
Access Path Selection in Main-Memory Optimized
Data Systems: Should I Scan or Should I Probe?

Michael S. Kester Manos Athanassoulis Stratos Idreos

Harvard University
{kester, manos, stratos}@seas.harvard.edu

ABSTRACT
The advent of columnar data analytics engines fueled a series of
optimizations on the scan operator. New designs include column-
group storage, vectorized execution, shared scans, working directly
over compressed data, and operating using SIMD and multi-core
execution. Larger main memories and deeper cache hierarchies in-
crease the efficiency of modern scans, prompting a revisit of the
question of access path selection.

In this paper, we compare modern sequential scans and secondary
index scans. Through detailed analytical modeling and experimen-
tation we show that while scans have become useful in more cases
than before, both access paths are still useful, and so, access path
selection (APS) is still required to achieve the best performance
when considering variable workloads. We show how to perform
access path selection. In particular, contrary to the way traditional
systems choose between scans and secondary indexes, we find that
in addition to the query selectivity, the underlying hardware, and
the system design, modern optimizers also need to take into ac-
count query concurrency. We further discuss the implications of
integrating access path selection in a modern analytical data sys-
tem. We demonstrate, both theoretically and experimentally, that
using the proposed model a system can quickly perform access
path selection, outperforming solutions that rely on a single access
path or traditional access path models. We outline a light-weight
mechanism to integrate APS into main-memory analytical systems
that does not interfere with low latency queries. We also use the
APS model to explain how the division between sequential scan
and secondary index scan has historically changed due to hardware
and workload changes, which allows for future projections based
on hardware advancements.

1. INTRODUCTION
Access Path Selection. Access path selection for filtering opera-
tors has always been a key component of database systems [70].
When a query is predicated on a clustered index, using the index
is the obvious choice. Similarly, when a query is predicated on an
attribute with no index, there is only one access path available, a
sequential scan. The more difficult and more common case is when

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA.
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064049

Figure 1: Access path selection in modern data analytics sys-
tems should include query concurrency in addition to selectiv-
ity, hardware characteristics, and data layout. There is no fixed
selectivity threshold; rather, there is a sloped division that de-
pends on the # of concurrent queries and their total selectivity.

a query is predicated on a column with a secondary index. In this
case, a secondary index scan may or may not work better than a
full sequential scan [70]; for such cases, the data system needs to
perform access path selection to choose the best access method, re-
lying on run-time characteristics during optimization. Having the
choice between a secondary index scan and a sequential scan of
the base data allows systems to choose the best access path by tak-
ing into account run-time characteristics during optimization. A
sequential scan over the base data reads every tuple, while a sec-
ondary index scan only needs to access an auxiliary copy of the
data which is smaller and has more structure. Secondary indexes,
typically in the form of B+-Trees [30, 70], have been extensively
used in row-oriented systems to access target data, with neither the
overhead of reading the unneeded values nor their associated neigh-
boring attributes. The decision of access path selection is typically
based on a selectivity threshold, along with the underlying hard-
ware properties, system design parameters, and data layout [29,
32]; once the system is tuned it is a fixed point used for all queries.

Access Paths In Modern Analytical Systems. Over the past two
decades, database systems dramatically departed from the design
of traditional row-major systems in favor of columnar (and more
recently column-group) storage and highly tuned access paths for
main-memory [1]. In such analytical systems, a plethora of op-
timizations and techniques make scans extremely fast and put in-
creasing pressure on secondary indexing. First, column or column-
group storage allows a system to process only the attributes needed
to answer a given query, avoiding unneeded reads in much the same
way a secondary index does [4, 19, 25, 33, 43, 56, 77]. Second,
in contrast to “tuple-at-a-time” processing, vectorized execution
passes a block of tuples to each operator. This increases efficiency

715

http://dx.doi.org/10.1145/3035918.3064049

by processing each block in a tight loop, reducing interpretation
logic overhead [16]. Third, when the system is processing more
than one query across the same attribute(s), scans can be shared [7,
18, 27, 28, 34, 62, 63, 88]. For each block of the relation, multi-
ple queries can be processed resulting in advantageous disk, mem-
ory, or cache utilization compared to a “query-at-a-time” approach.
Shared scans are an example of wider trend toward cache friendly
access methods [65, 87]. Fourth, modern analytical systems use
compression more effectively than row-stores by compressing in-
dividual columns independently and working directly over com-
pressed data which reduces the cost of moving data through the
memory hierarchy [2, 12, 14, 15, 42, 77]. Fifth, holding each at-
tribute contiguously in a dense array allows tight for loop evalua-
tion [51, 55, 86] and lends itself well to single instruction multiple
data (SIMD) processing [60, 81, 84]. Where SIMD allows multiple
sequential tuples to be processed in parallel, multiple cores allow
disparate parts of the relation to be processed in parallel [63, 80].

Many of the techniques that make scans for modern analytical
data systems efficient have been explored in past research (e.g.,
compression [31], columnar data organization [44], main-memory
systems [24], scan sharing [89]). However, achieving the full po-
tential required a completely new system design which incorpo-
rated the past research from the start and grew into a completely
new framework [1, 37, 49, 77, 85]. This research has been largely
transferred to most of the industry (e.g., HyPer [59], DB2 [64] and
dashDB [13], SAP HANA [25], Oracle’s in-memory database [48],
Vertica [49], Vectorwise [85], MemSQL [75], and SQL Server [50]).
We use the term modern analytical systems instead of column-
stores as these systems use many more techniques than just stor-
ing data one column at a time.
Access Path Decisions in Main-Memory. All the above, together
with the fact that (hot) data can be memory resident in many cases
due to large memories, bring into question the need for secondary
indexes. Essentially, what is perceived as the main benefit of a
secondary index in a traditional row-store, minimizing data move-
ment from disk, is no longer on the critical path both due to data
layouts and to large memories. Hence, many modern analytical
systems (at least in their early phases of development) opt not to
include secondary indexing at all and instead focus on maximizing
scan performance using a single access path (together with clus-
tered indexes and data skipping techniques like zone maps [58]).
In addition, given that response times for in-memory processing
are typically low, there is limited time to devote to access path se-
lection; optimization time has become the new bottleneck [21, 73].
Open Questions. We answer two questions in this paper: (1) Is
there still a case for secondary indexes in modern analytical sys-
tems? And if so, (2) how should we perform access path selec-
tion given the advancements in system design? What makes the
first question interesting (other than the fact that many modern sys-
tems opt out of secondary indexes) is the continued optimization
of scans [54, 55, 60]. Features like shared scans are increasingly
common and concurrency for read queries is increasing exponen-
tially [69]. When multiple queries can be answered with a single
sequential scan, is there still a need for secondary indexing? Given
the sub-second performance of many queries, is there even time to
make a meaningful decision about which access path to use?
Access Path Selection in Modern Analytical Systems. We show
both analytically and experimentally that while scans have indeed
become useful in more situations than before, secondary indexes
are still useful for queries with low selectivity.1 We demonstrate

1We use the term “selectivity” in the same way as “selectivity factor” is
used in Pat Selinger’s paper [70], as a number rather than a property. Hence,

that in order to perform access path selection in modern systems,
in addition to the traditional way of using query selectivity and the
environment characteristics, query concurrency also needs to be in-
corporated to optimizers. The number of concurrent queries at any
given time is critical as it affects the number of queries that may
share a column-scan, or a secondary index tree traversal.

We show that there should be no fixed selectivity threshold for
access path selection as there has been for the last 35 years [6, 21,
70]; rather, there is a moving pivot point that primarily depends on
the number of concurrent queries and their total selectivity. Fig-
ure 1 shows the basic concept in our access path selection approach
and how it differs from the historical method. Traditionally, a sys-
tem is tuned to the hardware and then a fixed selectivity point is de-
termined. Any queries that are expected to return a larger percent
of the relation than this point use a sequential scan. The change
we propose for modern analytical systems is that there should be
no fixed selectivity point for access path selection. The break-even
point is variable, it decreases in terms of selectivity as more queries
are run concurrently. We also find that in some cases there is a the-
oretical point where a shared scan is always the best option in the
far right in Figure 1. The point varies as concurrency goes over
a threshold which is dependent on the underlying hardware, data
layout, and physical design decisions. However, it is not feasible
with current technology to have an arbitrarily high level of concur-
rency due to other limiting factors (e.g., data accesses associated
with result writing, which most notably may cause TLB misses).
System Integration. We discuss how to integrate this new form of
access path selection in modern analytical systems. The optimizer
needs to model the hardware (CPU, cache, memory latency and
bandwidth) and the workload (selectivity and query concurrency),
and to continuously monitor the latter. This allows the system to
make dynamic decisions about using a shared scan or a shared sec-
ondary index scan for a group of queries predicated on the same
data. It should also adjust dynamically depending on the underly-
ing layout of the accessed data (pure column, column-groups for
hybrid storage, or even full rows). We combine these techniques
in our prototype, FastColumns, to show both that access path se-
lection is beneficial for analytics and that it can be done without
hurting the performance of even sub-second queries.

In this paper, we focus on read performance. Modern main-
memory optimized systems targeting analytics either do not sup-
port updates (only appends) or support updates through a separate
write-store (or a form of delta store) that accumulates updates and
only periodically merges them into the read-optimized store [35,
47, 49, 77]. Our access path selection analysis targets analytical
queries in the read-store.
Contributions. This work offers the following contributions:
• We present an augmented access path cost model that captures

the performance of select operators in main-memory optimized
analytical data systems that support access sharing (§2).

• We show that access path selection is needed; tuned secondary
indexes can be useful even when fast scans are employed (§2).

• We show that in addition to selectivity and hardware characteris-
tics, access path selection needs to dynamically take into account
query concurrency (§2).

• We integrate our access path selection to the optimizer of a mod-
ern analytical prototype and show that even though access path
selection is now a more complex operation that must take into
account more information, it can be done quickly enough that it
remains beneficial, even for sub-second queries.

we use “high selectivity” to indicate that the result set of a query has many
qualifying tuples, and the converse for “low selectivity”.

716

• We demonstrate that access path selection can be done on a va-
riety of workloads outperforming solutions that rely on a single
access path or on traditional access path selection models (§4).

• Using the model we show how the decision of when to use an
index has changed as the data layout and hardware properties
have changed over the last five decades (§5).

2. ACCESS PATH SELECTION
In this section we present a model for access path selection in a

main-memory optimized analytical data system. We first provide
notation and other preliminaries (§2.1). We continue by modeling
sequential scans (§2.2). Similarly to past modeling approaches [16,
56] we take into account the underlying hardware characteristics,
as well as a plethora of techniques that boost scan performance like
tight for loops, using multiple cores, working over compressed
data, and crucially (in contrast to previous approaches [6, 21, 70])
we augment the modeling with scan sharing that processes multi-
ple queries concurrently. Then, we model concurrent accesses in a
main-memory optimized B+-Tree (§2.3). The model supports data
layouts ranging from pure columnar to pure row-oriented (and hy-
brid layouts in-between), and optionally value-based compression
(numeric compression or dictionary compression).

Using this model, we develop an access path selection strategy
to choose between a sequential scan and a secondary index scan
for a given batch of queries (§2.4). We show that in addition to
selectivity and hardware characteristics (which are used in tradi-
tional access path selection) the number of concurrent queries in
the batch, the overall selectivity of the batch, and how each query
contributes to that total are also critical.

The modeling presented in this section is an integral part of the
design presented in Section 3, where we discuss how to integrate
access path selection in analytical data systems.

2.1 Model Preliminaries
Select Operator. Our study is about the performance of select
operators which typically filter out most of the data in a query.
Hence, they are important to estimating the total cost of a query
plan. We maintain the standard API for a select operator. The
input is a column (for pure column-store) or a column-group (for
hybrid or pure row-storage). The task of the select operator is to
generate a list of all qualifying tuples given a predicate (i.e., range
or point query). The output is a collection of rowIDs, which are
offsets in a fixed-width and dense column.
Parameters and Notation. The parameters of our access path se-
lection model capture (i) the query workload, (ii) the dataset and
physical storage layout, (iii) the underlying hardware, and (iv) the
index and scan design. Table 1 shows these parameters as well as
the notation used in the model.
Modeling the Query Workload. The query workload is modeled
using two parameters, the number of concurrent queries and their
selectivity. We model the number of queries, q, and their respective
selectivity, si, for i = 1, ...,q. An individual selectivity, si, corre-
sponds to the percentage of tuples that qualify in query i based on
its predicate. The size of the overall result set of a batch is given
by the sum of the q individual selectivities, termed total selectivity,
Stot = ∑

q
i=1 si. Stot can be more than 100%; e.g., for three queries

each with 40% selectivity, Stot would be 120%.
Modeling Data Layout. Next, we model the physical storage lay-
out by taking into account the shape and size of the input data. Both
the sequential scan and the secondary index scan operate on a sin-
gle column or group of columns. We use N to model the cardinality
of the relation in tuples, and ts to describe the width of each tuple

Workload q number of queries
si selectivity of query i

Stot total selectivity of the workload
Dataset N data size (tuples per column)

ts tuple size (bytes per tuple)
Hardware CA L1 cache access (sec)

CM LLC miss: memory access (sec)
BWS scanning bandwidth (GB/s)
BWR result writing bandwidth (GB/s)
BWI leaf traversal bandwidth (GB/s)

p The inverse of CPU frequency
fp Factor accounting for pipelining

Scan rw result width (bytes per output tuple)
& b tree fanout

Index aw attribute width (bytes of the indexed column)
ow offset width (bytes of the index column offset)

Table 1: Parameters and notation used to model access methods
and to perform access path selection.

(consisting of a single attribute, a group of attributes, or the entire
row). The width of every output value is given by rw. Modeling the
index scan uses two additional parameters, the width of the index
attribute, aw, and the width of the rowIDs, ow.
Modeling Hardware Characteristics. Another important factor
of the model is the underlying hardware. Our focus is on main-
memory optimized systems, so data (at least frequently used data)
is expected to be memory resident making the primary cost com-
ponent memory accesses in the different levels of the memory hi-
erarchy. Everything is measured in time units; accesses are either a
cache access (hit), CA, or a last level cache miss resulting in a main
memory access, CM , while data is read sequentially from mem-
ory at memory bandwidth speed (in bytes per second). The model
differentiates the memory bandwidth speed when scanning sequen-
tially (BWS), when writing the result in an output buffer (BWR), and
when scanning the contents of the leaves of a tree (BWI).
Other Scan Enhancements. Single query performance can be en-
hanced with data skipping techniques like zonemaps. Zonemaps
are commonly found in analytical systems as a means to avoid read-
ing a group of values that can not qualify for a given query based on
a check of the bounds of the group. For a single query this is mod-
eled by simply reducing the number of values in the relation by the
expected number of zones skipped and the number of entries in a
zone. One drawback of zonemaps is that as concurrency increases
the number of zones that can be skipped is reduced as in order to
skip a zone, it must be unneeded by all queries in the group.
Compression. Data may be compressed and access paths can work
directly over compressed data. We consider order preserving dic-
tionary compression [12, 81] where an access path first probes the
dictionary for the low and high values, and then evaluates the pred-
icate on the compressed data directly. We use a single dictionary
per column and data compressed to two bytes. When the value do-
main of the data is very small (256 distinct values or less), then a
column could be compressed even further. However, in these cases
alternate access paths, such as bitmap indexes, should also be con-
sidered.
Tuning B+-Trees. Last but not least, the performance of an in-
memory tree-based secondary index is heavily affected by the shape
of the tree. The main parameter that defines the shape of the tree is
the fanout, b. This affects both memory efficiency and the number
of random accesses incurred in a tree index traversal.

2.2 Modeling In-Memory Shared Scans
At the core, a sequential scan is an iteration over an array of in-

put data to find qualifying tuples based on a predicate comparison.
This is done in a tight for loop where each tuple is evaluated in

717

succession (Figure 2(a)). In modern data systems, each attribute is
stored in dense arrays with fixed-width elements (or as wider arrays
that contain adjacent attributes in the case of hybrid storage). Such
an iteration over sequential memory results in efficient evaluation
limited only by the memory bandwidth.
Data Movement for Scan. In tight for loop scans data in the un-
derlying array is accessed sequentially. Given memory bandwidth
BWS, the cost of sequentially scanning the data, T DS, (reading N
tuples of size ts) in seconds is:

T DS =
N · ts
BWS

(1)

Predicate Evaluation. The CPU cost to evaluate the predicate
might affect the scan’s performance. A scan needs to evaluate the
predicate (a lower and a higher bound) for each value it reads. As-
suming that p is the period of the processor’s clock, and fp is a
constant factor to account for instruction pipelining, the CPU of
predicate evaluation PE is:

PE = 2 · fp · p ·N (2)
We assume aggressive utilization of SIMD and multi-core to op-

timize the CPU cost of each sequential scan. Each query (select
operator) is assigned to a single hardware thread if the total num-
ber of concurrent queries is bigger than the number of available
threads. Otherwise, the available hardware threads are spread to
the current queries and each query may use more than one.

Depending on the hardware characteristics the CPU cost might
be on the critical path, as a result, every scan has a data consump-
tion cost equal to the maximum of T DS and PE.

When data is compressed, the scan probes the dictionary for the
low and high values. The process is repeated more than once if a
column is encoded with more than one dictionary. The cost of prob-
ing a dictionary is two cache misses and for simplicity we do not
include it in the model, because in practice this is multiple orders
of magnitude smaller than the remaining cost (for both scans and
indexes). The variable width of the compressed values is captured
by the ts parameter.
Result Writing. Another significant component of the total cost
of a scan is the cost of result writing, T DR. The cost to output the
whole column would need N rows of rw bytes each:

T DR =
N · rw
BWR

(3)

In order to avoid branch mispredictions, which can be costly in
tight loops, we always generate the result-set using predication [5,
11]. Since this write is either to an already cached line or a se-
quential piece of memory, it also executes at memory bandwidth
speed.

Therefore, the cost of a scan of a single query i is:

SingleQueryCost = max(T DS,PE)+ si ·T DR (4)

Equation 4 is the combination of three logical parts. First, re-
trieving the data which is a function of the number of tuples, their
size, and the memory bandwidth. Second, the CPU cost of evalu-
ating the predicate over those, which depends on CPU characteris-
tics. Third, we include the cost of writing back the results (IDs of
the qualifying tuples) which happens at memory bandwidth. The
model further differentiates between T DS and T DR; a scan may tra-
verse a column or a group of columns depending on how the data
are physically organized. The result of the scan can also be a single
column or a group of columns.
Scan Sharing. We now extend the modeling to scan sharing where
q queries share a single scan of the base data [63, 88]. Queries
can share the cost of data movement by moving data up the mem-
ory hierarchy once, while analyzing multiple queries. However, the

Figure 2: Sequential scan and secondary index scan access pat-
terns of the select operator. Basic scans (a) iterate sequentially
through the input and evaluate the predicate to find qualifying
positions. Shared scans (b) iterate over the relation only once.
Batched B+-Tree traversal (c) issues prefetches at each level but
only for the children that are needed.

predicate evaluation cost now increases with the number of queries.
Given that data movement is one of the major bottlenecks, scan
sharing is of critical importance. To perform scan sharing a system
needs to first group queries based on the attributes they are predi-
cated on. Then, a small part of the input data, one that easily fits
into the hardware cache, is evaluated for each query in the batch it-
eratively (Figure 2(b)). This allows more than one query to use the
target data before it is evicted from the processor cache, reducing
memory bandwidth pressure. Each query uses a separate hardware
thread to spread the work to every system core.

When multiple queries share a scan, the cost of data reads is the
same as with a single query (assuming that all q queries start at the
same time). However, we now have to consider the increased CPU
cost to evaluate the q predicates. Regarding result writing, each
query requires a separate result set. Hence, the cost to generate the
result sets for the queries is ∑

q
i=1 si ·T DR = Stot ·T DR.

Putting everything together gives us the overall cost for an in-
memory shared scan of q queries:

SharedScan = max(T DS,q ·PE)+Stot ·T DR (5)

Equation 5 is yet again the combination of three logical parts:
data retrieval, predicate evaluation, and result writing, as shown in
Figure 3(a). While the cost to retrieve the base data remains the
same as in Equation 4, now we account for the q multiple predicate
evaluations and corresponding result sets (by using total result size
Stot instead of individual query si).

2.3 Modeling In-Memory Secondary B+-Trees
We now explore the possibility of using a secondary index as the

access path. We use a B+-Tree and we tune it for a given hardware
and in-memory operation. In other words, we perform the same
kind of state-of-the-art optimizations we have available for scans
before comparing the two access methods.

We optimize the secondary index in two ways. First, the fanout
of the tree is tuned to match the memory latency and bandwidth of
the underlying hardware. Second, the intra-node search (locating
the next child node to visit) is tuned to match the fanout.
Selects Using a Secondary Index. To integrate a B+-Tree as a
secondary index, the tree stores a copy of the indexed attribute in
its leaves. The leaves also contain the respective rowIDs (i.e., po-
sitions of the indexed values in the base arrays). A select operator
can then operate directly on top of the tree and output the result
positions in the same way as a sequential scan does (though the
positions are generally out of order which we discuss later).
Modeling Secondary Index Scan. An in-memory B+-Tree probe
has multiple steps. First, the tree is traversed to find the first leaf
corresponding to the requested value range. Second, we traverse

718

the leaves reading the indexed data. Finally, we write the result set
which is ordered by the indexed attribute (if we follow the natural
order generated by the index). Alternatively, the data is sorted on
the rowID in order to deliver an identical result as the sequential
scan. Below, we analyze and model these steps in detail.
Tree Traversal. For a B+-Tree with fanout b the tree traversal
cost, in seconds, from the root to the first corresponding leaf, is a
function of the number of tuples N and is given by:

T T = (1+ dlogb(N)e) ·
(

CM +
b ·CA

2
+

b · fp · p
2

)
(6)

Equation 6 assumes that traversing from a node to its child results
in a random memory access which will be incurred based on the
height of the tree and that, on average, for each internal node, half
of the keys will be read sequentially and the corresponding search
predicate will be evaluated to find the target child node.
Leaves Traversal. Using the selectivity of a query i, si, we can
calculate approximately the number of leaf nodes that the system
must traverse to collect the qualifying rowIDs. Since the leaf nodes
are in arbitrary memory locations, each time we need to visit a new
leaf (when the result spans more than one leaf) a cache miss is
incurred. Thus, given that N/b is the number of leaves in the tree,
the leaf traversal cost for each query is:

si ·T L, where, T L =
N ·CM

b
(7)

Data Traversal for Secondary Indexes. Reading the rowIDs within
a leaf node, however, can be modeled as properly prefetched se-
quential accesses of values and rowIDs, using the bandwidth that
leaf contents can be traversed, BWI . Thus, the cost for each query
depends on the attribute width (aw) and the offset width (ow):

si ·T DI , where, T DI =
N · (aw+ow)

BWI
(8)

When data is compressed with order preserving dictionary com-
pression the index traversal benefits from accessing more keys in
each node potentially resulting in a shorter tree (fewer cache misses).
Similar to scan this is at a cost of two probes at the dictionary to get
the codes for the low and high query bounds. Contrary to scans, for
secondary indexes we assume a single dictionary per column.
Result Writing. Another significant component of the total cost
of a secondary index probe is the cost of result writing. Similar to
the sequential scan, result writing adds an overhead (in seconds) of:
RW = si ·N · rw

BWR
(which is in fact equal to si ·T DR).

Sorting the Result Set. To deliver the same result to the next op-
erator as the scan operator, a secondary index traversal for a query
i needs to sort the output based on the rowIDs. Accounting one
cache access for each comparison the sorting cost is equal to:

SCi = si ·N · log2 (si ·N) ·CA (9)

The sorting cost can be further reduced if more efficient SIMD-
aware sorting algorithms are employed (see Appendix D). While
this sorting is not needed when performing a secondary index traver-
sal independently, it is a necessary cost to offer an access method
directly comparable with a scan. This also depends on where the
secondary index probe is in the query plan. For example, in mod-
ern column-stores where tuple-reconstruction is a heavy cost com-
ponent (i.e., fetching an attribute/column based on a selection on
another attribute) having an unsorted result from a select operator
will force a tuple reconstruction operator to operate with random
access patterns [3, 38]. On the other hand, a full query optimizer
can decide to use the output of a scan ordered on its values if this
can benefit subsequent operators, like joins and aggregates.

Putting everything together, the cost (in seconds) of a single
query using a secondary index traversal is:

mem

LLC

CPU

TD =
N'ts/BW

q'p

s1'TD

…

…

s2'TD

sq'TD
…

…

…

S'(TL+TD)

ΤΤ

…

L2

(b) secondary index scan

S'TD'SC+Stot'TD

(a) fast scan

L1

Figure 3: Illustration of access path operation. The left hand-
side (a) of the figure shows the cost of a shared fast scans (Equa-
tion 5). The right hand-side (b) shows the cost of a memory
optimized secondary index scan (Equation 13).

SingleIndexProbe = T T + si · (T L+T DI)+RW +SCi (10)

Concurrent Index Access. We now extend the analysis for the
case where q queries want to select over the same column (or groups
of columns) at the same time. Similar to the optimizations for the
sequential scan, more than one query can share an index scan as
well. For ease of exposition, this analysis assumes that all q queries
arrive at the same time. The goal is to utilize the parallelism of-
fered by modern multi-core processors and to minimize data move-
ment by sharing data accesses. A shared index scan first divides the
concurrent overlapping queries by the number of hardware threads
available, t. Each thread is responsible for q/t queries. While this
is not explicitly modeled, concurrent accesses often lead to natural
sharing in the cache as different queries traverse overlapping parts
of the tree. As a result, the model in this section presents a worst
case analysis. Natural sharing is most common at the top levels of
the tree, so the tree traversal cost is dominated by the other terms.

In a shared index scan of q queries, the tree is traversed in total
q times. Figure 3(b) shows a shared index scan corresponding to
multiple queries. Each query traverses the tree, the corresponding
leaves, and the data independently. Some of these accesses may be
cached due to a previous query but in the worst case they are always
misses. As a result the overall cost of accessing leaves and data
is given by the total selectivity Stot . Similarly, the result writing
cost is about the overall selected data, given by Stot . Finally, we
account for the cost of sorting the results on rowID for all q queries.
Summing up the individual cost (shown in Equation 9), we get:
∑

q
i=1 SCi = ∑

q
i=1 si ·N · log2 (si ·N) ·CA.

Putting everything together, the overall cost of an in-memory
shared secondary index scan is as follows:

ConcIndex =q ·T T +Stot · (T L+T DI)+Stot ·T DR

+
q

∑
i=1

si ·N · log2 (si ·N) ·CA (11)

In Appendix A we present an analysis based on the definition of
entropy to show that the sorting cost SC = ∑

q
i=1 si ·N · log2 (si ·N)

has the following maximum value:

MaxSC = Stot ·N · log2 (Stot ·N) (12)

Putting together Equation 11 and 12 (and allowing the sorting
cost estimation to be corrected by a factor fc), the worst case for
the cost of a concurrent index access becomes:

ConcIndex =q ·T T +Stot · (T L+T DI)

+Stot ·T DR +SF ·CA, where (13)

SF = Stot ·N · log2 (Stot ·N) (14)

719

Equation 13 is the combination of five logical parts: tree traver-
sal, leaves traversal, data retrieval, result writing, and result sort-
ing. When compared with Equation 10, the concurrent index access
may traverse the tree multiple times (one for each query). Finally,
the amount of work to write and sort the result depends on the sum
of the selectivity of each query.

2.4 Evaluating Access Path Selection
We now discuss access path selection. Using the model devel-

oped in the previous sections we construct a ratio of the two costs
using Equations 5 and 13. We call this ratio APS (Access Path Se-
lection) and it is defined as APS = ConcIndex

SharedScan . The optimizer in a
modern analytical system can use this model to determine which
access path to deploy (more in §3). When APS ≥ 1 a scan should
be used; when APS < 1 a secondary index access is beneficial.

In the rest of this section we present an analysis that provides
intuition and observations about access path selection choices and
cases, demonstrating evidence that it is indeed useful to support al-
ternative access paths in modern analytical systems and how these
choices are different compared to traditional systems and optimiz-
ers. The analysis in this section is based on modeling. In Sec-
tion §4, we present a detailed experimental analysis that corrobo-
rates the results and provides further insights.
When Should We Switch Access Paths? To ease the presentation
of the APS ratio, we use the four quantities defined in Equations 1,
3, 6, 7, 8, and 14, for both the SharedScan and the SharedIndex
costs: the cost to traverse the tree (T T), the cost to traverse the
leaves (T L), the cost to traverse the data (T DS, T DR, and T DI),
and the sorting factor (SF). The costs related to the tree, T T and
T L, depend on the relation size, the index design and the hardware
characteristics. The costs to traverse the data depend on the data
size and the sustainable read bandwidth. Finally, the sorting factor
SF is incurred by sorting the index output before passing it on to
the next operator in order to build a direct competitor of the scan
operator. Using Equations 5 and 13 the access path selection ratio
is defined as follows:

APS =
q ·T T +Stot (T L+T DI +T DR)+SF ·CA

max(T DS,q ·PE)+Stot ·T DR
(15)

In fact, APS is a multivariate function, that depends on all param-
eters presented in Table 1. For each instance of a system, though,
the hardware and the physical layout decisions are already made.
In addition, at runtime the data set size is also known, so runtime
access path selection is effectively a function of the level of query
concurrency q and the total selectivity Stot : APS (q,Stot).

Following the derivation presented in Appendix B the APS ratio
can be rewritten as follows:

APS (q,Stot) =
q · 1+dlogb(N)e

N ·
(

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

)
max

(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

+
Stot

(
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

)
max

(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

+
Stot · log2 (Stot ·N) ·BWS ·CA

max
(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

(16)

Understanding the APS Fraction. Equation 16 is comprised from
two different parts. The first one takes into account query concur-
rency q, the data set size N, the index branching factor b, and the
hardware trade-offs: bandwidth vs. LLC miss, and bandwidth vs.
L1 latency. The second part is mainly affected by the predicate
evaluation cost, the total selectivity Stot , and the data layout.

Let us now examine step by step the two parts of the numerator
and the denominator. The first part of the numerator is affected
by the level of concurrency, however, it has a rather small impact
for low q because of the term dlogb(N)e

N . This means that for low
concurrency, the cost of traversing the index is very small. The
cost increases only slightly as concurrency increases. The products
BWS ·CM and b ·BWS ·CA depend on hardware characteristics and
can be explained as follows: The first is the number of bytes that
can be read sequentially from the memory bus in the delay caused
by an LLC miss and the second is the number of bytes that can be
read sequentially from the memory bus in the same duration as b
L1 accesses. Typically, the latter, is about one order of magnitude
smaller than the first. Similarly, the term b ·BWS · fp · p corresponds
to the number of bytes that can be read sequentially during the time
needed to perform the b comparisons when searching which pointer
to follow. These three terms connect scan and index accesses from
the hardware point of view (see more details in Appendix B.1).

The second part of the numerator in Equation 16 is heavily im-
pacted by the total selectivity. The fraction BWS·CM

b gives how many
index nodes can be read sequentially at the time of an LLC miss,
while the remaining part depends largely on the layout of the index
and the result set (and on the relative performance when scanning
data, traversing the tree, and writing results). Lastly, the denomi-
nator is the only place that we see the tuple size ts. This, in turn,
means that having a larger tuple size (that is, having a row store,
or a column group storage) lowers the overall value of the ratio in-
dicating a more useful index. In addition to that, the denominator
includes the cost of predicate evaluation, which will make the scan
more expensive when it is larger than the data movement, which is
the case as concurrency q increases.

For small values of q the second part of the numerator dominates,
and as a result the dynamic parameter for the decision between
scan and index is the total selectivity Stot . On the other hand, as
the number of concurrent queries increases (which is an observed
workload trend [69]), the first part of the numerator and the pred-
icate evaluation part of the denominator in Equation 16 dominate,
hence increasing the significance of query concurrency. Another
way to view the access path selection model in Equation 16 is con-
sider what happens as the data set size increases. For larger N the
impact of q is smaller, however, the observed trends in workloads
and data sets is that both q and N would increase hence keeping
the concurrency as one of the decisive factors of the comparison
between shared scans and concurrent index accesses.
Model Verification. We verify the accuracy of the model using
experimental data from four machines. For each set of experiments,
we used a multidimensional unconstrained nonlinear minimization
technique (Nelder-Mead) to fit the model. More details about the
verification process are available in Appendix C.

2.5 Analysis of the APS Model
We now proceed with a detailed analysis that sheds light on addi-

tional aspects of access path selection and we summarize the find-
ings in a number of observations. We study several cases based on
the model for varying concurrency, selectivity, data size, tuple size,
and hardware characteristics.

The parameterization of the workload, dataset, hardware, and
secondary index tuning parameters, is based on our experimen-
tal setup (see §4). We parameterize the model to match our pri-
mary experimental server using CM = 180ns, CA = 2ns, BWS =
40GB/s, BWI = 20GB/s, and BWR = 20GB/s. We denote this hard-
ware as configuration HW1. We further model an alternate hard-
ware configuration, HW2, with CM = 100ns, and bandwidth BWS =
160GB/s, BWI = 80GB/s, and BWR = 80GB/s. We study the impact

720

0.1

0.33
0.5

0.66

1.5

2

1

Figure 4: Access path selection
is critical as either sequential
scans or index scans can be the
correct choice. The decision de-
pends on query concurrency.

0.1

0.33
0.5

0.66

1.5

2

1

Figure 5: Access path selection
is required when compression is
employed (ts = 2). The points
are different but there is still a
choice to be made.

0.1

0.33

0.5

0.66

1.5

2

3

1

Figure 6: As we go from a single
column (Figure 4) to column-
groups it becomes even more
important to support two access
paths and selection.

0.1

0.33
0.5

0.66

1.5

2

1

Figure 7: In the alternate setup
HW2 (latency 100ns, band-
width 160GB/s) access page se-
lection is critical.

0.1

0.33

0.5

0.66

1.5 1.5

2

3

1

Figure 8: When selecting access path for a
single query, the index is preferable when
selectivity drops below 0.5−1%.

0.1

0.33

0.5

0.66

1.5

2

2

3

1

Figure 9: As we increase concurrency the
cases that index is preferable correspond
to smaller query selectivity.

0.1

0.33

0.5

0.66

1.5

2

2

3

1

Figure 10: Even for larger levels of con-
currency there is still a case for access path
selection.

of relation size (varying N between 104 and 1015 tuples), varying
ts between 4 bytes for 1 column and 40 for 10 columns. We fur-
ther study compression, which effectively means to consider ts less
than 4 bytes (we test with widths down to 2 bytes). The values for
rw, aw, and ow are all equal to four bytes. We set the fanout of the
tree to be b = 21 matching our experimentation to find a memory
optimized B+-Tree fanout on our machine.
Interpreting the Model Figures. The results are shown in Fig-
ures 4 through 10. Each figure shows a three dimensional plot of
the APS ratio from 90 degrees, effectively showing a 2D projection
of the plot with the color-map indicating the value at each point of
the graph, and contour lines to better explain the graph. In Fig-
ures 4 through 7, the x-axis shows the query concurrency q, and the
y-axis the average individual query selectivity (si). The x-axis of
Figures 8 through 10 is the relation size N, and the y-axis remains
the same. The APS ratio can take positive values between ≈ 0 and
� 1, however, the interesting range of values is close to 1, where
the decision between using a shared scan or a concurrent secondary
index access is made. As a result, in each figure when APS > 3 we
use the same color; the differentiation of the color is focused in the
interesting range [0,3]. Dark blue areas have very low APS ratio
and indicate cases that using a secondary index would be greatly
beneficial, light blue areas correspond to a workload that a sec-
ondary index would provide a speedup of 2− 3×, while turquoise
areas correspond to the workload that index and scan are almost on
par. Yellow areas the scan is 1.5−2× faster, and red and especially
dark red areas correspond to cases that using shared scanning is
clearly preferred (more than 3× difference).

We start our discussion with Figure 4. Here we compare scan
and secondary index for a pure columnar layout using the values
for our primary experimental server. It is interesting to see how fast
the break-even point changes and the impact of making the wrong
decision. For readability we plot a solid line where APS = 1 and
dashed lines for APS = {0.1,0.33,0.5,0.66,1,1.5,2,3}. When the
ratio APS= 0.66, ConcIndex

SharedScan = 2
3 ⇒ SharedScan= 1.5 ·ConcIndex.

The inverse is when APS = 1.5, ConcIndex
SharedScan = 1.5⇒ConcIndex =

1.5 · SharedScan. In these two cases, making the wrong decision
would cost 50% performance loss. Similarly, making the wrong

decision for the pair {0.5,2} corresponds to a 2× slowdown (for
example choosing index incorrectly would follow the 2 line in the
dark red of any of the figures), and {0.33,3} a 3× slowdown.

Observation 2.1. In a modern main-memory optimized analytic
data system there is a break-even point regarding the performance
of a shared scan and a shared index scan; access path selection is
needed to maximize performance in all scenarios.

The shape of each line in Figure 4 depends on query concur-
rency. As we process more queries concurrently, the access path
selection point changes. In other words, the access path selection
depends – not only on selectivity, hardware, and data layout – but
also on the concurrency of the workload. As concurrency increases,
a secondary index is beneficial for lower individual query selectiv-
ity of the batched queries. On the other hand, when concurrency is
very high, a shared scan is preferable. In fact there is a maximum
point of concurrency beyond which a scan is always the right choice
(we show in the experiments that this point is not achievable with
current hardware but the potential remains). Compression (Fig-
ure 5) leads to similar behavior. The main difference is that scans
are somewhat more beneficial even for concurrency as low as one
query, however, access path selection is still required.

Observation 2.2. Unlike traditional query optimization decisions,
choosing between a sequential scan and an index scan in a modern
system depends on concurrency in addition to selectivity.

So far we have considered a storage model of one column at a
time. However, many modern systems follow hybrid storage mod-
els to match the workload and access patterns exactly [4, 19, 25,
33]. We continue the analysis by varying tuple size which models
(a) hybrid systems where data is stored as column-groups and (b)
data compression effects, i.e., even if data is stored one column at a
time compression levels may vary, affecting access path selection.

Figure 6 shows the impact of a different physical organization
where query processing is performed over a group of ten columns,
having ts = 40 bytes (instead of one column at a time in Figure 4).
The observations remain similar to the previous analysis; the dif-
ference now is that the sweet spot has moved to both higher con-
currency and lower selectivity making access path selection even

721

more crucial. For example, while 0.4− 0.8% selectivity is the
maximum threshold for single column-at-time storage in Figure 4,
now it climbs to 8% for a single query, but drops towards 0.4% as
concurrency increases. Overall for larger tuple sizes due to hybrid
storage (or due to limited opportunities for compression), indexing
becomes more useful; however there is always a use case for both
access paths.
Observation 2.3. In hybrid systems supporting column-groups,
secondary indexes are useful in more cases than plain column-
stores because using a secondary index helps to avoid moving a
larger amount of unnecessary data through the memory hierarchy.

In Figure 7 we repeat the same analysis as in Figure 4 but this
time using the alternate hardware configuration HW2. Changing
the cache access cost and main memory access cost changes the
points at which we change from sequential scan to secondary index
scan, making the system slightly more suitable for secondary in-
dexes. Even though the actual points are slightly different, overall
the shape of the curves and the high-level observation remains very
similar; all systems require access path selection and concurrency
plays a major role.
Observation 2.4. Although hardware characteristics change the
point where a sequential scan is preferred over a secondary index
scan, all systems require run time analysis to make the decision.

Figure 8 shows how the break-even point changes as we vary the
data size between 104 and 1015 tuples. A first observation is that
the sorting overhead makes the secondary index less useful as scan
outperforms secondary indexes for lower selectivity. In addition to
that, we still observe the impact of query concurrency. Figures 9
and 10 show that with higher concurrency there is a small data size
(less than 105 tuples) that scan will always be better, however, we
cannot keep increasing the level of concurrency arbitrarily. Shared
scans of tens or hundreds of queries are possible, but as we move
past 256 or more concurrent queries, hardware resources like L1
cache and TLB get thrashed and performance drops. Overall, for
data set sizes between 104 and 1015 tuples a decision between a
shared sequential scan and a secondary index scan should be made,
and the decision point depends on the query concurrency.
Observation 2.5. Access path selection becomes more crucial for
bigger data inputs as data movement becomes more expensive –
and as a result every wrong decision has a larger cost.

Putting Everything Together. Modern data systems can benefit
from multiple access paths. The decision between a secondary in-
dex and a scan depends on a number of factors: query selectivity,
hardware properties (cache and memory latency, memory band-
width), as well as query concurrency.

3. INTEGRATING COST-BASED APS
Having demonstrated that more than a single access path may be

useful in modern systems and having built a model to make the dy-
namic decision of access path selection, we now move forward to
discuss how to integrate this technology in modern main-memory
optimized analytical systems. We explain how integration should
be done and its side-effects using our storage and execution engine,
FastColumns. FastColumns includes all the data layout and and ac-
cess methods described in the previous sections including multiple
data layouts: single column, column-groups, and full tuples as well
as secondary tree indexes.
New Components. The key component we introduce in order to in-
tegrate access path selection is the new cost-based optimizer which
implements the model described in the previous section to per-
form run time access path selection. The scheduler is another key

Parser

SQL Front-End

APS Module [workload, data,

physical design, hardware]Optimizer Scheduler

Storage Engine Query Engine

Figure 11: Integrating cost-based access path selection.

component; it continuously collects incoming queries and batches
queries that refer to the same data to prepare them for analysis by
the optimizer. Several other existing components must collect the
right statistics. These statistics are likely already collected in most
systems. Overall, the integration to a modern analytics system is a
minor change that does not include drastic changes in the architec-
ture. This is shown visually in Figure 11 where we highlight the
new APS module that needs to be part of the optimizer; the rest of
the changes are about ensuring the system has the right statistics.
Continuous Data Collection. The system needs to monitor query
concurrency, query selectivity, and dataset properties. It also must
take into account hardware characteristics (which are tuned once
per machine during initial setup). The optimizer uses this informa-
tion to perform access path selection (for q concurrent queries).

To get the required information the optimizer communicates with
both the storage engine, and the scheduler. In particular, the infor-
mation with regards to the data properties (size and physical organi-
zation) is available from the storage engine, while the query concur-
rency and selectivity are properties known to the scheduler, which
receives the workload from the front-end of the system. The re-
maining information regarding hardware specification is collected
when the system is initialized on a new machine. This process can
be automated. We use Intel’s Memory Latency Checker tool [39]
which allows us to document the memory latency and bandwidth
across the NUMA nodes of the system.
Choosing Access Paths. In addition, the optimizer performs fur-
ther analysis on the current batch of queries and the data they ref-
erence to determine the additional properties required for access
path selection. These properties include the number of outstanding
queries, the number of overlapping ranges, their total selectivity as
well as their referenced data size and tuple size (column-group lay-
out). The total query selectivity for each batch is estimated using
the individual expected query selectivity.

Using the data described in the previous two paragraphs, the op-
timizer can decide during execution whether to use a secondary in-
dex or a scan for a batch of queries by running Equation 15 (APS)
and checking whether the value is smaller than one (use the sec-
ondary index) or greater than one (use a sequential scan).
Fast Decisions. In a modern main-memory optimized analytical
system it is critical to perform access path selection quickly. The
reason is that response times in analytical systems are typically
quite low, in many cases performance is sub-second (in part be-
cause of the advanced access paths, and in part because data is
memory resident in many cases). As such a cost-based optimizer in
a modern analytical system needs to take special care to ensure that
optimization time does not become a critical component of the to-
tal cost. Our solution keeps the costs of data collection and runtime
calculations low. Access path selection is in fact a small number of
instructions, just enough to calculate the APS value. The number of
outstanding queries, and their selectivity, are held and maintained
in a similar way to other statistics, a simple count per attribute in

722

the case of outstanding queries, and using standard selectivity es-
timation techniques (like histograms). Even for queries that cost
only a couple of seconds, APS can be evaluated very quickly (on
our test machine the decision takes on the order of microseconds).
Error Propagation. The problem of choosing the wrong access
path and error propagation has been studied extensively for tradi-
tional systems [23]. The new access path selection paradigm we
propose in this paper takes a plethora of information into account,
much more than traditional optimizers. However, it does not make
the problem (or solutions) any more complex as all the additional
information is information that the optimizer acquires either at run
time in a precise way (the number of outstanding queries, and the
total query selectivity which is based on the statistics that are al-
ready kept), or is information that it acquires at initialization time
like hardware properties which is static and always accurate data.

4. EXPERIMENTAL ANALYSIS
In this section we experimentally demonstrate that when putting

all modern access path optimizations together, there is still a need
for access path selection in modern analytical systems. We show
that unlike existing systems that make the decision based on a fixed
selectivity threshold, the optimizer of a modern analytical system
now needs to account for the number of concurrent queries with
overlapping attributes. We also validate the access path selection
model, demonstrating that it allows the optimizer to make fast real-
time decisions in a variety of scenarios.
Hardware and Operating System Specifications. Our experi-
mental infrastructure consists of a NUMA machine with 4 sockets,
each equipped with an Intel Xeon E7-4820 v2 Ivy Bridge proces-
sor running at 2.0GHz with 16MB of L3 cache. Each processor
has 8 cores and supports hyper-threading for a total of 64 hardware
threads. The machine includes 1TB of DDR3 (@1066MHz) main
memory, evenly distributed across the sockets, and four 300GB
15K RPM disks configured in a RAID-5 array. We run 64-bit De-
bian “Jessie” version 8.6 on Linux 3.16.7. We also conduct exper-
imentation on alternate hardware, using Amazon EC2 dedicated
instances (details are described in the relevant experiment).
Experimental Methodology. For each experiment described in
this section we use a synthetic data set of uniformly distributed 32-
bit integers. We vary the data size between 100 million and 500
million tuples. The workload is a sequence of select-based queries
with variable selectivity (as noted in the individual experiments)
for which we report the time measured to execute each select op-
erator. We vary the query concurrency between a single query and
512 queries. The costs include result materialization and sorting in
rowID order in the case of secondary index scan. The data points
reported are each the arithmetic mean of ten trials, with standard
deviation within 3%. Experiments are strictly main-memory res-
ident; data is loaded if necessary prior to any measurements and
there is no disk I/O involved. Faster data reading favors scans,
which always read all the data. It also means that that access path
selection must be done quickly.
Implementation. All experiments are performed in the FastColumns
storage and execution engine described in Section 3. There is no
SQL front-end for FastColumns yet so the SQL parsing cost is ex-
cluded (for all experiments); all queries are described in a domain
specific language which maps to the logical plan of the query.
No Single Access Path Always Performs Best. We begin our anal-
ysis by comparing the latency of a single sequential scan that uses
SIMD and multiple hardware threads to a multithreaded index scan.
We introduce concurrency in the next experiment. The goal here is
to show that access path selection is needed even on a fully tuned

system while executing a single query. This is the case in modern
analytical systems that do not yet have support for shared scans.

Figure 12 shows the latency of each access method on a 100 mil-
lion tuple input as we vary query selectivity between 0% and 100%
along the x-axis. We generate two fit lines based on the data in
the low selectivity points to find the point where the performance
preference shifts from one access method to the other. Although
the crossover is at a low percent, the performance difference is sig-
nificant. The query using the secondary index can run many times
faster than the scan which makes for a substantial difference if we
consider total workload performance, i.e., for thousands (or more)
queries. The result size in Figure 12 is in the order of several mil-
lion keys. Hence, the secondary index is useful when the result
cardinality is anywhere between 0 and 1.5 million keys (1.5% of
100 million values of the input data).

The Influence of Concurrency. We now introduce concurrency
into our analysis. This means that both sequential scan and sec-
ondary index scan can use shared execution to amortize the data
movement cost in addition to the other optimizations. In this ex-
periment, we repeat the same experiment as in Figure 12, with the
difference being that we vary the number of concurrent queries se-
lecting over the same data. We repeat the experiment varying con-
currency between 1 and 512 queries.

Figure 13 shows the results. Each point in Figure 13 represents
the crossover point selectivity observed for this level of concur-
rency (x-axis). That is, each plot point is the result of one trial of
Figure 12 with the concurrency varied. In this way, this graph is
parsed in the same way as Figure 1 in the Introduction: any query
batch of q queries with aggregate selectivity above the one shown
in Figure 13 for q should use a scan, otherwise the optimizer should
use an index scan. As concurrency varies in Figure 13 the crossover
point also moves. With more concurrent queries, scan becomes
more useful because queries can amortize the cost of reading the
entire column. The index scan also benefits from sharing, how-
ever, not as dramatically as sequential scan. Traversing the leaves
of a tree is more expensive when compared to a contiguous array.
Nevertheless, the crossover point plateaus eventually, that is, there
is always a case for access path selection. In Section 2.4 we ex-
plained that sharing only works up until the point where write costs
overwhelm the benefits of shared execution. We can see this at the
far right of Figure 13. The performance of shared scan deteriorates
when attempting to share 512 selects simultaneously. However, the
performance can be retained by batching the 512 queries into two
runs of 256 (the point labeled “512-batch”).

Observation 4.1. Concurrency, the number of active queries that
need to select over the same data, is a critical factor that affects
access path selection.

The Influence of Data Set Size. The next parameter we study is
data size. We repeat the same experiment as in Figure 12 multi-
ple times, varying the data size and as in Figure 13, we plot the
crossover point for each run (data size).

The results are shown in Figure 14. Effectively, as the data size
grows the crossover point rises to a higher selectivity reaching a
maximum point before starting to drop gradually.

When scanning the input column, as we increase its size, the cost
increases linearly (O(N)); the cost is proportional to the extra tuples
the scan has to check and the corresponding increase in result set
size. For a secondary index scan, there are three steps. First, as we
increase the size of the input column the tree becomes higher log-
arithmically (O(log(N))). Second, the number of qualifying tuples
in a given range, which affects both the number of leaves traversed
and the result set size, increases linearly (O(N)). Third, the cost

723

0.001

0.01

0.1

1

10

0.1 1 10 100

R
un

tim
e

(S
ec

on
ds

)

Selectivity (%)

Index Scan
Fast Scan

0.59% Sel.

Figure 12: There exists a crossover point
for access path selection in analytical sys-
tems even when q = 1.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1 10 100

Scan is Best

Index is Best

512

512 batched

C
ro

ss
o v

er
Se

le
ct

iv
ity

Concurrent Queries

Figure 13: The number of concurrent
queries is a critical component of access
path selection in analytical data systems.

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%
1.6%
1.8%

104 105 106 107 108 109

Scan is Best

Index is BestC
ro

ss
o v

er
Se

le
ct

iv
ity

Relation Size (Millions of Integers)

Figure 14: The crossover point is also af-
fected by the data set size (q = 8).

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 5 10 15 20 25 30

Scan is Best

Index is Best

C
ro

ss
o v

er
Se

le
ct

iv
ity

Data Layout (Column Group Size)

Figure 15: Scans with strided accesses are
less efficient increasing the opportunities
where an index scan is beneficial.

0

0.1

0.2

0.3

0.4

0.5

0.6

Primary Alt-cpu Alt-mem Alt-gen

Lat:
BW:
CPU:

180ns
40GB/s
2.0 GHz

90ns
24GB/s
2.9 GHz

120ns
80GB/s
2.5 GHz

100ns
40GB/s

2.4 GHz

C
ro

ss
ov

er
Se

le
ct

iv
ity

Measured Predicted

Figure 16: FastColumns is able to accu-
rately predict the crossover point for dif-
ferent hardware configurations.

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0 20 40 60 80 100 120 140

C
ro

ss
ov

er
Se

le
ct

iv
ity

Concurrent Queries

32-bit Keys

16-bit Keys

Figure 17: Working directly over com-
pressed data gives a slight advantage for
scans.

of sorting the result of the index scan (so it is in row-id order) in-
creases following O(N · log(N)) complexity.
Observation 4.2. As the data set size increases, the selectivity
crossover point reaches a maximum and then drops gradually.

The Influence of Data Layout. In our next experiment we demon-
strate the effect of data layout and that access path selection is also
needed in analytical systems that support hybrid layouts. We repeat
the experiment of Figure 12 but vary the number of columns form-
ing a column-group in the data layout. Effectively we test for pure
column-store layout and increasingly bigger column-group hybrid
layouts (up to 32 columns).

Figure 15 shows the results. It is the same plot style as Figures
13 and 14; each point represents the crossover selectivity point for
the respective data layout on the x-axis. As the column-group size
increases towards hybrid layouts, secondary index scan becomes
increasingly beneficial in a wider range of selectivities. This is
because similarly to past row-store systems, the secondary index
allows for increasing data skipping capabilities over wider column-
groups that have to touch multiple columns at the same time, even
when scanning a single column.
Observation 4.3. Given the trend towards hybrid layouts, we ex-
pect access path selection to become increasingly important.

The Influence of Hardware Properties. In our next experiment
we show that our access path selection model works with signifi-
cantly different hardware as well with different memory bandwidth
and cache properties. We repeat the same experiment presented
in Figure 12, but this time we use three Amazon EC2 instances:
1) a general purpose instance (m4.4xlarge) with 16 virtual cores
(Intel Xeon E5-2676 v3) and 64GB of RAM; 2) a compute in-
stance (c4.8xlarge) with 36 virtual cores (Intel Xeon E5-2666 v3)
and 60GB of RAM; and 3) a memory instance (r3.8xlarge) with 32
virtual cores (Intel Xeon E5-2670 v2) and 244GB of RAM.

Figure 16 shows the results. The graph plots the crossover points
for access path selection. The main observation is that in all four
different hardware configurations there is always a crossover point

between the access methods; we always need access path selection
for optimal performance regardless of the hardware configuration.
In addition, the crossover point is different across the various hard-
ware instances, meaning that in order to perform effective access
path selection the optimizer of a system should be able to capture
the properties of its run time environment. Figure 16 shows that our
access path selection model can indeed capture these environment
properties. The APS model bars closely follow the experimentally
measured crossover point which means that our model can accu-
rately predict the point where we should switch access path on all
hardware configurations.
Observation 4.4. Our optimizer is not specially tuned for a single
hardware configuration. Rather it works by isolating the parts of
the system that are important to predicting performance and calcu-
lating the preferred access path.

The Influence of Compression. Figure 17 shows how the crossover
point is affected when we employ compression. The setting of this
experiment is the same as before with the only difference that the
16-bit line corresponds to a scan over a compressed column (to 2
bytes). This allows the scan to consume more tuples with the same
SIMD commands, but slightly increases the overhead of writing the
result. Overall, compression does not change the main message;
rather, it moves the crossover slightly in favor of scans.
Observation 4.5. Employing dictionary compression gives a small
advantage for scans, however, both access paths remain useful.

Empirically Validating Access Path Selection. So far we have
studied the parameters that affect access path selection in isolation
and we have shown that they should be taken into account. In our
next experiment, we test the cost based optimizer across various
workloads to demonstrate that it can make dynamic and effective
access path selection decisions.

We set-up this experiment as follows. We create nine distinct
workloads with variable properties. In particular, the nine work-
loads include variable selectivity and different levels of concur-
rency: low, medium, and high. Low selectivity is a point get,

724

0.01

0.1

1

10

Lo Md Hi Lo Md Hi Lo Md Hi

Selectivity

Point Get 0.5% 5%
L

at
en

c y
(S

ec
s)

Concurrency

Index Scan
Share Scan
Fast Columns

Figure 18: The workload characteristics change the optimal
data access path. APS is needed to choose the fastest.

medium is 0.5% of the relation, and high is 5%. For concurrency, a
single query represents low, 64 queries is chosen for medium, and
640 queries is high concurrency. We create the nine workloads by
making all possible combinations of selectivity and query concur-
rency. We test both secondary index scans and sequential scans.
We compare those against the predictions of the optimizer which
evaluated each access method and dynamically decides which one
to use instead of using a fixed access method or existing strategies
that do not consider concurrency.

Figure 18 shows the results. None of the individual access meth-
ods is best across all workloads. Instead, each access method is best
only for a subset of the cases. On the other hand, our APS model
can always match the best behavior by picking the correct access
method dynamically at run time. For example, for the case of a
single query interested in less than 0.5% of the relation, the model
correctly chooses the index. As concurrency increases, the shared
scan approach becomes the better choice for point gets and our so-
lution makes the right choice. FastColumns also correctly chooses
a shared scan for medium selectivity with medium or high concur-
rency, and for all high selectivity workloads. In order to make the
correct access path decisions, the optimizer considers static influ-
ences (like LLC miss cost, memory bandwidth, etc.), as well as
dynamic ones (number of in-flight queries, query selectivity).
Observation 4.6. Accurate and dynamic access path selection can
be performed by taking into account estimated selectivity, concur-
rency, data size, and hardware properties.

TPC-H and Full Query Sanity Check. We compare FastColumns
with two known and mature open-source implementations: Mon-
etDB and PostrgreSQL. MonetDB is highly tuned for main-memory
performance [37] and includes scans with tight for loops, colum-
nar storage, multi-core optimizations and has practically zero func-
tional overhead. Since MonetDB does not use shared scans, we
test with a single query (but use multiple hardware threads) with
the data resident in main-memory. We also include Postgres which
has a mature B+-Tree design.

The experiment runs on data generated for the TPC-H bench-
mark. We generated the lineitem table with a scale factor 10
which results in just under 60 million rows. We then modified
TPC-H query 6 to form two types of workload, high and low se-
lectivity, by choosing a larger or smaller range for the l_shipdate
predicate. In the “low selectivity” run approximately 174 thousand
rows qualify after applying the l_shipdate predicate, or 0.24% of
the relation. In the “high selectivity” run approximately 15% of the
relation qualifies based on l_shipdate.

Figure 19 shows the results. FastColumns chooses to process
the query with a scan when greater than 1.6% of the data qual-
ifies while it uses a secondary index scan when less of the data
qualifies. The first observation from Figure 19 is that FastColumns
provides optimized main-memory access paths since it is compara-

1

10

100

1000

10000

Low Selectivity High Selectivity

L
at

en
c y

(m
s)

Postgres
PG w/ Index

MonetDB
FastColumns

Figure 19: TPC-H Scale Factor 10: Access path selection
brings optimal performance in diverse workloads.

ble to MonetDB in sequential scan performance. This works as a
good sanity check for our analysis. More crucially, the next obser-
vation is that FastColumns can outperform MonetDB when only a
small number of tuples qualify by using access path selection and
a secondary index instead of relying on a scan. This reinforces the
statement that modern analytical systems like MonetDB and other
highly tuned systems should consider secondary indexes and access
path selection for such workloads.

The results for Postgres are mainly used as a validation that fast
scans have significantly changed the picture. Even without sec-
ondary indexing MonetDB outperforms Postgres for the queries
where indexing is expected to help.

5. LESSONS LEARNED
The modeling and the performance analysis presented in this pa-

per offers several insights as to how to design secondary index-
ing in today’s analytical systems. Using our access path selection
model we compute the crossover point over several years of hard-
ware evolution. Table 2 shows how the crossover point in access
path selection evolved from the 1980’s to 2010’s for HDD-based
systems. We model the evolution of hard drives by using decreas-
ing latency and increasing disk bandwidth based on past devices
reported performance [8]. We further assume that the data size (in
number of tuples) has been increasing roughly exponentially with
time. Finally, as a representative tuple size we use 200 bytes (rep-
resentative numbers from TPC-H) and as branching factor for the
modeled index we use 250 [30].

The main observation from Table 2 is that as bandwidth im-
proves, scans become useful in more cases and the crossover point
decreases. The crossover point in Table 2 for 2010, corresponds to
a disk-based column-store where using a disk-based secondary in-
dex has naturally less impact than in row-stores as a scan can read
only the relevant column anyway. Recall the term BW ·CM from
Section 2.4 which corresponds to the number of bytes read during
a random access (traversing the tree). In a main memory system,
this product is on the order of 7200 (using the 2016 column from
Table 2), however, when we use disk bandwidth and latency the cor-
responding product is on the order of 106 (using the numbers from
the 2010 column). The model predicts a crossover point in both
cases, and in fact, main memory systems shift the balance back to-
wards the index due to the more efficient random access in memory
(with respect to available bandwidth), when comparing with disk
resident indexes and columns. We also show two potential config-
urations, F1 and F2, for which the hardware has changed to either
support much higher memory bandwidth, with modest decrease in
latency (for F1), or much lower memory latency with modest in-
crease in bandwidth (for F2). While new hardware puts pressure
on indexes, we still need access path selection.

In a traditional row-store a fixed selectivity is the single run-time
parameter used to choose an access path, after the hardware config-

725

Year 1980 1990 2000 2010 2016 F1 F2
(disk) (disk) (disk) (disk) (mem) (mem) (mem)

CPU (GHz) – – – – 2 4 4
HDD (ms) 10 8 2 2 – – –

HDD (MB/s) 40 100 500 500 – – –
Mem (ns) – – – – 180 100 20

Mem (GB/s) – – – – 40 160 80
tuples 106 107 108 109 109 109 109

Tuple Size 200 200 200 4 4 4 4
Branching 250 250 250 250 21 21 21
Crossover 12.4% 6.2% 5.0% 0.1% 0.6% 0.3% 0.5%

Table 2: Access path selection crossover point evolution.

uration has been statically considered. Every query that is expected
to return less than the threshold uses a secondary index if available.
As the selectivity window that favors the index gets smaller, it be-
comes increasingly important to accurately account for all param-
eters during query execution: hardware, selectivity, system design,
and now query concurrency.

We now summarize the lessons learned from this study:
Lesson 1. There are cases for analytical queries when a secondary
index scan is preferable to a sequential scan, even when data is
main-memory resident which removes the disk I/O bottleneck.

Lesson 2. A fine-grained access path decision needs to take into
account as a run-time parameter query concurrency, in addition to
selectivity, hardware specs, system design, and data layout.

Lesson 3. Data set size can be pivotal. For small data sets scanning
the data outperforms secondary indexes in all cases. Index remains
useful for larger data sets as full attribute scans become costly.

Lesson 4. While the crossover between access methods is lower
than in the past, it still corresponds to a growing result cardinality.
For example, a query that selects 0.6% of 500 million integers, has
3 million qualifying tuples.

Lesson 5. While sharing data access minimizes repetitive reads, it
includes the overhead to distribute the results to their consumers.
Result sharing is efficient up to a batch size, because of the book-
keeping and the result distributing overhead.

Lesson 6. Access path selection is important for systems with
columnar-storage, however, it becomes even more important for
wider tuples in hybrid stores.

Lesson 7. As the cache and memory latency decreases, or the mem-
ory bandwidth decreases, secondary indexes become more benefi-
cial. On the contrary, slower caches or memory, and faster memory
buses benefit scan. In this way, future hardware generations that af-
fect the balance between these hardware properties will also affect
access path selection accordingly. These properties are captured
by the APS model.

6. RELATED WORK
Access Path Selection. Access path selection has been a primary
design point since the very beginning of database systems [20, 70].
The primary decision is whether to use a sequential scan or a sec-
ondary index scan, and is based on statistics and a given threshold
of selectivity which is a hard threshold either hard-coded in the
system or decided during the tuning phase [29, 32]. More recently
cost-model analysis has included hardware characteristics [16, 56].

In this paper, we follow the basic principles of access path selec-
tion for sequential scans and secondary index scans but for mod-
ern main-memory optimized analytical systems that employ access
methods fully optimized for modern hardware and sharing. We
build on past modeling approaches and we augment them by tak-
ing into account query concurrency. We show that, in addition to
considering selectivity, hardware characteristics, and data storage
(column-store, hybrid storage, or full tuples) like traditional opti-
mizers do, we need to also take into account query concurrency.

Modern Optimizers and Designers. Modern systems use cost-
based optimization for various decisions. For example, cost-based
optimization based on statistics is used for select and join ordering
[79]. Furthermore, offline physical design in modern systems uses
cost-based analysis to perform decisions, e.g., about storage layouts
[67] and column-store projections [66].

Our work in this paper is complementary to other cost-based de-
cisions performed by modern optimizers. For example, join order-
ing and select ordering in terms of expected selectivity can work in-
dependent of the access path selection used. In addition, our work
is also complementary to works on physical design as we have de-
veloped a methodology for runtime access path selection regard-
less of the underlying column (group) layout and global physical
design. However, similar to how traditional physical design tools
use optimizers (i.e., their cost model) during offline analysis [22],
the APS model we present can be used by physical design tools to
decide whether to create secondary indexes or not.
Sharing and Multi-Query Optimization. Multi-query optimiza-
tion approaches have considered opportunities for work sharing
across multiple queries [36, 68, 71, 72]. This mainly targets work
that shares execution. More recently, sharing data movement has
been considered [27, 28, 34, 41, 62, 63, 88], even in memory [63].
Our work is relevant to work on sharing execution and data move-
ment in that we consider access paths that rely on sharing. Past
work has mainly focused on developing new techniques for how
sharing should be done. Here we present how to make an optimiza-
tion decision between different access paths that all use sharing.
Delaying Optimization Decisions. While in past systems data
flows primarily one tuple-at-a-time, modern analytical systems have
experimented both with vector-at-a-time processing and column-at-
a-time processing. A side-effect of column-at-a-time processing is
that physical operator choice can be done at the very last minute
once we have have full information about data input cardinality
and other properties. For example, MonetDB uses column-at-a-
time processing and decides the join algorithm and the inner/outer
sides with full information on the input sizes [37]. Such approaches
require fewer decision points during optimization. Similarly ideas
like Smooth Scan [17] (that have only been studied in row-stores)
delay access path decisions or provide hybrid access paths.

However, we still need access path selection the way it is de-
scribed here. For example, when it comes to select operators (e.g.,
sequential scan versus secondary index scan) which touch base
data, we have to make a choice before we start regardless of the
data flow pattern. Whenever there are multiple access paths, the
choice must be made before the data can be read.

7. CONCLUSIONS
In this paper, we demonstrate that access path selection is still

required, since both secondary index and sequential scan accesses
can prove beneficial for analytics. As more in-memory access paths
are developed, access path modeling and selection remains a key
challenge in modern analytical data systems.

We show that contrary to traditional approaches, access path se-
lection should not use a fixed pivot point based only on machine
hardware and selectivity. Instead, in order to decide the access path
for a batch of queries, a system should take into account the fol-
lowing two dynamic parameters: (1) the selectivity of each query
from the batch and (2) the number of concurrent queries. Finally,
we demonstrate that the APS is a light-weight process that does not
negatively affect the execution time even of low-latency queries.
Acknowledgments. We thank the reviewers for their valuable feed-
back. This work is supported by the National Science Foundation
under grant IIS-1452595.

726

8. REFERENCES
[1] D. J. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The Design

and Implementation of Modern Column-Oriented Database Systems. Found.
Trends Databases, 5(3):197–280, 2013.

[2] D. J. Abadi, S. Madden, and M. Ferreira. Integrating Compression and
Execution in Column-oriented Database Systems. In SIGMOD, 2006.

[3] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization
Strategies in a Column-Oriented DBMS. In ICDE, 2007.

[4] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A Hands-free Adaptive Store.
In SIGMOD, 2014.

[5] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion of Control
Dependence to Data Dependence. In POPL, 1983.

[6] G. Antoshenkov. Dynamic Query Optimization in Rdb/VMS. In ICDE, 1993.
[7] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez. The

DataPath System: A Data-centric Analytic Processing Engine for Large Data
Warehouses. In SIGMOD, 2010.

[8] M. Athanassoulis. Solid-State Storage and Work Sharing for Efficient Scaleup
Data Analytics. PhD thesis, Ecole Polytechnique Federale de Lausanne, 2014.

[9] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki,
and M. Callaghan. Designing Access Methods: The RUM Conjecture. In
EDBT, 2016.

[10] M. Athanassoulis, Z. Yan, and S. Idreos. UpBit: Scalable In-Memory Updatable
Bitmap Indexing. In SIGMOD, 2016.

[11] D. I. August, W.-m. W. Hwu, and S. A. Mahlke. A Framework for Balancing
Control Flow and Predication. In MICRO, 1997.

[12] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos, M.-S.
Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M. Lohman, K. Morfonios, R. Müller,
K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo.
Business Analytics in (a) Blink. IEEE DEBULL, 35(1):9–14, 2012.

[13] R. Barber, G. Lohman, V. Raman, R. Sidle, S. Lightstone, and B. Schiefer.
In-Memory BLU Acceleration in IBM’s DB2 and dashDB: Optimized for
Modern Workloads and Hardware Architectures. In ICDE, 2015.

[14] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based Order-preserving
String Compression for Main Memory Column Stores. In SIGMOD, 2009.

[15] P. Boncz, M. Zukowski, and N. J. Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In CIDR, 2005.

[16] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the Memory Wall in
MonetDB. CACM, 51(12):77–85, 2008.

[17] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, and C. Fraser.
Smooth Scan: Statistics-Oblivious Access Paths. In ICDE, 2015.

[18] G. Candea, N. Polyzotis, and R. Vingralek. Predictable Performance and High
Query Concurrency for Data Analytics. VLDBJ, 20(2):227–248, 2011.

[19] C. Chasseur and J. M. Patel. Design and Evaluation of Storage Organizations
for Read-Optimized Main Memory Databases. PVLDB, 6(13):1474–1485,
2013.

[20] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
PODS, 1998.

[21] S. Chaudhuri. Query Optimizers: Time to Rethink the Contract? In SIGMOD,
2009.

[22] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven Index Selection
Tool for Microsoft SQL Server. In VLDB, 1997.

[23] S. Christodoulakis. Implications of Certain Assumptions in Database
Performance Evaluation. TODS, 9(2):163–186, 1984.

[24] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and D. A.
Wood. Implementation Techniques for Main Memory Database Systems. In
SIGMOD, 1984.

[25] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The
SAP HANA Database – An Architecture Overview. IEEE DEBULL,
35(1):28–33, 2012.

[26] P. Francisco. The Netezza Data Appliance Architecture: A Platform for High
Performance Data Warehousing and Analytics. IBM Redbooks, 2011.

[27] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing One Thousand
Queries with One Stone. PVLDB, 5(6):526–537, 2012.

[28] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann. Shared
Workload Optimization. PVLDB, 7(6):429–440, 2014.

[29] G. Graefe. The Five-Minute Rule Twenty Years Later. In DAMON, 2007.
[30] G. Graefe. Modern B-Tree Techniques. Found. Trends Databases,

3(4):203–402, 2011.
[31] G. Graefe and L. D. Shapiro. Data Compression and Database Performance. In

SAC, 1991.
[32] J. Gray and F. Putzolu. The 5 Minute Rule for Trading Memory for Disc

Accesses and the 5 Byte Rule for Trading Memory for CPU Time. Tandem
Computers - Technical Report, 1986.

[33] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
HYRISE: A Main Memory Hybrid Storage Engine. PVLDB, 4(2):105–116,
2010.

[34] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A Simultaneously
Pipelined Relational Query Engine. In SIGMOD, 2005.

[35] S. Héman, M. Zukowski, and N. J. Nes. Positional Update Handling in Column
Stores. In SIGMOD, 2010.

[36] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. Demers. Rule-based
Multi-Query Optimization. In EDBT, 2009.

[37] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
MonetDB: Two Decades of Research in Column-oriented Database
Architectures. IEEE DEBULL, 35(1):40–45, 2012.

[38] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing Tuple
Reconstruction in Column-Stores. In SIGMOD, 2009.

[39] Intel. Online reference.
https://software.intel.com/en-us/articles/intelr-memory-latency-checker.

[40] T. Jäkel, H. Voigt, T. Kissinger, and W. Lehner. Pack Indexing for
Time-Constrained In-Memory Query Processing. In BTW, 2013.

[41] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A. Ailamaki,
N. G. Mancheril, and B. Falsafi. To Share or Not to Share? In VLDB, 2007.

[42] R. Johnson, V. Raman, R. Sidle, and G. Swart. Row-wise Parallel Predicate
Evaluation. PVLDB, 1(1):622–634, 2008.

[43] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In ICDE, 2011.

[44] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and P. Valduriez. A Query
Processing Strategy for the Decomposed Storage Model. In ICDE, 1987.

[45] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.
Lee, S. A. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive Tree Search
on Modern CPUs and GPUs. In SIGMOD, 2010.

[46] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. KISS-Tree: Smart
Latch-Free In-Memory Indexing on Modern Architectures. In DAMON, 2012.

[47] J. Krüger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner,
P. Dubey, and A. Zeier. Fast Updates on Read-Optimized Databases Using
Multi-Core CPUs. PVLDB, 5(1):61–72, 2011.

[48] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase,
A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton, V. Marwah,
N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja, M. Roth, E. Soylemez,
and M. Zait. Oracle Database In-Memory: A Dual Format In-Memory
Database. In ICDE, 2015.

[49] A. Lamb, M. Fuller, and R. Varadarajan. The Vertica Analytic Database:
C-Store 7 Years Later. PVLDB, 5(12):1790–1801, 2012.

[50] P.-A. Larson, E. N. Hanson, and M. Zwilling. Evolving the Architecture of SQL
Server for Modern Hardware Trends. In ICDE, 2015.

[51] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann. Morsel-driven Parallelism:
A NUMA-aware Query Evaluation Framework for the Many-core Age. In
SIGMOD, 2014.

[52] V. Leis, A. Kemper, and T. Neumann. The Adaptive Radix Tree: ARTful
Indexing for Main-Memory Databases. In ICDE, 2013.

[53] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-Tree: A B-tree for
New Hardware Platforms. In ICDE, 2013.

[54] Y. Li, C. Chasseur, and J. M. Patel. A Padded Encoding Scheme to Accelerate
Scans by Leveraging Skew. In SIGMOD, 2015.

[55] Y. Li and J. M. Patel. BitWeaving: Fast Scans for Main Memory Data
Processing. In SIGMOD, 2013.

[56] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost Models
for Hierarchical Memory Systems. In VLDB, 2002.

[57] Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for Fast Multicore
Key-value Storage. In EuroSys, 2012.

[58] G. Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure
for Data Warehousing. In VLDB, 1998.

[59] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[60] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD
Vectorization for In-Memory Databases. In SIGMOD, 2015.

[61] O. Polychroniou and K. A. Ross. A Comprehensive Study of Main-memory
Partitioning and its Application to Large-scale Comparison- and Radix-sort. In
SIGMOD, 2014.

[62] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. Sharing Data and Work
Across Concurrent Analytical Queries. PVLDB, 6(9):637–648, 2013.

[63] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman. Main-memory Scan
Sharing for Multi-core CPUs. PVLDB, 1(1):610–621, 2008.

[64] V. Raman, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer,
D. Sharpe, R. Sidle, A. Storm, L. Zhang, G. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Lightstone, and S. Liu. DB2 with
BLU Acceleration: So Much More Than Just a Column Store. PVLDB,
6(11):1080–1091, 2013.

[65] J. Rao and K. A. Ross. Making B+-trees Cache Conscious in Main Memory. In
SIGMOD, 2000.

[66] A. Rasin and S. Zdonik. An Automatic Physical Design Tool for Clustered
Column-stores. In EDBT, 2013.

[67] P. Rösch, L. Dannecker, F. Färber, and G. Hackenbroich. A Storage Advisor for
Hybrid-Store Databases. PVLDB, 5(12):1748–1758, 2012.

[68] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Extensible

727

Algorithms for Multi Query Optimization. SIGMOD Rec., 29(2):249–260,
2000.

[69] P. Russom. High-Performance Data Warehousing. TDWI Best Practices Report,
2012.

[70] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database Management System. In
SIGMOD, 1979.

[71] T. K. Sellis. Multiple-Query Optimization. TODS, 13(1):23–52, 1988.
[72] T. K. Sellis and S. Ghosh. On the Multiple-query Optimization Problem. TKDE,

2(2):262–266, 1990.
[73] R. Sen, J. Chen, and N. Jimsheleishvilli. Query Optimization Time: The New

Bottleneck in Real-time Analytics. In IMDM, 2015.
[74] A. Shahvarani and H.-A. Jacobsen. A Hybrid B+-tree as Solution for

In-Memory Indexing on CPU-GPU Heterogeneous Computing Platforms. In
SIGMOD, 2016.

[75] N. Shamgunov. The MemSQL In-Memory Database System. In IMDM, 2014.
[76] L. Sidirourgos and M. L. Kersten. Column Imprints: A Secondary Index

Structure. In SIGMOD, 2013.
[77] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,

E. Lau, A. Lin, S. R. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-Store: A Column-oriented DBMS. In VLDB, 2005.

[78] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained Partitioning for
Aggressive Data Skipping. In SIGMOD, 2014.

[79] N. Tran, A. Lamb, L. Shrinivas, S. Bodagala, and J. Dave. The Vertica Query
Optimizer: The Case for Specialized Query Optimizers. In ICDE, 2014.

[80] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann.
Predictable Performance for Unpredictable Workloads. PVLDB, 2(1):706–717,
2009.

[81] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner.
SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector
Processing Units. PVLDB, 2(1):385–394, 2009.

[82] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.
Shark: SQL and Rich Analytics at Scale. In SIGMOD, 2013.

[83] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the Storage Overhead of Main-Memory OLTP Databases with Hybrid
Indexes. In SIGMOD, 2016.

[84] J. Zhou and K. A. Ross. Implementing Database Operations Using SIMD
Instructions. In SIGMOD, 2002.

[85] M. Zukowski and P. Boncz. Vectorwise: Beyond Column Stores. IEEE
DEBULL, 35(1):21–27, 2012.

[86] M. Zukowski, P. A. Boncz, and S. Héman. MonetDB/X100 - A DBMS In The
CPU Cache. IEEE DEBULL, 28(2):17–22, 2005.

[87] M. Zukowski, S. Héman, and P. A. Boncz. Architecture-conscious Hashing. In
DAMON, 2006.

[88] M. Zukowski, S. Héman, N. J. Nes, and P. Boncz. Cooperative Scans: Dynamic
Bandwidth Sharing in a DBMS. In VLDB, 2007.

[89] M. Zukowski, N. Nes, and P. A. Boncz. DSM vs. NSM: CPU Performance
Tradeoffs in Block-oriented Query Processing. In DAMON, 2008.

APPENDIX
A. BOUNDS FOR SORTING COST

The last term of Equation 11 makes the equation unsolvable for
total selectivity Stot . Here, we first bound the maximum and the
minimum values of the term ∑

q
i=1 N · si · log2 (si ·N) and then we

use the worst case for our analysis. We use that Stot = ∑
q
i=1 si. Let

us first expand the term:
q

∑
i=1

si ·N · log2 (si ·N) =

= Stot ·N ·
q

∑
i=1

si ·N
Stot ·N

· log2

(
si ·N

Stot ·N
·Stot ·N

)
= Stot ·N ·

q

∑
i=1

si ·N
Stot ·N

· log2

(
si ·N

Stot ·N

)
+

Stot ·N ·
q

∑
i=1

si ·N
Stot ·N

· log2 (Stot ·N)

= Stot ·N ·
q

∑
i=1

si

Stot
· log2

(
si

Stot

)
+

q

∑
i=1

si ·N · log2 (Stot ·N)

= Stot ·N ·
q

∑
i=1

si

Stot
· log2

(
si

Stot

)
+Stot ·N · log2 (Stot ·N)

= Stot ·N ·

(
q

∑
i=1

si

Stot
· log2

(
si

Stot

)
+ log2 (Stot ·N)

)
(17)

For given Stot , N, and q the quantity of Equation 17 may have dif-
ferent values for different distribution of the si values. We identify
the term ∑

q
i=1

si
Stot
· log2

(
si

Stot

)
as an entropy term, E

(
s1,s2, ...,sq

)
,

because it has the properties of an entropy function: (i) ∑
q
i=1

si
Stot

=

1 and (ii) si
Stot
≤ 1, as a result its maximum value is 0 and its min-

imum value is when all si
Stot

are equal. This happens when si =
Stot
q ,∀i, which in turn means that:

q

∑
i=1

Stot/q
Stot

· log2

(
Stot/q

Stot

)
=

q

∑
i=1

1
q
· log2

(
1
q

)
= log2

(
1
q

)
(18)

Putting together Equation 17 and 18 we can accurately calculate
the maximum and the minimum sorting cost. The entropy term has
maximum value 0 when all but one si are equal to 0 and only one
of them is equal to Stot , and it has minimum value log2

(
1
q

)
when

all si are equal.
Finally, we have:

MinSC = Stot ·N ·
(

log2

(
1
q

)
+ log2 (Stot ·N)

)
(19)

MaxSC = Stot ·N · log2 (Stot ·N) (20)

Note, that the calculation of the minimum and maximum value
of this quantity can be equivalently calculated using the log sum
inequality and the monotonicity of logarithm. The above, however,
also explains under which conditions the bounds are sharp.

B. REWRITING THE APS RATIO
Equation 15 can be rewritten based on the initial parameters pre-

sented in Table 1.

APS =
q ·T T +Stot (T L+T DI +T DR)

T DS +Stot ·T DR
+

Stot · log2 (Stot ·N) ·T DR

T DS +Stot ·T DR
⇒

APS =
q · 1+dlogb(N)e

N ·
(

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

)
max

(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

+

Stot

(
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

)
max

(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

+

Stot · log2 (Stot ·N) ·BWS ·CA

max
(
ts,2 · fp · p ·q ·BWS

)
+Stot · rw · BWS

BWR

(21)

Equation 21 is used in the implementation of the model for pro-
ducing the model-based analysis.

B.1 Hardware & Dataset Factors
Factor BWS ·CM . The product between scanning bandwidth BWS
and cache miss latency CM gives the number of bytes scanned at
memory bandwidth speed in the time of one cache miss. This fac-
tor is crucial when comparing the index vs. the scan performance.

728

0 20 40 60 80 100 120
0

1

2

3
L

a
te

n
c
y
 (

s
e

c
) N=500M, 0% sel, S:0.1, I:1scan (model)

scan (exp)

index (mode)

index (exp)

0 20 40 60 80 100 120
0

1

2

3

L
a

te
n

c
y
 (

s
e

c
) N=500M, 0.1% sel, S:0.1, I:0.029

0 20 40 60 80 100 120

Queries

0

1

2

3

L
a

te
n

c
y
 (

s
e

c
)

N=500M, 0.2% sel, S:0.096, I:0.03

0 20 40 60 80 100 120

Queries

0

5

10

15

L
a

te
n

c
y
 (

s
e

c
) N=500M, 1% sel, S:0.065, I:0.032

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Selectivity (%)

0

2

4

6

L
a

te
n

c
y
 (

s
e

c
) N=300M, 32 queries, S:0.065, I:0.032

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Selectivity (%)

0

5

10

15

20

L
a

te
n

c
y
 (

s
e

c
) N=300M, 128 queries, S:0.065, I:0.032

10
5

10
6

10
7

10
8

10
9

Data Size (elements)

0

1

2

3

4

L
a

te
n

c
y
 (

s
e

c
) 64 queries, sel: 0.1%, S:0.065, I:0.032

10
5

10
6

10
7

10
8

10
9

Data Size (elements)

0

10

20

30

L
a

te
n

c
y
 (

s
e

c
) 64 queries, sel: 1%, S:0.065, I:0.032

Figure 20: Through fitting, the model can closely match the performance of both shared sequential scans and index scans.

As the value of this product increases the scan becomes more ben-
eficial because for each cache miss (i.e., random access of the tree
nodes) corresponds to scanning more data. For lower values of this
product, the index becomes more beneficial.
Factor BWS ·CA. The product between scanning bandwidth BWS
and cache miss latency CM gives the number of bytes scanned at
memory bandwidth speed in the time of one cache access. This
factor has smaller impact than BWS ·CM because it is typically one
or two orders of magnitude smaller. The impact, however, albeit
smaller follows the same trends.
Factor max

(
ts,2 · fp · p ·q ·BWS

)
. The comparison between the tu-

ple size ts and the product 2 · fp · p ·BWS informs us as to whether a
scan is memory-bound or CPU-bound. The product 2 · fp · p ·q ·BWS
takes into account the effective processor speed (i.e., processor
speed and the effect of pipelining) and the memory bandwidth,
and gives the number of bytes that can be sequentially scanned at
the time of calculating the two instructions needed to evaluate the
predicate of all q queries (i.e., the two comparisons needed with the
beginning and the end of the range of each query). If this value is
less than the tuple size ts, then the scan is memory-bound, other-
wise it is CPU-bound.

C. MODEL VERIFICATION
We verified the accuracy of the model using experimental data

from four machines. For each set of experiments, we used a multi-
dimensional unconstrained nonlinear minimization technique (Nelder-
Mead) to fit the model. We used the advertised hardware charac-
teristics augmented by constant factors which we found to be the
same across different experiments thereby verifying the model.

We augmented Equations 5 and 13. When modeling the scans,
the fitting revealed that a constant factor is needed to adjust the
cost of result writing. The equation is augmented with the new
parameter α (Equation 22).

SharedScan = max(T DS,q ·PE)+α ·Stot ·T DR (22)

The fitting process indicated that α = 8, which explains the over-

lap when writing the result, due to using SIMD registers. Next, we
augmented the equation for the index cost with a constant factor
to account for our pessimistic expectation of the worst-case sorting
cost. The new equation augmented with the new parameter fs is
shown in Equation 23.

ConcIndex =q ·T T +Stot · (T L+T DI)

+Stot ·T DR + fc ·SF ·CA (23)

The fitting process revealed that fc is not a constant factor; rather,
it is a function of N, fitted by the following expression (which is
sublinear but more expensive than logarithmic with respect to N):

fc = fs ·
Nβ−1

β
(24)

The values that describe accurately the index behavior are β =
0.38 and fc = 6 ·10−6, we find them to be stable throughout differ-
ent experiments with the same system.

C.1 Model Fitting
Here we describe the verification process for our primary experi-

mental server, the full description of which can be found in Section
4. Figure 20 shows the fit of the model with respect to our primary
experimental server when we vary a number of parameters includ-
ing relation size (N), average query selectivity (si), and number of
concurrent queries (q). The first four graphs correspond to a rela-
tion with size N = 500M tuples. The y-axis of each figure shows
workload latency, and the x- axis shows the number of concurrent
queries q. Each of the four figures has four lines. Two lines for the
scan latency (model prediction, and experimental measurement),
and two lines for index scan latency. Each figure corresponds to a
different selectivity for each of the q queries in the batch; the first
figure shows performance for queries with 0% selectivity, and the
remaining figures 0.1%, 0.2%, and 1%. Next to the selectivity on
top of every figure, we show the sum of the normalized least-square
error for each access path.

The two graphs on the third row show the model accuracy as
we vary the selectivity of each of the q queries (x-axis). The y-axis

729

still shows the workload latency. The leftmost graph corresponds to
q = 32 and the rightmost to q = 128. Finally, the two graphs on the
fourth row of Figure 20 show the accuracy of the model as we vary
the data size in number of elements (x-axis). Similarly to the first
four graphs, on the top of every figure we indicate the exact setup
as well as the sum of the normalized least-square error for each
access path. Overall, we observe that the fitted model provides a
close match to the actual query latency.

We focus on the above numbers of selectivity, concurrency, and
data size because these are the “interesting” ranges in which the
APS switches from smaller than one to larger than one. Further,
we experiment with concurrency of more than 8 queries to match
our experimental setup: we always fully utilize an 8-thread socket
of our experimental machine. Hence, for workloads of less than
8 queries the performance depends on the efficiency of the intra-
operator parallelism, which is an open research problem. Finally,
we fitted the model with different experimental setups leading to
slightly different values for the fitting parameters (α, β, and fc)
which indicates that a training process of the model is generally
required for every new setup. The training process of each system,
though, requires only a small number of experiments before the
model can accurately capture machine performance.

C.2 APS Equation With Fitting Parameters
The APS Equation 21 is now changed as follows:

APS =
q · 1+dlogb(N)e

N ·
(

BWS ·CM + b·BWS·CA
2 +

b·BWS· fp·p
2

)
max

(
ts,2 · fp · p ·q ·BWS

)
+α ·Stot · rw · BWS

BWR

+

Stot

(
BWS·CM

b +(aw+ow) · BWS
BWI

+ rw · BWS
BWR

)
max

(
ts,2 · fp · p ·q ·BWS

)
+α ·Stot · rw · BWS

BWR

+

fs · Nβ−1
β
·Stot · log2 (Stot ·N) ·BWS ·CA

max
(
ts,2 · fp · p ·q ·BWS

)
+α ·Stot · rw · BWS

BWR

(25)

For every new system we now need a fitting process to make sure
the model accurately captures the execution environment. Once
this process is completed, Equation 25 can be used to perform ac-
cess path selection.

D. REDUCING SORTING COST
Careful use of SIMD instructions during the sorting step [61]

can be used to further reduce the sorting cost, and hence the overall
cost, of a secondary index scan.

The model can be adjusted to capture such optimizations by us-
ing the new cost of the new sorting algorithm to update Equation
14 that considers the sorting cost to be:

SF =
Stot ·N

W
· log

(
Stot ·N

W

)
+Stot ·N · log(W) , (26)

where W is the SIMD-registers width

This change helps the case of the secondary index scan, effec-
tively moving the crossover point to higher selectivity. Figure 21
is the equivalent of Figure 4 for W = 4. The observations from the
analysis remain the same, and in fact the need for access path se-
lection is further strengthened, because this optimization increases
index performance, hence making the need for access path selec-
tion more pronounced.

E. ALTERNATIVE ACCESS PATHS

Lightweight Data Skipping. Data skipping is a form of scan en-
hancement. Zonemaps [26, 64, 78, 82] and Column Imprints [76]
are prime examples. By keeping a small amount of metadata, like
min/max information, on each of a number of zones in a column,
a scan can quickly decide whether it needs to examine each zone
based only on the metadata. Such approaches work quite well when
data is clustered or fully sorted.

Our work is for full secondary indexing and can be extended
to model data skipping as an enhancement of scans (e.g., by de-
creasing data input size in the model if statistics imply that several
zones can be skipped). However, data skipping has its greatest im-
pact when the column has a natural order (such as order dates for
example). This means that in a table like TPC-H lineitem, only
three or four of the sixteen attributes could stand to benefit from
data skipping, selecting on any of the others would require either a
sequential scan or secondary index scan.

Alternative Index Structures. In this paper, we chose to use a
main-memory optimized B+-Tree to model the access path of a
secondary index. This decision is based on the fact that B+-Trees
have been used for indexing for several decades in database sys-
tems and there exist numerous optimizations [30]. In this way, we
can contrast our findings in access path selection with those of tra-
ditional systems in as similar a comparison as possible.

In addition to main-memory optimized B+-Trees, several index
structures are specialized for modern hardware and can be exam-
ined for access path selection [10, 40, 45, 46, 52, 53, 57, 74, 83].
Such an analysis is orthogonal to the main point in this paper: ac-
cess path selection is necessary and there is a new way to dynam-
ically define the break-even point between a secondary index scan
and a sequential scan. Some of these approaches [40, 46, 83] also
consider the dimension of memory footprint in the trade-off space
between read performance, update performance, and memory uti-
lization [9]. The effect of alternative index techniques would be a
shift in the balance, favoring indexing in more cases but there will
still be a need for access path selection. This is a question that
should be revisited every few years as systems change to include
fundamentally new designs.

0.1

0.33
0.5

0.66

1.5

1

Figure 21: SIMD-aware sorting favors indexing.

730

	Introduction
	Access Path Selection
	Model Preliminaries
	Modeling In-Memory Shared Scans
	Modeling In-Memory Secondary B+-Trees
	Evaluating Access Path Selection
	Analysis of the APS Model

	Integrating Cost-Based APS
	Experimental Analysis
	Lessons Learned
	Related Work
	Conclusions
	References
	Bounds for Sorting Cost
	Rewriting the APS ratio
	Hardware & Dataset Factors

	Model Verification
	Model Fitting
	APS Equation With Fitting Parameters

	Reducing Sorting Cost
	Alternative Access Paths

