
Constructing Bisimulation Summaries
on a Multi-Core Graph Processing Framework

Shahan Khatchadourian
University of Toronto
shahan@cs.toronto.edu

Mariano P. Consens
University of Toronto

consens@cs.toronto.edu

ABSTRACT
Bisimulation summaries of graph data have multiple applica-
tions, including facilitating graph exploration and enabling
query optimization techniques, but efficient, scalable, sum-
mary construction is challenging. The literature describes
parallel construction algorithms using message-passing, and
these have been recently adapted to MapReduce environ-
ments. The fixpoint nature of bisimulation is well suited to
iterative graph processing, but the existing MapReduce so-
lutions do not drastically decrease per-iteration times as the
computation progresses.

In this paper, we focus on leveraging parallel multi-core
graph frameworks with the goal of constructing summaries
in roughly the same amount of time that it takes to input
the data into the framework (for a range of real world data
graphs) and output the summary. To achieve our goal we
introduce a singleton optimization that significantly reduces
per-iteration times after only a few iterations. We present
experimental results validating that our scalable GraphChi
implementation achieves our goal with bisimulation sum-
maries of million to billion edge graphs.

General Terms
Bisimulation, graph summaries, scalable, parallel

1. INTRODUCTION
Organizations generate substantial volumes and varieties

of Big Data, and a recent business survey [1] highlights the
analysis of Big Data as a key strategy for competitiveness.
Often, organizations model semi-structured descriptions and
relationships of real-world entities, such as from online social
networks [14, 18] and links across the broader World Wide

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
GRADES’15, May 31 - June 04 2015, Melbourne, VIC, Australia
Copyright is held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3611-6/15/05...$15.00
DOI: http://dx.doi.org/10.1145/2764947.2764955.

Web [4], as graphs with directed, labeled, multi-relational
edges between nodes. For example, the quintessential se-
mantic web dataset of the Linked Open Data (LOD) initia-
tive, DBpedia, contains tens of millions of nodes and hun-
dreds of millions of edges to describe entities such as people
and locations.

A user who wishes to explore and query big graphs faces
a challenge of querying a large number of nodes and their
relationships. To improve query performance, we can build
and use a structural summary [8], a graph-based index that
groups equivalent structures using bisimilarity [10], a notion
of equivalence with broad applicability, such as for model
checking and information retrieval [21]. Bisimulation sum-
maries provide valuable insight into describing the semi-
structure of graph data [12] and existing literature shows
that summaries can improve query performance [5, 20].

Related Work. For scalable construction of summaries,
there exists an iterative, hash-based algorithm [3] that ex-
tends a simple algorithm [11] to iteratively update each
node’s block identifier using the block identifier of neigh-
bours in parallel. Existing scalable implementations [3, 17,
22] rely on distributed frameworks like MapReduce [6] and
message-passing to compute summaries of big graphs. There
is literature that points to multi-core systems with large
amounts of main-memory [2, 13] as a viable parallel pro-
cessing architecture; however, there are no summary con-
struction implementations for multi-core systems in the lit-
erature. In this work, we use GraphChi [15], a multi-core
graph processing framework, to construct dual bisimulation
summaries [7, 19] of big graphs with the goal of computing a
summary in an amount of time similar to the time required
to load the input dataset and then write the summary.

Contributions. First, we describe a summary construction
implementation on a parallel graph processing framework
(GraphChi). Second, we present a novel and very effective
singleton optimization that allows us to achieve the goal of
drastically reducing per-iteration times after only a few iter-
ations. Third, we give an experimental validation that our
GraphChi implementation achieves our goal of constructing
summaries in an amount of time similar to the time required
to load the dataset and then write the summary. We use in
our experiments graphs ranging from millions to billions of
edges. Fourth, we compare our GraphChi implementations
to Hadoop and give evidence to support our approach on
large multi-core systems.

Preliminaries A dataset graph G = (V,E, l, L,m,M) sat-
isfies the following properties: (1) V is a finite set of nodes

with distinct labels; (2) l is a bijective label function that
maps each v ∈ V to a distinct label l(v) ∈ L, the set of
node labels; (3) E ⊆ V × V is a finite set of labeled, di-
rected edges, where an edge (v, v′) ∈ E between two nodes
v, v′ ∈ V represents an edge from a node v to a node v′; and
(4) m is a label function that maps each edge e ∈ E to a
label m(e) ∈M , the set of edge labels.

We construct structural summaries that group nodes of a
dataset graph using bisimilarity as the notion of equivalence.

Given a dataset graph G = (V,E, l, L,m,M), we define
two nodes v, v′ ∈ V as forward bisimilar (which we write as
v ≈fw v′) iff either of the following conditions hold: (1) if v
and v′ have no outgoing edges; or (2) if v has an edge (v, w) ∈
E with label p ∈ M , there exists an edge (v′, w′) ∈ E with
label p, and w ≈fw w′; and vice versa. A closely related
counterpart to forward bisimilarity, backward bisimilarity,
determines node equivalence along incoming edges. We say
that two nodes v, v′ are dual bisimilar (in short, bisimilar),
which we write as v ≈ v′, if v and v′ are both forward and
backward bisimilar.

We formalize the notion of a structural summary. A sum-
mary graph S = (V,E, l, L,m,M, block) of a dataset graph
G consists of nodes, which we call blocks, and edges between
blocks, which we call block edges, and also having the fewest
number of blocks (also called a bisimulation contraction).
Each block contains equivalent dataset graph nodes in its
extent and the function block(v) returns the block of VS

that contains a given dataset graph node v ∈ VG. A sum-
mary’s blocks form a partition of a dataset graph’s nodes, a
disjoint set of subsets. A singleton is a block whose ex-
tent contains exactly one node. As well, for every edge
(v, v′) ∈ EG with label p there is a block edge such that
(block(v), block(v′)) ∈ ES with label p. Bisimulation sum-
maries have a minimal number of blocks such that each block
contains all nodes in the dataset graph that are bisimilar.
We call a FW summary one that is constructed using for-
ward bisimulation as the notion of equivalence and, simi-
larly, we call a FWBW summary one constructed using dual
bisimulation.

In Section 2, we describe GraphChi and its processing
model, and give two summary construction variations. In
Section 3, we give an evaluation of our GraphChi algorithms
using big data graphs. We conclude in Section 4.

2. ALGORITHM
In this section, we describe GraphChi’s processing model,

a hash-based summary construction algorithm, and our B
and S variations. In the next section, we give evaluations of
our variations and comparisons to existing literature.

GraphChi is a multi-core processing framework that sup-
ports the Bulk Synchronous Parallel (BSP) [23] processing
model, an iterative, node-centric processing model by which
nodes in the current iteration execute an Update function in
parallel that depends on values from the previous iteration.
Targetting scalability on ‘just a laptop’, GraphChi partitions
graph that do not fit in main memory in a way that makes
it efficient to load and process subgraphs that fit in main
memory. GraphChi uses parallel sliding windows (PSW), a
subgraph partitioning and loading mechanism that involves
both main-memory and secondary storage. GraphChi par-
titions a graph’s nodes into equal intervals, storing each in-
terval’s incoming edges in a shard file in sorted order by the
source node.

In each iteration, the PSW mechanism processes each in-
terval in turn. For each interval, PSW first loads incoming
edges from disk into main-memory then, since other shards
sort edges by their source, the PSW mechanism streams the
current interval’s outgoing edges from disk. GraphChi pro-
cesses an interval by executing the Update method of each
node in the interval using parallelism.

Summary construction on GraphChi. Our summary
construction algorithm uses the BSP processing model with
the parallel, hash-based approach of [3]. The hash-based
approach iteratively updates each node’s block identifier by
computing a hash value from the node’s signature, the set
of block identifiers from the previous iteration to which the
node’s neighbours belong to. The main idea is that two
bisimilar nodes will have the same signature, the same hash
value, and thus have the same block identifier. As well, two
nodes that are not bisimilar will not have hash values that
collide and will have different block identifiers. A parallel
variant of this notion enables executing multiple node up-
date methods at the same time since new block identifiers
are computed using values from the previous iteration. How-
ever, the PSW mechanism only loads adjacent edges during
execution of a node’s Update method. This means that a
node can read and write its own properties, the properties
of connected edges, and shared-memory data structures, but
cannot read or write the properties of neighbours. GraphChi
suggests a BSP implemention that stores each node’s pre-
vious and current block identifier within its edges. This
means that each edge will have four values, two pertaining
to the edge source’s current and previous block identifiers,
and the remaining two of the edge target’s current and previ-
ous block identifiers, thus increasing duplication and serial-
ization cost. During subsequent iterations, block identifiers
are read from one pair of source and target block identifiers,
which represent the values from the previous iteration, and
then written to the counterpart pair, which represent the
values of the current iteration. Then, on the next iteration,
block identifiers are read from the second pair, and the first
pair will receive updated block identifiers. Anecdotally, al-
though the performance of this BSP implementation is quite
good, we choose to implement the model slightly differently.

We implement two variations: variation B avoids storing
node properties as edge properties, and variation S which
provides an optimization to improve performance. We now
describe the two variations.

The algorithm in Figure 1 gives our B variation’s pro-
gram and node update method, V-Update. The GraphChi
program takes a dataset graph as input and initializes its
summary as a single block containing all nodes (L1). In
each iteration k, GraphChi executes the V-Update on each
dataset graph node in parallel (L4); we use the keyword
parallel foreach to represent how GraphChi processes all of
a graph’s nodes using parallelism. Our algorithms keeps
each node’s current and previous iteration block identifiers
in two hashmaps A node’s update function takes its forward
signature from its outgoing edges (V1) and its backward sig-
nature from its incoming edges (V2) to compute the (k+1)-
dual block identifier (V3). If we exclude line V2 then we
compute a FW summary. The algorithm terminates when
two consecutive iterations have the same number of distinct
block identifiers (L3,L5,L6). The algorithm writes the sum-
mary to disk in parallel (L9), skipping duplicate block edges.

B variation computation of structural summary

L1. foreach v ∈ VG do block0(v) = ’0’ end // initialize
L2. countold ← 1, countnew ← 0, k ← 0
L3. while countold 6= countnew do
L4. parallel foreach v ∈ VG do V-Update(v) end
L5. countold ← countnew

L6. countnew ← |{blockk+1(v) | v ∈ VG}|
L7. k ← k + 1
L8. end
L9. VS ← {blockk(v) | v ∈ VG} ,

ES ← {(blockk(v), blockk(v′)) | (v, v′) ∈ EG}
Method: V-Update(v)

V1. fwsig(v) = {(+m(v, v′), blockk(v′)) | (v, v′) ∈
EG,m(v, v′) ∈M}

V2. bwsig(v) = {(−m(v′, v), blockk(v′)) | (v′, v) ∈
EG,m(v′, v) ∈M}

V3. blockk+1(v) =
hash(sort(blockk(v) ∪ fwsig(v) ∪ bwsig(v)))

Figure 1: B variation algorithm

S variation computation of structural summary

L4′. parallel foreach v ∈ VG do V-Update-Singleton(v)

Method: V-Update-Singleton(v)

S1. if |{v′ | v′ ∈ blockk(v)}| > 1 then do
S2. V-Update(v)
S3. else do
S4. disable vertex v
S5. end

Figure 2: S variation algorithm

A node’s (k+1)-dual block identifier is the result of a hash
fuction that takes as input the forward and backward sig-
natures A sort function takes the set and returns it as a
lexicographically sorted set of signature entries and is used
so that there is a canonical input to the hash function. In
addition to using canonical input values, we assume that a
hash value generated from a signature does not collide with
a different signature, thus block identifiers generated from a
hash value can be used as a canonical block identifier. Al-
though it is not essential, we choose to reuse a node’s block
identifier as part of its hash computation as a way to main-
tain a node’s ’history’.

Singleton optimization. We now describe variation S.
Since it is common in graph algorithms to skip computa-
tions, GraphChi provides a scheduler that maps each node
to a boolean value which decides whether to disable process-
ing of specific nodes in each iteration. Using the scheduler
has a benefit that GraphChi skips loading intervals of dis-
abled nodes and their edges from disk, thereby improving
performance by reducing disk access.

Our S variation adds an algorithmic optimization to vari-
ation B that reduces the number of nodes the algorithm
processes in each iteration by skipping nodes that are in the
extent of a singleton block. Notice that summary partitions
have the property such that a node that is in a singleton
block is never bisimilar with any other node. This means
that a singleton node’s block identifier will always remain
distinct from all other nodes, and that the summary con-
struction algorithm no longer needs to update the node’s
block identifier. In Figure 2, we give the S variation al-
gorithm, which uses the program of variation B (Figure 1)

but having instead the modified line L4′ that executes the
custom node update function V-Update-Singleton. The al-
gorithm keeps a hashmap with the count of nodes in each
block’s extent in the previous iteration. Each node executes
the V-Update-Singleton method and uses the hashmap to
check whether the node is in a singleton’s extent (S1). If the
node is not a singleton, then the method computes an up-
dated block identifier for the node using the same V-Update
function from the B variation (Figure 1). If a node is a
singleton, then the node is not processed in the current it-
eration, and the keyword disable (S4) sets its boolean flag
in the scheduler to false so as to skip the node in future
iterations.

We implement a workaround to a GraphChi bug in order
to skip singletons; the bug arises from the way GraphChi
iterates over nodes it creates to balance parallelism across
cores. We skip singletons as follows. During an iteration k,
we count the number of nodes in each block. Then during
the (k + 1) iteration, when we execute each node’s update
method, we check whether the node is contained in the ex-
tent of a singleton block. If a node is found to be in a
singleton, we do not update its block identifier. As well,
during the (k+1) iteration, we identify those nodes that are
in singletons, then at the end of the (k + 1) iteration, we
disable them in the scheduler. Thus, singletons that exist at
the end of an iteration k are skipped from iteration (k + 2)
onwards.

The correctness of our S variation follows from the cor-
rectness of the hash-based approach [3], which says that,
assuming that hash values for non-bisimilar nodes do not
collide, two nodes that have different signatures will have
different block identifiers. In our approach, since a single-
ton’s identifier will always remain distinct from any other
block identifier (no other node can be bisimilar), then we
do not have to update the block identifier of the node in its
extent and can disable it in the scheduler.

The singleton optimization that we use in this work is
novel. In particular, singleton blocks are not captured by
the stable/unstable block optimization described in [3]1.

3. EVALUATION
In this section, we give an evaluation of our GraphChi B

and S variations using 3 real-world datasets.

Table 1: Dataset graph statistics
Dataset |N | |E|

lmdb 1,327,120 6,147,717
dbp 48,603,466 317,220,816

Twitter 52,579,678 1,963,263,821

Table 1 shows the number of nodes and edges in the
dataset graph of each dataset that we use in our experi-
ments. LinkedMDB [9] describes entities related to movies
including actors and directors, and is the smallest dataset
graph (lmdb) we consider with 1.3M nodes, 6.1M edges, and
222 distinct edge labels. DBpedia describes entities such as
places and events, and its dataset graph (dbp) has 48 mil-
lion nodes, 317 million edges, and 1,393 distinct edge labels;
we exclude highly structured entities such as geographic co-
ordinates to reduce structuredness. Twitter is the largest
dataset that we consider with 52M nodes and almost 2 billion

1Please see Appendix for a discussion.

Table 2: FWBW summary statistics, with M1 times
(in mins) to load, construct (with B or S), and write
Summary |N | |E| Load B S Write

lmdb 844,877 4,311,098 0.12 8.6 2.8 0.75
dbp 32,274,111 278,182,230 107 775 187 207

Twitter 48,332,025 1,945,307,755 3,118 632

edges unlabeled follower relationships between users, which
is slightly bigger than the Twitter dataset [14] used in ex-
isting summary literature.

To compare FWBW summaries, we use M1, a single ma-
chine that has 8 Xeon X6550 2GHz 8-core CPUs and can
process 64 nodes in parallel. M1 has an 80GB allocation of
main-memory to the Java 8 JVM that executes unmodified
GraphChi 0.2; our B variation uses around 40GB with the
largest dataset and our S variation uses around 60GB with
the largest dataset.

Table 2 shows the number of blocks and block edges in
the FWBW summary of each dataset listed in Table 1.
The lmdb summary, which has the greatest reduction in
size with respect to the dataset graph (not counting extent
edges) amongst the 3 datasets, has 0.84M blocks and 4.3M
block edges, which represent 64% and 70% of the number of
dataset graph nodes and edges, respectively. The Twitter
summary has the least reduction in size with 48M blocks
and only 18M fewer block edges than dataset graph edges,
which represent over 90% and 99% of the number of dataset
nodes and edges, respectively.

Table 2 also shows the M1 times (in mins) to load data
into GraphChi, construct the summary using the B or S
GraphChi variation, and write the summary to disk; the
times shown are the average of 5 runs excluding the min and
max. Constructing FWBW summaries using the S variation
is x3.0, x4.1, and x4.9 times faster than the B variation for
lmdb, dbp, and Twitter, respectively. Our results also show
that the time taken to compute dbp’s FWBW summary us-
ing the S variation is x1.68 times faster than the time to
load the dataset graph and write the summary.

Figures 3 (a) and (b) show lmdb’s FWBW summary con-
struction for each iteration of the B and S variations; both
variations take 13 iterations. Figure 3 (a) shows per-iteration
time (in mins). In the B variation, per-iteration time is 12
seconds in iteration 1, increases steadily to 39s by iteration
5, and then maintains that time. In contrast, the S varia-
tion begins similarly but its per-iteration time decreases to
around 7s by iteration 7, and then maintains that time. Our
results show that the S variation’s per-iteration time devi-
ates to 25% of the B variation within the first few iterations.

Figure 3 (b) shows, the total number of blocks in the sum-
mary at each iteration, divided into singletons (SG) and non-
singletons (Non-SG); the total is the same as the B varia-
tion. The total number of blocks increases to 837K blocks
by iteration 5, and increases in small increments thereafter.
No single iteration has more than 89K non-singletons and
762K singletons, which means that, after the first few itera-
tions, up to 57.4% of the dataset graph’s nodes are skipped
in each iteration. As noted above, singletons that exist at
the end of an iteration k are not skipped until iteration k+2
onwards. We observe that lmdb has 6.8K singletons at the
end of iteration 1, which represents only 0.51% of the dataset
graph’s nodes, and that the S variation is already 15% faster
than the B variation in iteration 3, the earliest moment in
which the singleton optimization can skip nodes. The S

variation has the greatest reduction in per-iteration time in
iteration 6 after finding an almost maximal number of sin-
gletons in iteration 4. The stark reduction in per-iteration
time demonstrates the benefit of skipping singletons as an
optimization.

Figures 4 (a) and (b) show dbp’s FWBW summary con-
struction for each iteration of the B and S variations; both
variations take 17 iterations. Figure 4 (a) shows the per-
iteration time (in mins). As with lmdb, the B and S vari-
ations take equal number of iterations, iterations in varia-
tion B take longer than variation S, and iterations tend to
take equal amounts of time. We attribute the difference in
time in iteration 1, before skipping any singletons, due to
a difference in how the algorithm counts blocks in the first
iteration. Figure 4 (b) shows the total number of blocks,
divided into singletons and non-singletons. There is a sub-
stantial increase in the number of singletons within the first
few iterations, with slow growth after iteration 3, at which
point the S variation’s per-iteration time is 80% less than
the B variation. A performance improvement is visible with
variation S at iteration 3, the earliest moment in which the
algorithm can skip singletons, and the per-iteration time is
lowest at iteration 5 onwards after finding an almost max-
imal number of singletons, which, like lmdb, comprises of
57.3% of the dataset graph’s nodes.

Figures 5 (a) and (b) show Twitter’s FWBW summary
construction for each iteration of the B and S variations;
both variations take 13 iterations. Figure 5 (a) shows the
per-iteration time (in mins). The figure shows that both the
B and S variations start similarly then in the 5th iteration
the B variation quickly takes almost an order of magnitude
longer than the S variation, taking only around 4 minutes
per iteration. Figure 5 (b) shows the total number of blocks,
divided into singletons and non-singletons. There are only
3, 15, and 12K blocks in the first 3 iterations, respectively.
No singletons exist in the first two iterations, then after only
2.4K singletons are found at the end of iteration 3, there is a
remarkable reduction in per-iteration time to only 4 minutes
in iteration 5. In later iterations, even as the number of
singletons represent over 90.4% of the dataset graph’s nodes,
the per-iteration time remains constant.

In this section, we evaluate the construction of summaries
for LMDB, DBpedia, and Twitter with our B and S vari-
ations. Our results show that our singleton optimization’s
rapid reduction in per-iteration time results in summary con-
struction performance that is faster than loading the dataset
into GraphChi and writing the summary to disk. Next, we
compare GraphChi and Hadoop summary construction im-
plementations.

3.1 Hadoop Experimental Setup
In this section, we compare FW summary construction

performance of our GraphChi variations with HF, our
Hadoop 2.20 implementation based on [22]. We use M2,
a single machine whose hardware consists of 2 Opteron6128
2GHz 8-core CPUs, which can process 16 threads in parallel,
and 64GB of RAM. In our M2 experiments, we assign all of
the RAM to the JVM but our GraphChi variations use about
40GB and HF uses about 20GB.

We run Hadoop in local mode, which uses one JVM on
a single machine to execute each iteration of HF as a job
consisting of parallel map tasks, but one reduce task. Since
we do not require fault-tolerance, we store data as gzip-

(a) M1 time (in mins) per iteration (b) Millions of singletons and non-singletons per iteration

Figure 3: LMDB FWBW summary construction

(a) M1 time (in mins) per iteration (b) Millions of singletons and non-singletons per iteration

Figure 4: DBpedia FWBW summary construction

(a) M1 time (in mins) per iteration (b) Millions of singletons and non-singletons per iteration

Figure 5: Twitter FWBW summary construction

Table 3: FW summary statistics, with M2 construc-
tion times (in mins)
Summary |N | |E| B S HF

lmdb 85,714 999,934 4.2 4.0 73
dbp 13,429,903 229,490,296 941 331 5,832

compressed files on the local filesystem. In local mode, the
reduce task saves its output to a single file; however, map
tasks cannot read gzip-compressed files in parallel. To en-
able parallelism, we save the reducer’s output in multiple
gzip-compressed files, each of which can then be accessed by
one of the parallel map threads in the next iteration.

Table 3 shows FW summary statistics of lmdb and dbp,
as well as M2 construction time (in mins) using our B, S,
and HF variations. The table shows that each dataset’s FW
summary has fewer blocks and block edges than its FWBW
summary; lmdb’s FW summary contains almost 90% fewer
blocks and 77% fewer block edges, while dbp’s FW summary
contains 58% fewer blocks and 18% fewer block edges. Our
S variation constructs lmdb’s summary only slightly faster
than the B variation, but x18 times faster than HF. Our S
variation constructs dbp’s summary x2.8 times faster than

the B variation, while HF, which we run for the first 10
iterations, needs around 9.7 hours per iteration.

Figures 6 (a) and (b) show lmdb’s FW summary construc-
tion for each iteration of the B and S variations; both vari-
ations take 12 iterations. Figure 6 (a) shows per-iteration
time (in mins). Both the B and S variations start similarly,
increase to 20s by the next iteration, and remain at that
duration for the remainder of the construction. Figure 6 (b)
shows the total number of blocks in the FW summary at
each iteration, divided into singletons and non-singletons.
The number of blocks increases to around 85K blocks by
iteration 4, with small increments thereafter. The FWBW
summary of lmdb has an order of magnitude more singletons
than in the FW summary, and our results show that the 59K
singletons in lmdb’s FW summary provide little discernible
per-iteration decrease when using the S variation.

Figures 7 (a) and (b) show dbp’s FW summary construc-
tion for each iteration of the B and S variations; both vari-
ations take 25 iterations. Figure 7 (a) shows per-iteration
time (in mins). The per-iteration time of both variations
start similarly, then the B variation increases to 32min while
the S variation decreases to 12min. Figure 7 (b) shows the

(a) M2 time (in mins) per iteration (b) Millions of blocks and singletons per iteration

Figure 6: LMDB FW summary construction

(a) M2 time (in mins) per iteration (b) Millions of blocks and singletons per iteration

Figure 7: DBpedia FW summary construction

total number of blocks in the FW summary in each iteration,
divided into the number of singletons and non-singletons.
There are around 85K blocks by iteration 4, and it increases
in small increments thereafter. Unlike the lmdb FW sum-
mary, 22% of the dataset graph’s nodes are singletons, which
helps to improve the S variation’s per-iteration time.

We compare our work with [22], which we call MRB,
whose DBpedia dataset is smaller than ours by 27M and
119M nodes and edges, respectively. MRB computes its FW
summary, which contains 5 million blocks, in 459 minutes
without writing the summary to disk. MRB’s advantage is
that it does not need to load any data, but has disadvantages
in that it duplicates block identifiers as edge properties and
processes all nodes in each iteration. Summaries that MRB
computes are not as costly as our FWBW summaries (each
iteration in a FW summary construction only looks at out-
going edges), and our S variation’s iteration time is lower
than MRB’s. On Amazon EC2, a single multi-core com-
pute instance has more compute power and is x2.5 times
more economical than an MRB-equivalent 10-node cluster.
Furthermore, our S variation requires much less parallelism,
uses 40x less RAM, and has better performance even if a
dataset needs more iterations.

Our S variation’s per-iteration time to generate Twitter’s
FWBW structural summary is faster than the FW summary
per-iteration time of [16, 17], whose dataset has 500M fewer
edges than ours. Furthermore, their system focuses on opti-
mizing the skew of edges across the few large blocks, while
we focus on optimizing the many small block at the op-
posite spectrum of block sizes - where singletons are very
common. The singleton optimization may be integrated
into Hadoop-based summary constructions by sharing all
non-singleton block identifiers with all parallel tasks using
Hadoop’s distributed cache since there are fewer than 5 mil-
lion non-singletons in the FWBW or FW summaries that
we construct.

4. CONCLUSIONS
In this work, we show that GraphChi on multi-core archi-

tecture is a viable way to construct summaries of big graphs.
The performance of our variations show that skipping sin-
gletons provides performance improvement, with evidence
to support its use on multi-core systems.

5. REFERENCES
[1] Big data: The next frontier for innovation,

competition, and productivity. McKinsey & Company,
May 2011.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan,
O. Hodson, and A. Rowstron. Scale-up vs Scale-out
for Hadoop: Time to rethink? SOCC, 2013.

[3] S. Blom and S. Orzan. A distributed algorithm for
strong bisimulation reduction of state spaces. Electr.
Notes Theor. Comput. Sci., 68(4):523–538, 2002.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Comput. Netw.,
33(1-6):309–320, June 2000.

[5] M. P. Consens, V. Fionda, S. Khatchadourian, and
G. Pirrò. Rewriting Queries over Summaries of Big
Data Graphs. AMW, 2014.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[7] A. Dovier, C. Piazza, and A. Policriti. An efficient
algorithm for computing bisimulation equivalence.
Theor. Comput. Sci., 311(1-3):221–256, 2004.

[8] R. Goldman and J. Widom. DataGuides: Enabling
query formulation and optimization in semistructured
databases. In VLDB, pages 436–445, 1997.

[9] O. Hassanzadeh and M. P. Consens. Linked movie
data base. In LDOW, 2009.

[10] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs.
In Foundations of Computer Science, pages 453–462,
1995.

[11] P. C. Kanellakis and S. A. Smolka. CCS expressions,
finite state processes, and three problems of
equivalence. Information and Computation, 86(1):43 –
68, 1990.

[12] S. Khatchadourian and M. P. Consens. ExpLOD:
Summary-Based Exploration of Interlinking and RDF
Usage in the Linked Open Data Cloud. In ESWC,
pages 272–287, 2010.

[13] A. Kumar, J. Gluck, A. Deshpande, and J. Lin. Hone:
”Scaling Down” Hadoop on Shared-Memory Systems.
PVLDB, 6(12):1354–1357, 2013.

[14] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
pages 591–600. ACM, 2010.

[15] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI,
pages 31–46, 2012.

[16] Y. Luo, G. H. L. Fletcher, J. Hidders, P. De Bra, and
Y. Wu. Regularities and dynamics in bisimulation
reductions of big graphs. GRADES, 2013.

[17] Y. Luo, Y. Lange, G. H. Fletcher, P. Bra, J. Hidders,
and Y. Wu. Bisimulation Reduction of Big Graphs on
MapReduce. In BNCOD, volume 7968, pages 189–203.
2013.

[18] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In SIGCOMM Conference on
Internet Measurement, pages 29–42, 2007.

[19] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

[20] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner.
Synopsys: large graph analytics in the SAP HANA
database through summarization. In GRADES, 2013.

[21] D. Sangiorgi. On the origins of bisimulation and
coinduction. Trans. Program. Lang. Syst., 31(4), 2009.

[22] A. Schätzle, A. Neu, G. Lausen, and
M. Przyjaciel-Zablocki. Large-scale bisimulation of
RDF graphs. SWIM, 2013.

[23] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

APPENDIX
A. UNSTABLE SINGLETONS

A block is stable if it does not have any block edges to
a block that was split in the previous iteration (a block is
split when two non-bisimilar nodes are found). We can easily
construct examples that show a singleton that is stable, a
singleton that is unstable, a singleton that is not found until
an unstable block is stable, a singleton that is found by
splitting an unstable block which remains unstable. We can
also verify that singletons are distinct from the notion of
stability because the singleton optimization is monotonic, in
that once a block is a singleton it always remains a singleton,
but stability is not monotonic since a block’s state can switch
between stable and unstable.

Figure 8: Unstable singleton example

Figure 8 shows an example graph whose FW summary
contains a singleton that is unstable and which is found in
early iterations (node 1), a singleton that is not found in
an unstable block until the block is stable (node 2), and
a singleton that is found in an unstable block before the
block is stable (node n). The graph has n nodes, with node
1 having an outgoing edge with label a to node 2, and a
path with edge label b from node 2 to node n. Before the
iterations start, all nodes are in the same block. In the first
iteration, nodes 1 and n are split into their own blocks. Node
1 is in a singleton because it is the only node with an out-
edge with label a, and node n is in a singleton because it is
the only node that does not have any out-edges. As well,
block1(1) is unstable because (block1(1), block0(2)) ∈ ES but
block0(2) was split, though block1(n) is stable because it does
not have any outgoing edges. After n-2 iterations, we end
up with a partition that only contains singletons.

B. UNSTABLE STABILITY

Figure 9: Unstable/stable/unstable example

Figure 9 gives an example where a singleton block can
switch back and forth between stability and instability. At
the start, all nodes are in the same block. In iteration 1,
node 1 is split into a singleton since it is the only node
that has out-edges with the label a; as well, nodes 2 and
3 form a block, nodes 4 and 5 form a block, node 6 forms
a singleton block, and nodes 7 and 8 form a block. No-
tice that at the end of iteration 1, only block1(7) is stable
since it does not have any outgoing edges. In iteration 2,
since (block1(6), block0(7)) ∈ ES and block0(7) was split,
then block1(6) is unstable and we need to process it. Since
it is has only 1 node, there is nothing to split. In iteration
3, block1(4) is split such that block2(4) 6= block2(5).

	Introduction
	Algorithm
	Evaluation
	Hadoop Experimental Setup

	Conclusions
	References
	Unstable singletons
	Unstable stability

