
Index-based Optimal Algorithms for Computing Steiner
Components with Maximum Connectivity

Lijun Chang†, Xuemin Lin£†, Lu Qin‡, Jeffrey Xu Yu§, Wenjie Zhang†
†University of New South Wales, Australia £East China Normal University, China

‡University of Technology, Sydney, Australia §The Chinese University of Hong Kong, China
{ljchang,lxue,zhangw}@cse.unsw.edu.au, lu.qin@uts.edu.au, yu@se.cuhk.edu.hk

ABSTRACT

With the proliferation of graph applications, the problem of effi-
ciently computing all k-edge connected components of a graph G

for a user-given k has been recently investigated. In this paper, we
study the problem of efficiently computing the steiner component
with the maximum connectivity; that is, given a set q of query ver-
tices in a graph G, we aim to find the maximum induced subgraph
g of G such that g contains q and g has the maximum connectivity,
where g is denoted as SMCC. To accommodate online query pro-
cessing, we present an efficient algorithm based on a novel index
such that the algorithm runs in linear time regarding the result size;
thus, the algorithm is optimal since it needs at least linear time to
output the result. Moreover, in this paper we also investigate vari-
ations of the above problem. We show that such a problem with
the constraint that the size of the SMCC is not smaller than a given
size can also be solved in linear time regarding the result size (thus,
optimal). We also show that the problem of computing the con-
nectivity (rather than the graph details) of SMCC can be solved in
linear time regarding the query size (thus, optimal). To build the
index, we extend the techniques in [7] to accommodate batch pro-
cessing and computation sharing. To efficiently support the appli-
cations with graph updates, we also present novel increment tech-
niques. Finally, we conduct extensive performance studies on large
real and synthetic graphs, which demonstrate that our index-based
algorithms significantly outperform baseline algorithms by several
orders of magnitude and our indexing algorithms are efficient.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; G.2.2 [Graph The-

ory]: Graph algorithms

Keywords

Steiner Maximum-Connected Component; k-Edge Connected Com-
ponent; Maximum Spanning Tree; Dynamic Graph

1. INTRODUCTION
In many real applications, data and their relationships can be

modeled as a graph G = (V, E), where vertices in V represent en-
tities of interest and edges in E represent relationships between
entities. With the proliferation of graph applications, such as so-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2746486.

cial networks, information networks, web search, collaboration net-
works, E-commerce networks, communication networks, and biol-
ogy, research efforts have been devoted towards many fundamental
problems in managing and analyzing graph data. Among them, the
problem of computing all k-edge connected components of a graph
has been recently studied in [4, 7, 31, 34] for a given k. A k-edge
connected component of a graph G is a maximal vertex-induced
subgraph g of G such that g is k-edge connected (i.e., the resulting
graph is still connected after the removal of any (k − 1) edges from
g). For example, the graph G in Figure 1(a) is 1-edge connected,
and g1 (the left subgraph of G) is a 2-edge connected component.

Computing k-edge connected components has many applications.
For example, in social networks (e.g., Facebook), a cohesive block
(a community) of a graph G is defined as a connected compo-
nent g of G where the connectivity of g is referred to as the co-

hesiveness of the cohesive block g [30]. Computing connected
components with high connectivity may also be used to identify
the closely related entities to provide useful information for social
behavior mining [2]. In a collaboration network (e.g., DBLP), a
highly connected component may be a group of researchers with
similar research interests. In an E-commerce network (e.g., eBay),
a highly connected subgraph may be a group of products that are
interested by customers with similar flavors. In computational biol-
ogy, a highly connected subgraph is likely to be a functional clus-
ter of genes for biologists to conduct the study of gene microar-
rays. Computing k-edge connected components also potentially
contributes to many other technology developments such as graph
visualization and robust detection of communication networks [4,
7, 29, 33].

6

v3 4v v
5

v2

v1

v8

v7

g
1

v9

v11

v10

v

(a) Graph

2

8 v7

v2 v1 v6

v
54vv3

v11

v9

v10

222

2
2

22 1

2

v

(b) Maximum spanning tree

Figure 1: Example

Computing Steiner Maximum-Connected Components. In the
above applications, users may often want to find a subgraph with
the maximum connectivity that contains a given set q of query ver-
tices. There could be many such subgraphs with the maximum
connectivity. In this paper, we focus on computing the maximum
induced subgraph with the maximum connectivity among all sub-
graphs that contain q, namely, Steiner Maximum-Connected Com-

ponent (SMCC). We also investigate the problem of computing
the SMCC with its number of vertices not smaller than a given
L, namely SMCCL. Finally, instead of computing SMCC, we also

459

investigate the problem of computing the connectivity of SMCC,
namely the steiner-connectivity of q.

Example 1.1: Assume that in the graph G in Figure 1(a), the set q

of query vertices is {v3, v4, v5}. Regrading the given q, below are the
results for the above three problems. The SMCC is g1. The SMCCL

for L = 9 is the entire graph G; that is, the SMCC containing q with
at least 9 vertices is G. The steiner-connectivity of q is 2, which is
the connectivity of the SMCC g1. �

Applications. The above problems have many applications.
1) Potential Customer Prediction. Predicting potential customers
for a new product is essential for marketing. Social networks (e.g.,
Facebook) provide a good way to do the suggestion by utilizing
the friend relationship among users. Given a set q of users who
are already interested in a certain product, it is highly possible that
other users who are highly connected to q and also highly con-
nected to each other will be interested in the product. This is be-
cause highly connected users are likely to belong to the same social
cluster [19] and thus share similar interests. Therefore, such cus-
tomers can be found by computing the SMCC or SMCCL of q (i.e.,
the most highly connected component containing q).
2) Product Promotion. In an E-commerce network (e.g., eBay), a
sales manager may want to promote some products that have high
potential to be popular. Those products that are in the same highly
associated group as the set of hot products are good candidates for
the promotion, while a highly associated group is usually identi-
fied as a graph component with high connectivity [31]. Therefore,
such products can be obtained by computing SMCC or SMCCL by
considering the set of hot products as a query q.
3) Research Team Assembling. Several key researchers may want
to assemble a research team to work on a big research project. Intu-
itively, researchers in a good team should have close collaboration
such that the overall communication cost is small [22]. Therefore,
the researchers who are highly connected to the initiators and also
highly connected to each other in a collaboration network (e.g.,
DBLP) are good candidates to be invited to the team [16]. Such
a problem can be solved by computing SMCC or SMCCL with
the set of key researchers as the query q. Moreover, the steiner-
connectivity of the key researchers indicates how strong they are
connected to each other (possibly via other researchers).

Challenges. To the best of our knowledge, this is the first work to
investigate the problem of efficiently computing SMCC (and also
its variant, SMCCL). Clearly, the entire graph or the subgraph in-
duced by q is not always the solution. An immediate solution is
to enumerate all induced subgraphs, containing q, of G to test its
connectivity, and then choose the maximum induced subgraph with
the maximum connectivity as the result. Nevertheless, such an al-
gorithm is too expensive since it may involve enumerating an ex-
ponential number of induced subgraphs.

Alternatively, we could adopt the state-of-the-art techniques in
[4] or [7] to compute all k-edge connected components of G for a
given k while decreasing k from |V | to 1. Then, we choose the first
connected component that contains q, as the result; this component
would have the maximum connectivity. However, this approach
needs to traverse the entire graph G several times, which takes ex-
cessive long time when G is large.

Motivated by the above, in this paper we aim to develop effi-
cient techniques to compute SMCC based on an iterative expan-
sion paradigm to only include vertices that are in the result graph
one by one till finding the SMCC. By doing so, we can avoid scan-
ning the whole graph but only involve the necessary vertices. How-
ever, this is not trivial. Regarding the graph in Figure 1(a) with
q = {v3, v4, v5}, the result graph has to contain g3, the triangle with
the vertex set q. While the expansion from g3 to g1 needs to have

g2 as an intermediate result where g2 is the subgraph induced by
the vertices {v1, v2, v3, v4, v5, v6, v7}, it seems hard to justify the ex-
pansion to g2 from g3 and then to g1 since g3 is 2-edge connected
but g2 is only 1-edge connected; this is the challenge. Moreover, in
many cases vertices in q are not directly connected to each other;
for example, q = {v3, v1, v6} in Figure 1(a) may also be a query.
This seems making the challenge harder, since we also need to do
expansions for finding paths to connect the vertices in q together.

Our Approaches and Contributions. Assume that the steiner-
connectivity of each pair of vertices in G is pre-computed and de-
noted by sc({u, v}). In this paper, we show that we can compute
the SMCC of q by 1) computing the steiner-connectivity sc(q) of q,
and 2) including all vertices in G whose steiner-connectivity with
q is no less than sc(q) into the result. To efficiently implement the
above idea, we prove that sc(q) = minv∈q sc({v0, v}) with v0 being an
arbitrary vertex in q. This is the basic idea of our techniques. Such
an algorithm can be executed in linear time regarding the number of
vertices in the result if for each vertex v in G, other vertices {v′ ∈ V}
are sorted over the values of sc({v, v′}). However, the space com-
plexity is O(|V |2) which is prohibitively large.

To resolve the space issue, we propose a novel compact tree-
structure index to preserve the steiner-connectivity information. In
particular, we show that the maximum spanning tree T , over the
transitive closure of G with the steiner-connectivities as the edge
weights, gives enough information for our computation. As an ex-
ample, Figure 1(b) demonstrates such a maximum spanning tree T

for the graph in Figure 1(a) where the number on each edge is the
steiner-connectivity of the two end-vertices.

Then, we show that the steiner-connectivity of q equals the min-
imum weight in the subtree Tq of T , where Tq is the minimal con-
nected subtree of T that contains q. For example, for q = {v3, v4, v5}
in Figure 1(b), Tq is the subtree spanning {v1, v2, v3, v4, v5, v6, v8}
and then sc(q) = 2. Thus, the SMCC of q can be obtained by
adding vertices one by one, starting from any vertex in q, in a BFS
fashion on T if its corresponding edge’s weight in T is at least
sc(q). For example, regarding the spanning tree T in Figure 1(b)
and q = {v3, v4, v5}, the algorithm starts from v4 to add the vertices
v1, v8, v2, v6, v7, v3, v5 one by one in a BFS fashion, where the sub-
tree spanning v9, v10, and v11 is pruned since sc({v1, v9}) = 1. It is
immediate that such an algorithm runs in liner time regarding the
number of vertices outputted if we order the neighbours of each
vertex in the tree based on their values of steiner-connectivities.

To improve the efficiency of computing the steiner-connectivity
of q, we further develop a new tree index, by which we achieve the
time complexity of O(|q|) for computing the steiner-connectivity.
Moreover, we also show that SMCCL can be computed by a priori-
tized search on T with time complexity linear to the result size.

To build such an index, the maximum spanning tree T , we show
that we only need to pre-compute the steiner-connectivities for all
edges in G. By extending the techniques in [7] for batch processing
and computation sharing, this can be conducted in time O(α(G)·h·l·
|E|), where α(G) is the “arboricity” of G and is bounded by (usually
much smaller than)

√
|E| [10], and h and l are usually bounded

by small constants [7]. Moreover, we also propose incremental
techniques to efficiently update the steiner-connectivities and our
index structure when the graph changes. In particular, we show that
to update the steiner-connectivities when an edge (u, v) is inserted
or deleted, we can restrict our computation to the SMCC of {u, v};
moreover, we can contract every k-edge connected component with
k = sc(q)+1 in the SMCC into a super-vertex. This greatly reduces
the index maintenance cost.

Our primary contributions consist of the following two parts.

• Optimal Query Processing Algorithms.

We propose index-based optimal algorithms for computing

460

SMCC, SMCCL, and steiner-connectivity; that is, the algo-
rithms are in linear time regarding the query and result sizes.

• Efficient Index Construction and Maintenance Techniques.

1) For index construction, we propose an efficient algorithm
to compute the steiner-connectivity for all edges in G in time
O(α(G) · h · l · |E|). We show that the maximum spanning tree
is enough to preserve the steiner-connectivity for all edges.

2) We also propose efficient incremental techniques to up-
date the steiner-connectivity and our index structure when
the graph changes. To do this, we identify important proper-
ties to restrict our computation locally to a small subgraph.

We conduct extensive empirical studies on large real and syn-
thetic graphs. The empirical studies confirm that the proposed
index-based algorithms significantly outperform baseline algorithms
by several orders of magnitude, and demonstrate that our indexing
techniques can construct and maintain the indexes very efficiently.

Organization. The rest of the paper is organized as follows. A
brief overview of related work is given below. Section 2 gives the
definitions of the studied queries, and Section 3 presents baseline
algorithms by using the existing techniques. We propose index-
based optimal query processing techniques in Section 4. Efficient
techniques for index construction and maintenance are developed
in Section 5. Experimental results are reported in Section 6. We
discuss extensions of our techniques to process other queries and
possible ways to conduct external-memory computation in Sec-
tion 7, and give a conclusion in Section 8. Proofs are omitted due

to space limits and can be found in Section A.3 in the Appendix.

Related Work. We categorize the related works as follows.

Computing k-Edge Connected Components. As discussed in the
challenge part, we can compute SMCC by extending the existing
techniques for computing k-edge connected components. In the lit-
erature, there are three approaches for computing k-edge connected
components of a graph; that is, cut-based approach [25, 31, 34],
decomposition-based approach [7], and randomized approach [4].
As the decomposition-based approach has a time complexity of
O(h · l · |E|) where h and l are usually bounded by small constants,
extending it to compute SMCC takes O(|V | · h · l · |E|) time which is
time-consuming; we further discuss these techniques in Section 3.
In this paper, we propose optimal algorithms for computing SMCC;
that is, our running time is linear to the output size.

Online Community Search. Given a set q of query vertices and a
graph G, the problem of online community search that computes
the communities in G containing q has been studied recently. Dif-
ferent semantics for community search have been studied; for ex-
ample, local modularity based community search [11], k-core based
community search [27, 14], k-truss based community search [20],
and α-adjacency γ-quasi-k-clique based community search [13].
Nevertheless, due to inherent different problem definitions, none
of these techniques can be used to compute SMCC or SMCCL.

Dense Subgraph Extraction. Efficient techniques for computing all
maximal cliques and quasi-cliques of a graph are presented in [6,
9] and [32], respectively. Problems of efficiently computing other
dense subgraphs, including k-core [8], DN-subgraph [29], triangle
k-core motifs [33], etc., have also been recently investigated. Nev-
ertheless, due to inherently different problem natures, these tech-
niques are inapplicable to compute SMCC or SMCCL.

Edge-Connectivity. Efficiently computing edge-connectivities be-
tween vertex-pairs has been studied in graph theory [17], which
can be computed by the maximum flow techniques [12]. The state-
of-the-art algorithms compute exact maximum flow in O(|V ||E|)
time [24] and approximate maximum flow in almost linear time to
|E| [21, 26]. To efficiently process vertex-to-vertex edge-connectivity

queries, index structures have also been developed in [1] and [18].
Nevertheless, due to inherently different formulations, these tech-
niques cannot be used to compute steiner-connectivities.

2. COMPUTING STEINER MAXIMUM-

CONNECTED COMPONENTS
In this paper, we focus on an undirected graph G = (V, E) [17],

where V is the set of vertices and E is the set of edges. We denote
the number of vertices and the number of edges in G by |V | and
|E|, respectively. Given a vertex subset Vs ⊆ V , the vertex-induced

subgraph G[Vs] by Vs is a subgraph G[Vs] = (Vs, Es) of G with Vs

as its vertex set such that Es consists of only the edges in G with
both endpoints in Vs; that is, G[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}).
Definition 2.1: (k-edge Connected [17]) A graph G is k-edge con-

nected if the remaining graph is still connected after the removal of
any (k − 1) edges from G. �

The edge-connectivity of a graph is the largest k for which the
graph is k-edge connected. In the following, for presentation sim-
plicity we refer edge-connectivity as connectivity.

Definition 2.2: (Steiner Maximum-Connected Component) Given
a set q of vertices in a graph G, we define the steiner maximum-

connected component in G of q, denoted SMCC, as the maximum
induced subgraph with the maximum connectivity among all sub-
graphs of G that contain q. �

We call the connectivity of the SMCC of q as the steiner-connectivity

of q, denoted sc(q). SMCC is related to k-edge connected compo-
nents defined below.

Definition 2.3: (k-edge Connected Component [4, 7]) Given a
graph G, a subgraph g of G is a k-edge connected component of G

if 1) g is k-edge connected, and 2) any super-graph in G of g is not
k-edge connected. �

g3

v1
v2

v5v3

g1

v10 v11

v13

v6
v8v7

v9

v12

v4 g2

Figure 2: An example graph

A k-edge connected component is a maximum vertex-induced
subgraph. It is easy to see that the SMCC of q is the k-edge con-
nected component of G containing q with the maximum k. For ex-
ample, the graph G in Figure 2 is 2-edge connected, the subgraph
g1 is a 4-edge connected component, and g3 is a 3-edge connected
component. However, g2 is not a 3-edge connected component,
since g1∪g2 is also 3-edge connected; g1∪g2 is a 3-edge connected
component. Here, g1 ∪ g2 denotes the union of g1, g2, which also
includes the edges between vertices in g1 and vertices in g2 [17].
Therefore, the SMCC of {v1, v4} is g1 with sc({v1, v4}) = 4, and the
SMCC of {v1, v4, v7} is g1 ∪ g2 with sc({v1, v4, v7}) = 3.

Definition 2.4: (SMCC with Size Constraint (≥ L)) Given a set
q of vertices in a graph G and a number L, we define the SMCC

with size constraint (≥ L) in G of q, denoted SMCCL, as the SMCC
containing q with the number of vertices not smaller than L. �

For example, in Figure 2, the SMCCL of {v1, v4} with L = 4 is
g1, while the SMCCL of {v1, v4} with L = 6 is g1 ∪ g2.

Problem Statement. Given a set q of query vertices in a graph G

and possibly a number L, we study the following three queries:

461

• SMCC Query — compute the SMCC of q;

• SMCCL Query — compute the SMCCL of q;

• Steiner-Connectivity Query — compute sc(q).

Note that, in this paper we focus on computing the set of vertices
for SMCC and SMCCL queries, while the subgraph details can be
obtained as induced subgraphs. In the following, without loss of
generality, we assume that the input graph G is connected and |q| ≥
2. Note that, if |q| = 1 (assume q = {v}), then we can replace q with
a new query q′ = {v, v′}, where v′ = arg max(v,v′′)∈E sc(v, v′′); it is
easy to verify that q and q′ have the same query result.

3. BASELINE SOLUTIONS
As shown in Section 2, the SMCC of q is the k-edge connected

component of G containing q with the maximum k. Thus, we can
process an SMCC query by computing k-edge connected compo-
nents of G for all different values of k, as follows. We decrease the
value of k from |V | to 1, compute the corresponding k-edge con-
nected components of G, and terminate the computation once there
is a k-edge connected component containing q which then is the
SMCC of q. The pseudocode is shown in Algorithm 1 below.

Algorithm 1: BaseLine

Input: A graph G = (V, E), and a set q of vertices
Output: The SMCC of q

1 for k ← |V | to 1 do
2 φk(G)← ComputeKECCs(G, k); /* Compute k-edge

connected components of G */;
3 if there is a subgraph g in φk(G) containing q then
4 return g as the SMCC of q;

It is immediate that Algorithm 1 correctly computes the SMCC
of q, given that ComputeKECCs correctly computes all k-edge
connected components of G. In the literature, there are two state-of-
the-art algorithms for computing k-edge connected components of
a graph: one is an exact algorithm in [7], denoted KECCs-Exact,
which is also briefly presented in Section A.5, and the other is a
Monte Carlo randomized algorithm in [4], denoted KECCs-Random.
Both algorithms have shown to be superior than the cut-based al-
gorithms in [25, 31, 34]. In this paper, we adopt both algorithms in
Algorithm 1, and denote the corresponding algorithms for process-
ing SMCC queries as SMCC-BLE and SMCC-BLR, respectively.

Time Complexities. Here, we analyse the time complexities.

Time Complexity of SMCC-BLE. As shown in [7] (and Section A.5),
the time complexity of KECCs-Exact is O(h · l · |E|), where h and l

are usually bounded by small constants for real graphs. Therefore,
the time complexity of SMCC-BLE is O(|V | · h · l · |E|).
Time Complexity of SMCC-BLR. As shown in [4], the time com-
plexity of KECCs-Random is O(t · |E|), where t is the number of
iterations; it is proved in [4] that KECCs-Random, with high prob-
ability, can correctly compute all k-edge connected components of
a graph in O(log2 |V |) iterations (i.e., t = O(log2 |V |)). Therefore,
the time complexity of SMCC-BLR is O(|V | · t · |E|).
Other Queries. Note that, Algorithm 1 can be immediately used to
compute the steiner-connectivity of q; that is, at Line 4, we return
k instead of g. Similarly, it is easy to prove that the SMCCL of q

is the k-edge connected component of G with the maximum k that
contains q and has no less than L vertices. Thus, Algorithm 1 can
be used to process SMCCL queries as well, by returning the first g

that satisfies Line 3 and also has no less than L vertices.

4. OPTIMAL QUERY PROCESSING
In this section, we propose index-based optimal algorithms for

computing the SMCC, the SMCCL, and the steiner-connectivity for

a set of query vertices, while indexing techniques will be presented
in Section 5. Firstly, we present the general idea and an overview
of our algorithms in Section 4.1 and develop our index structure in
Section 4.2. Then, we propose index-based optimal algorithms for
processing steiner-connectivity queries, SMCC queries, and SMCCL

queries in Sections 4.3, 4.4, and 4.5, respectively.

4.1 General Idea and An Overview
We present the following lemma to characterize the SMCC of q,

which also illustrates the general idea of our algorithm.

Lemma 4.1: Given a set q of query vertices, the SMCC of q is

the maximal set of vertices such that each vertex v in it satisfies

sc({v0, v}) ≥ sc(q), where v0 is an arbitrary vertex chosen from q

and sc(q) is the steiner-connectivity of q. �

Here, sc({v0, v}) is the steiner-connectivity of {v0, v}, and we ab-
breviate it as sc(v0, v) in the following for ease of presentation.
From Lemma 4.1, we can see that the SMCC of q can be obtained
as {v ∈ V | sc(v0, v) ≥ sc(q)} once we have computed the steiner-
connectivity of q. Moreover, the steiner-connectivity of q can be
computed based on the lemma below.

Lemma 4.2: Given q = {v0, . . . , v|q|−1}, the steiner-connectivity of

q, sc(q), is equal to the minimum steiner-connectivity between v0

and any vertex in q, where v0 is an arbitrarily chosen vertex from

q; that is, sc(q) = min1≤i≤|q|−1 sc(v0, vi),∀v0 ∈ q. �

Note that, sc({v0}) ≥ sc(q). Therefore, we can simplify the equa-
tion in Lemma 4.2 as sc(q) = minv∈q sc(v0, v),∀v0 ∈ q.

Overview. Following from Lemma 4.1 and Lemma 4.2, we can
process any SMCC query in two steps by Algorithm 2. We first
compute the steiner-connectivity of q based on Lemma 4.2 (Line 1),
and then compute the SMCC of q based on Lemma 4.1 and the
computed sc(q) (Line 2).

Algorithm 2: SMCC-Overview

Input: A graph G = (V, E), and a set q = {v0, . . . , v|q|−1} of vertices
Output: The SMCC of q

1 sc(q)← minv∈q sc(v0, v);
2 Vq ← {v ∈ V | sc(v0, v) ≥ sc(q)};
3 return Vq;

A Possible but Impractical Implementation. One possible implemen-
tation is pre-computing and storing the steiner-connectivity sc(u, v)
for every pair of vertices in G; that is, we store the transitive clo-
sure of G with each edge (u, v) in it carrying a weight sc(u, v). Then,
Line 1 runs in O(|q|) time. Moreover, if we pre-sort all edges (u, v)
regarding the same vertex u by their weights, then Line 2 runs
in O(|Vq|) time. Consequently, such an implementation of Algo-
rithm 2 runs in O(|Vq|) time, where Vq is the result.

However, the space complexity will be O(|V |2), which is pro-
hibitively large. For example, even for a moderate-sized graph with
3 × 106 vertices, the storage space will be over 10TB. Therefore,
this implementation is not practical for large graphs.

4.2 Observations and Index Structure
In this subsection, we propose a compact index structure to pre-

serve all the steiner-connectivity information while still enabling

fast query processing. For developing our index structure, we first
define the connectivity graph and present an important property of
steiner-connectivity based on the connectivity graph.

Definition 4.1: (Connectivity Graph) Given a graph G = (V, E),
the connectivity graph of G is a weighted undirected graph Gc =

(V, E,w) with the same set of vertices and edges as that of G. Each
edge (u, v) in Gc carries a weight w(u, v), which is the steiner-
connectivity sc(u, v) of {u, v} in G. �

462

3
4

4

4
4 4 4

4

4
4

4 3

3

3

2
3

3

3 3

3
3

2

3
3

3

3
3

v11

v13

v6
v8

v9

v4

v1
v2

v5v3
v12

v10

v7

(a) Connectivity graph Gc

3 3

3

4
4 4

4

3 32

3 3

v1

v5v3v2 v4

v12 v9 v7

v8

v6v10

v11v13

(b) MST T

Figure 3: Connectivity graph and MST

The corresponding connectivity graph to the graph in Figure 2
is shown in Figure 3(a) (including edges indicated by both solid
lines and dashed lines), where weights of edges are also shown.
Connectivity graph has the following property.

Lemma 4.3: Given vertex u and vertex v in a connectivity graph

Gc, let Pu,v denote the set of all simple paths between u and v in

Gc, and define the weight w(P) of a path P as the minimum edge

weight in P (i.e., w(P) = min{w(u′, v′) | (u′, v′) ∈ P}), then the

steiner-connectivity of {u, v} is sc(u, v) = maxP∈Pu,v
w(P). �

Lemma 4.3 illustrates the key observation for computing steiner-
connectivities based on the connectivity graph. For example, for
computing sc(v1, v7) in Figure 3(a), the path (v1, v4, v7) has the max-
imum weight among all paths between v1 and v7; thus sc(v1, v7) =
w(v4, v7) = 3. Although this is not an efficient approach, we are
able to develop a compact index structure based on the key obser-
vation in Lemma 4.3, in the following.

Index Structure: MST. Given the connectivity graph Gc = (V, E,w)
of a graph G, we construct a compact tree-structured index T , which
is the maximum spanning tree (MST) of Gc; that is, the index is a
weighted tree where each tree edge has a steiner-connectivity re-
garding the two end-vertices.

Definition 4.2: (Maximum Spanning Tree [17]) Given a con-
nected, undirected graph G, a spanning tree of G is a subgraph of G

that is a tree and contains all vertices of G. A maximum spanning

tree of G is the spanning tree with the maximum total weight. �

The MST has the nice property that it explicitly stores the path
with maximum weight for every pair of vertices as proved below.

Lemma 4.4: Given any MST T constructed from the connectivity

graph Gc, the unique path P in T between vertex u and vertex v has

the maximum weight (see Lemma 4.3) among all paths between u

and v in Gc. Thus, sc(u, v) = min(u′ ,v′)∈P λT (u′, v′) where λT (u′, v′)
denotes the weight of edge (u′, v′) in T . �

For example, the MST T of the graph in Figure 3(a) consists of
the edges indicated by solid lines and is reillustrated in Figure 3(b).
The path in T between v1 and v7 is (v1, v4, v7) which is the path with
the maximum weight among all paths in Gc between v1 and v7.

Index Storage. Following from Lemmas 4.2 and 4.4, we can see
that any MST T preserves all the steiner-connectivity information;
that is, for any q ⊂ V , we can compute sc(q) just based on any
MST T . Therefore, we can store any MST T and use it to process
the queries we study in this paper. Note that, the connectivity graph
can be simply stored by adding the weight on each edge of the orig-
inal graph, where the weight of an edge is the steiner-connectivity
between its two end-vertices.

The size of the MST index is O(|V |). This provides a possibility
to process the studied queries in main memory; that is, we store
the MST in main memory. Nevertheless, in Section 7 we also dis-
cuss possible structures of disk-based index and possible ways to
conduct external-memory computation.

4.3 Optimally Processing Steiner-Connectivity
Queries

In this subsection, we propose an index-based optimal algorithm
for processing steiner-connectivity queries. Firstly, we present the
following lemma for computing the steiner-connectivity of q which
directly follows from Lemma 4.2 and Lemma 4.4.

Lemma 4.5: Given a set q of query vertices, the steiner-connectivity

of q is equal to the minimum edge weight in the subtree Tq of T ,

where Tq is the minimal connected subtree of T that contains all

vertices of q. �

Intuitively, Tq is formed by the set of paths in T between v0 ∈
q and every other vertex in q. Following from Lemma 4.5, the
pseudocode for processing steiner-connectivity queries is shown in
Algorithm 3. Given a set q of vertices, we first obtain the subtree
Tq of T , and then report the minimum edge weight among all edges
in Tq as the steiner-connectivity of q.

Algorithm 3: SC-MST

Input: A MST T , and a set q of vertices
Output: The steiner-connectivity of q

1 Compute the subtree Tq;
2 return sc(q) = min(u,v)∈Tq λT (u, v);

Implementation and Time Complexity. A naive implementation
of Algorithm 3 by BFS or DFS [12] would require O(|V |) time to
get the subtree Tq for q, which is too slow. We demonstrate that
Algorithm 3 can be implemented in O(|Tq|) time in the following.
Obviously, Line 2 runs in O(|Tq|) time. Therefore, we only need to
describe how to obtain the subtree Tq (i.e., Line 1) in O(|Tq|) time.

Definition 4.3: (Lowest Common Ancestor [3]) The Lowest Com-

mon Ancestor (LCA) of two vertices, u and v, in a rooted tree [17],
denoted lca(u, v), is defined as the vertex that is farthest to the root
and has both u and v as its descendants (where a vertex is allowed
to be a descendant of itself). �

Similarly, we can define the LCA of a set q of vertices, denoted
lca(q). Given the MST T , we make it a rooted tree by choosing an
arbitrary vertex to be the root. Then, it is easy to see that Tq consists
of all edges in the paths from every vertex in q to lca(q). Moreover,
assume q = {v0, v1, . . . , v|q|−1}, and let lcai = lca(v0, . . . , vi), then
lcai = lca(lcai−1, vi),∀1 ≤ i ≤ |q| −1 where lca0 = v0. Thus, we can
first compute lca1, then lca2, and so forth; finally, lca|q|−1 is lca(q).

To efficiently compute LCA, we firstly preprocess the rooted tree
T : for each vertex v in T , we store its parent p(v) and its level
number l(v), where the level number of the root vertex is 0 and
l(v) = l(p(v)) + 1 for other vertices. Then, given u and v, we can
obtain lca(u, v) by traversing u and v to their ancestor vertices ac-
cording to their level numbers and by following p(·); that is, start-
ing from u′(= u) and v′(= v), each time we traverse the vertex with
larger level number to its parent (i.e., u′ ← p(u′) if l(u′) > l(v′)
and v′ ← p(v′) otherwise), and lca(u, v) is obtained as u′ when u′

and v′ are the same. Moreover, for computing lcai(lcai−1, vi), once
vi reaches a vertex that has already been visited when computing
lca1, . . . , lcai−1, we can conclude that lcai(lcai−1, vi) = lcai−1. Fi-
nally, Tq is obtained by including all the visited edges. It is easy to
verify that the running time is O(|Tq|). We show the psudocode in
Algorithm 10 in Section A.1 in the Appendix.

Example 4.1: Suppose q = {v3, v13, v11}, where the MST T is
shown in Figure 3(b) with v1 as the root. For computing lca(v3, v13),
we traverse from v3 and v13 to their ancestor vertices until reaching
v1; thus lca(v3, v13) = v1. Now, we compute lca(lca(v3, v13), v11);
firstly, we traverse v11 to its parent v10 which has been visited be-

463

fore, thus we conclude that lca(q) = lca(v3, v13) = v1. Therefore,
Tq consists of all the visited edges, and sc(q) = λT (v5, v12) = 2. �

The above algorithm, Algorithm 3, is efficient, however not opti-
mal. We further propose a novel technique to preprocess the MST
T to generate a new tree such that a steiner-connectivity query q can
be processed in O(|q|) time; thus, the algorithm is optimal. Details
are presented in Section A.2 in the Appendix.

4.4 Optimally Processing SMCC Queries
Given the steiner-connectivity of q, the SMCC of q can be ob-

tained as {v ∈ V | sc(v0, v) ≥ sc(q)} following Lemma 4.1. Given
the MST T , a naive approach would be computing sc(v0, v) for ev-
ery vertex v in G based on Lemma 4.4. However, this is time-
consuming. In this subsection, we propose an optimal algorithm
for processing SMCC queries. Firstly, we present the lemma below
that directly follows from Lemma 4.1 and Lemma 4.4.

Lemma 4.6: Given the MST T and the steiner-connectivity sc(q)
of q, the SMCC of q consists of all vertices that are reachable from

v0 through edges with weights no less than sc(q), where v0 is an

arbitrary vertex in q. �

The pseudocode for optimally processing SMCC queries is shown
in Algorithm 4. We first compute the steiner-connectivity sc(q) of
q, and then obtain the SMCC of q by conducting a BFS starting
from any vertex v0 in q and visiting only edges with weights at
least sc(q). Note that, the BFS at Line 2 actually computes the
sc(q)-edge connected component of G containing v0.

Algorithm 4: SMCC-OPT

Input: A MST T , and a set q of query vertices
Output: The SMCC of q

1 Compute the steiner-connectivity sc(q) of q; /* By invoking

Algorithm 3 */;
2 Conduct a BFS on T starting from any vertex v0 in q and visiting only

edges with weights at least sc(q); let Vq be the set of visited vertices;
3 return Vq;

Implementation and Time Complexity. Algorithm 4 can be im-
plemented in O(|Vq|) time as follows. Firstly, Line 1 can be imple-
mented in O(|Tq|) (see Section 4.3) time by invoking Algorithm 3.
Secondly, Line 2 can be implemented in O(|Vq|) time, if we store
T in the form of adjacency lists and organize edges in each adja-
cency list in non-increasing weight order. Moreover, it is obvious
that Tq is a subset of Vq (i.e., Tq ⊆ Vq). Thus, the time complexity
of Algorithm 4 is O(|Vq|), which is optimal since Vq is the result.

Example 4.2: Consider a query q = {v1, v4, v5} on the graph in
Figure 2 where the MST T is shown in Figure 3(a). Firstly, we
obtain that sc(q) = 4, since Tq = {(v1, v4), (v1, v5)} and λT (v1, v4) =
λT (v1, v5) = 4. Secondly, we conduct a BFS on the MST T starting
from v1 and visiting only edges with weights at least 4; during the
BFS, we visit vertices {v1, . . . , v5}, which is the SMCC of q. �

4.5 Optimally Processing SMCCL Queries
With similar ideas to Algorithm 4, we can process an SMCCL

query by trying different connectivity values k, and conducting BFS
for each k. That is, we decrease k from sc(q) to 1, conduct BFS on
T by starting from v0 to obtain the k-edge connected component of
G containing v0, and return the component once it has at least L

vertices. However, this is not an efficient approach.
We propose an optimal algorithm for computing SMCCL based

on the property that each k-edge connected component of G is en-

tirely contained in a (k− 1)-edge connected component of G. Thus,
instead of computing k-edge connected components of G from scratch
for each different value of k, we can gradually compute the k-edge

connected components of G containing v0 for different values of
k by conducting a prioritized search on T starting from v0. The
pseudocode is shown in Algorithm 5 below.

Algorithm 5: SMCCL-OPT

Input: A MST T , a set q of query vertices, and a number L
Output: The SMCCL of q

1 Vq ← {v0}; /* v0 is an arbitrary vertex in q */;
2 k ← 0; /* k is a lower bound connectivity of SMCCL */;
3 Q← {the first adjacency edge in T of u};
4 while the maximum key in Q is not smaller than k do
5 (u, v)← pop the edge with maximum weight from Q;
6 Push the next adjacency edge of u into Q;
7 if v < Vq then
8 Vq ← Vq ∪ {v};
9 Push the first adjacency edge of v into Q;

10 if q ⊆ Vq and |Vq | ≥ L and k = 0 then
11 k ← the minimum weight among all popped edges; /* k

is the connectivity of the SMCCL */;

12 return Vq;

Implementation and Time Complexity. It is easy to see that
Line 11 correctly sets k as the connectivity of the SMCCL of q,
since any (k + 1)-edge connected component of G either does not
contain all vertices of q or has less than L vertices. Therefore, Al-
gorithm 5 correctly computes the SMCCL of q by including all ver-
tices reachable from v0 through edges with weights at least k.

For the time complexity, it would be O(|Vq| log |Vq|) if we imple-
ment Q as a priority queue [12], since there are |Vq| pop operations
at Line 5, where Vq is the result. Nevertheless, we can achieve
the time complexity of O(|Vq|) by implementing Q using a bucket
structure similar to that used in bin sort [12], in which each bucket
1 ≤ b ≤ kmax stores edges with weight b, where kmax is the maxi-
mum weight among all visited edges. Note that, Vq contains at least
kmax vertices. Thus, the time complexity of Algorithm 5 is linear to
the result size, and Algorithm 5 is optimal.

Example 4.3: Consider a query q = {v1, v4, v5} with L = 6, where
the MST T is shown in Figure 3(a). Initially, Vq = {v1}. After
visiting the four adjacency edges of v1, Vq = {v1, . . . , v5} with
|Vq| < 6, thus, we further visit edge (v4, v7) to also include v7

into Vq, and k is set as 3. Finally, Vq is obtained by also visiting
(v5, v9), (v7, v6), (v6, v8), and Vq = {v1, . . . , v9}. �

4.6 Discussion: MST Selection
As discussed in Section 4.2, MST is not unique and any MST can

be used to process our queries with proved correctness of query re-
sult. Regarding query processing time, the running time of SMCC-
OPT (Algorithm 4) and SMCCL-OPT (Algorithm 5) for process-
ing SMCC and SMCCL queries is linear to the output size, which
is independent to the selection of MST. Thus, the running time of
SMCC-OPT and SMCCL-OPT will not be affected by choosing a
different MST; this also holds for the optimal algorithm (i.e., Algo-
rithm 11) for processing steiner-connectivity queries, because the
algorithm runs in linear time regarding the input size.

5. INDEX CONSTRUCTION AND MAINTE-

NANCE
In this section, we propose efficient techniques for index con-

struction (in Section 5.1) and for index maintenance (in Section 5.2)
when the graph changes.

5.1 Index Construction
In the following, we present techniques for constructing the con-

nectivity graph and the MST index, respectively.

464

5.1.1 Connectivity Graph Construction

A naive approach would be computing sc(u, v) independently for
each edge (u, v) in G by using the techniques in Section 3 (i.e.,
invoking Algorithm 1). Then, the time complexity would be at least
O(|V | ·h·l· |E|2), since computing each sc(u, v) by SMCC-BLE takes
O(|V | ·h · l · |E|) time.1 Thus, this naive approach is time-consuming.
We propose efficient algorithms below.

Batch Processing Algorithm. We can compute all sc(·, ·) values
in a batch as follows. First, we initialize sc(u, v) to be 1 for each
edge (u, v) in G. Then, for each k varying from 2 to |V |, we compute
k-edge connected components of G by invoking ComputeKECCs,
and reassign sc(u, v) to be k for each edge (u, v) in a k-edge con-
nected component of G. The assigned sc(·, ·) values are correct
steiner-connectivities when the algorithm terminates. The time com-
plexity of this algorithm is O(|V | · h · l · |E|).
Computation Sharing Algorithm. In the above batch processing
algorithm, we compute k-edge connected components of G by in-
voking ComputeKECCs independently for each k varying from 2
to |V |; however, a lot of computation can be shared among exe-
cutions of ComputeKECCs for different k values. Therefore, we
propose efficient computation sharing techniques below.

From the properties of k-edge connected components, we know
that each k-edge connected component of G is a subgraph of a (k −
1)-edge connected component of G. Therefore, all edges removed
in computing (k − 1)-edge connected components of G can also be
safely removed when computing k-edge connected components of
G; this means that, when computing k-edge connected components
of G, we can take the set of (k−1)-edge connected components of G

instead of G as the input. Moreover, instead of reassigning values
of sc(u, v) multiple times as done in the batch processing algorithm,
we assign values of sc(u, v) for each edge (u, v) only once when it
is removed from G, based on the following lemma.

Lemma 5.1: Given a (k − 1)-edge connected graph G, sc(u, v)
= k − 1 for each edge (u, v) that is removed in computing k-edge

connected components of G by ComputeKECCs. �

The pseudocode of the computation sharing algorithm is shown
in Algorithm 6. Initially, φ1(G) consists only of G (Line 1). Then,
we iteratively compute k-edge connected components of G by in-
creasing k until there is no edge left (Lines 3–6). For a specific
k, we use the set of subgraphs in φk−1(G) instead of G as input
to ComputeKECCs (Line 5), and we assign sc(u, v) to be (k − 1)
for each edge (u, v) removed during computing k-edge connected
components of G (Line 6). Note that, since the |V |-edge connected
components of G contain no edge, Algorithm 6 shall terminate after
at most |V | iterations.

Algorithm 6: ConnGraph-Construction

Input: A graph G
Output: sc(u, v) for each edge (u, v) in G

1 φ1(G)← {G}; k ← 1;
2 while φk(G) , ∅ do
3 k ← k + 1; φk(G)← ∅;
4 for each graph g of size at least 2 in φk−1(G) do
5 φk(G)← φk(G) ∪ ComputeKECCs(g, k); /* Compute

k-edge connected components of g */;
6 Assign sc(u, v) to be (k − 1) for each edge (u, v) removed

during the computation at Line 5;

Theorem 5.1: Given a graph G = (V, E), Algorithm 6 correctly

computes sc(u, v) for all edges {(u, v) ∈ E} in O(α(G) ·h · l · |E|) total

time, where α(G) is the arboricity of graph G [10]. �

1Note that, we discuss the complexities based on KECCs-Exact,
while our following discussions also apply for KECCs-Random.

Note that, the arboricity α(G) of a graph G is the minimum num-
ber of forests into which G can be partitioned, and it is bounded by
and usually much smaller than

√
|E| [10]. It is interesting to see that

this time complexity is even much smaller than the baseline algo-
rithm (i.e., Algorithm 1) for computing the steiner-connectivity for
one pair of vertices; nevertheless, Algorithm 6 is able to compute
steiner-connectivities for |E| pairs of vertices.

Example 5.1: Consider the graph in Figure 2. φ2(G) = {G}. φ3(G) =
{g1 ∪ g2, g3}; (v5, v12) and (v9, v11) are removed, thus sc(v5, v12) = 2
and sc(v9, v11) = 2. In computing φ4(G), all edges in G except those
in g1 are removed; therefore, these newly removed edges (u, v) have
sc(u, v) = 3. Finally, the edges (u′, v′) in g1 are removed and have
sc(u′, v′) = 4. The connectivity graph is shown in Figure 3(a). �

5.1.2 MST Construction

Given the connectivity graph Gc of a graph G, the MST T can be
constructed by a slight modification of the minimum spanning tree

algorithms, such as Prim’s algorithm or Kruskal’s algorithm [12].
We omit the pseudocode here.

Implementation and Time Complexity. The MST T can be con-
structed in O(|E|) time. We demonstrate how to achieve this time
complexity by invoking Kruskal’s algorithm to compute the mini-
mum spanning tree of a graph. Firstly, edges in Gc can be sorted
according to their weights in O(|E|) time using bin sort [12], since
they have integer weights in the range from 1 to |V |. Secondly, af-
ter sorting the edges, the time complexity of Kruskal’s algorithm is
O(|E|ϕ(|V |)) [12], where ϕ(n) is the extremely slowly growing in-
verse of the single-valued Ackermann function and is less than 5 for
all practical values of n [12]. Thus, given a connectivity graph Gc,
the time complexity of constructing the MST T is O(|E|). Note that,
since the steiner-connectivities of edges are computed in sorted or-
der in Algorithm 6, to compute MST we only need to incrementally
maintain the (partial) MST in main memory by sequentially load-
ing edges of the connectivity graph into main memory.

5.2 Index Maintenance
A graph is updated when a vertex or an edge is inserted or deleted.

The insertion/deletion of an isolated vertex will not affect the con-
nectivity graph, and inserting/deleting a vertex with associated edges
can be regarded as inserting/deleting an isolated vertex followed
by/following inserting/deleting edges; thus, we consider only the
cases of edge insertion and edge deletion.

In the following, we first develop techniques to efficiently main-
tain the connectivity graph in Section 5.2.1 (for edge deletion) and
in Section 5.2.2 (for edge insertion), and then propose techniques
to efficiently update the MST in Section 5.2.3.

5.2.1 Handling Edge Deletion

When an edge (u, v) is deleted from G, we let ku,v denote sc(u, v)
in G before the deletion, let gu,v denote the ku,v-edge connected
component of G that contains u and v (i.e., the SMCC of {u, v}),
and let G− and g−u,v denote the resulting graphs of G and gu,v, re-
spectively, by removing (u, v) from it.

We first present the lemma below to illustrate the maximum ef-
fect on the connectivity of a graph by deleting an edge from it.

Lemma 5.2: Given a k-edge connected graph g, let g− denote the

resulting graph of deleting an edge (u, v) ∈ g from g, then g− is at

least (k − 1)-edge connected; g− may be still k-edge connected. �

For example, in Figure 2, g1 is 4-edge connected and it becomes
only 3-edge connected if we remove (v2, v3) from it; g1 ∪ g2 is 3-
edge connected and it is still 3-edge connected if we remove (v2, v3)
from it. Now, in the lemma below we characterize the effect on the
k-edge connected components of G when deleting an edge from G.

465

Lemma 5.3: For any k-edge connected component g (, gu,v) of

G with 1 ≤ k ≤ |V |, let g− be the corresponding graph of g after

removing (u, v), then g− is also a k-edge connected component of

G−. Note that, g− is the same as g if (u, v) < g. �

Consider G in Figure 2, g1, g3, and g1 ∪ g2 are 4-, 3-, and 3-edge
connected component of G, respectively. After removing (v2, v3)
from G, g−3 and (g1 ∪g2)− are still 3-edge connected components of
G, while g−1 becomes only 3-edge connected since g1 = gv2 ,v3 .

Observation-I. From Lemma 5.3, it is immediate that for all edges

in G−, if the steiner-connectivity of an edge (u′, v′) changes due to

the removal of (u, v), then (u′, v′) must be in g−u,v and sc(u′, v′) = ku,v

before the update; moreover, the updated sc(u′, v′) is ku,v − 1.

k + 1k + 1

k + 1
v

u

G

k
k − 1

gu,v

Figure 4: Illustration for connectivity graph maintenance

Conceptually, Figure 4 illustrates a graph G and its k-edge con-
nected components for all different values of k, which are repre-
sented by ellipses; the connectivity values are shown inside the el-
lipses (e.g., k−1, k, k+1). From the properties of k-edge connected
components, we know that each k-edge connected component is
entirely contained in a (k−1)-edge connected component; thus, the
ellipses are in a nested structure. When edge (u, v) (as indicated
by the thick line) with sc(u, v) = k is deleted from G, the SMCC
of {u, v}, gu,v, is indicated by the shadowed ellipse. Observation-
I says that only edges in the shadowed area, which also excludes
those in (k+1)-edge connected components, may have their steiner-
connectivities changed, and they may change from k to k− 1 due to
decomposing g−u,v into several k-edge connected components.

Algorithm. Based on Observation-I and the discussions above,
we can update the connectivity graph by computing ku,v-edge con-
nected components of g−u,v and assigning sc(u′, v′) to be ku,v − 1 for
every edge (u′, v′) removed during the computation. Moreover, we
can do better by contracting every (ku,v + 1)-edge connected com-
ponents of g−u,v into a super-vertex, thus reduce the size of the graph
to be processed. The pseudocode is shown in Algorithm 7.

Algorithm 7: ConnGraph-EdgeDeletion

Input: A connectivity graph Gc, and an edge (u, v)
Output: The updated connectivity graph G−c

1 Compute ku,v (= sc(u, v)), and gu,v (the SMCC of {u, v}); /* By

invoking Algorithm 4 */;
2 Delete (u, v) from gu,v (obtaining g−u,v);
3 Contract every (ku,v + 1)-edge connected components of g−u,v into a

super-vertex;
4 Compute ku,v-edge connected components of g−u,v and assign sc(u′, v′)

to be ku,v − 1 for every edge removed during the computation;

Time Complexity. The time complexity of Algorithm 7 is O(h ·
l · |gu,v|) following from the time complexity of ComputeKECCs,
where |gu,v| denotes the size of gu,v. More specifically, Line 1 takes
O(|gu,v|) time, Lines 2-3 take O(|gu,v|) time, while Line 4 takes O(h ·
l · |gu,v|) time. Therefore, updating the connectivity graph by Algo-
rithm 7 is much more efficient than recomputing the connectivity
graph by Algorithm 6 in Section 5.1.1 whose time complexity is
O(α(G) · h · l · |E|), since |gu,v| ≪ |E| in practice.

Example 5.2: Suppose we delete edge (v5, v9) from the graph G in
Figure 2, we first obtain kv5 ,v9 = 3 and gv5 ,v9 = g1 ∪ g2. Then, we
delete edge (v5, v9) from gv5 ,v9 and contract g1 into a single super-
vertex. Finally, we compute 3-edge connected components of the
obtained graph during which we remove edges (v4, v7) and (v5, v7);
thus, sc(v4, v7) = sc(v5, v7) = 2 for the new graph G−. �

5.2.2 Handling Edge Insertion

When an edge (u, v) is inserted into G, we define ku,v and gu,v in
the same way as for edge deletion; we let G+ and g+u,v denote the
resulting graphs of G and gu,v, respectively, after inserting (u, v).

Similar to Lemma 5.3, we have the following lemma to charac-
terize the effect on the k-edge connected components of G when
inserting an edge to G.

Lemma 5.4: For any k-edge connected component g of G, let g+

be the corresponding graph of g after inserting (u, v); note that, g+

is the same as g if either u or v is not in g. Then, g+ is also a k-edge

connected component of G+ if either k , ku,v + 1 or g+ * g+u,v. �

Consider G in Figure 2, g1, g3, and g1 ∪ g2 are 4-, 3-, and 3-edge
connected component of G, respectively. After inserting (v4, v9)
into G, g+1 , g+3 , and (g1 ∪ g2)+ are still 4-, 3-, and 3-edge connected
component of G. However, if we instead insert (v7, v10) into G,
then g+3 is no longer a 3-edge connected component of G, since
k = kv7 ,v10 + 1 = 3 and g+3 ⊂ gv7 ,v10 = G; actually, g1 ∪ g2 ∪ g3 (i.e.,
G) becomes the 3-edge connected component of G.

Observation-II. From Lemma 5.4, it is immediate that for all edges

in G+, if the steiner-connectivity of an edge (u′, v′) changes due to

the insertion of (u, v), then (u′, v′) must be in g+u,v and sc(u′, v′) =
ku,v before the update; moreover, the updated sc(u′, v′) is ku,v + 1.

Reconsider Figure 4, assume that (u, v) is the edge we inserted
into G. Observation-II says that only edges in the shadowed area,
which also excludes those in (k + 1)-edge connected components,
may have their steiner-connectivities changed, and they may change
from k to k+ 1 due to merging several (k+ 1)-edge connected com-
ponents of gu,v into a single (k + 1)-edge connected component.

Algorithm. Based on Observation-II and the discussions above,
we can update the connectivity graph by computing (ku,v + 1)-edge
connected components of g+u,v (by invoking ComputeKECCs), as-
signing sc(u′, v′) to be ku,v for every edge removed during the com-
putation, and assigning sc(u′′, v′′) to be ku,v+1 for every other edge
(u′′, v′′) in g+u,v that has sc(u′′, v′′) = ku,v before the update. More-
over, we can do better by contracting every (ku,v+1)-edge connected
components of g+u,v into a super-vertex, thus reduce the size of the
graph to be processed. The pseudocode is shown in Algorithm 8.

Algorithm 8: ConnGraph-EdgeInsertion

Input: A connectivity graph Gc, and an edge (u, v)
Output: The updated connectivity graph G+c

1 Compute ku,v (= sc(u, v)), and gu,v (the SMCC of {u, v}); /* By

invoking Algorithm 4 */;
2 Insert (u, v) into gu,v (obtaining g+u,v);
3 Contract every (ku,v + 1)-edge connected components of g+u,v into a

super-vertex;
4 Assign all edges (u′, v′) in g+u,v with sc(u′, v′) = ku,v to be ku,v + 1;
5 Compute (ku,v + 1)-edge connected components of g+u,v and assign

sc(u′, v′) to be ku,v for every edge removed during the computation;

Time Complexity. Similar to the time complexity of Algorithm 7,
the time complexity of Algorithm 8 is O(h · l · |gu,v|), where |gu,v|
denotes the size of gu,v.

Example 5.3: Suppose we insert edge (v4, v9) into the graph G in
Figure 2. Firstly, we obtain kv4 ,v9 = 3 and gv4 ,v9 = g1∪g2. Then, we
insert edge (v4, v9) into gv4 ,v9 , and contract g1 into a single super-

466

vertex. Finally, we compute 4-edge connected components of the
obtained graph during which we remove all the edges; thus, the
connectivity graph remains the same except that we insert (v4, v9)
into Gc with sc(v4, v9) = 3. �

5.2.3 MST Maintenance

Once the connectivity graph is updated, we also need to update
the MST to reflect the changes of the connectivity graph. We sum-
marise the updates on the connectivity graph in below.

• When edge (u, v) is deleted from G: (case-i), (u, v) is re-
moved from Gc; and (case-ii), there may exist some edges
(u′, v′) with sc(u′, v′) changed from ku,v to ku,v − 1.

• When edge (u, v) is inserted into G: (case-iii), (u, v) is in-
serted into Gc with sc(u, v) to be ku,v or ku,v+1; and (case-iv),
there may exist some edges (u′, v′) with sc(u′, v′) changed
from ku,v to ku,v + 1.

Recall that MST is the maximum spanning tree of Gc. We let NT
denote the set of non-tree edges of Gc (i.e., the set of edges of Gc

that are not in MST). For example, the dotted edges in Figure 3(a)
illustrate the NT corresponding to the MST in Figure 3(b). We
organize all edges of NT into |V | buckets (similar to the structure
used in bin sort [12]), where each bucket 1 ≤ i ≤ |V | stores all edges
of NT that have weight i and organizes these edges by a doubly
linked list [12]. Based on this organization, we can locate the list
of edges with a specific weight in constant time, and access edges
of NT in non-increasing weight order in linear time.

In the following, we discuss how to update the MST for the
above four cases separately, which also updates NT, based on the
properties of maximum spanning tree.

Delete Edge (u, v) from Gc (case-i). 1) If (u, v) is in NT, then we
just delete it from NT while MST remains the same. 2) Otherwise,
we delete (u, v) from MST; this cuts MST into two trees. Then, we
try to reconnect the two trees by an edge in NT with the maximum
weight; that is, find the edge with the maximum weight such that
its two end-vertices are in different trees. To efficiently find such
an edge, we iterate over all edges (u′′, v′′) in NT in non-increasing
weight order, terminate for the first one with u′′ and v′′ in different
trees, and then move it from NT to MST. The pseudocode is shown
in Algorithm 9.

Algorithm 9: MST-EdgeDeletion

Input: A MST, a NT, and an edge (u, v)
Output: The updated MST

1 if (u, v) is in NT then Remove (u, v) from NT;
2 else
3 Remove (u, v) from MST;
4 for each edge (u′′, v′′) in NT in non-increasing weight order do
5 if u′′ and v′′ are in two different trees of MST then
6 Move (u′′, v′′) from NT to MST;
7 break;

Implementation and Time Complexity. Note that, our organization
of NT easily supports accessing edges of NT in non-increasing
weight order. Thus, the most time-consuming part is Line 5 which
tests whether two vertices are in the same tree of MST. To conduct
the testing efficiently, we propose to represent each tree uniquely
by its root vertex. Then, we identify the root vertices of the trees
containing u′′ and v′′, respectively, and u′′ and v′′ are in the same
tree if and only if the two root vertices are the same. Moreover,
we propose to cache the results of finding root vertices for vertices,
since we may need to conduct the testing for many edges.

The worst case time complexity would be O(|NT | + |V |), where
|NT | denotes the number of edges in NT; the reason is that we may

need to test Line 5 for all edges in NT, and the time complexity of
finding the root vertices for all vertices is O(|V |) time by using the
cache optimization. In practice, however, we only need to test very
few edges.

Decrement sc(u′, v′) from ku,v to ku,v − 1 for a Set of Edges (case-
ii). 1) If (u′, v′) is in NT, then we just update the weight of (u′, v′)
while MST remains the same. 2) Otherwise, we temporarily delete
(u′, v′) from MST and try to reconnect the two resulting trees by an
edge in NT with weight ku,v by using the same approach as above.
If there exists such an edge (u′′, v′′), then we move (u′, v′) from
MST to NT and move (u′′, v′′) from NT to MST. Otherwise, MST
remains unchanged. Note that, here we can process all the updated
edges in a batch.

Insert Edge (u, v) into Gc (case-iii). For this case, we compute the
edge (u′′, v′′) in the path in MST between u and v that has the mini-
mum weight. If sc(u′′, v′′) < sc(u, v), then we replace (u′′, v′′) with
(u, v) in MST and insert (u′′, v′′) into NT. Otherwise, we simply
insert (u, v) into NT.

Increment sc(u′, v′) from ku,v to ku,v + 1 for a Set of Edges (case-
iv). If (u′, v′) is in MST, then we just update the weight of (u′, v′).
Otherwise, similar to case-iii, we compute the edge (u′′, v′′) in the
path in MST between u′ and v′ that has the minimum weight, and
update MST and NT accordingly.

6. EXPERIMENTS
We conduct extensive performance studies to evaluate the ef-

ficiency of our index-based query processing techniques and our
indexing techniques. Regarding SMCC queries, we evaluate the
following algorithms:

• SMCC-BLE: the (exact) baseline algorithm in Section 3 by
extending the existing exact technique in [7].

• SMCC-BLR: the (randomized) baseline algorithm in Sec-
tion 3 by extending the existing randomized technique in [4].

• SMCC-OPT: the index-based optimal algorithm in Section 4.4
(Algorithm 4).

Regarding steiner-connectivity queries, we evaluate the following
algorithms:

• SC-BL: the (exact) baseline algorithm in Section 3 by ex-
tending the existing technique in [7].

• SC-MST: the MST-based algorithm in Section 4.3 (Algo-
rithm 3).

• SC-MST∗: the MST*-based optimal algorithm in Section A.2
(Algorithm 11).

Regarding SMCCL queries, we evaluate the following algorithms:

• SMCCL-BL: the (exact) baseline algorithm in Section 3 by
extending the existing technique in [7].

• SMCCL-OPT: the index-based optimal algorithm in Sec-
tion 4.5 (Algorithm 5).

Regarding indexing, the following algorithms are evaluated:

• ConnGraph-B: the connectivity graph construction algorithm
with batch processing in Section 5.1.1.

• ConnGraph-BS: the ConnGraph-B algorithm with further
computation sharing in Section 5.1.1 (i.e., Algorithm 6).

• MST: the MST construction algorithm in Section 5.1.2.

• MST∗: the MST* construction algorithm in Section A.2.

• IndexMaintain: the index maintenance algorithm in Section 5.2.

467

All algorithms are implemented in C++ and compiled with GNU
GCC with the -O3 optimization; the source codes for computing k-
edge connected components exactly (i.e., the KECCs-Exact algo-
rithm) and randomly (i.e., the KECCs-Random algorithm) are ob-
tained from the authors in [7] and [4], respectively. All experiments
are conducted on a machine with an Intel(R) Xeon(R) 3.1GHz CPU
and 128GB memory running Linux. We evaluate the performance
of all algorithms on both real and synthetic graphs as follows.

Real Graphs: We evaluate the algorithms on eleven real graphs
with their descriptions presented in Section A.4; sizes of these
graphs are shown in Table 1, where the last column shows the av-
erage degree. We rank the graphs regarding the number of edges,
and denote the graphs using IDs from {D1, · · · ,D11}. We regard
the graphs with less than 1 million edges as small graphs (i.e.,
{D1, · · ·D4}), and others as large graphs (i.e., {D5, · · · ,D11}).

Type ID Dataset #Edges #Vertices d

D1 ca-GrQc 13,422 4,158 6.46
D2 ca-CondMat 91,286 21,363 8.55
D3 email-EuAll 339,925 224,832 3.02

small

D4 soc-Epinions1 405,739 75,877 10.69

large

D5 amazon0601 2,443,311 403,364 12.11
D6 web-Google 3,074,322 665,957 9.23
D7 wiki-Talk 4,656,682 2,388,953 3.90
D8 as-Skitter 11,094,209 1,694,616 13.09
D9 LiveJournal 42,845,684 4,843,953 17.69
D10 uk-2002 261,556,721 18,459,128 28.34

large

D11 twitter-2010 1,202,513,344 41,652,230 57.7

Table 1: Statistics of real graphs (d: average degree)

Synthetic Graphs: We generate two kinds of synthetic graphs by
the graph generator GTGraph2, as follows.

• Power-law graphs: A power-law graph is a random graph in
which edges are randomly added such that the degree distri-
bution follows a power-law distribution.

• SSCA graphs: A SSCA graph contains a collection of ran-
domly sized cliques and also random inter-clique edges.

We generate two power-law graphs, PL1 and PL2, with 12×104 and
14 × 104 edges, respectively, while both with 2 × 104 vertices. We
also generate five SSCA graphs, SSCA1, SSCA2, SSCA3, SSCA4,
and SSCA5, whose sizes are shown in Table 2. There are three
small SSCA graphs and two large SSCA graphs.

Type Dataset #Edges #Vertices d

SSCA1 24,584 4,096 12.00
SSCA2 143,744 16,384 17.55small
SSCA3 896,759 65,536 27.37
SSCA4 5,640,272 262,144 43.03

large
SSCA5 35,318,325 1,048,576 67.36

Table 2: Statistics of SSCA graphs (d: average degree)

Queries. We studied SMCC, SMCCL, and steiner-connectivity
queries in this paper. For each kind of studied query, we generate
five query sets, each of which consists of 1000 random queries of
a particular size. The query size |q| is chosen from {2, 5, 10, 20, 30}
with 10 as default. For each testing, we record the total running
time of processing the 1000 queries in a query set. Each experi-
ment is run three times, and the average CPU time is reported.

6.1 Evaluating Query Processing Techniques
In this subsection, we evaluate the efficiency of our index-based

optimal algorithm compared with baseline algorithms for each of
the three queries we studied in this paper. Note that, the reported
time is the total time of processing 1000 queries.

2http://www.cse.psu.edu/~madduri/software/GTgraph/

Graph SMCC-OPT SMCC-BLE SMCC-BLR

D1 0.001 2.66 851
D2 0.15 28.7 18, 302
D3 0.09 148 -

Real Graph

D4 0.26 256 -
PL1 0.27 26 -

Power-law
PL2 0.26 36 -

SSCA1 0.009 2.1 2, 604
SSCA2 0.03 36.3 35, 447SSCA
SSCA3 0.07 224 -

Table 3: Query processing time (SMCC query, in seconds)

Eval-I: SMCC Query. The running time of our optimal algo-
rithm (i.e., SMCC-OPT) and two baseline algorithms (i.e., SMCC-
BLE and SMCC-BLR) for processing SMCC queries on different
graphs is shown in Table 3. In general, the running time of all
three algorithms increases when the graph size increases. This
is because both SMCC-BLE and SMCC-BLR traverse the entire
graph several times, and the running time of SMCC-OPT is lin-
ear to the result size which generally becomes larger for random
queries on larger graphs. Nevertheless, SMCC-OPT outperforms
the two baseline algorithms by more than three orders of magni-
tude on all the graphs due to the optimality of SMCC-OPT. More-
over, the exact algorithm SMCC-BLE runs much faster than the
randomized algorithm SMCC-BLR due to the large number of it-
erations in KECCs-Random which is invoked by SMCC-BLR; we
set the number of iterations in KECCs-Random to be 50 which
is used in [4]. Therefore, we exclude the randomized approach
KECCs-Random from our further testings when computing k-edge
connected components.

SMCC-OPT SMCC-BLE

10
-2

10
-1

10
0

10
1

10
2

10
3

2 5 10 20 30

Pr
oc

es
sin

g
Ti

m
e (

se
c)

|q|

(a) D3 (email-EuAll)

10
-2

10
-1

10
0

10
1

10
2

2 5 10 20 30

Pr
oc

es
sin

g T
im

e (
se

c)

|q|

(b) SSCA2

Figure 5: Query processing time (SMCC query, vary |q|)
The running time of SMCC-OPT and SMCC-BLE on D3 (email-

EuAll) and SSCA2 by varying the size |q| of query is illustrated in
Figure 5. We can see that, the running time of SMCC-OPT in-
creases while that of SMCC-BLE remains almost the same, when
|q| increases. This is because SMCC-OPT runs linearly to the size
of SMCC which generally becomes larger for random queries with
more query vertices, while SMCC-BLE traverses the entire graph
several times regardless the query. Nevertheless, SMCC-OPT out-
performs SMCC-BLE by more than three orders of magnitude.

Graph SMCC-OPT Graph SMCC-OPT

D5 13 D9 81
D6 6.1 D10 87
D7 2.9 D11 1.5
D8 18

SSCA4 0.74 SSCA5 2.15

Table 4: Scalability testing for SMCC-OPT (in seconds)

The scalability testing result of SMCC-OPT on large graphs is
shown in Table 4, which shows that SMCC-OPT is very efficient
for processing SMCC queries.

Eval-II: Steiner-Connectivity Query. The running time of SC-
BL, SC-MST, SC-MST∗ for processing steiner-connectivity queries
on different graphs is shown in Table 5. Generally, the running time
of SC-MST and SC-BL increases when the graph size increases,
while that of SC-MST∗ remains the same across different datasets.
This is because SC-BL traverses the entire graph several times and

468

Graph SC-MST∗ SC-MST SC-BL

D1 0.01 0.12 2, 657
D2 0.01 0.35 28, 706
D3 0.01 0.55 148, 334

Real Graph

D4 0.01 0.26 256, 234
PL1 0.01 0.26 26, 275

Power-law
PL2 0.01 0.27 35, 574

SSCA1 0.01 0.16 2, 095
SSCA2 0.01 0.27 36, 319SSCA
SSCA3 0.01 0.66 224, 170

Table 5: Query processing time (Steiner-connectivity query, in

milliseconds)

SC-MST needs to first obtain the minimum connected subtree Tq of
the MST T containing q, both of which increase as the graph size
increases. However, the time complexity of SC-MST∗ is O(|q|)
which remains the same for different graphs (i.e., |q| = 10). Over-
all, SC-MST runs up-to six orders of magnitude faster than SC-BL,
and SC-MST∗ runs more than one order of magnitude faster than
SC-MST; this confirms the efficiency of SC-MST∗.

SC-MST* SC-MST

10
-3

10
-2

10
-1

10
0

10
1

2 5 10 20 30Pr
oc

es
sin

g
Ti

m
e (

m
se

c)

|q|

(a) D3 (email-EuAll)

10
-3

10
-2

10
-1

10
0

10
1

2 5 10 20 30Pr
oc

es
sin

g T
im

e (
m

se
c)

|q|

(b) SSCA2

Figure 6: Query processing time (Steiner-connectivity query,

vary |q|)
The running time of SC-MST∗ and SC-MST on D3 (email-EuAll)

and SSCA2 by varying the query size |q| is demonstrated in Fig-
ure 6. We can see that both SC-MST∗ and SC-MST run slower
when |q| increases; this is due to their time complexities (i.e., O(|q|)
and O(|Tq|), respectively) which become larger for larger |q|. Never-
theless, the running time of SC-MST∗ increases much slower than
that of SC-MST, and SC-MST∗ outperforms SC-MST by up-to
two orders of magnitude.

The scalability of SC-MST and SC-MST∗ on large graphs is
confirmed in Table 10 in the Appendix.

Graph SMCCL-OPT SMCCL-BL

D1 0.01 2.65
D2 0.12 26
D3 0.07 158

Real Graph

D4 0.22 242
PL1 0.24 22

Power-law
PL2 0.25 31

SSCA1 0.01 2.06
SSCA2 0.04 25.3SSCA
SSCA3 0.15 250

Table 6: Query processing time (SMCCL query, in seconds)

Eval-III: SMCCL Query. The running time of SMCCL-OPT and
SMCCL-BL for processing SMCCL queries on different graphs is
shown in Table 6, which has similar trends to that of SMCC-OPT

and SMCC-BLE in Table 3. The optimal algorithm SMCCL-OPT

outperforms the baseline algorithm SMCCL-BL by more than three
orders of magnitude. The scalability of SMCCL-OPT on large
graphs is confirmed in Table 11 in the Appendix.

6.2 Evaluating Indexing Techniques
In this subsection, we evaluate the efficiency of our indexing al-

gorithms, ConnGraph-B, ConnGraph-BS, MST, and MST∗, and
our index maintenance algorithm, IndexMaintain. Note that, the
reported time does not include the time to load in the input graph

from disk to main memory, since it is the same for the compared
algorithms and it is small compared with the computation time.

Graph ConnGraph-B ConnGraph-BS MST MST∗
D1 0.054 0.019 0.001 0.003
D2 0.3 0.154 0.005 0.005
D3 2.3 0.332 0.049 0.036
D4 10.12 3.38 0.064 0.013
D5 26 23 0.468 0.083
D6 82.8 27.7 0.626 0.159
D7 202 44 1.2 0.482
D8 511 141 1.86 0.33
D9 7, 766 1, 450 9.17 1.425

D10 33, 143 (9.2hrs) 6, 172 (1.7hrs) 21 3.429
D11 - 61hrs 151 7.8
PL1 0.211 0.171 0.006 0.004
PL2 0.3 0.268 0.007 0.004

SSCA1 0.072 0.041 0.001 0.003
SSCA2 0.867 0.5 0.008 0.004
SSCA3 16.86 6.66 0.112 0.01
SSCA4 264 70.57 0.796 0.05
SSCA5 2, 289 720 6.78 0.25

Table 7: Indexing time (in seconds)

Eval-IV: Indexing Time. The running time of ConnGraph-B and
ConnGraph-BS for connectivity graph construction is presented in
the second and third columns of Table 7, respectively. We can see
that ConnGraph-BS is on average more than three times faster than
ConnGraph-B; for example, the running time of ConnGraph-BS

and ConnGraph-B on D10 (uk-2002) is 1.7hrs and 9.2hrs, respec-
tively. This is because ConnGraph-BS improves upon ConnGraph-
B by further utilizing the computation sharing technique; that is,
ConnGraph-BS takes the output of the previous iteration as the in-
put of the current iteration (thus, the input size gradually reduces).

The running time of MST and MST∗ (for constructing MST and
MST*, respectively) is shown in the fourth and fifth columns of
Table 7, respectively. We can see that their running time conforms
with their time complexities (i.e., O(|E|) for MST and O(|V |) for
MST∗. Note that, MST takes a connectivity graph as input while
MST∗ takes an MST as input. From Table 7, we can see that the
index structures can be constructed very efficiently.

Graph |MST| |Gc | Graph |MST| |Gc |
D1 0.14M 0.15M D10 649M 3.0G

D2 0.75M 1.1M D11 1.3G 14G

D3 7.9M 3.9M PL1 0.57M 1.4M

D4 2.6M 4.7M PL2 0.57M 1.6M

D5 14M 28M SSCA1 0.14M 0.28M

D6 23M 36M SSCA2 0.57M 1.7M

D7 84M 54M SSCA3 2.3M 11M

D8 59M 127M SSCA4 9.2M 65M

D9 170M 491M SSCA5 37M 405M

Table 8: Index size (in Bytes)

Eval-V: Index Size. The sizes of the MST index for the tested
graphs are demonstrated in Table 8, which conform with the theo-
retical analysis (i.e., O(|V |)). For example, the MST index size of
the SSCA graphs increases by about 4 times when the number of
vertices increases by 4 times (i.e., from SSCA1 to SSCA5). Over-
all, the MST index size is small; for example, it is 1.3G for the
largest graph, D11 (twitter), which has 1.2 billion edges. Thus, we
can store the index in main memory.

The sizes of the connectivity graphs for the tested graphs are also
shown in Table 8. Note that, a connectivity graph is a weighted
version of the input graph; that is, it consists of the input graph and
weights of its edges. Thus, the reported size |Gc| in Table 8 also in-
cludes the input graph size. In general, the connectivity graph size
|Gc| is larger than the size of MST because there are more edges

469

than vertices in a graph. However, there is an exception on D3
(email-EuAll) and D7 (wiki-Talk), which have small average de-
grees (d); because in MST we store the level, the edge to its parent,
and the weight of the edge for each vertex.

Graph IndexMaintain Graph IndexMaintain

D1 0.226 D10 3, 130
D2 0.054 PL1 36.9
D3 3.45 PL2 35.7
D4 24.5 SSCA1 0.068
D5 906 SSCA2 0.37
D6 1.98 SSCA3 4.59
D7 82 SSCA4 10.7
D8 9.58 SSCA5 35.2
D9 48.9

Table 9: Average index updating time (in milliseconds)

Eval-VI: Index Maintenance. The index updating time for the
tested graphs is shown in Table 9. The reported time is the aver-
age running time for updating the index structure for a sequence of
40 mix-up updating operations which consists of 20 edge deletions
and 20 edge insertions. Note that, the average updating time for
edge insertion is similar to that for edge deletion. By comparing
Table 9 with Table 7, we can see that our index maintenance tech-
niques can maintain the index structure very efficiently; for exam-
ple, the running time of IndexMaintain is more than three orders of
magnitude smaller than that of computing the index from scratch.
Note that, the time in Table 9 is in milliseconds, while that in Ta-
ble 7 is in seconds. Moreover, by comparing Table 9 with Table 3
(specifically, the running time of SMCC-BLE), we can see that the
strategy of updating the index structure first and then processing
queries works; that is, the total time of updating the index and then
using it to process queries is much smaller than the running time of
the SMCC-BLE algorithm which processes queries directly on G

without any index.

7. EXTENSIONS
Our techniques can be extended to process other queries and to

conduct external-memory computation as well.

Subset-SMCC Query. Given a set q of query vertices and a num-
ber L (≤ |q|), a subset-SMCC query is to find the maximum induced
subgraph with the maximum connectivity such that it contains at
least L vertices in q.

Subset-SMCC queries can be processed by extending our pri-
oritized search technique in Section 4.5 as follows. We conduct
|q| prioritized searches, one starting from each vertex v ∈ q. For
each prioritized search, we set the connectivity k of the compo-
nent once Vq includes at least L vertices of q; that is, at Line 10
of Algorithm 5, we check whether Vq contains at least L vertices
in q. Then, we choose the component with maximum connectivity
among the |q| computed components to be the result of the query.

SMCC-Cover Query. Given a set q of query vertices and a number
L (≤ |q|), the SMCC-cover query is to find L maximum induced
subgraphs such that they collectively cover q (i.e., contain q) and
the minimum of the connectivities of the L subgraphs is maximized.

SMCC-cover queries can also be processed by extending our
prioritized search technique in Section 4.5. Similar to processing
subset-SMCC queries in the above, we also instantiate |q| instances
of prioritized search, denoted PS0, . . . ,PS|q|−1, one for each vertex
vi ∈ q with 0 ≤ i ≤ |q| − 1. However, different from processing
subset-SMCC queries in which the |q| prioritized searches are exe-
cuted independently, we run the |q| prioritized searches in a coordi-
nated manner. Each instance PSi has a weight which is defined as
the minimum weight of the edges popped from Q for that instance
(see Line 11 of Algorithm 5). Each time, we only run one of the

|q| prioritized searches by popping one edge from Q and updating
Q and Vq; the instance is chosen as the one that has the maximum
weight. Once an instance PSi visits a vertex that has already been
visited by another instance PS j, we merge these two instances into
a single instance. The algorithm terminates once there are exactly L

instances left, and each remaining instance sets the corresponding
k and returns the component.

Steiner-Connectivity with Size Constraint. Similar to the defini-
tion of steiner-connectivity which is the connectivity of the SMCC,
the steiner-connectivity with size constraint is the connectivity of
SMCCL, denoted gcl. Given a set q of query vertices and a number
L, this query can be directly processed by Algorithm 5; that is, we
return the value of k instead of the SMCCL.

External-Memory Computation. Below, we discuss possible struc-
tures of disk-based index and possible ways to conduct external-
memory computation.
External-Memory Query Processing. We can store the MST T on
disk in the form of adjacency lists which are stored in consecutive
blocks, and store the starting position of the adjacency list for each
vertex using a B+ tree. During query processing, whenever we
need to access the adjacency list of a particular vertex, we load the
corresponding blocks into main memory if they have not already
been loaded in.
External-Memory Index Construction and Maintenance. The input
graph can be organized on disk in a similar way to MST discussed
above. Regarding computing the connectivity graph, we can further
utilize the sparsification techniques in [23] and the contraction idea
(i.e., contracting k-edge connected components into super-vertices
when computing k′-edge connected components for all k′ < k) in
Sections 5.2.1 and 5.2.2 to reduce the number of vertices and/or
edges to be loaded into main memory. Efficient external-memory
algorithms for computing the minimum spanning tree have been
studied in [15]. Regarding index maintenance, for deleting/inserting
an edge (u, v), we only need to load the SMCC of {u, v} into main
memory while also contracting k-edge connected components in
the SMCC with k = sc(u, v) + 1 into super-vertices.

8. CONCLUSION
In this paper, we studied the SMCC query and its variants, and

proposed novel index-based optimal algorithms. For processing
SMCC queries, we proposed an efficient algorithm based on a novel
index such that the algorithm runs in linear time regarding the re-
sult size (thus, optimal). We also proposed an efficient algorithm to
process SMCCL queries in linear time regarding the result size. For
steiner-connectivity queries, we proposed an optimal algorithm to
run in O(|q|) time, which is linear to the query size (thus, optimal).
To build the index, we extended the techniques in [7] to accommo-
date batch processing and computation sharing. To efficiently sup-
port the applications with graph updates, we also presented novel
incremental techniques. We finally conducted experiments to eval-
uate the efficiency of our approaches, and the experimental results
demonstrated that our index-based algorithms outperform baseline
algorithms by several orders of magnitude and our index mainte-
nance techniques can update the index structure very efficiently
when graph changes.

Acknowledgement. Lijun Chang is supported by ARC DE150100563.
Xuemin Lin is supported by NSFC61232006, ARC DP120104168, ARC
DP140103578, and ARC DP150102728. Lu Qin is supported by ARC
DE140100999. Jeffrey Xu Yu is supported by Research Grants Coun-
cil of the Hong Kong SAR, China, 14209314 and 418512. Wen-
jie Zhang is supported by ARC DE120102144, DP120104168, ARC
DP150103071 and DP150102728.

470

9. REFERENCES

[1] C. C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity index
for massive disk-resident graphs. PVLDB, 2(1):862–873, 2009.

[2] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu. Mining
newsgroups using networks arising from social behavior. In Proc. of

WWW’03, 2003.
[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest

common ancestors in trees. In Proc. of STOC’73, 1973.
[4] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time enumeration of

maximal k-edge-connected subgraphs in large networks by random
contraction. In Proc. CIKM’13, 2013.

[5] M. A. Bender and M. Farach-Colton. The lca problem revisited. In
Proc. of LATIN’00, 2000.

[6] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in
sparse graphs. Algorithmica, 66(1), 2013.

[7] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently
computing k-edge connected components via graph decomposition.
In Proc. SIGMOD’13, 2013.

[8] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core
decomposition in massive networks. In Proc. of ICDE’11, 2011.

[9] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal
cliques in massive networks by h*-graph. In Proc. of SIGMOD’10,
2010.

[10] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14(1), 1985.

[11] A. Clauset. Finding local community structure in networks. Phys.

Rev. E, 72, 2005.
[12] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2001.
[13] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of

overlapping communities. In Proc. of SIGMOD’13, 2013.
[14] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of

communities in large graphs. In Proc. of SIGMOD’14, 2014.
[15] R. Dementiev, P. Sanders, D. Schultes, and J. F. Sibeyn. Engineering

an external memory minimum spanning tree algorithm. In IFIP TCS,
2004.

[16] C. Dorn and S. Dustdar. Composing near-optimal expert teams: A
trade-off between skills and connectivity. In Proc. of OTM’10, 2010.

[17] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press,
1985.

[18] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows. Journal

of the Society for Industrial and Applied Mathematics, 9(4), 1961.
[19] E. Hartuv and R. Shamir. A clustering algorithm based on graph

connectivity. Information Processing Letters, 76, 1999.
[20] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss

community in large and dynamic graphs. In Proc. of SIGMOD’14,
2014.

[21] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An
almost-linear-time algorithm for approximate max flow in undirected
graphs, and its multicommodity generalizations. In Proc. of

SODA’13, 2013.
[22] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social

networks. In Proc. of KDD’09, 2009.
[23] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a

sparse k-connected spanning subgraph of a k-connected graph.
Algorithmica, 7(5&6), 1992.

[24] J. B. Orlin. Max flows in o(nm) time, or better. In Proc. of STOC’13,
2013.

[25] A. N. Papadopoulos, A. Lyritsis, and Y. Manolopoulos. Skygraph: an
algorithm for important subgraph discovery in relational graphs.
Data Min. Knowl. Discov., 17(1), Aug. 2008.

[26] J. Sherman. Nearly maximum flows in nearly linear time. In Proc. of

FOCS’13, 2013.
[27] M. Sozio and A. Gionis. The community-search problem and how to

plan a successful cocktail party. In Proc. of KDD’10, 2010.
[28] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4),

1997.
[29] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On

triangulation-based dense neighborhood graph discovery. Proc.

VLDB Endow., 4(2), Nov. 2010.

[30] D. R. White and F. Harary. The cohesiveness of blocks in social
networks: Node connectivity and conditional density. Sociological

Methodology, 31, 2001.
[31] X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with

connectivity constraints. In Proc. of KDD’05, 2005.
[32] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent

closed quasi-clique mining from large dense graph databases. ACM

Trans. Database Syst., 32(2), June 2007.
[33] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing

triangle k-core motifs within networks. In Proc. of ICDE’12, 2012.
[34] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. Finding

maximal k-edge-connected subgraphs from a large graph. In Proc. of

EDBT’12, 2012.

A. APPENDIX

A.1 Pseudocode for Steiner-Connectivity Query
The pseudocode for processing a steiner-connectivity query in

O(|Tq|) time is shown in Algorithm 10 blow.

Algorithm 10: SC-MST

Input: A MST T , and a set q = {v0, . . . , v|q|−1} of vertices
Output: The steiner-connectivity of q

1 Tq ← ∅;
2 for i← 1 to |q| − 1 do
3 if i = 1 then u← v0 else u← lcai−1;
4 v← vi;
5 while u , v do
6 if l(u) ≥ l(v) then u← p(u);
7 else
8 v← p(v);
9 if v has already been visited then break;

10 Add the visited edge to Tq;
11 Mark u and v as visited;

12 lcai ← u;

13 return sc(q) = min(u,v)∈Tq λT (u, v);

A.2 MST*: An Optimal Algorithm
In Algorithm 3, we process a steiner-connectivity query q in

O(|Tq|) time by first computing the subtree Tq. To improve the
query efficiency, we propose to construct a new index structure
from the MST T by reorganizing edges such that we can compute
the steiner-connectivity of q without computing Tq.

MST*. Given a MST T , we propose to further process it to gener-
ate an optimization connectivity preserving index (MST*), denoted
T ∗. A MST* T ∗ is a rooted tree consisting of two types of ver-
tices: 1) vertex-type vertex, each such vertex corresponds to one
vertex in T ; and 2) edge-type vertex, each such vertex corresponds
to one edge in T . Each edge-type vertex u has a weight, denoted
as λT (u), which is the weight of the corresponding edge in T . In
T ∗, vertex-type vertices are leaf vertices and edge-type vertices are
intermediate vertices. In the following, we let eu,v denote the edge-
type vertex in T ∗ that corresponds to edge (u, v) in T .

The edges of T ∗ are defined (or constructed) recursively. Let
(u, v) be the edge with minimum weight in T . By removing (u, v)
from T , we get two connected trees T1 and T2 which are subtrees of
T . The MST* of T1 and T2 are defined (or constructed) recursively;
let T ∗1 and T ∗2 be the corresponding MST* constructed for T1 and
T2, respectively. Then, T ∗ is the tree constructed by adding an edge
from eu,v to the root of T ∗1 and an edge from eu,v to the root of T ∗2 ;
here, eu,v is the edge-type vertex corresponding to (u, v). The base
case is that, if T consists of a single vertex, then the corresponding
MST* T ∗ is the same as T consisting of a single vertex-type vertex.

Figure 7 shows the corresponding MST* T ∗ constructed from
the MST T in Figure 3(b), where ei, j corresponds to edge (vi, v j) in

471

e1,5(4)

v5v1
v4

e1,4(4)
v3

e1,3(4) v2

e1,2(4) v9

e5,9(3)

v8v6

e6,8(3)
v7

e6,7(3)

v10 v13

e10,13(3)
v12

v11
e10,12(3)

e10,11(3)

e5,12(2)

e4,7(3)

Figure 7: MST*: a rooted tree

T and weights are shown in brackets. e5,12 is the root of T ∗, since
(v5, v12) is the edge with minimum weight in T .

Properties of MST*. By reorganizing edges of MST T into MST*
T ∗, T ∗ has the following properties, which can be utilized to effi-
ciently process steiner-connectivity queries.

Lemma A.1: A MST* T ∗ is a complete binary tree [17]; that is,

each vertex has either two children or no children. For any leaf-

to-root path in T ∗, the weights of edge-type vertices in it are in

non-increasing order. �

Proof Sketch: Firstly, it is easy to see that each edge-type vertex
has two children, one corresponding to each connected subtree after
removing the corresponding edge in a MST. Thus MST* T ∗ is a
complete binary tree. Secondly, it is obvious that for each subtree
in T ∗, the root (edge-type) vertex has the minimum weight. Thus,
all descendant edge-type vertices have weights no less than its own
weight. Thus, the lemma holds. �

Lemma A.2: For any two vertex-type vertices (i.e., leaf vertices) u

and v in T ∗, let e be the LCA (see Definition 4.3) of u and v in T ∗,
then sc(u, v) is equal to the weight of e. �

Proof Sketch: From Lemma 4.4, let the undirected path between u

and v in T be P = (v1(= u), v2, . . . , vn(= v)), then we have sc(u, v) =
minn−1

i=1 λT (vi, vi+1). Let T ∗e be the subtree of T ∗ rooted at e, and Te

be the subtree of T corresponding to T ∗e . Then, all edges in P are
in Te since u and v are still connected in Te, and P contains e since
u and v are disconnected by removing e from Te. Therefore, the
weight of e is equal to minn−1

i=1 λT (vi, vi+1), since e has the minimum
weight among all edges in Te. Thus, the lemma holds. �

Processing Steiner-Connectivity Queries. Following from Lemma
A.2 and Lemma 4.2, given a MST* T ∗, we can process a steiner-
connectivity query q = {v0, . . . , v|q|−1} by first computing sc(v0, vi),
∀1 ≤ i ≤ |q| − 1, which is the weight of the LCA of v0 and vi in T ∗,
and then returning the minimum value as sc(q). The pseudocode is
shown in Algorithm 11.

Algorithm 11: SC-OPT

Input: A MST* T ∗, and a set q = {v0, . . . , v|q|−1} of query vertices
Output: The steiner-connectivity of q

1 sc(q)← +∞;
2 for i← 1 to |q| − 1 do
3 e← LCA(v0, vi);
4 if λT (e) < sc(q) then sc(q)← λT (e);

5 return sc(q);

Implementation and Time Complexity. Algorithm 11 can be imple-
mented to process a steiner-connectivity query in O(|q|) time, since
the LCA of two vertices in a rooted tree at Line 3 of Algorithm 11
can be identified in constant time by existing techniques with linear
preprocessing time and space (Please refer to [5] for details).

Example 1.1: Consider the MST* T ∗ in Figure 7. To compute
sc(v8, v13), we first identify the LCA of v8 and v13 which is e5,12

with weight 2; therefore, sc(v8, v13) = 2. Now, consider another

vertex pair v8 and v7. The LCA of v8 and v7 is e6,7 with weight 3.
Thus, sc({v8, v13, v7}) = min{sc(v8, v13), sc(v8, v7)} = 2. �

MST* Construction. Constructing T ∗ in a top-down fashion by
following the definition described above requires quadratic time,
since each time after removing an edge from T we need to recom-
pute to obtain the edge with minimum weight in each of the result-
ing subtrees which requires linear time. Therefore, we propose an
algorithm to construct T ∗ in linear time in a bottom-up fashion.

The algorithm is shown in Algorithm 12, which works similar
to Kruskal’s algorithm for computing minimum spanning tree [12];
that is, we merge small trees into bigger trees by adding edge-type
vertices and edges from the newly added vertices to roots of exist-
ing trees, and finally get T ∗. Nevertheless, this is nontrivial. Ini-
tially, each vertex in T forms a rooted tree (Line 1). We sort all
edges ET of T in a non-increasing weight order (Line 2). For each
edge (vi1 , vi2) in ET in the sorted order, we perform the following
three operations: 1) add an edge-type vertex ei1 ,i2 to T ∗ (Line 4);
2) identify the current roots of the trees containing vi1 and contain-
ing vi2 , respectively, by FindRoot(vi1) and FindRoot(vi2); 3) add
edges from ei1 ,i2 to each of the two identified root vertices (Lines 5–
6). The implementations of sorting edges at Line 2 and FindRoot

at Lines 5–6 shall be discussed shortly.

Algorithm 12: MST∗-Construction

Input: A MST T

Output: A MST* T ∗

1 T ∗ is initialized to contain |V | isolated vertices of T ; /* each vertex
forms a rooted tree */;

2 Sort all edges ET of T in non-increasing weight order;
3 for each edge (vi1 , vi2) in ET in sorted order do
4 Add a new vertex ei1 ,i2 to T ∗, with weight λT (vi1 , vi2);
5 Add an edge from ei1 ,i2 to the root of the tree containing vi1

(found by invoking FindRoot(vi1)), to T ∗;
6 Add an edge from ei1 ,i2 to the root of the tree containing vi2

(found by invoking FindRoot(vi2)), to T ∗;

7 return T ∗;

Theorem 1.1: Algorithm 12 correctly constructs MST* T ∗ from

MST T. �

Proof Sketch: Without loss of generality, we assume that all edge
weights in T are different. For an edge (vi1 , vi2) in T , we let T (vi1

,vi2
)

denote the connected subtree of T containing (vi1 , vi2) by removing
all edges with weights less than λT (vi1 , vi2) from T . Then T (u,v) = T

when (u, v) is the edge with minimum weight in T . We prove by
induction that after processing (vi1 , vi2) at Line 3, the current subtree
rooted at ei1 ,i2 is the corresponding MST* of T (vi1

,vi2
).

For the first edge processed at Line 3, the above claim is obvi-
ously true. Now, consider an arbitrary edge (vi1 , vi2) processed at
Line 3. Without loss of generality, assume that e j1 , j2 and ek1 ,k2 are
the two children of ei1 ,i2 in the MST* of T (vi1

,vi2
), and e j1 , j2 and ek1 ,k2

have vi1 and vi2 as their descendants, respectively. Then, by induc-
tion, the MST* of T (v j1

,v j2
) and that of T (vk1

,vk2
) must have been

constructed, since the weights of (v j1 , v j2) and (vk1 , vk2) are larger
than that of (vi1 , vi2). Thus, FindRoot(vi1) will return e j1 , j2 , and
FindRoot(vi2) will return ek1 ,k2 . Therefore, the theorem holds. �

Implementation and Time Complexity. Algorithm 12 can be im-
plemented in O(|V |) time as follows. Firstly, sorting all edges of T

at Line 2 can be conducted in O(|V |) time using bin sort [12], since
the weights of all (|V | − 1) edges in T are integers in the range from
1 to |V |. Secondly, the time-critical component of Algorithm 12
(i.e., FindRoot at Lines 5–6) can be implemented by the union-find
algorithm on a disjoint-set data structure [12]. Note that, to achieve
linear time for the union-find algorithm on a disjoint-set data struc-

472

ture, two optimization techniques need to be applied: union by rank

and path compression. However, at a first glance, the union by
rank optimization is not applicable here, because we need to point
the parents of the root vertices obtained at Lines 5–6 to ei1 ,i2 de-
terministically. Thus, by the path compression optimization alone,
the total running time of all FindRoots in Algorithm 12 would be
O(|V | + |V | log |V |) [12].

Nevertheless, we can modify the union-find algorithm and the
disjoint-set data structure to enable both union by rank and path
compression optimizations, and thus achieve O(|V |) total running
time, as follows. Note that, here we have two forests: one is T ∗ and
the other is the disjoint-set data structure; there is a one-to-one cor-
respondence between trees in T ∗ and trees in the disjoint-set data
structure (i.e., each pair of corresponding trees contain the same set
of vertices). For each root of a tree in the disjoint-set data structure,
we also store a pointer pointing to the actual root vertex of the cor-
responding tree in T ∗. At Lines 5–6, we need to update both T ∗ and
the disjoint-set data structure. T ∗ is updated as stated at Lines 5–6.
For updating the disjoint-set data structure, we union the following
three trees using the union by rank optimization: one consisting of
ei1 ,i2 , one containing vi1 , and the other containing vi2 ; we also point
the pointer of the root of the resulting tree in the disjoint-set data
structure to ei1 ,i2 which is in T ∗. Thus, FindRoot(v) returns the ver-
tex in T ∗ that is pointed by the root of the tree containing v in the
disjoint-set data structure.

Thus, the 2(|V | − 1) FindRoot operations in Algorithm 12 can be
conducted in O(|V |ϕ(|V |)) total time, where ϕ(n) is less than 5 for
all practical values of n [12]. Consequently, Algorithm 12 can be
implemented in O(|V |) time. We omit the pseudocode.

Example 1.2: For example, consider the MST T in Figure 3(b),
assume the edges ET of T are sorted as {(v1, v5), (v1, v4), (v1, v3),
(v1, v2), (v10, v13), (v10, v12), (v10, v11), (v6, v8), (v6, v7), (v5, v9), (v4, v7),
(v5, v12)}. After processing the first four edges (i.e., till (v1, v2)), we
get the subtree rooted at e1,2 of the tree in Figure 7. After process-
ing the first seven edges (i.e., till (v10, v11)) we additionally get the
subtree rooted at e10,11. After processing all twelve edges except the
last one, we get two subtrees, one rooted at e4,7 and the other rooted
at e10,11. After processing (v5, v12), we get the final tree shown in
Figure 7, which is the MST* T ∗. �

A.3 Proofs of Lemmas and Theorems

Proof Sketch of Lemma 4.1: Let Vq be the set of vertices such
that sc({v0, v}) ≥ sc(q), ∀v ∈ Vq; that is, Vq = {v ∈ V | sc({v0, v}) ≥
sc(q)}. We prove that Vq is the SMCC of q.

Firstly, it is obvious that every vertex v in the SMCC of q must
satisfy sc({v0, v}) ≥ sc(q), since the SMCC of q is sc(q)-edge con-
nected. Thus, Vq is a super-set of the SMCC of q. Secondly, for
each vertex v satisfying sc({v0, v}) ≥ sc(q), it must be included in
the SMCC of q, since the SMCC of q is the sc(q)-edge connected
component of G which is maximal. Thus, the lemma holds. �

Proof Sketch of Lemma 4.2: Firstly, we can prove that sc(q) ≤
sc(v0, vi) for 1 ≤ i ≤ |q| − 1. This is because any k-edge con-
nected component of G is entirely contained in a (k − 1)-edge con-
nected component of G, and the SMCC of q is the k-edge con-
nected component of G with the maximum k that contains q. Thus,
sc(q) ≤ min1≤i≤|q|−1 sc(v0, vi).

Secondly, we can prove that sc(q) ≥ min1≤i≤|q|−1 sc(v0, vi). With-
out loss of generality, assume sc(v0, v1) has the smallest value among
{sc(v0, vi) | 1 ≤ i ≤ |q|−1}, and let g be the SMCC of {v0, v1}. Then,
for any vi, since sc(v0, vi) ≥ sc(v0, v1), g also contains vi follow-
ing from the properties of k-edge connected components. Thus, g

contains all vertices of q, and sc(q) ≥ sc(v0, v1).
Therefore, the lemma holds. �

Proof Sketch of Lemma 4.3: Let Pm be the path in Pu,v with the
maximum weight (i.e., Pm = arg maxP∈Pu,v

w(P)). We first prove
that sc(u, v) ≥ w(Pm). Let Pm = (v1(= u), . . . , vi, vi+1, . . . , vn(= v)).
Without loss of generality, assume that w(Pm) = w(vi, vi+1), and let
k be this value. Then, there is a k-edge connected component g of G

containing vi and vi+1. Based on the properties of k-edge connected
components and the fact that sc(vi−1, vi) ≥ sc(vi, vi+1) = k, g should
also contain vi−1. Similarly, we can prove that g contains all vertices
in Pm, which include u and v. Therefore, sc(u, v) ≥ k = w(Pm).

Now we prove that sc(u, v) ≤ w(Pm) by contradiction. Assume
that sc(u, v) > w(Pm), and let k be sc(u, v). Then, there is a k-edge
connected component g of G containing u and v, and the set of
edges in Gc that correspond to edges in g have weights at least k.
Since g is connected, we can find a path between u and v in g with
minimum weight at least k (> w(Pm)), which contradicts that Pm is
the path with maximum weight among all paths between u and v

(i.e., Pu,v). Therefore, sc(u, v) ≤ w(Pm). Thus, the lemma holds. �

Proof Sketch of Lemma 4.4: Note that, λT (vi, vi+1) = w(vi, vi+1)
for any edge (vi, vi+1) in T . We prove the lemma by contradiction.
Assume there is a path P′ in Gc between u and v with a weight
larger than P (i.e., w(P′) > w(P)). Obviously, not all edges of P′

are in T . Without loss of generality, assume that (v1, v2) ∈ P has
the minimum weight among all edges in P, then (v1, v2) < P′ since
w(P′) > w(P). Therefore, there is a simple cycle in P∪P′ such that
(v1, v2) is in the cycle and has the minimum weight. According to
the cycle property of maximum spanning tree, (v1, v2) cannot be in
T . Contradiction. Thus, the lemma holds. �

Proof Sketch of Lemma 5.1: Firstly, we have sc(u, v) ≥ k − 1
since u and v are in G which is (k − 1)-edge connected. Secondly,
sc(u, v) < k since u and v are in different k-edge connected compo-
nents. Thus, the lemma holds. �

Proof Sketch of Theorem 5.1: It is immediate to see that all
sc(u, v) values shall be assigned when Algorithm 6 terminates. Fol-
lowing from Lemma 5.1, we also know that all the assigned sc(u, v)
values are correct. Thus, the correctness of Algorithm 6 holds.

Now, we consider the time complexity. Let Ei denote the set
of edges in φi(G) in Algorithm 6. Since the time complexity of
ComputeKECCs (Algorithm 13) is O(h·l·|E|), the time complexity
of Algorithm 6 thus is O(

∑|V |
k=1(h · l · |Ei|)) = O(h · l ·∑|V |

k=1 |Ei|). For
any edge (u, v) ∈ E with sc(u, v) = k, it will appear in E1, . . . , Ek

but not in Ei,∀i > k. Therefore,
∑|V |

k=1 |Ei| =
∑

(u,v)∈E sc(u, v) ≤
∑

(u,v)∈E λ(u, v) ≤ ∑(u,v)∈E min{d(u), d(v)} = α(G) · |E|, where d(·) is
the degree of a vertex and the last equation is proved in [10]. Thus,
the time complexity of Algorithm 6 holds. �

Proof Sketch of Lemma 5.2: We can prove the lemma by contra-
diction. Assume that g− is not (k − 1)-edge connected, then there
must exist a set of edges C in g− whose removal disconnects g−

with |C| ≤ k − 2. Also, we can see that the removal of C ∪ {(u, v)}
disconnects g with |C ∪ {(u, v)}| ≤ k − 1; this contradicts that g is
k-edge connected. Thus, the lemma holds. �

Proof Sketch of Lemma 5.3: Firstly, if (u, v) < g, then g− is obvi-
ously a k-edge connected component of G−. Secondly, if (u, v) ∈ g,
then we have gu,v ⊂ g (i.e., k ≤ ku,v − 1) since g , gu,v. From
Lemma 5.2, we know that g−u,v is (ku,v − 1)-edge connected. Thus,
g− is k-edge connected since all edges except that in gu,v remain the
same in g−; moreover, g− is a k-edge connected component of G−.
Thus, the lemma holds. �

Proof Sketch of Lemma 5.4: First of all, g+ is k-edge connected.
Thus, we only need to prove that there is no super graph g′ of g+ in
G+ that is also k-edge connected. We consider three cases.

473

1) k < ku,v + 1. We prove it by contradiction. Assume that there
is a super graph g′ of g+ in G+ that is also k-edge connected. There
are two cases. i) if (u, v) < g′, then g′ is also k-edge connected in G

and is a super graph of g. ii) if (u, v) ∈ g′, then g+u,v ⊆ g′; since gu,v

is (ku,v (≥ k))-edge connected, g′ by removing (u, v) is still k-edge
connected and is a super graph of g. Both cases contradict that g is
a k-edge connected component of G. Thus g+ is a k-edge connected
component of G+.

2) k > ku,v + 1. Obviously, (u, v) < g+; otherwise g would be
(k− 1 (> ku,v))-edge connected from Lemma 5.2, contradicting that
sc(u, v) = ku,v. Now, consider any super graph g′ of g+ in G+. i)
If (u, v) < g′, then g′ is not k-edge connected, since g ⊂ g′ ⊆ G

and g is a k-edge connected component of G. ii) If (u, v) ∈ g′,
similarly we can prove that g′ is not k-edge connected; otherwise,
g′ by removing (u, v) would be (k−1 (> ku,v))-edge connected from
Lemma 5.2 and is in G, contradicting that sc(u, v) = ku,v. Thus, g+

is a k-edge connected component of G+.
3) k = ku,v + 1 and g+ * g+u,v (or equivalently g * gu,v). Now,

consider any super graph g′ of g+ in G+. i) if (u, v) < g′, then g′ is
not k-edge connected, since g ⊂ g′ ⊆ G and g is a k-edge connected
component of G. ii) if (u, v) ∈ g′, then g′ by removing (u, v) would
be (k−1 (= ku,v))-edge connected from Lemma 5.2; this contradicts
that gu,v is a k-edge connected component of G with k = ku,v since
g 1 gu,v and g ⊂ g′. Thus, (u, v) < g′ and g+ is then a k-edge
connected component of G+.

Thus, the lemma holds. �

A.4 Additional Experiments

Description of Real Graphs. We included eleven real graphs in
our testings, Arxiv General Relativity collaboration network (ca-
GrQc), Arxiv Condensed Matter collaboration network (ca-CondMat),
email network from a EU research institution (email-EuAll), who-
trusts-whom network of Epinions.com (soc-Epinions1), Amazon
product co-purchasing network (amazon0601), web graph from Google
(web-Google), Wikipedia talk (communication) network (wiki-Talk),
Internet topology graph (as-Skitter), LiveJournal online social net-
work (LiveJournal), the web graph within the .uk domain (uk-2002),
and the twitter social network (twitter-2010). All datasets except
uk-2002 and twitter-2010 are downloaded from the Stanford SNAP
library3, and detailed descriptions of these datasets can also be
found there; the uk-2002 and twitter-2010 datasets are downloaded
from LAW4. For each dataset, we extract the largest connected
component in it as our test graph.

Graph SC-MST∗ SC-MST Graph SC-MST∗ SC-MST

D5 0.01 2.05 D9 0.01 1.88
D6 0.01 1.68 D10 0.01 2.67
D7 0.01 0.93 D11 0.01 1.21
D8 0.01 0.87

SSCA4 0.01 1.77 SSCA5 0.01 2.05

Table 10: Scalability testing for SC-MST∗ and SC-MST (in ms)

Graph SMCCL-OPT Graph SMCCL-OPT

D5 16.8 D9 91
D6 8.66 D10 95
D7 1.39 D11 1.6
D8 22.4

SSCA4 0.78 SSCA5 2.49

Table 11: Scalability testing for SMCCL-OPT (in seconds)

3http://snap.stanford.edu/data/
4http://law.di.unimi.it/datasets.php

A.5 Compute k-Edge Connected Components
For completeness, we also briefly present the state-of-the-art ap-

proach for computing k-edge connected components in [7].

Algorithm 13: ComputeKECCs[7]

Input: A graph G = (V, E), and an integer k

Output: φk(G), k-edge connected components of G

1 Gg ← Decompose(G, k); /* Decompose G */;
2 if Gg consists of only one subgraph then φk(G)← φk(G) ∪ Gg;
3 else for each subgraph g in Gg do ComputeKECCs(g, k);

4 Procedure Decompose(G, k)
5 Gg ← ∅; PG ← G;
6 while PG is non-empty do

7 Compute a maximum adjacency order L of vertices in PG;
8 for each vertex u in L with w(L, u) ≥ k do
9 Merge u with the immediately preceding vertex of u in L into

a single super-vertex;

10 while the last vertex v in L has w(L, v) < k do
11 Remove v from both L and PG and add to Gg the subgraph of

G induced by vertices contained in the super-vertex v;

12 return Gg;

Framework. Based on the property that a graph G is k-edge con-
nected if and only if every cut has at least k edges, a decomposition-
based framework was proposed in [7] as shown in Algorithm 13
which is self-explanatory. The main component is Decompose,
which decomposes an input graph G into a set of disjoint, vertex-
induced, connected subgraphs of G such that the union of their
vertices is the set of vertices of G. To ensure the correctness,
Decompose must satisfy two properties [7]. 1) Atomicity property:
given an input graph G, each k-edge connected component of G is
entirely contained in one of the returned subgraphs by Decompose.
2) Cutability property: if the input graph G is not k-edge connected,
then Decompose decomposes G into at least two subgraphs.

Decompose. The procedure Decompose decomposes a graph G by
recursively removing from G the edges that are in cuts of G with
cardinality less than k, where a cut is a subset of E whose removal
disconnects G. Such cuts are found by the maximum adjacency

search [7, 28], which computes a maximum adjacency order L of
all vertices in G as follows. L is initialized to contain a single vertex
arbitrarily chosen from V . As long as there are vertices not included
in L, it adds to the tail of L the vertex u most tightly connected to
L, i.e., u = arg maxv∈V\L w(L, v), where w(L, v) denotes the number
of edges between v and vertices in L.

Lemma A.3: [7] Given a graph G with a computed maximum

adjacency order L, (case-i) for any vertex u in L, if w(L, u) ≥ k,

then the edge connectivity between pu and u in G is at least k (i.e.,

λ(pu, u) ≥ k), where pu is the immediately preceding vertex of u in

L; (case-ii) for the last vertex v in L, if w(L, v) < k, then λ(u, v) < k

for any vertex u , v in L. �

The pseudocode of Decompose is shown in Algorithm 13. PG

is a partition graph [7] initialized as G, where each vertex in PG is a
super-vertex containing a set of vertices in G and the sets of vertices
in the super-vertices of PG form a partition of the vertices of G.
Line 7 computes L, and Lines 10–11 and Lines 12–14 correspond
to case-i and case-ii in Lemma A.3, respectively.

Time Complexity. Let h denote the maximum depth of recursively
calling ComputeKECCs in Algorithm 13, and l denote the number
of iterations in Decompose (i.e., Line 8) [7]. Then, the time com-
plexity of Algorithm 13 is O(h · l · |E|) since Line 9 takes O(|E|)
time, where h and l are shown to be bounded by small constants for
real graphs [7].

474

