumption was reasonable will be discussed in Sect. 5.

In an initial evaluation on a gold standard data set, the
boilerplate detection tool we used achieved a precision of
90% at a recall of 82% on average, evaluated on a set of 1906
web pages. These quality measures are computed based on
the amount of net text being correctly identified by the al-
gorithm. We assessed the quality of the method on the same
200 web pages used for judging the text classifier. Results
indicate a precision of 98% at a recall of 72%. Manual in-
spection revealed that tables and lists, which often contain
valuable facts, are not recognized properly in many cases.

Table 2 lists the top 30 ranked domains according to page
rank. Manual inspection revealed that many of them clearly
relate to biomedical content, which suggests that the crawl-
ing process points to our target domain. Sub-classes of seem-
ingly irrelevant sites, such as slideshare.net or blogger.com
often also contain some biomedical material (e.g., blogs, per-
sonal journals, reports). It is also not surprising that do-
mains such as arxiv.org and nature.com are ranked within
the top 30, because seeds were generated by the search
APIs of these domains, which return results only for con-
tent hosted there.

4.2 Scalability of Information Extraction
We evaluated the performance of the extraction and ana-

lysis data flow in terms of scalability and performance of the
individual IE components. These experiments were carried
out on a 28 node cluster, where each node was equipped with
24 GB RAM, 1 TB HDD, and a Intel Xeon E5-2620 CPU
with 6 cores. Accordingly, the maximum degree of paral-
lelism (DoP) was 168. In the following, we always report as
runtimes the average of 3 runs of the analysis flows on each
corpus. Input and output of all tasks was stored in HDFS

0
20

00
40

00
60

00
80

00

Degree of parallelism

Av
g.

 e
xe

cu
tio

n
tim

e
in

 s
ec

.

1 2 4 8 12 16 20 24 28 56 84 140 156

Entity extraction
Linguistic analysis

Figure 5: Scale out of linguistic and entity extrac-
tion data flows.

with one data node per compute node and a data replication
factor of 3.

Runtime characteristics of the different IE tools.
All NLP and IE tools available for Stratosphere were origi-
nally designed and implemented by third parties. Many of
them are complex applications encompassing several thou-
sand lines of code with multiple dependencies to external
libraries. This implies that we usually have no influence
on the speed or memory consumption of these tools; there
are very rare cases where command-line parameters can be
used that impact these properties. Of course, we do heavily
influence the speed of each tool on the entire data set by
parallelizing its execution on different partitions of the data
set.

Prior to analyzing the entire data set of crawled docu-
ments, we first evaluated the individual runtimes of each
involved component using a random sample of 10,000 docu-
ments, which were analyzed using a single thread on a sin-
gle server. The two dominant steps with respect to runtime
are entity extraction, consuming 70% of the total execution
time, and part-of-speech tagging, requiring 12% of the run-
time. The distribution of the runtimes of part-of-speech tag-
ging (a) and entity annotation (b) by sentences are shown in
Fig. 3. Two observations are particularly interesting. First,
our part-of-speech tagger, MedPost, uses a Hidden Markov
Model of order three, whose runtime is, in principle, linear
in the length of the text being analyzed. There are, how-
ever, large runtime fluctuations in practice (see Fig. 3(a))
and even occasional crashes, especially when the tagger is
applied to very long sentences. Clearly, it is highly ques-
tionable whether the very long sentences we observe in our
data (with more than 2000 characters) are really reasonable
sentences or just errors of the sentence detection method;
however, such errors are inevitable in a web environment,
considering that the input to the splitter are parts, possi-
bly wrongly extracted by the boilerplate detection, of ar-
bitrary web pages possibly without any sentence structures
(see also Sect. 5). One work-around would be to introduce
an upper limit on sentence length, but finding a good thresh-
old, trading runtime robustness for information yield, will
be non-trivial. Second, Fig. 3(b) shows that the execution
time needed for annotating entities varies greatly between
annotation methods. Dictionary- and ML-based methods
differ in runtime by up to three orders of magnitude. This
is a consequence of the differing computational complexity

764

of the underlying algorithms; essentially linear for dictionary
matches (the regular expression transformations almost only
affect very short word suffixes), yet quadratic for the Con-
ditional Random Fields underlying our ML-based tools [28].

Scalability. We tested the scalability or our IE data flow
using a random sample of 20 GB from our crawl. Experi-
ments were carried out separately for the linguistic analysis
and the biomedical entity annotation to gain insights into
their specific behavior. To this end, we created two separate
data flows. Both first filter long texts, repair and remove
HTML markup, and annotate sentence and token bound-
aries (cf. Fig. 2). Subsequently, the linguistic data flow
detects pronouns, negation, and parenthesis, while the en-
tity extraction flow first annotates part-of-speech tags and
then drug, gene, and disease names using either dictionary
or ML-based tools.

We first evaluated both flows on the 20 GB sample with
varying DoPs, which led to a number of interesting obser-
vations. First, we could not execute the entity extraction
data flow with a DoP smaller than 4 due to the excessive
runtimes of the ML-based taggers (see above). Furthermore,
we could not run this flow with DoPs larger than 28 due to
the very high memory requirements of the dictionary-based
taggers which each require between 6 and 20 GB of main
memory per worker thread. Very likely, this is due to the
fact that they transform each dictionary entry (i.e., a regular
expression) into a the corresponding non-deterministic finite
automaton, which usually greatly increases space require-
ments. However, the nodes we used have only 24 GB main
memory; thus, we could not run more than one instance of
these tools per node in the cluster. In contrast, the much
less demanding linguistic data flow could be scaled out over
the entire range of DoPs without any problems.

As shown in Fig. 5, scale out for both tested flows was
satisfactory until DoP=16 for entity extraction, with a de-
crease in execution time of up to 72%, and until DoP=12 for
the linguistic analysis, with a decrease in execution time of
up to 95%. Using more nodes brought only marginal further
improvements in execution times. This behavior can be ex-
plained by the relatively high start-up times of certain tools.
For instance, the dictionary-based gene name recognition al-
gorithm needs approximately 20 minutes (!) to load the dic-
tionary and to create the internal data structures used for
text matching. These 20 minutes are a hard lower bound for
the runtime of this task, regardless of the number of nodes
being used. It is not possible to work around this bound in
a non-intrusive manner; one either has to use another tool
or perform substantial changes to the tool itself. Scale-out
of the linguistic flow was considerably better because in this
data flow, startup costs of all involved tasks are negligible.

Clearly, the concrete DoP beyond which no more perfor-
mance gains are obtained depends on the size of the input
data, which was rather small in our scale-out experiments.
Therefore, we also performed scale-up experiments, where
we increased the number of available compute nodes syn-
chronously to the amount of input data. As can be seen
from Fig. 4, the linguistic data flow exhibits an almost ideal
scale-up, whereas the entity extraction flow scales sub-linear
for large DoPs and input sizes, which is consistent to the re-
sult of the scale-out experiments.

Processing the entire crawl - a war story. Although
Stratosphere offers an elegant and powerful way of specify-
ing complex IE data flows and is also capable of optimizing

about.com arxiv.org
bettermedicine.com biomedcentral.com
blogs.nature.com blogger.com
cancer.net cancer.org
cdc.gov definition-of.com
disqus.com farlex.com
g2conline.org healthline.com
hhs.gov lexiophiles.com
mpg.org mypacs.net
nih.gov omniture.com
ourhealth.com reuters.com
rightdiagnosis.com sideeffects.embl.de
slideshare.net statcounter.com
thefreedictionary.com wikimedia.org
wikipedia.org wordpress.org

Table 2: Domains of 30 top-ranked sites according
to page rank.

and parallelizing them on the given cluster, we could not
execute the complete flow on the available hardware. This
had mostly three reasons:

First, as described above, the dictionary-based entity tag-
gers come along with very high main memory requirements.
The complete data flow as shown in Fig. 2 needs roughly 60
GB main memory per worker thread, which clearly exceeds
the amount of RAM available on each node. Unfortunately,
the scheduling component of Stratosphere does not consider
memory consumption per worker node as optimization goal,
for that reason we could not run an entire flow on any of the
nodes.

Second, another issue occurred with the ML-based disease
recognition tool. This tool brings its own linguistic prepro-
cessing, which is imported from the OpenNLP library, ver-
sion 1.412. However, all other OpenNLP operators we inte-
grated into Stratosphere (such as tokenization and sentence
splitting) are based on version 1.5, which is not downward
compatible to 1.4. Unfortunately, the Java class loader em-
ployed in the system’s runtime engine is not capable of using
two different versions of the same library.

Third, in most popular Big Data analysis scenarios, a
very large input is scanned and subsequently aggregated into
smaller and smaller intermediate results. Accordingly, the
bulk of the network traffic for accessing and inputs and writ-
ing outputs of tasks is usually spent by those tasks that are
at the beginning of the analysis flows, whereas latter tasks
often process only small data sets. However, the situation is
quite different in a text analytics scenario like ours, where
texts are piped through a series of tasks, each adding spe-
cific annotations (POS tags, entity annotation, token bound-
aries etc.) and thus actually increasing the size of the data
throughput the analysis pipeline. In our case, the total
amount of data produced is 1,6 TB, consisting of 400 GB
entity annotations and 1,2 TB linguistic annotations, on top
of the 1 TB raw text. Storing and accessing these large in-
termediate data sets through HDFS over-stressed the cluster
network (nodes are connected by a 1 GB switch), leading to
unpredictable network delays which in turn led to time-out
induced crashes in some of the annotation tools.

To cope with these problems, we had to take several dras-

12http://opennlp.apache.org/

765

Size
in GB

No. of
docs.

Mean no.
of chars.

Relevant crawl 373 4,233,523 88,384
Irrelevant crawl 607 17,704,365 37,625
Medline 21 21,686,397 865
PMC 19 250,440 55,704

Table 3: Summary of data sets.

tic measures. First, we split up the flow into different parts
such that each part only required memory within the given
limits; essentially, we created one flow for all linguistic ana-
lysis and one flow per entity class of the biomedical analysis.
Still, the memory requirements (see above) put severe con-
straints on the number of threads executable per node, which
grossly hampered the overall DoP and thus greatly increased
the overall runtime. Eventually, we spinned of gene recog-
nition, being the most space-consuming task, and executed
it on a single server with 1 TB RAM using 40 threads. In
the same manner, we had to perform disease name extrac-
tion in a separate run to overcome versioning problems. To
cope with the network problems, we furthermore splitted
the crawled data into chunks of 50 GB and executed the
different flows separately on these chunks.

Alternatively to splitting the data flow into separate parts
and analyzing the crawled data chunk-wise, we considered
renting cloud systems for our experiments but quickly dis-
regarded this option due to high rental costs. Since memory
requirements of IE operators is the most limiting factor in
our study, only cloud instances with more than 35 GB RAM
come into question, which are still rather costly. For exam-
ple, renting a 28 node cluster of instance type ”m4.4xlarge”
with 64GB of RAM available per node from AWS costs ap-
proximately 650 USD per day as of March 201613.

4.3 Content analysis
A main interest in this project is to compare extraction re-

sults from the web to the scientific literature to identify com-
monalities and differences between biomedical texts from the
web and from peer reviewed journals. Thus, we also ana-
lyzed abstracts and full-texts from Medline and PMC using
the same IE flow (downstream from the HTML treatment)
as for the crawled data. As a forth text collection, we used
all pages crawled but classified as irrelevant. Table 3 sum-
marizes the data sets enclosed in this analysis.

We performed an in-depth analysis and comparison of the
results obtained on these four corpora. Our analysis is split
into a linguistic part, concerning properties such as article
lengths, sentence structure, and usage of grammatical struc-
tures, and a domain-specific part, comparing the occurrence
frequencies and distributions of three biomedical entities,
i.e., drugs, genes, and diseases.

4.3.1 Linguistic analysis
Analyzing the linguistic structure of texts is important for

assessing the complexity of texts and to judge whether exist-
ing IE tools, which were trained and developed for different
corpora, might perform well in web documents. Particularly,
we examine document lengths, sentence lengths, incidence
of negation, and incidence of pronouns and parenthesis. Dif-

13http://aws.amazon.com/ec2/pricing/

ferences in obtained measures were statistically assessed us-
ing the Mann-Whitney-Wilcoxon signed rank test. This test
produces a P-value, which estimates the probability that the
observed differences are due to random effects in the data.

Document and sentence lengths. Sentence lengths
impact IE and NLP in different ways. First, the execution
time of IE and NLP tools usually directly depends on the
lengths of the sentences to be analyzed. Second, the diffi-
culty of constituent and dependency sentence parsing and
the difficulty of modern relation extraction methods rises
with sentence lengths [27]. Likewise, if crawled web docu-
ments contain shorter sentences than Medline or PMC, we
expect the former to be easier to analyze. Other important
measures are the document lengths in the different corpora,
as these must be considered when comparing the frequency
of entity mentions.

Figure 6(a) displays the distribution of document lengths
and Fig. 6(b) displays mean sentence lengths across the dif-
ferent data sets. Mean document lengths in relevant docu-
ments were significantly shorter than in PMC (P < 0.01),
but significantly longer compared to irrelevant documents
(P < 0.01) and to Medline abstracts (P < 0.01). Document
lengths for the relevant corpus show the largest variance,
which increases the need for appropriate load balancing in
a distributed setting. Differences in sentence lengths be-
tween the four corpora are also significant, confirming previ-
ous findings from [6] regarding Medline abstracts and PMC
full texts. These differences have to be kept in mind when
selecting tools for IE that are based on gold standard data.
Most tools we are aware of were trained and evaluated on
Medline abstracts and thus on rather short sentences; ac-
cordingly, we expected a lower performance of these tools
on longer sentences than reported in the literature.

Incidence of negation. Detecting negation is impor-
tant in many areas of natural language processing (e.g., sen-
timent analysis, relation extraction) and is particularly im-
portant for analyzing biomedical texts [1]. Here, we used
a rather simple method for determining negations in sen-
tences, using a set of regular expressions to find mentions
of the words not, nor, and neither. As shown in Fig. 6(c),
the incidence of negation in the four corpora is significantly
different (P < 0.01) regarding the overall incidence of nega-
tion and the relative frequency of negation with respect to
document length. Specifically, texts in the set of relevant
documents have a lower incidence of negation than in PMC
and the irrelevant pages and a higher incidence of nega-
tion than in Medline. Accordingly, appropriate treatment
of negation will be more important for web data than for
scientific articles.

Incidence of pronouns and parenthesized text. Pro-
nominal anaphora are important in biomedical IE to perform
co-reference resolution [10]. To measure the amount of such
co-references in our corpora, we counted six different classes
of pronouns in each data set. Interestingly, the incidence
of demonstrative, relative, and object pronouns, which are
the most important pronoun classes for co-reference resolu-
tion, was significantly lower both in relevant and irrelevant
texts compared to texts from PMC (data not shown). We
expected this observation concerning irrelevant texts since
these texts are significantly shorter than texts from PMC.
Our observation is surprising for relevant texts as these are
significantly longer than documents from PMC. This finding

766

(a) Distribution of document length (b) Distribution of mean sentence length (c) Incidence of negation

Figure 6: Distribution and incidence of linguistic properties per document in different data sets.

might indicate that co-reference resolution on crawled texts
is not as vital as in analyzing biomedical full-text literature.

Parentheses can hint to abbreviations, paper references,
synonyms of named entities, etc., which are very important
during NLP processing. Properly treating parenthesis is also
highly important for syntactic parsing, as text in parenthe-
ses does typically not conform to the sentence grammar. We
extracted parenthesized text using a set of regular expres-
sions and found that that their incidences differ significantly
(P < 0.01) between all data sets (data not shown). We ob-
served the highest incidence in texts from PMC, followed
by relevant web documents and Medline, and the lowest in
irrelevant documents.

4.3.2 Biomedical entities
The result we were most interested in this study from

an application point-of-view was the degree of differences
in the biomedical entities that are mentioned on the web
versus the scientific literature. Table 4 lists the number
of distinct names that were found in the two crawled cor-
pora, in Medline, and in PMC for the entity classes disease,
drug, and gene. As expected, ML-based annotation pro-
duces substantially more annotations for each entity type
than dictionary-based annotation. We also notice that the
total number of distinct annotations is significantly different
between relevant and irrelevant pages both for dictionary-
and ML-based approaches, with much larger numbers of an-
notations in relevant documents for each entity class, which
is reassuring of the crawl quality. In the following, we com-
pare named entity annotations in the different corpora more
deeply for each entity type.

Disease names. As shown in Fig. 7(a), the incidence of
disease names per document is higher in PMC articles and
relevant web documents compared to Medline abstracts and
irrelevant crawled documents, which rarely mention more
than one disease (presumably mostly false positives with
abbreviations). Differences of the mean number of disease
annotations per 1000 sentences between relevant (avgrel =
128.49) and irrelevant (avgirrel = 4.57), relevant and Med-
line (avgmedl = 204.92), and Medline and PMC (avgpmc =
117.51) are all highly significant (P < 0.01). One expla-
nation for the smaller incidence of disease names in Med-
line abstracts compared to web and PMC full-text docu-
ments even when normalized to per-sentence measures is
the shorter average sentence length in the abstracts. Fur-

Data set Method Disease Drug Gene

Relevant
Dict. 26,344 17,974 73,435
ML 629,384 28,660 5,506,579

Irrelevant
Dict. 5,318 8,456 22,131
ML 119,638 15,875 991,010

Medline
Dict. 11,194 12,164 29,928
ML 343,184 20,282 4,715,194

PMC
Dict. 12,291 15,013 92,319
ML 277,211 25,462 1,858,709

Table 4: Number of distinct entity names by corpus.

thermore, the large number of disease names in the relevant
web document is certainly a result of the way we generated
seeds, often using disease names as keywords. Accordingly,
our crawl should be enriched for disease-related websites,
such as information websites for patients or disease-specific
support groups.

Drug names. Figure 7(b) displays the incidence of drug
names per document in the different data sets. In relevant
documents, more drug mentions were recognized on average
compared to irrelevant documents and abstracts taken from
Medline. The means of drug name annotations for both
annotation methods combined per 1000 sentences differ sig-
nificantly (P < 0.01) between relevant (avgrel = 97.83) and
irrelevant (avgirrel = 6.85) documents, and between rele-
vant documents and Medline (avgmedl = 293.95) abstracts
and PMC documents (avgpmc = 275.95). Possible reasons
for the differences between crawled relevant documents and
Medline abstracts are the same as for disease names, as
disease-related web sites often are also full of drug names.

Gene names. Similar to results for disease and drug
names, differences in the number of gene mentions per doc-
ument are significant between relevant and irrelevant docu-
ments, and between relevant and Medline (P < 0.01) and
the means of gene name annotations per 1000 sentences for
dictionary-based annotation differ significantly between all
sets (avgrel = 128.23, avgirrel = 4.39, avgmedl = 415.58,
avgpmc = 74.12). However, the most striking observation re-
garding the incidences of gene names are the extremely large
differences between the dictionary-based extraction method

767

(a) Diseases (b) Drugs (c) Genes

Figure 7: Incidence of named entity annotations per document in the different corpora.

and the ML-based algorithm. Using ML, we recognized more
than 5.5 million distinct gene names in relevant documents,
whereas dictionary-based annotation only finds 73,435 dif-
ferent gene names (cf. Table 4). It is immediately clear
that the vast majority of annotations produced by BANNER
must be false positives, because there exist only roughly
900,000 distinct gene names (including synonyms) in the
public gene-related databases. The reason for this presum-
ably excessive amount of wrong annotations is the fact that
BANNER was trained on a small set of selected Medline
abstracts, which exhibit different language characteristics
than web documents (see Sect. 4.3.1). Upon manual inspec-
tion, we noticed that a very large number of false positives
are three letter acronyms (TLA), which are almost always
tagged as genes by our tool; this strategy is correct for the
gold standard abstracts used for developing and evaluating
the tool, but leads to catastrophic performance on any other
documents. Therefore, we filtered all TLAs from the list of
ML-tagged gene names prior to further analysis, reducing,
for instance, the number of distinct gene names in the rele-
vant web corpus from 5.5 million to 2.3 million. Figure 7(c)
displays the incidence of gene names in the different data
sets after filtering.

Annotation overlap and difference. Finally, we
determined the differences in the sets of extracted entities
between the different data sets to assess whether focused
crawling has the potential to open up new sources of biomed-
ical knowledge and to exclude the potential danger of simply
having many scientific abstracts in the relevant crawl. Fig-
ure 8 shows the overlap and non-overlaps of dictionary-based
entity annotations. For all evaluated entity types, we found
that the overlap of extracted names between relevant and
irrelevant documents is notable but rather small, i.e., ap-
proximately 15% for disease names, approximately 30% for
drug names (86% out of which were also found in Medline
and PMC), and 17% for gene names. The overlap between
relevant and Medline and relevant and PMC is considerably
larger and ranges from 6% (ML-based gene extraction) to
60% (dictionary-based gene extraction).

We also assessed the statistical significance of these dif-
ferences using the Jensen-Shannon divergence (JSD), an in-
formation-theoretic measure for assessing the difference be-
tween two probability distributions based on the Kullback-
Leibler divergence. JSD is a symmetric measure and re-
sults in values bounded for two distributions A,B with 0 ≤

JSDA,B ≤ 1, where similar distributions approach a JSD
close to 0, and dissimilar distributions approach 1. For each
data set and entity type, we determined the probability dis-
tribution of entity names and computed for each combina-
tion of data sets the JSD (data not shown). Relevant and
irrelevant documents exhibit larger JSDs, i.e., significantly
different distributions (0.4463 ≤ JSDrel,irrel ≤ 0.6548), for
any entity type compared to documents from Medline and
relevant (0.2864 ≤ JSDrel,medl ≤ 0.3596), and PMC and
relevant (0.1673 ≤ JSDrel,pmc ≤ 0.3354). This indicates
that documents classified as relevant during crawling actu-
ally are more similar to the biomedical literature and thus
relevant for the target domain. Similarly, JSD between irrel-
evant and Medline (0.4528 ≤ JSDirrel,medl ≤ 0.6850) and
irrelevant and PMC (0.3941 ≤ JSDirrel,pmc ≤ 0.6633).

Together, these findings give clear evidence that there is
a significant amount of information on the web which is not
contained in the scientific literature, indicated by several
thousand distinct entity names for each entity type which
appear only in relevant web documents. Studying these sets
in more detail will be the next step in our research.

5. LESSONS LEARNED AND CHALLEN-
GES FOR FUTURE RESEARCH

In this paper, we reported our experiences with a study in
crawling and deeply analyzing a large domain-specific cor-
pus from the web, exemplified for the field of biomedical
research. From a domain-knowledge point-of-view, our re-
sults are highly interesting as they indicate that there is
indeed a large body of biomedical knowledge on the web
that is not present in the scientific literature. Clearly, much
more research is necessary to substantiate this hypothesis
and to assess the usefulness of this knowledge, which could
be, for instance, reports of high quality that were not (yet)
published or important text book knowledge that is so estab-
lished that one cannot find scientific publications discussing
it; however, a large fraction presumably are also false posi-
tive matches of the taggers or information of dubious quality
and reliability. Our study also brought up a number of tech-
nical pitfalls of focused crawling and large-scale, high quality
text processing using a best-of-breed strategy for choosing
text analytics tools. In the following, we highlight some of
these challenges.

Reliable MIME-type detection. Large files down-

768

1.37%

0.217%

1.92%

4.16%

9.65%

12.3%

0.0142%

0.0818%

57.2%

6.55%
1.33% 0.434%

0.0178%

2.65%

2.12%

Relevant Irrelevant

Medline PMC

(a) Disease

13.3%

2.48%

3.75%

6.94%

13.1%

24.2%

0.363%

0.316%

19.8%

5.06%
2.07% 2.32%

0.666%

3.37%

2.39%

Relevant Irrelevant

Medline PMC

(b) Drug

2.74%

2.12%

22.7%

1.11%

13%

7.72%

0.187%

0.906%

6.55%

31%
8.74% 0.117%

0.118%

2.44%

0.492%

Relevant Irrelevant

Medline PMC

(c) Gene

Figure 8: Annotation overlap of distinct entity names in % for different entity types and dictionary-based
annotation.

loaded during crawl are often not textual but embedded pre-
sentation slides or formatted documents, which were wrongly
classified as plain textual. Filtering by document size only,
as we did, is unsatisfactory as it easily misses relevant (and
extensive) content. However, we are not aware of any ro-
bust tools or ongoing research for reliable MIME-type detec-
tion; instead, detecting MIME-types usually is carried out
by regular expression matching on the file name extension
or by analyzing the first n bytes of a document. We used
the Apache Tika14 library during crawling, which ships only
with a list of a handful common MIME-types.

Robust HTML markup removal. According to [19],
95% of HTML documents on the web do not adhere to
W3C HTML standards. 13% of the analyzed websites had
so sever issues that they could not be transcoded. How-
ever, correctly formatted HTML pages seem to be a pre-
requisite for most boilerplate detection algorithms. In the
course of this study, we evaluated different markup removal
algorithms and found them to perform reasonably well on a
gold-standard set of 1,906 pages (details omitted). Applying
these tools to our crawled documents, however, revealed that
they are highly sensitive to markup errors, often resulting in
crashes or empty results. Developing boilerplate detection
algorithms that are more robust against errors in real life
web pages is essential for seamless and comprehensive text
analytics from web documents.

Resource consumption of extraction tools. Even
though the NLP and IE tools we used require only a mod-
erate amount of memory for each running instance, these
numbers sum-up notably when running multiple instances
on a multi-threaded machine. In our study, this grossly
hampered the DoP we could achieve, leading to sub-optimal
resource usage and long analysis times. Furthermore, sev-
eral tools produced Java out-of-memory errors when applied
to long texts; as we could not find a workaround for this be-
havior, we eventually had to define a hard upper limit on
the texts to be analyzed. These findings indicate that the
current tools, at least in the biomedical domain, are not
well prepared to be applied on large text collections. This
is consistent with the observation that research in this field
is obsessed with small improvements in extraction quality
on small gold standard data sets, and rarely considers run-
time or space consumption when used in true applications.

14http://tika.apache.org

The situation might be different in other fields, but research
in more robust NER tools, with configurable memory con-
sumption, seems highly desirable.

NLP and IE models for web documents. It is well
known that ML tools work best on data sets that exhibit
similar language characteristics as those used for training.
Most research into NER tools in biomedicine is performed
on Medline abstracts, both with respect to training data and
evaluation data. On such data, ML-based NER is clearly su-
perior to other approaches, as shown in many recent studies
and international competitions [25]. Accordingly, all ML-
based methods used in this project employ models trained
on Medline abstracts since no other training data is avail-
able. However, our study reveals that web documents and
documents from Medline and PMC are significantly differ-
ent in several aspects. This leads to an enormous amount of
false positive matches by these tools, which are often short
abbreviations. We believe that there is a great need for more
sophisticated models for domain-specific entity recognition
from web documents. Note that the current research into
this direction typically targets rather simple entity types,
such as persons, places, or products [9]. To our knowl-
edge, the performance of such methods on the more difficult
biomedical entity types has not yet been evaluated.

Trade-off between precision and yield in focused
crawling. When setting-up our system, we focused on a
high-precision text classifier as we believed that the number
of true positives can be improved more easily with longer
crawls than with a high-recall classifier, which might also
bring many false positive pages. However, we actually ob-
served that this strategy was not as effective as we thought.
Actually, the size of the crawl we obtained was bound by the
fact that our crawl frontier eventually emptied. As described
in Sect. 2.2, we already had to significantly extend our seed
list to obtain a crawl of at least the size we have now. Several
strategies could be followed to create larger focused crawl.
For instance, one could produce even larger seed lists, but
this requires substantial preparation time given the current
limits of the search engine APIs. Another approach would
be to also follow links from pages classified as irrelevant,
but only with a small margin. Finally, one could tune the
classifier towards more recall during crawling, and classify
each crawled text later a second time with a model geared

769

towards high precision. Which of these ways is the most
promising one, remains an open question.

Crawling and text analytics as a consolidated pro-
cess. This project pursued a two-staged approach, where
crawling and text analytics was performed in two separate
phases using very different infrastructures. However, the re-
sult of the IE pipeline could actually be a valuable input
for the classifier during a crawl, as the occurrence of gene
names or disease names are strong indicators for biomedi-
cal content. We believe it would be a worthwhile undertak-
ing to research systems that would allow specifying crawling
strategies, classification, and domain-specific IE in a single
framework. Such a framework would greatly reduce the time
it takes to build web-scale domain-specific text analysis sys-
tems.

6. CONCLUSION
In recent years, web-scale information extraction by means

of Big Data processing tools has gained much attention.
However, most works focus on comparable simple IE tech-
niques [26, 16] or consider only singular extraction tasks [4,
14]. Moreover, we are not aware of any research has in the
interplay of web crawling and state-of-the-art information
extraction, especially when applied in a domain-specific set-
ting. Accurate acquisition of web documents by means of
focused web crawls was in the focus of research in the late
1990s and early 2000s, but this topic seems to have lost
momentum in recent years, despite the often reiterated im-
portance of the web for Big Data scenarios. We can only
speculate about the reasons for this apparent contradiction.
One reason could be the difficulty to compare and assess the
quality of focused web crawling; another reason probably is
the fact that such research requires considerable investments
both in terms of hardware (large clusters, high bandwidth,
etc.) and in terms of software (complex analysis pipelines,
best-of-breed tool selection, parallelization).

We described methods to simplify the creation of such
systems using and extending open source systems. The ex-
periences we report partly seem devastating, uncovering a
series of issues in essentially all components that prevent
their seamless and scalable application, at least on a mid-
size cluster as was available to us. Of course, our expe-
riences are specific to the frameworks we used and might
have been different with other base systems; yet, we are not
aware of any other system offering such a rich set of NLP
and (biomedical) IE tools ready-to-use (with all caveats de-
scribed in this work) than Stratosphere. Nevertheless, it is
our frank intention to create more attention to the interest-
ing and challenging topic of sophisticated, domain-specific
web-scale information extraction in the data management
research community.

Acknowledgments
This research is funded by the German Research Foundation
under grant FOR 1306. We thank Philippe Thomas and
Tim Rocktäschel for providing models and software we used
during entity recognition.

7. REFERENCES
[1] S. Agarwal and H. Yu. Biomedical negation scope

detection with conditional random fields. J. Am. Med.
Inform. Assn., 17(6):696–701, 2010.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,
F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The stratosphere platform for big data
analytics. VLDB J., 23(6):939–964, 2014.

[3] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. Comput. Netw.,
31(11-16):1623–1640, 1999.

[4] B. Chandramouli, J. Goldstein, and S. Duan.
Temporal analytics on big data for web advertising. In
Proc. 28th IEEE Int. Conf. on Data Engineering,
pages 90–101, 2012.

[5] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,
F. R. Reiss, and S. Vaithyanathan. Systemt: An
algebraic approach to declarative information
extraction. In Proc. 48th Annual Meeting of the
Association for Computational Linguistics, 2010.

[6] K. B. Cohen, H. L. Johnson, K. Verspoor, C. Roeder,
and L. Hunter. The structural and content aspects of
abstracts versus bodies of full text journal articles are
different. BMC Bioinformatics, 11:492, 2010.

[7] L. Covolo, S. Mascaretti, A. Caruana, G. Orizio,
L. Caimi, and U. Gelatti. How has the flu virus
infected the web? 2010 influenza and vaccine
information available on the internet. BMC Public
Health, 13(1):83, 2013.

[8] B. D. Davison. Topical locality in the web. In Proc.
23rd Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 272–279,
2000.

[9] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web:
An experimental study. Artif. Intell., 165(1):91–134,
2005.

[10] C. Gasperin and T. Briscoe. Statistical anaphora
resolution in biomedical texts. In Proc. 22nd Int.
Conf. on Computational Linguistics - Volume 1, pages
257–264, 2008.

[11] M. Gerner, G. Nenadic, and C. M. Bergman. Linnaeus:
A species name identification system for biomedical
literature. BMC Bioinformatics, 11:85, 2010.

[12] A. Heise and F. Naumann. Integrating open
government data with stratosphere for more
transparency. J. Web Semant., 14:45–56, 2012.

[13] A. Heise, A. Rheinländer, M. Leich, U. Leser, and
F. Naumann. Meteor/Sopremo: An Extensible Query
Language and Operator Model. In Proc. Int. Ws. on
End-to-End Management of Big Data, 2012.

[14] V. N. Khuc, C. Shivade, R. Ramnath, and
J. Ramanathan. Towards building large-scale
distributed systems for twitter sentiment analysis. In
Proc. 27th Annual ACM Symposium on Applied
Computing, pages 459–464, 2012.

[15] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proc. 3rd ACM Int. Conf. on Web Search and Data
Mining, pages 441–450, 2010.

[16] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. Systemt: A system for

770

declarative information extraction. SIGMOD Rec.,
37(4), 2009.

[17] R. Leaman and G. Gonzalez. Banner: An executable
survey of advances in biomedical named entity
recognition. In Pacific Symposium on Biocomputing,
pages 652–663, 2008.

[18] U. Leser and J. Hakenberg. What makes a gene name?
named entity recognition in the biomedical literature.
Brief. Bioinform., 6(4):357–369, 2005.

[19] E. Ofuonye, P. Beatty, S. Dick, and J. Miller.
Prevalence and classification of web page defects.
Online Inform. Rev., 34(1):160–174, 2010.

[20] C. Olston and M. Najork. Web crawling. Found.
Trends Inf. Retr., 4(3):175–246, 2010.

[21] B. Pang and L. Lee. Opinion mining and sentiment
analysis. Found. Trends Inf. Ret., 2(1-2):1–135, 2008.

[22] G. Pant and P. Srinivasan. Learning to crawl:
Comparing classification schemes. ACM T. Inform.
Syst., 23(4):430–462, 2005.

[23] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and
F. Naumann. Sofa: An extensible logical optimizer for
udf-heavy data flows. Inform. Syst., 52(C):96–125,
2015.

[24] T. Rocktäschel, M. Weidlich, and U. Leser. Chemspot:
a hybrid system for chemical named entity
recognition. Bioinformatics, 28(12):1633–1640, 2012.

[25] I. Segura-Bedmar, P. Mart́ınez, and M. Herrero-Zazo.
Lessons learnt from the ddiextraction-2013 shared
task. J. Biomed. Inform., 51:152–164, 2014.

[26] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information extraction
using datalog with embedded extraction predicates. In
Proc. 33rd Int. Conf. on Very Large Data Bases,
pages 1033–1044, 2007.

[27] D. Tikk, I. Solt, P. E. Thomas, and U. Leser. A
detailed error analysis of 13 kernel methods for
protein-protein interaction extraction. BMC
Bioinformatics, 14:12, 2013.

[28] A. Viterbi. Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. IEEE
T. Inform. Theory, 13(2):260–269, 2006.

[29] L. Yi, B. Liu, and X. Li. Eliminating noisy
information in web pages for data mining. In Proc. 9th
ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 296–305, 2003.

771

