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ABSTRACT

In this paper, we present ∆-SPOT, a non-linear model for
analysing large scale web search data, and its fitting algo-
rithm. ∆-SPOT can forecast long-range future dynamics
of the keywords/queries. We use the Google Search, Twit-
ter and MemeTracker data set for extensive experiments,
which show that our method outperforms other non-linear
mining methods. We also provide an online algorithm con-
tributing to the need of monitoring multiple co-evolving data
sequences.
Categories and Subject Descriptors: H.2.8 [Social Net-
works and Graph Analysis]: Database applications–Data
mining
Keywords: Time-series Analysis; Social Influence Analy-
sis; Parameter-free;

1. INTRODUCTION
Our goal is to detect patterns, rules and outliers in a huge

set of web search data, consisting of tuples of the form:
(keyword, location, time). How can we find meaningful in-
formation, such as the external events? Do those events
have any relationship between each others (cyclic events or
not?) Also, can we detect global/local-level patterns? Are
there countries that react differently from the global trend?
Can we forecast the dynamics of future events? Thus, the
most fundamental requirement is the efficient monitoring of
the data sequences. In this paper, we propose ∆-SPOT,
which is sense-making, automatic, scalable and parameter-
free, and provides a good summary of large collections of
local online activities to solve the following problem auto-
matically and effectively:

Informal problem. Given a large collection of online ac-
tivities, which consists of d keywords in l locations of du-
ration n with missing values and external shocks, we want
to detect external shocks (important events in reality), find
global and local patterns, and forecast future activities.

Besides, we also introduce an incremental online algo-
rithm, ∆-STREAM, which enhance the application of ∆-
SPOT for online analysis.
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Table 1: Capabilities of approaches. Only our ap-
proach meets all specifications.

SI/ AR/ FUNNEL ∆-SPOT/
++ ++ ∆-STREAM

Non-linear
√ √ √

Outliers detection
√ √

Online activities
√

Cyclic events/shocks
√

Local analysis
√ √

Parameter-free
√ √

Forecasting
√ √ √

Online processing
√

2. RELATED WORK

Pattern discovery in time series. In recent years, there
has been a huge interest in mining time-stamped data [9, 4].
Traditional approaches typically use linear methods, such as
auto-regression (AR), linear dynamical systems (LDS), and
their variants [11, 2, 3]. TriMine [6] is a scalable method for
forecasting complex time-stamped events, while, [5] devel-
oped AutoPlait, which is a fully-automatic mining algorithm
for co-evolving sequences.

Social activity analysis. The work described in [7] stud-
ied the rise and fall patterns in the information diffusion
process through online social media. FUNNEL [8] is a non-
linear model for spatially co-evolving epidemic tensors.

Contrast to the competitors. Table 1 illustrates the rel-
ative advantages of our method. Only our ∆-SPOTmatches
all requirements.

3. PROPOSED MODEL

3.1 Intuition behind our method
We have a collection of sequences with d unique keywords,

l countries with duration n. We can treat this set of d × l
sequences as a 3rd-order tensor, i.e., X ∈ N

d×l×n, where the
element xij(t) of X shows the total number of entries of the
i-th keyword in the j-th country at time-tick t. For example,
(‘Harry Potter’, ‘US’, ‘July 15-21, 2007’, 100), means that
the search volume for ‘Harry Potter’ in ‘US’ on ‘July 15-21 in
2007’ is ‘100’. We refer to each sequence of the i-th keyword
in the j-th location: xij = {xij(t)}

n
t=1, as a “local/country”-

level web search sequence. Similarly, we can turn these lo-
cal sequences into“global/world”-level web search sequences:
x̄i = {x̄i(t)}

n
t=1, where x̄i(t) shows the total count of the i-th

keyword at time-tick t, i.e., x̄i(t) =
∑l

j=1 xij(t). (A count
is defined as the activity of searching for the keyword via
Google Search in a specific location and time period.)

3.2 ∆-SPOT - with a single sequence
The model we propose has nodes (=users) of three classes.

Those are Susceptible: nodes in this class can get influ-
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Table 2: Symbols and definitions
Symbol Definition
d Number of keywords/queries
l Number of locations/countries
n Duration of sequences

X 3rd-order tensor (X ∈ N
d×l×n)

xij Local-level sequence of keyword i in location j

i.e., xij = {xij(t)}n
t=1

x̄i Global-level sequence of keyword i

i.e., x̄i =
∑

l
j=1 xij

Sij(t) Count of (S)usceptibles i in location j at time t

Iij(t) Count of (I)nfectives i in location j at time t

Vij(t) Count of (V)igilants i in location j at time t

BG Base global matrix (d× 4)
BL Base local matrix (d × l)
RG Growth effect global matrix (d × 2)
RL Growth effect local matrix (d× l)
S External shock tensor i.e., S = {s1, s2, . . . , sk}
F Complete set of ∆-SPOT

i.e., F = {BG,BL,RG,RL,S}
enced by their neighboring nodes who have searched for it ;
Infective: nodes who already searched for the keywords, also
capable of influencing other available nodes; and Vigilant
(i.e., busy/unavailable): nodes in this class are immune to
the influence of the trend.

Figure 1 shows a diagram of our model. Here, β represents
the rate of effective contacts between citizens in infective and
susceptible classes; δ is the rate at which infected citizens
lost interest in the topic and stop searching for it; and γ
is the immunization loss probability for a change in status:
being ready to search for the topic. ǫ(t) and η(t) represent
the external shock effect and growth effect. The number
of the susceptible class S(t) is the count of users available
for infection, and if there is an external shock event , the
infection becomes stronger than usual. Each infective pair
would lead to a new infective citizen, and will eventually
cause a major spike. With respect to the growth effect, it
starts at time tη and make the number of infectives rise
quickly to a new base.

Model 1 (∆-SPOT-single). Our model is described
by the following equations:

S(t+ 1) = S(t)− βS(t)ǫ(t)I(t)(1 + η(t)) + γV (t)

I(t+ 1) = I(t) + βS(t)ǫ(t)I(t)(1 + η(t))− δI(t)

V (t+ 1) = V (t) + δI(t)− γV (t) (1)

The growth effect η(t) =

{

0 (t < tη)
η0 (t ≥ tη)

In addition, we introduce the temporal susceptible rate
ǫ(t) = 1 +

∑k

i=1 f(t; si), and

f(t; s) =

{

ǫ0 (ts + tp⌈t/tp⌉ < t < ts + tp⌈t/tp⌉+ tw)
0 (else)

where, k is the number of shocks. If k = 0, then ǫ(t) = 1.

Each external shock consists of s = {tp, ts, tw, ǫ0}, i.e.,
• tp: Periodicity of the event (if tp = ∞, the event is

non-cyclic).
• ts: Starting point of the event.
• tw: Duration of the event.
• ǫ0: Strength of the external shock.

3.3 ∆-SPOT - with multi-evolving sequences
We extract important patterns with respect to the fol-

lowing separated aspects: (P1), (P2): base properties of
global and local dynamicsBG, BL; (P3): the sudden change
of popularity (if any) RG, RL; and (P4): external shock
events (cyclic and non-cyclic) S (see Figure 2).

(P1) Base trends and global influence. Basically, we
assume that the following parameters are the same for all

Figure 1: ∆-SPOT diagrams: classes of population:
susceptibles, infectives, and vigilants.

l countries. Here, BG is the set of global parameters of d
keywords/queries, where {Ni, βi, δi, γi} is the parameter set
of the i-th keyword.

(P2) Area specificity. We share the parameters of the
global-level matrices for all l countries. with one excep-
tion, Nij , which describes the total population of users i
in the j-th country. Specifically, we set the invariant, Nij =
Sij(t) + Iij(t) + Vij(t). Here, BL is a parameter set of
the potential population of d keywords and l countries, i.e.,
BL = {b(L)

ij}
d,l
i,j=1, where b(L)

ij is the potential population
of susceptibles of the i-th keyword in the j-th country.

(P3) Population growth effect. The growth effect ap-
pears due to the launch of new products and services that
raise the interest of users, which should have the same start-
ing time all over the world. Here, RG is the set of global
growth effect parameters of d keywords, where {η0i, tηi} is
the parameter set of the i-th keyword. RL is a parameter
set of the potential population of d keywords and l coun-
tries, i.e., RL = {r(L)

ij}
d,l
i,j=1, where r(L)

ij is the population
growth rate of the i-th keyword in the j-th country.

(P4) External shock events. To describe each external
shock event, we create a new parameter set, namely exter-
nal shock tensor S , which consists of a set of k external
shock events, as described in Figure 2 (b). A single exter-
nal shock event s can be described as three components:
s = {s(D), s(N), s(L)}: s(D) represents the external view for

d keywords; s(N) describes the periodicity (tp), the start-
ing time (ts), and the duration (tw) of the external event;

and s(L) expresses the strength of the external shocks of one
event in l countries, where ⌈n/tp⌉ is the number of shocks
belonging to that event.

Figure 3 compares the global fitting results of the keyword
”Amazon”, in four different cases to demonstrate the influ-
ence of the growth effect (P3) and external shocks (P4).
The result shows the benefit of treating the growth effect
differently from external shock effect, as well as combining
these two effects to achieve good fitting results.

4. ALGORITHM

4.1 Model quality and data compression
We apply the minimum description length (MDL) princi-

ple to find an optimal representation F .

Model description cost. The total code length for X with
respect to a given parameter set F can be described in the
following equation, which we want to minimize:

CostT (X ;F) = log∗(d) + log∗(l) + log∗(n)

+CostM (BG) + CostM (BL) + CostM (RG)

+CostM (RL) + CostM (S) + CostC(X|F) (2)

4.2 Multi-layer optimization
Algorithm 1 shows an overview of ∆-SPOT to find the

full set of ∆-SPOT parameters given a tensor X .
4.2.1 Global-level parameter fitting

Given a tensor X , our sub-goal is to find the optimal
global-level parameter set: FG , to minimize the cost func-
tion (i.e., Equation 2). As shown in Algorithm 2, we pro-
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(a) ∆-SPOT structure (i.e., F = {BG,BL,RG,RL,S})

(b) External shock tensor (i.e., S = {s1, s2, . . . , sk})

Figure 2: ∆-SPOT structure: (a) important prop-
erties extracted from tensor X . Also, (b) external
shock tensor S consists of a set of k components.
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Figure 3: Influence of combining growth effect and
external shock effect: compared with the case of
using (a) none of above, (b) only growth effect, (c)
only external shock effect, and (d) the combination
of both effects. Clearly, (d) fits the data very well.

vide a detailed algorithm of the global-level fitting. Given
a tensor X , it creates a set of d global sequences: {x̄i}

d
i=1.

The goal is to fit the global-level parameter set, as well as
find the appropriate number of external-shocks. We apply
the Levenberg-Marquardt (LM) [1] algorithm to minimize
the cost function. Note that the extra tensor S consists
of k entries {s1, s2, . . . , sk}, Algorithm 2 can find only the
global-level entry, which consists of (keyword, time). We
will introduce the local-level parameter fitting algorithm in
Algorithm 3, to describe how the local-level entries can be
computed. Also, the cost function (2) includes the cost of
local-level parameters such as BL, RL but these terms are
independent of the global model fitting. Hence, we can sim-
ply consider them to be constant.

4.2.2 Local-level parameter fitting

Given a set of d× l local-level sequences, {xij}
d,l
i,j=1 ∈ X ,

and a set of global-level parameters, FG , our next goal is to
fit the individual parameters of each disease in each state,
that is, FL = {BL,S}. We propose an iterative optimization
algorithm (see Algorithm 3). Our algorithm searches for the
optimal solution with respect to (a) the base local matrix BL

and (b) the local-level external shocks S , so that the total
coding cost is minimized.

Algorithm 1 ∆-SPOT(X )

1: Input: Tensor X (d× l × n)
2: Output: Full parameters, i.e., F = {BG,BL,RG,RL,S}
3: {FG} =GlobalFit (X ); /* Global-level parameter fitting */
4: {FL} =LocalFit (X ,FG); /* Local-level parameter fitting */

5: return F = {FG ,FL};

Algorithm 2 GlobalFit(X )

1: Input: Tensor X
2: Output: Set of global-level parameters FG

i.e., FG = {BG,RG,S}
3: for i = 1 : d do

4: Create x̄i from X ; /* Global sequence x̄i of i-th keyword */
5: /* Initialize external shocks for keyword i */

6: si = ∅;
7: while improving the cost do

8: b(G)
i = arg min

b
(G)′

i

CostC(x̄i|b(G)′

i
, r(G)

i, si); /* Base */

9: r(G)
i = arg min

r
(G)′

i

CostC(x̄i|b(G)
i, r

(G)′

i
, si); /* Growth */

10: si = ∅; /* Initialize values */
11: /* Find external shocks for keyword i */
12: while improving the cost do

13: s = arg min
s′

CostC(x̄i|b(G)
i, r

(G)
i, {si ∪ s

′});

14: si = si ∪ s;

15: end while

16: end while

17: /* Update parameter set of i-th keyword */

18: BG = BG ∪ b(G)
i; RG = RG ∪ r(G)

i; S = S ∪ si;
19: end for

20: return FG = {BG,RG,S};

5. ONLINE PROCESSING
Algorithm 4 shows an overview of ∆-STREAM. Given a

new tensor X ′, our first task is to find the appropriate pa-
rameter set in both global level (FG

′), and local level (FL
′),

thus we use them to update the original sequence’s global
parameter set FG and local parameter set FL. As we de-
scribed in Section 4, the newly captured external shock ten-
sor S ′ includes both global and local shocks. The challenge
here is to synchronize them to the external shock events of
the old sequence including the cyclic events. We create a
new parameter, the cyclic external shock candidate set C to
further reduce the processing time. The candidate set in-
cludes multiple optimal cyclic shocks with different period,
time-shift and duration. If a new captured spike forms with
the old ones a potential cyclic shock (with specified period
and duration), a new candidate is added to C. When dealing
with a new sequence, the next spike of the cyclic shock is
automatically generated, and fit with its strength (height).

6. EXPERIMENTS

6.1 Sense-making
We demonstrate the global fitting results of three datasets:

Figure 4 shows the results of model fitting on 2 trending key-
words in various categories; Figure 5 (a) shows the results
the popular hashtags ”#apple”; and Figure 5 (b) shows the
results of Meme#3: ”yes we can yes we can” from the Meme-
Tracker dataset. We show the original sequences (i.e., black
dots) and estimated sequences: I(t) (i.e., the Infectives, in
red line) in linear-linear scales. Also, we made several impor-
tant observations, which correspond to the properties men-
tioned above.

(P1) Base trends and global influence. As shown in
Figure 4, ∆-SPOT successfully captures long-range non-
linear dynamics of user activities, as well as fit the data
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Algorithm 3 LocalFit(X ,BG,RG,S)

1: Input: (a) Tensor X , (b) global-level parameter set FG

2: Output: Set of local-level parameters, i.e., FL

3: while improving the cost do

4: /* For each local sequence xij (i-th keyword, j-th country) */
5: for i = 1 : n do

6: for j = 1 : l do

7: b(L)
ij = arg min

b(L)′
ij

CostC(xij |BG,RG, b(L)′

ij ,S);

8: r(L)
ij = arg min

r(L)′
ij

CostC(xij |BG,RG, r(L)′

ij ,S);

9: end for

10: end for

11: for each external shock s in S do

12: Update s to minimize the cost
13: end for

14: end while

15: return FL = {BL,BG,S};

Algorithm 4 ∆-STREAM(X ′, C)

1: Input: A subsequence X ′ (d× l × n′) of duration nX′ ,
and a set of cyclic shock candidates C

2: Output: An update of parameter set,
i.e., F = {BG,BL,RG,RL,S}

3: /* Parameter fitting for global-level sequences */
4: {FG

′} =GlobalFit (X ′);
5: /* Parameter fitting for local-level sequences */
6: {FL

′} =LocalFit (X ′,FG
′);

7: for every candidate in C do

8: Fit the shocks strength in S′

9: end for

10: /* Update the external shocks tensor */
11: {S} = {S} ∪ {S′};
12: /* Update new candidates */
13: for every shock in S do

14: if there exists a new cyclic event s0 then

15: Add a new candidate to C
16: end if

17: end for

18: /* Update the global parameter set */
19: {FG} = {FG} ∪ {FG

′};
20: /* Update the global parameter set */
21: {FL} = {FL} ∪ {FL

′};
22: return F = {FG,FL};

sequences in high accuracy. (P2) Area specificity. For

example, Figure 6 (a) shows the local fitting results for key-
word ”Ebola”. We detected some countries (GB,US,JP) that
behave similarly to the global trend (i.e., the world reaction
to the burst of Ebola Virus in 2014, shown in green circles).
Besides, we also detected several outlier countries which
have less capacities of network connection (LA,NP). (P3)

Population growth effect. In Figure 4 (a), our model
can detect the population growth effect, which is treated
separatedly from the external shock effect. (P4) External

shock events. ∆-SPOT can capture important external
events relating to the keywords, including the cyclic events.

Moreover, we execute the online process experiments to
evaluate the fitting capacity of ∆-STREAM. For each stage
of the process, we input a subsequence, applying the fitting
process in both linear and log scale. Then we synchronize
the new parameter set with the last one. Similarly, we made
some observations to confirm the quality of the data stream
monitoring algorithm. Figure 7 (a) shows the monitoring
result for keyword ”Amazon”. We set the window size of
one-year-length (i.e, wd = 52 time-ticks). The monitoring
algorithm, ∆-STREAM can capture the correct increasing
pattern of the web search data stream, as well as detect the
annual external events relating to the keyword. In Figure 7
(b)-(c), we set the window size of one-week-length (i.e, wd =

(a) ”Amazon” (b) ”Harry Potter”
(P1),(P2),(P3),(P4) (P1),(P2),(P4)

Figure 4: Global fitting results for 2 keywords in
GoogleTrends dataset

(a) ”#apple” (b) Meme#3
(P1),(P2),(P4) (P1),(P2),(P4)

Figure 5: Global fitting results for (a) Twitter and
(b) MemeTracker dataset.

168 time-ticks). Our method can capture the basic trend of
the data stream, and some external shocks during the scan.

6.2 Accuracy
We compared ∆-SPOT with the standard SIRS model,

SKIPS [10], and FUNNEL [8]. Figure 8 (a) shows the root-
mean-square error (RMSE) between the original and es-

timated counts of the global sequences {x̄i(t)}
d,n
i,t . Sim-

ilarly, Figure 8 (b) shows the results of the local counts

{xij(t)}
d,l,n
i,j,t , (i.e., each keyword in each country, at each

time-tick). A lower value indicates a better fitting accuracy.
We also evaluated the accuracy of ∆-STREAM in terms

of global/local fitting. ∆-STREAM still provides better
fitting accuracy compared to the SIRS model, SKIPS and
FUNNEL, while being close to the offline ∆-SPOT.

6.3 Scalability
We varied the dataset size with respect to (a) keywords

d, (b) countries l, and (c) duration n. Figure 9 shows the
computational cost of ∆-SPOT in terms of the dataset size:
∆-SPOT is linear with respect to data size. More impor-
tantly, our proposed online streaming method, ∆-STREAM
achieves a dramatic reduction in computational time: it re-
quires constant; i.e., it does not depend on d, l or n.

7. ∆-SPOT AT WORK
As described in Section 4, ∆-SPOT can detect the exact

periodicity of the cyclic events. Given the external shock
tensor S, ∆-SPOT automatically generates the next spikes
of the cyclic events in terms of the time and duration, respec-
tively. Then we used the regression function to estimate the
strengh of those spikes, given the strength of the previous
spikes. As shown in Figure 10, we trained the model param-
eters by using the 400 time-ticks of the keyword ”Grammy”
(solid black lines in the figures), and then forecasted the
following years (solid red lines). ∆-SPOT can predict the
time-tick, the duration and the relative strength of incoming
external events, which refer to the annual Grammy Awards,
held every February. We also compared ∆-SPOT with the
Auto Regressive (AR) model, and TBATS model. We ap-
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(a) Original/fitted sequences for ”Ebola” (b) World-wide reaction
Figure 6: Local fitting power of ∆-SPOT for the keyword ”Ebola” which refers to the Ebola Virus bursting
in 2014 (shown in green circles). (a) It can capture the local similar behaviors in the U.K. (GB), the U.S.
(US) and Japan (JP). It also detects local outliers in Laos (LA) and Nepal (NP), in comparison to the global
trend. We have a clearer observation in (b) the world map of user reaction to the disease burst in 2014.
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Figure 7: Online processing results for 3 queries: for each new coming subsequence, ∆-STREAM captures
all important features, including the stream dynamics and patterns, as well as updates the external events.
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Figure 8: Fitting accuracy (RMSE) for ∆-SPOT
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Figure 10: Forecasting result: we train the model parameters using first 400 time-ticks of the sequences and
do forecasting the remaining part.

plied several regression coefficients: r = 8, 26, 50 for AR. In
Figure 10 (a,b,c), we show the original sequences, the fore-
cast results of ∆-SPOT and AR with TBATS, respectively.
Our method achieves high forecasting accuracy while AR
and TBATS failed to forecast future patterns.

8. CONCLUSION
In this paper, we presented ∆-SPOT, which demonstrates

the desirable properties: Effective: it can detect important
hidden events that match the reality; Automatic: it re-
quires no training set and no domain expertise, thanks to
our coding scheme; Scalable: ∆-SPOT is linear to the data
size (i.e., O(dln)); and Practical: ∆-SPOT can undertake
long-range forecasting and outperforms existing methods.
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