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ABSTRACT

With the rapid development over the last decade, time series
data become one of the most frequently used data in real
world applications (e.g., finance analysis, medical diagnosis,
environmental monitoring, etc.). As expected, the volume of
the time series data will even grow larger in near future. It
is important to design efficient and effective algorithm and
index to handle various tasks for these data. Thereby, my
PhD study focuses on how to extract meaningful time series
patterns from large volume of data efficiently. Specifically,
two types of extraction queries are discussed in this work,
including longest-lasting correlated subsequence query and
time series motif query. The applications and solutions of
these two queries are thoroughly introduced and discussed
in this paper. Moreover, some potential pattern extraction
queries will also be discussed in this paper.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining
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1. INTRODUCTION

Time series data can be found in a wide variety of do-
mains, including medical diagnosis, speech processing, finan-
cial analysis and environmental monitoring, etc. As a conse-
quence, processing and mining of time series data have been
developed in the last decade, such as subsequence match-
ing [7, 26], classification and clustering [17, 23], prominent
streak and anomaly detection [6, 9]. In this work, we focus
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on discovering longest-lasting correlated subsequence [15]
and time series motif [16, 20, 24].

Longest-lasting Correlation. The first problem studied
in this paper is discovering longest-lasting correlated subse-
quence (LCS). Given two time series ¢ and o, a subsequence
pair is longest-lasting correlated if and only if the length of
the subsequence /¢ is maximized subject to p(q,0,7,£) > 0,
where p(q,0,7,£) is the Pearson correlation between ¢ and
o in the segment [r,7 + £ — 1].
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Figure 1: Example of financial data analysis

Longest-lasting correlated subsequence are particularly
useful in helping those analyses without prior knowledge of
the query length ¢. For instance, a stock analyst wants to
find a stock whose price variance is similar to Google, Inc. in
some segment from 2008 to 2011. This question can be an-
swered easily by subsequence matching [7] if we have prior
knowledge about the segment length ¢. However, £ is not
easy to be specified as the most appropriate value of ¢ heav-
ily depends on queries, time, data, and application domains.
Instead of finding fixed length results, our task is to return
the longest-lasting segment whose correlation is larger than
a threshold . We claim that the correlation threshold ¢ is
a more natural parameter than the segment length ¢ since
analysts can evaluate how the correlation score reflects the
relevance of the result in their application domain.

We demonstrate longest-lasting correlated subsequence
query using the stock data collected from Yahoo! Fi-
nance !. Fig. 1 illustrates the price variance of GOOG
(Google, Inc.), NFLX (Netflix, Inc.), and AAPL (Ap-
ple, Inc.) in 2008 - 2011. A typical analysis
query is ‘find the most correlated stock to GOOG for
every 8 months data in 2008-2011°. This query returns

"http://finance.yahoo.com/



AAPL in [4/3/2009,4/6/2009] as the result where the cor-
relation is 0.985. The query result may be more meaning-
ful to analysts if it becomes ‘find the longest-lasting period
of a stock who performs similar to GOOG in 2008-2011’.
Suppose that the correlation threshold is set to 0.95, this
query returns AAPL in [28/2/2008,5/4/2010] as the result.
It is not surprising that their prices change similarly over
such long period as both of them are the leading compa-
nies in IT sector. Besides, the second type of queries can
identify prominent periods more precisely based on the cor-
relations. For instance, the longest correlated time span
of GOOG and NFLX fulfilled the correlation threshold is
[21/7/2011,12/9/2011] while the fixed length query (¢=3
months) returns a lower correlation (p = 0.923) in time span
[5/8/2009,5/11/2009].

Time Series Motif. The second problem studied in this
paper is the time series motif discovery. Time series motif
has been shown to have great utility for several data min-
ing algorithms, including clustering, classification, sequence
summarization, and rule discovery [5, 14, 21, 22, 24]. Given
a time series, it reports the motif as the most correlated
pair of subsequences in this time series. The correlation
between subsequences is measured by the normalized Eu-
clidean distance. As an example, Fig. 2 illustrates a weekly
motif discovered in a power consumption dataset [13].
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Figure 2: Weekly motif discovered in a time series
(35,000 values) that records the average power con-
sumption for a Dutch research facility in the year
1997

Discovering motif is a core subroutine for activity discov-
ery of humans and animals, with applications in elder care,
surveillance and sports training [21]. Besides, clustering enu-
merated motifs is shown to be more meaningful than clus-
tering all the subsequences in a long time series [27]. As in
other domains, this approximately repeated structure may
be conserved for some reason that is of interest to domain
specialists [22].

The remainder of this paper is organized as follows. The
notations and related works are presented in Section 2. The
works we have done are presented in Section 3, followed by
future work in Section 4. Lastly, we conclude the paper in
Section 5.

2. PRELIMINARIES

2.1 Subsequence, Z-normalization, Distance
measures

DEFINITION 1 (SUBSEQUENCE OF 0). Given a time se-
ries o of length m (i.e., o = 0[0]...olm — 1]), a valid sub-

22

sequence of length £ (i.e., 0 < £ < m) in o is denoted as
o(1,£) = o[r]...o[r + £ — 1], where T is the offset of the sub-
sequence and 0 <17 <m — L+ 1.

Z-normalization To reasonably compare the similarity
of two time series, the sequence values should be Z-
normalized [15, 26]. The Z-normalization is to transform
a time series into its normalized from whose mean is ap-
proximately zero, and the standard deviation is in a range
close to 1. Mathematically, the i-th value of a Z-normalized
time series 6 can be calculated by

oli] — o
Oo

oli] = 1)
where p, and o, are the mean and standard deviation of o,
respectively.

Distance measures In motif discovery, we use normalized
Fuclidean distance as the underline distance measure. Gen-
erally, the normalized Euclidean distance between two time
series is calculated by their normalized form. For clarity,
the definition of normalized Euclidean distance is given as
follows.

dist(q,6) = (2)

It is obviously unfair to compare the subsequence simi-
larity of different lengths. As an example, the normalized
Fuclidean distance of two longer subsequences is more likely
larger than the normalized Euclidean distance of two shorter
subsequences. Thus in longest-lasting correlation query, we
use Pearson correlation as the underline similarity measure
since it not only reveals the true similarity of time series by
Z-normalization but also makes the similarity comparison
fairer by length normalization [15]. For clarity, the defini-
tion of Pearson correlation is given as follows.

m—1

>

=0

qliloli] — mpqpo

3)

p(g,0) =

mogoo

Actually, the Pearson correlation between two time series
can be represented by their normalized Euclidean distance
as follows.

(dist(g,0))?
2m

(4)

where dist(q, 0) is normalized by the length m in the Pear-
son correlation.

p(g,0) =1—

2.2 Piecewise Aggregate Approximation

In order to boost up these two queries, i.e., LCS and
time series motif, the proposed methods utilize indexable di-
mensionality reduction methods for time series data. More
specifically, an indexable dimensionality reduction must
obeys the lower bound lemma in order to filter unpromis-
ing candidates without false dismissals. In these two works,
we use Plecewise Aggregate Approximation (PAA) [12, 29]
as the dimensionality reduction method as it is simple yet
shown to be competitive with other dimensionality reduc-
tion representations like SVD, DFT and DWT as discussed
in [19].



Specifically, a normalized time series 6 can be represented
by ¢ line segments of equal length % Formally, given a
normalized time series 6, the k-th element (i.e., k-th line
segment) of its ¢-dimensional PAA representation is defined

as follows.
(k1)1

>

=1tk
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By [12, 29], the PAA distance dpaa between two PAA
representations e; and e; serves as the lower bound of the
Euclidean distance between their representative time series
q and o:

eslk] = - (5)

o]

$—1
dist(q,0) > dpaa(eq, es) = (% S (eglal —eolz))®)®  (6)
=0

2.3 Related Work

Processing and mining time series data have received
plenty of attention in database and data mining commu-
nity in the last two decades, such as similarity search and
subsequence matching [1, 2, 3, 4, 7, 8, 10, 25, 26], classifica-
tion and clustering [17, 23], prominent streak and anomaly
detection [6, 9], etc.

In order to discover LCS efficiently, our proposed method
required a multi-length index to support batch pruning for
subsequence queries of different lengths. A related work
called Multi-Resolution Index (MRI) [10] deals with ar-
bitrary length queries more efficiently than I-adaptive [7]
which employs prefix search to support longer query. MRI
is a collection of I-adaptive indexes at different based-2 reso-
lutions. At query time, hierarchical prefix search can be ap-
plied on MRI. However, as mentioned in [26], prefix search
can only work for non-normalized distance measures. Rak-
thanmannon et al. [26] proposed an non-index method to
boost up the normalized arbitrary length subsequence search
for both normalized Euclidean distance and Dynamic Time
Warping (DTW) using the reordering early abandon and cas-
cading lower bounds. A main drawback of the non-index so-
lutions is that they do not support batch pruning, e.g., if a
query ¢ is not similar to a subsequence, then ¢ is unlikely
similar to its neighbor subsequences.

Regarding to motif discovery, most of the literature fo-
cuses on fast algorithms for approximate motif discovery [5,
14, 18]; however, they do not provide guarantees on the re-
sult quality. Recently, Mueen et al. [20, 24] propose two
efficient algorithms for exact motif discovery. The smart
brute force method (SBF) [20] examines subsequence pairs
in a specific ordering in order to compute the distance of
each pair incrementally in (amortized) constant time. How-
ever, this method always examines O((m — £)?) subsequence
pairs as it cannot prune any subsequence pair. On the
other hand, the reference indices method (MK) [24] exam-
ines subsequences by the order of distance to a reference,
and employs a pruning technique to discard unpromising
subsequence pairs. Then, it computes the distance for each
remaining pair (in O(¢) time). Nevertheless, its pruning ef-
fectiveness relies heavily on the data distribution. Also, MK
requires considerable memory space for storing all normal-
ized subsequences and reference indices.
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3. RESEARCH UNDERTAKEN

In the past few years, I have been working on design-
ing efficient methods for time series query processing. More
specifically, I have studied two queries: discovering longest
lasting correlated subsequence [15] and discovering time se-
ries motif [16].

3.1 Longest-lasting Correlation

Problem We formally define the Longest-lasting Correlated
Subsequence (LCS) Query as follows.

PROBLEM 1. (LONGEST-LASTING CORRELATED SUB-
SEQUENCE QUERY) Given a query time series q, a time
series database O, and a threshold §, a Longest-lasting
Correlated Subsequence (LCS) Query returns a subsequence
Otes (Tiess ics), Otes € O such that p(q, Oics, Tics, bics) > 0 and
the length £ics is the longest among all possible subsequences
0i(7i, 4:),0; € O having p(q,0i,7i, bi) > 0.

Discovering LCS is a challenging problem due to (1) its
potentially huge search space and (2) no monotonic property
(with regard to subsequence length) held for normalized dis-
tance measures [15]. To find the longest-lasting correlation
subsequence, a nédive method is to search every possible sub-
sequence from the longest length to the shortest length until
it finds a subsequence o0;(7, £) such that ¢ is maximized sub-
ject to the correlation constraint . Thereby, the total search
space is O(nm?) and the time complexity is O(Cnm?), where
n is the number of time series in O, m is the maximum length
of the time series, C'is the complexity of a correlation com-
putation.

Methodology Obviously, the aforementioned naive method
which checks every possible subsequence combination is not
scalable for large datasets. To the best of our knowledge,
there is no known index that can support normalized dis-
tance queries of arbitrary lengths [26]. In this work, we first
introduce a space-constrained index to prune unnecessary
subsequences by batch. Our index exploits an observation
that subsequences in a time series o having similar offsets
7 and lengths £ are likely to have similar correlation with
g. For instance, if p(q,0,7,¢) < 4, then p(q,0,7,£ — 1) and
p(g,0,7 + 1,£ — 1) are likely to be smaller than 6. This
suggests that we can group similar subsequences together.
Specifically, if the correlation upper bound of a subsequence
group is below §, then such a group can be safely pruned.

Based on this observation, we first group normalized sub-
sequences of o (with arbitrary lengths) by their PAA repre-
sentations into Minimum Bounding Rectangles (MBRs), and
we show that the minimum distance between PAA MBRs
can be used to derive the correlation upper bounds. Fig. 3
illustrates our proposed diamond covering grouping strategy.
It groups all m? normalized subsequences in o into a set of w-
diamond MBRs (cf. Fig. 3(b)), where each w-diamond MBR
contains w? subsequences (cf. Fig. 3(a)).

In order to further reduce the index size, we propose
to group similar w-diamond MBRs with the same id (e.g.,

fz@m) and sz;(d,m)) in different time series into higher
level MBRs called compact MBRs. Fig. 4 illustrates this
kind of inter-object grouping. By using this intra-object
and inter-object grouping, the built index can be controlled
under a manageable size.



£5(0, m-1

1,m-7j:*§ /
6(0, m-2)36(1, m-2)6(2, m-2)

|z§(0, m-3) | o1, m-3){5'(2, m-3) | 63, m-3)|

\‘. MPaom
)} 35

Diamond ID
of MPs0m
PAA representations Diamond MBR

ies(1,

Subsequences
(a) Diamond MBR example, with w = 2

6(0,m)

(b) Diamond cover grouping

Figure 3: Illustration of w-diamond cover grouping

0
0 5 C
MPs20m M’ a50m MCaom

+

Diamond ID of M.,

+

Figure 4: Inter-object grouping

During the discovery of LCS, we construct w-diamond
MBRs of g on demand, and perform filter-and-refinement
based on these compact MBRs. For the un-pruned subse-
quences, we propose to reduce the correlation computation
cost by pre-computing the a-skipping cumulative arrays.

Inspired by [23], the Pearson correlation of all subsequence
pairs can be computed in O(1) time if we compute the five
cumulative arrays for ¢ and o. These arrays are defined
mathematically as follows.

Sqlu] = Y i, Sp2ul = Y i, Y

[l ;)q{] o2 [u] ;ﬂ] Sgolu] = 3" afilol .
u u =0

Solul = S olil, Spelu] = 3 ofl?,
i=0 i=0

where u € [0..m — 1].

However, the total space overhead is 3mn that is three
times larger than the raw data.? Instead, we present a
technique called a-skipping requires only 3’2” total space
overhead (« can be chosen based on memory size). It can
compute every Pearson correlation in O(«) as been proved
in [15]. The a-skipping cumulative array is defined as fol-

lows.

DEFINITION 2 (q-SKIPPING CUMULATIVE ARRAY, S%).
Let the skip factor be a. A cumulative value Sx[u] is kept
into S% if and only if u mod a = 0. Here X € {0,0%,qo}.

2Every object o; is required to construct 3 extra arrays (e.g.,
So;55,2,5¢0,, and the space overhead (i.e., O(2m)) of Sq and

S,2 is negligible.
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Figure 5: An a-skipping cumulative array

Fig. 5 shows a 4-skipping cumulative array (o = 4). Note
that only the cumulative values in bold color are kept in S%,
where the size of S§ is 1/« to the original size.

Contributions The contribution of this work can be sum-
marized as below: 1. we define a new query, longest-lasting
correlated subsequence query, in time series databases, which
is useful in many real-world applications. 2. we propose
an a-skipping technique to reduce the computation time of
Pearson correlation from O(¢) to O(a). 3. we propose a size-
tunable index, diamond cover indez, to efficiently compute
LCS, which is the first index to support arbitrary length
subsequences search under normalized distance measure.

Outcomes Extensive experimental evaluation on both real
and synthetic time series datasets, i.e., RAND, STOCK and
TAO [15], verifies the efficiency and effectiveness of our pro-
posed methods, and our best method is up to one order of
magnitude faster than the state-of-the-art adaption.

3.2 Time Series Motif

Problem The formal definition of motif discovery is as fol-
lows:

PROBLEM 2 (MOTIF DISCOVERY). Given a time series
o of length m and the targeted motif length £, the motif dis-
covery s to return a pair of subsequences {o(i,£),0(4,0)},
where the normalized Fuclidean distance of o(i,£) and o(j, )
is minimum among all non-trivial subsequence pairs.

It is time consuming to solve the motif discovery prob-
lem. Note that a time series of length m contains m — ¢+ 1
subsequences of length £. The brute force method would (i)
examine all pairs of subsequences (i.e., O((m — £)?) pairs)
and then (ii) compute the distance for each pair (in O(¥)
time). This method takes O((m — £)? - £) time, which is too
expensive for a long time series.

Methodology To the best of our knowledge, prior solutions
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Figure 6: The framework of Quick-Motif



focus on one narrow aspect to boost the query performance.
For instance, MK exploits the pruning capability using refer-
ence indices but it takes O(¢) time per distance calculation;
SBF exploits the fast distance calculation in O(1) time but
without any pruning support. Thus, none of these solutions
can offer acceptable performance for emerging applications
when (i) the time series is long, e.g., millions of values, or
(ii) the motif discovery query is issued frequently, e.g., ev-
ery minute. In this work, we exploit more broadly such
that our solution, Quick-Motif, is more smarter than SBF
as equipped with batch pruning capability and it can be
used to answer the motif discovery problem at scale.

Fig. 6 illustrates the work flow of our framework. To re-
duce the dimensionality of the problem, we first transform
each subsequence into their PAA representation. To sup-
port fast distance calculation, we group consecutive PAA
representations into PAA MBRs such that the pairwise sub-
sequence distances of two MBRs can be computed in O(1)
time. To support batch pruning, we manage the MBRs into
a Hilbert R-tree and apply a filter-and-refinement frame-
work to prune unpromising MBR pairs. To further improve
the performance, we propose a lazy group refinement tech-
nique which attempts to process surviving MBRs in one
refinement batch. By taking the advantages of all these
techniques, Quick-Motif outperforms the state-of-the-art ap-
proaches, which addresses the need of emerging applications.

Contributions In this work, we present a novel framework
named Quick-Motif which adopts two-level approach to en-
able batch pruning at the outer level and enable fast distance
calculation in inner level. While prior works (i.e., MK and
SBF) can not offer fast distance computations and prune
subsequence pairs at the same time, as these two techniques
require different orderings on examining subsequence pairs.
Furthermore, we propose two optimization techniques for
both the outer and the inner levels: (i) a locality-based
searching strategy for discovering the true motif as soon as
possible, and (ii) a batch refinement technique that shares
the processing cost of surviving group-pairs (i.e., promising
pairs).

Outcomes We evaluate the proposed framework on both
real and synthetic datasets, i.e., ECG, EEG, EPG, TAO
and RAND [16]. The experimental results show that Quick-
Motif outperforms the state-of-the-art methods. To the best
of our knowledge, we are the first work that discovers motif
in a time series of million lengths in ~20s on a commod-
ity machine (while other approaches take several hours to
complete the same discovery task). The performance of our
approach enables the possibility to offer online motif discov-
ery in emerging applications.

4. FUTURE WORK

My previous works only studied query processing for one-
dimensional time series data based on lock-step distance
measures (e.g., normalized Euclidean distance and Pearson
correlation). In the remaining study period of my PhD,
I plan to propose efficient methods to support the query
processing for multi-dimensional time series data based on
other flexible distance measures (e.g., Dynamic Time Warp-
ing (DTW)).
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4.1 Multi-Dimensional Time Series

A multi-dimensional time series consists of k£ individual
time series (k > 2) where each individual time series is of
the same length. Multi-dimensional time series are prevalent
in diverse applications such as GPS tracking, motion cap-
ture and medical measurements. While considerable meth-
ods have been developed for query processing in an individ-
ual time series, relatively little work on processing multi-
dimensional time series has been reported.

4.2 Dynamic Time Warping

Dynamic time warping (DTW) is a distance measure that
is robust to misalignments and time warps, and it is widely
used extensively in many applications [2, 11, 28]. In general,
DTW finds the optimal alignment (i.e., minimum distance)
between two time series by warping their offsets in a nonlin-
ear fashion. Mathematically, DTW can be represented by a
recursion as follows.

DTW (q,0) =(q[0] — o[0])>+

DTW (g[1...last], 0)
min § DTW (q[1...last], o[1...last])
DTW (q,0][l...last])

(8)

where ¢[1...last] denotes the subsequence of g containing val-
ues from the 2-nd to the last offset. To avoid pathological
warping, many research works [11, 26] suggest to apply a
constraint r in warping length such that g[i] is matched with
o[j] if and only if | — j| < r. This reduces the complexity of
DTW from O(m?) to O(mr).

Discussion: For processing a query on multi-dimensional
time series, one possible solution is to use Principal Com-
ponent Analysis (PCA) that projects the multi-dimensional
time series into an one-dimensional time series [30] and then
solve it by any one-dimensional solution for this query. How-
ever, this approach does not guarantee the accuracy of query
results. In the future, I plan to study efficient methods which
can avoid checking some individual time series of unneces-
sary dimensions while provides exact query result.

For DTW, Rakthanmannon et al. [26] proposed several
lower bound techniques to speed up DTW computation
without index support. It is still possible to further improve
the performance. For example, distance calculation between
a query sequence and several consecutive subsequences will
share a lot of points, thus it holds a high possibility to prune
all the subsequences by refining only a subsequence among
them.

5. CONCLUSION

In this paper, two kinds of query processing for time series
data are studied. In particular, longest-lasting correlation
focus on discovering longest-lasting highly correlated subse-
quence in massive time series databases, and it is particu-
larly useful in helping those analyses without prior knowl-
edge about the query length. Motif discovery reports the
most similar/correlated subsequence pair in a long time se-
ries which can be used as a core subroutine in a variety of
domain applications.

In the future, we intend to study efficient query process-
ing techniques for multi-dimensional time series under more
flexible distance measurements, i.e., dynamic time warping.
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