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ABSTRACT
The steady growth of graph data from social networks has resulted
in wide-spread research in finding solutions to the influence max-
imization problem. In this paper, we propose a holistic solution
to the influence maximization (IM) problem. (1) We introduce an
opinion-cum-interaction (OI) model that closely mirrors the real-
world scenarios. Under the OI model, we introduce a novel prob-
lem of Maximizing the Effective Opinion (MEO) of influenced users.
We prove that the MEO problem is NP-hard and cannot be ap-
proximated within a constant ratio unless P=NP. (2) We propose a
heuristic algorithm OSIM to efficiently solve the MEO problem. To
better explain the OSIM heuristic, we first introduce EaSyIM – the
opinion-oblivious version of OSIM, a scalable algorithm capable of
running within practical compute times on commodity hardware.
In addition to serving as a fundamental building block for OSIM,
EaSyIM is capable of addressing the scalability aspect – memory
consumption and running time, of the IM problem as well.

Empirically, our algorithms are capable of maintaining the devi-
ation in the spread always within 5% of the best known methods
in the literature. In addition, our experiments show that both OSIM
and EaSyIM are effective, efficient, scalable and significantly en-
hance the ability to analyze real datasets.

1. MOTIVATION
Growth and pervasiveness of online social networks is no longer

a new phenomenon. They have become an integral part of the day-
to-day life of almost every Internet user. Their wide-spread reach
paves the way for a host of applications – (1) Viral marketing/ad-
targeting [9,24,44], (2) Outbreak detection [25,35], (3) Community
formation, evolution and detection [10, 12, 40], (4) Recommenda-
tions using social-media [14, 49] and many more. The influence
maximization (IM) problem [32] with its applicability in solving
the above mentioned problems and beyond, has thus, been one of
the most widely studied problems over the past decade. This prob-
lem is to identify a set of seed nodes so that the overall spread of
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Figure 1: A sample representation of the Twitter network.
information in a network, which is the potential collective impact
of imparting that piece of information to these nodes, is maximized.

Given that the objective of IM is to maximize the spread of in-
formation about a content, which can be a product, person, event
and many more, an important aspect of this problem is the under-
lying information diffusion model. A diffusion model defines the
dynamics of information propagation and also controls the way this
information is perceived by the nodes in a network. Nevertheless, a
substantially large fraction of the literature in this field has focussed
on devising efficient and scalable algorithms [13,17–19,21–23,28,
29, 31–33, 35, 42, 46] for IM using the classical information diffu-
sion models [32, 44]. The two fundamental diffusion models pro-
posed by Kempe et al. [32] – Independent Cascade (IC) and Linear
Threshold (LT) have been almost exclusively followed in majority
while extended in a small fraction of all the subsequent work.

Having said that, the most obvious limitation of these models is
that the notion of spread, of a set of seed-nodes S, is defined as a
function of the number of nodes that get activated using these seeds.
The problem with this definition is two fold – (1) Each node is con-
sidered to be contributing fully and positively towards the spread
of information about a content without considering the personal
opinion of the nodes which could be even negative, (2) A newly
active node is always considered to perceive the information with
the same intent as that of the node that activated it, while the former
may tend to disagree with the latter owing to the interactions be-
tween them in the past. These scenarios are not scarce in real-world
settings, where a node can possess an opinion (Def. 4) towards a
content which is the subject of IM. Moreover, usually past inter-
actions (Def. 5) between a pair of nodes govern the way in which
any new information originating from one of the two would be per-
ceived by the other and vice-versa. To better understand these as-
pects, let us consider a (sample) real-world scenario in Example 1.

EXAMPLE 1. Suppose Apple wants to market, utilizing the no-
tion of viral-marketing, the iPhone 6 Plus using the Twitter net-
work given a marketing budget of 1 seed-node. Figure 1 portrays a
snapshot of such a network consisting of 4 nodes. Nodes A and C
follow B, while D follows A and C. The opinion (o) of a node to-
wards the new iPhone can be calculated using its opinion towards
similar products in the past – previous iPhone models or phones
belonging to the same market segment. For example, the node A
has oA = 0.8, which means that she held highly positive opinions
towards previous iPhone models or similar products. The opinion
for other nodes can be computed in a similar way. Moreover, each
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edge possesses an additional parameter, called the interaction (ϕ)
probability. In our example, the directed edge BC has ϕBC = 0.8
which means that the node C perceives the information originating
from the node B with the same intent 4 out of 5 times. In other
words, C agrees with B 4 out of 5 times while disagrees otherwise.

In the light of above discussions, it is intuitive that despite of be-
ing widely adopted, the fundamental (opinion-oblivious) diffusion
models lack the power to leverage the expressibility of the social
networks of today, namely – Facebook, Twitter etc. Thus, there is a
need to explore potential extensions, over and above these models,
with the ability to better model information diffusion under real-
world scenarios. To further this cause, we incorporate the concepts
of opinion and interaction [27,38,43] from the social media domain
and propose a new Opinion-cum-Interaction (OI) model of infor-
mation diffusion capable of addressing the limitations discussed
above. Using the OI model, we define a more realistic notion of
opinion-spread (Defs. 6 and 7).

Let us try to analyze the importance of opinion-spread using the
example in Figure 1. As discussed earlier, opinion-oblivious dif-
fusion models, viz. IC, rely on the influence probability (p) alone
without paying heed to the personal opinion of the activated nodes,
which may even be negative. Thus, the likelihood of C being
chosen as a seed under the IC model is fairly high, owing to the
high value of pCD which in turn results in high (opinion-oblivious)
spread. However, owing to oD being negative it will always de-
crease the overall opinion-spread if activated. Thus, C might not
be the best choice for a seed-node. Moreover, a model capable of
capturing the effect of opinions, viz. OI, will penalize C and thus
decrease its likelihood of being chosen as a seed node.

We strengthen the above mentioned observation further, by plot-
ting the opinion-spread against the number of seeds for different
real datasets (details in Sec. 4). Figure 2 shows that the opinion-
spread obtained by the seeds selected using the OI model is much
better when compared to that using the IC model, and thus, estab-
lishes the importance of OI over the IC/LT models of information-
diffusion with better conformance to the real-world scenarios.

As mentioned above, there has not been much research in devis-
ing opinion-aware information-diffusion models, with IC-N [16]
and OC [48] being the only two models capable of incorporating
negative opinion in the diffusion process. Despite of their capabil-
ity to model opinions, they possess the following limitations.

(1) Constrained and Specific: The IC-N model is rather sim-
plistic, where a negatively activated node retains its opinion through-
out its lifetime, while a quality-factor qf (same for each node) de-
fines the probability of transitioning to a negative opinion for the
positively activated nodes. Although, a uniform qf allows retention
of submodularity, which further facilitates extension of existing al-
gorithms for IM to this setting, it renders the model too specific.

(2) Simplistic diffusion dynamics: The IC-N model possesses
a strict constraint that a negatively activated node will always acti-
vate other nodes as negative. This assumption ignores the personal
opinion of a node completely, and will be violated when the target
node possesses a highly positive opinion about a content.

The OC model, where the change in opinion of a node is depen-
dent upon its own opinion and the opinion of the nodes that acti-
vate it, does not possess the above two limitations. The OC model
thus, facilitates a more involved process of modelling opinions at
an added cost of losing submodularity.

(3) Lack capability to capture Interaction: Both IC-N and OC
lack the capability to capture the way in which information is per-
ceived between a pair of nodes (interaction) in the network.

(4) Lack of backward-compatibility with fundamental diffu-
sion models: The IC-N model is tuned to work with IC at the first
layer, while the OC model is designed to work with LT alone.
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Figure 2: Opinion spread for different diffusion models.

The OI model attempts to address these limitations by allowing
– (1) Nodes to possess different opinions, (2) Edges to possess an
interaction probability for modelling the perception of information
between a node-pair, and (3) Capability of working with both IC
and LT at the first layer. In addition to the analytical explanations,
Figure 2 also shows that the opinion-spread with seeds selected us-
ing OI is better when compared to those selected using OC. In sum-
mary, the OI model is a more generic, natural and realistic model
when compared to IC-N and OC.

Having successfully motivated (both qualitatively and empiri-
cally) and differentiated (from current state-of-the-art) the OI model,
we propose a novel problem (MEO) of maximizing the spread of
information under opinion-aware settings. Since MEO is NP-hard
and difficult to approximate within a constant ratio, we incorpo-
rate ideas from the opinion-oblivious scenarios to design scalable
algorithms for the opinion-aware case. We propose OSIM, capa-
ble of maximizing the opinion-spread while accommodating for
the change of opinion as the information propagates. To this end,
we first analyze a representative set of algorithms for IM under the
fundamental diffusion models.

Although, the Kempe’s GREEDY algorithm [32] provides the best
possible approximation guarantees for the IM problem, it is in-
efficient. The CELF++ [28] algorithm with optimizations over
GREEDY renders it as the most efficient technique within this class
of algorithms. However, these techniques never improved the asymp-
totic time-complexity of IM and thus, cannot be employed for large
graphs. To further this, recent works employed the use of sampling
with memoization [13, 23, 45, 46], with TIM+ and its improvement
IMM being the most efficient, to achieve superior efficiency while
retaining approximation guarantees. However, these algorithms
cannot be termed scalable owing to their exorbitantly high mem-
ory footprint. For example, the memory footprint of TIM+ can be
as high as 100 GB for a graph with 1M nodes and 3M edges which
is not uncommmon these days. Owing to these limitations, neither
CELF++ nor TIM+ serve as potential candidates for extensions to
opinion-aware scenarios. Our proposition, EaSyIM, tackles these
problems by incorporating the idea that influence of a node can be
estimated using a function of the number of simple paths starting at
that node. Note that paths of length l from a node u can be calcu-
lated as the sum of all paths of length l − 1 from its neighbors. We
exploit this idea to devise data-structures and algorithms capable of
running in linear space and time. This renders our algorithm scal-
able yet efficient. Therefore, EaSyIM is chosen for extensions to
the opinion-aware case to produce OSIM, which being fundamen-
tally similar possesses the same analysis as EaSyIM.

Contributions. In summary, we make the following contributions.
We propose a holistic solution to the IM problem. Towards that,

• We introduce the OI model (Sec. 2.2) which, to the best
of our knowledge, is the most generic information diffusion
model with the ability to address most of the limitations in
the existing models and closely mirror real-world scenarios.
In addition to this, we are the first to motivate the need of
opinion-aware models by citing a novel application analyz-
ing churn, using real-world data (Sec. 4.1.2).
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• Under OI, we propose a novel problem of maximizing the
effective opinion of influenced users, called MEO (Sec. 2.3).

• We propose effective, efficient and scalable algorithms (Sec. 3),
namely – OSIM and EaSyIM, that run in linear time O(kD(m+
n)) and space O(n).

• We provide thorough theoretical analyses (Sec. 3.4) to prove
the effectiveness of our algorithms. We believe that such an
in-depth analysis for the algorithms that estimate influence
as a function of simple paths is not present in the literature.

• Through an in-depth empirical analysis (Sec. 4), we show
that our algorithms are the first to possess the capability of
handling huge graphs on commodity-hardware and provide
the best trade-off between running-time and memory con-
sumption, while retaining the quality of spread.

The rest of the paper is organized as follows. In Section 2, we
introduce a generic opinion-aware information diffusion model and
present the problem statement. Section 3 describes our algorithm
and its analysis. In Section 4, experimental results are presented.
Section 5 highlights the related work before Section 6 concludes.
For details and elaborate version of the proofs, the reader is referred
to a full version of this paper in arXiv 1602.03110.

2. OPINION AWARE IM
In this section, we first introduce the basic concepts of the IM

problem and build upon them to describe the Opinion-cum-Interac-
tion (OI) model for information diffusion in detail. The notations
used in the rest of the paper are summarized in Table 1.

2.1 Preliminaries
The objective of the IM problem is to capture the dynamics of

information diffusion for maximizing the spread of information in
a network. To this end, we first define the notions of seed and ac-
tive nodes in the context of fundamental (opinion-oblivious) infor-
mation diffusion models, namely – IC and LT. Next, we use these
concepts to define the notion of spread of information in a network.

DEFINITION 1 (SEED NODE). A node v ∈ V that acts as the
source of information diffusion in the graph G(V, E) is called a
seed node. The set of seed nodes is denoted by S.

DEFINITION 2 (ACTIVE NODE). A node v ∈ V is deemed
active if either (1) It is a seed node (v ∈ S) or (2) It receives
information, under the dynamics of information diffusion models,
from a previously active node u ∈ V(a). Once activated, the node
v is added to the set of active nodes V(a).

Given a seed node s ∈ S and a graph G(V, E), an informa-
tion diffusion model I defines a step-by-step process for informa-
tion propagation. Having defined the notions of seed and active
nodes, we now introduce the dynamics of the IC and LT mod-
els. For both the IC and LT models, the first step requires a seed
node s ∈ S to be activated and added to the set of active nodes
V(a). Under the IC model, at any step i each newly activated node
u ∈ V(a) gets one independent attempt to activate each of its out-
going neighbours v ∈ Out(u) with a probability p(u,v). How-
ever, under the LT model, a node v gets activated if the sum of
weights w(u,v) of all the incoming edges (u, v) originating from

active nodes ∀u ∈ In(v)(a)
1 exceeds the activation threshold θv of

v, i.e.,
∑

u∈In(v)(a)
w(u, v) ≥ θv . Once a node becomes active, it

remains active in all the subsequent steps. This diffusion process

1X(a), for any set X , denotes the set of active nodes in that set.

Item Definition
Out(u) Set of outgoing neighbours of u.
In(v) Set of incoming neighbours of v.

ov Personal opinion of v; ov ∈ [−1, 1].
ϕ(u,v) Interaction probability from u to v.

Γ(S) Spread obtained by set of seed nodes (S).
σ(S) Expected value of spread by seeds in S; E(Γ(S)).
V(a) The set of active nodes; V(a) ⊆ V .

λ Penalty parameter on negative opinion spread.
γv(u) Contribution of v to σ(u), using approximate scores (Sec. 3.2).
γ∗

v (u) Contribution of v to σ(u), using GREEDY [32].
Puv The set of all u-v paths; {u � v}

Δl(u) Score assigned to u, using all u � v paths of length ≤ l.

Table 1: Summary of the notations used.
runs for each seed-node s ∈ S until no more activations are pos-
sible. Eventually, the cardinality of the set of active nodes |V(a)|,
barring the number of seeds k = |S|, constitute the spread of a
given set of seed nodes. Formally,

DEFINITION 3 (SPREAD). Given an information diffusion model
I (opinion-oblivious), the spread Γ(S) of a set of seed nodes S
is defined as the number of nodes, barring the nodes in S, that
get activated using these seed nodes. Mathematically, Γ(S) =
|V(a)| − |S|.

Given the above defined concepts, the IM problem aims at iden-
tifying a set of seed nodes capable of maximizing the expected
spread of information in a network under a fixed budget on the
number of seed nodes. More formally, Given a graph G = (V, E),
a fundamental (opinion-oblivious) information diffusion model I
(IC/LT) with specifics defined as above and a budget k, find a set of
seed nodes, S ⊆ V | k = |S|, that maximizes the expected value
of information spread σ(S) = E[Γ(S)] in this graph.

2.2 Opinion-cum-Interaction (OI) Model
The OI model for information diffusion serves as an extension

over the IC and LT models to facilitate opinion-aware IM. The fun-
damental models are modified to include a second layer attributed
to modelling the diffusion and change of opinion(Def. 4) in the
network. As opposed to the IC/LT models, where a newly acti-
vated node (oblivious to its opinion) is always considered to be
contributing positively towards the information spread (Def. 3), the
OI model considers the spread (opinion-spread, Defs. 6 and 7) of
information under an opinion-aware scenario – where the contribu-
tion of a newly activated node could as well be negative.

The OI model can be easily tuned, with minor modifications, to
work with both IC and the LT models. The specifics of OI, thus,
change depending on the underlying fundamental information dif-
fusion model. Before moving to the model specifics, it is useful to
introduce the notions of opinion (o) of a node and interaction (ϕ)
between two nodes. Usually, the objective of IM is to maximize the
spread of information about a specific content viz. product, topic,
person, event etc. Having said that, the opinion of a node is always
defined in the context of a particular content to denote the personal
preference of this node towards that content. Formally,

DEFINITION 4 (OPINION). The opinion of a node v ∈ V
consists of two sub-components – (1) an orientation ({negative,
neutral, positive}) towards a content and (2) strength ([0, 1]) that
quantifies its preference towards that content. The opinion of a
node is, thus, denoted as ov ∈ [−1, 1].

As opposed to opinion which is associated with properties of a
node alone, interaction aims at capturing the effect of the dyadic
relationship between any two nodes to better model the process of
information diffusion. Formally,

DEFINITION 5 (INTERACTION). The interaction probability
(directed) between two nodes u, v ∈ V , denoted as ϕ(u,v) ∈ [0, 1],
is defined as a fraction of the times an information content shared
by u gets accepted by v with the same orientation as that of u.
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For example, if two nodes u and v agree with each other 1 out
of 5 times in the past, then ϕ(u,v) = ϕ(v,u) = 1/5 = 0.2. As
discussed in Sec. 1, the opinion of a node towards a new content
can be estimated from the previously held opinions by this node
towards similar contents in the past. As opposed to this, the inter-
action probabilities (directed, ϕ(u,v) might not be equal to ϕ(v,u))

between two nodes is rather generic and can be estimated2 by ac-
counting for all possible interactions between these nodes in the
past. Next, we describe the specifics of the OI model.

We model the underlying network as a directed graph G = (V, E)
with parameters p, w, θ, o, ϕ, where |V | = n and |E| = m denote
the set of vertices and edges respectively. The parameters have
similar meanings as discussed earlier in this section. Oblivious to
the underlying information diffusion model (IC or LT), each node
v ∈ V possesses an opinion towards a new content denoted by
ov ∈ [−1, 1]. Specifically the sign of ov indicates the orientation
and the value denotes the strength. More formally, ov > 0, ov = 0,
and ov < 0 indicate positive, neutral and negative orientation re-
spectively. In addition, ov = −1 denotes a strong negative opinion
while ov = +1 denotes a strong positive opinion. Moreover, each
edge (u, v) ∈ E possess ϕ(u,v) ∈ [0, 1], that refers to the probabil-
ity of a node v acquiring the same opinion as that of u, considering
only the contribution from node u. ϕ(u,v) = 0 indicates that v
never agrees with u, while ϕ(v,u) = 0.5 indicates that u agrees
with v half of the time. The dynamics of the model are as follows.

Under the IC model, the first step involves activation of each
seed node s, in the selected seed set S (|S| = k), with its opinion3

os, ∀s ∈ S, while all other nodes remain inactive. At any step i,
if a node u (which was activated at step i − 1) activates another
node v then the final opinion (o′

v) of v is dependent upon both, its
initial opinion ov and the final opinion (o′

u) of the node u. More
formally, each node u, contributes o′

u with a probability ϕ(u,v) and
−o′

u with a probability 1 − ϕ(u,v). The final opinion of the node

v is o′
v = ov+(−1)αo′

u
2 , where α = 0 with a probability of ϕ(u,v)

and α = 1 with a probability of 1 − ϕ(u,v).
Under the LT model, the first step witnesses the same set of

initializations as done for OI under the IC model. At any step
i, if a node v gets activated (by the set of nodes In(v)(a), acti-
vated at previous steps) then the final opinion o′

v of v is dependent
upon both, its initial opinion ov and the final opinion o′

u for all
the nodes u ∈ In(v)(a). The contributions made by each node
to the opinion of the node v is the same as discussed above for
OI under the IC model. The final opinion of the node v is o′

v =
(ov + 1

|In(v)(a)|
∑

u∈In(v)(a)

(−1)α(u,v) o′
u)/2, where α(u,v) = 0 with

a probability of ϕ(u,v) and α(u,v) = 1 with a probability of 1 −
ϕ(u,v).

Once a node becomes active, it remains active with the same ef-
fective opinion in all the subsequent steps. The information prop-
agation process runs until no more activations are possible. With
these extensions, we aim to solve the IM problem under settings
that closely mirror real-world scenarios. Before moving ahead,
we revisit Example 1 and analyze the difference between spread
and opinion-spread with stating the importance of the latter in real-
world scenarios using Example 2.

EXAMPLE 2. Let us consider the construction described in Ex-
ample 1 with all the model-specific parameters present in Figure 1.

2We have discussed one possible way to estimate opinion and in-
teraction. These notions are rather generic and other approaches
can be employed for their estimation as well.
3The final opinion of the seeds is same as their initial personal opin-
ion, o′

s = os.

For the sake of brevity, the analysis of spread in this scenario as-
sumes (1) the IC model and (2) the OI model using IC at the first-
layer. The influence probability (p, of an edge) possesses the same
meaning as for the fundamental models. Since pAD = 0.8, the ex-
pected spread of A under the IC model (σ(A)) is 0.8. Similarly for
other nodes: σ(B) = 0.3628, σ(C) = 0.9 and σ(D) = 0. Thus,
C is selected as the seed node. Since D agrees with A with a proba-
bility of ϕAD and disagrees otherwise, the expected opinion-spread
of A under the OI model is expressed as σo(A) = pAD

(
ϕAD(oD+

oA)/2 + (1 − ϕAD)(oD − oA)/2
)

= 0.8
(
0.9(−0.3 + 0.8)/2 +

0.1(−0.3−0.8)/2
)

= 0.136. Similarly for other nodes: σo(B) =
−0.022564, σo(C) = −0.351 and σo(D) = 0. Thus, A is se-
lected as the seed node. An interesting observation is that, the seed
identified using the IC model, i.e. C, would have resulted in the
worst-possible opinion-spread. This clearly shows the importance
of the notion of opinion-spread under the OI model, over opinion-
oblivious spread using the IC model, in real-world scenarios where
opinion of nodes and interaction between nodes play an important
part in governing the process of information propagation.

Next, we formally state the MEO problem followed by its tractabil-
ity analysis.

2.3 Problem Formulation
Using the concepts described in the previous sections, we for-

mally define the notion of spread under the opinion-aware (OI)
model, called Opinion Spread. While, under the opinion oblivious
models spread can simply be stated as the total number of nodes
that get activated with a given set of seed nodes, a more involved
notion of spread is required under the opinion-aware settings.

DEFINITION 6 (OPINION SPREAD). Opinion spread of a seed
set S, denoted by Γo(S), is defined as the sum of final opinions of
the nodes in the activated set V(a) \ S, when S is the chosen seed
set, i.e., Γo(S) =

∑
v∈V(a)\S

o′
v .

DEFINITION 7 (EFFECTIVE OPINION SPREAD). Effective opin-
ion spread of a seed set S, denoted by Γo

λ(S), is defined as the
weighted difference between the opinion spread of nodes with pos-
itive orientation and the opinion spread of nodes with negative ori-
entation, i.e., Γo

λ(S) =
( ∑

o′
v>0

o′
v − λ

∑
o′

v<0
|o′

v|
)
; ∀v ∈ V(a) \ S,

in the set of activated nodes V(a) \ S, where λ is the penalty on
negative opinion spread.

The problem of maximizing the effective opinion spread under
the OI model is called: Maximizing the Effective Opinion of the In-
fluenced Users (MEO) problem, and is defined formally as follows.

PROBLEM 1. Given a graph G = (V, E), the opinion-aware
(OI) model with specifics defined as in Sec. 2.2 and a budget k, find
a set of seed nodes, S ⊆ V | k = |S|, that maximizes the expected
value of the effective opinion spread σo

λ(S) = E[Γo
λ(S)].

2.4 Properties of MEO under the OI model

2.4.1 NP-hardness

LEMMA 1. The MEO problem is NP-hard.

PROOF. The IM problem is reducible to an instance of the MEO
problem under the OI model, when ov = 1, ∀v ∈ V and ϕ(u,v) =
1, ∀(u, v) ∈ E. It is known that any generalization of a NP-hard
problem is also NP-hard. Since, the IM problem is NP-hard [32],
the MEO problem is NP-hard as well.
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2.4.2 Submodularity
A function f(·) is submodular if the marginal gain from adding

an element to a set S is at least as high as the marginal gain from
adding it to a superset of S. Mathematically,

f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T )

for all elements x and all pairs of sets (S, T ), where S ⊆ T . For
submodular and monotone functions, the greedy algorithm of itera-
tively adding the element with the maximum marginal gain approx-
imates the optimal solution within a factor of (1 − 1/e) [41].

LEMMA 2. The opinion spread as a function Γ(·) in a graph
G, is neither monotone nor submodular.

PROOF. Please see Appendix A.

Using Lemma 2, it is evident that a greedy algorithm cannot pro-
duce a 1−1/e approximate solution to the MEO problem. Next, we
further prove that � any algorithm capable of approximating MEO
within a constant ratio.

THEOREM 1. Approximating MEO within a constant ratio is
not possible unless P = NP .

PROOF. Please see Appendix B.

3. ALGORITHM

3.1 Outline of our Algorithm
To solve the MEO problem efficiently, we propose a technique

as outlined in Algorithm 1. We first assign a score (line 4), to each
node u ∈ V of the graph G(V, E), by aggregating the contributions
of all paths starting at u. We prove that if the score assignment is
correct (we will specify exactly what is meant by “correct” later),
then the expected value of the influence spread achieved using our
algorithm is the same as that achieved using the GREEDY gold stan-
dard [32]. The correctness of our score assignment algorithms, both
for the opinion-oblivious (EaSyIM) and the opinion-aware (OSIM)
case, holds perfectly for trees. Moreover, in a conclusive discus-
sion, we show that the error introduced in case of graphs is small as
well. Through detailed analyses and experiments we show that our
results do not deviate much from that of the GREEDY algorithm.

On completion of the score assignment step, the node possessing
the maximum score is selected as the seed node (lines 5–9). In or-
der to ensure the sets of nodes activated by each selected seed node
to be disjoint; the last step of the seed-selection algorithm (line
11) keeps track of all the previously activated nodes as a set (V(a)).
This enables the score assignment step to discount the contributions
of all the previously activated nodes in subsequent iterations. The
above process continues until k seeds are selected.

Next, we describe the score-assignment algorithms – (1) EaSyIM
and its extension (2) OSIM in detail. The algorithms are fundamen-
tally similar for both, opinion-oblivious and opinion-aware, cases.

3.2 Score Assignment
The score assignment step, similar to ASIM [26], leverages the

idea that the probability of a node v to get activated by a seed node
u is dependent upon the number of simple paths from u to v in G.
Thus, a simple function of the number of paths from a node u to
all other nodes v ∈ V \ {u} can be used to assign a score to u.
This score-assignment is further used to rank all the nodes v ∈ V
in an order determining their expected spread σ(v). To this end, the
scores assigned to a node u (Δl(u)), is computed by aggregating

Algorithm 1 ScoreGREEDY

Input: Graph G = (V, E),#seeds k = |S|, l
Output: Seed set S
1: S, V(a) ← ∅
2: for i = 1 to k do
3: max, maxId ← 0
4: Δl ← AssignScore(G(V \ V(a), E), o, p, ϕ, l)
5: for each u ∈ V do
6: if Δl(u) > max then
7: max ← Δl(u), maxId ← u
8: end if
9: end for

10: S ← S ∪ {maxId}
11: Update V(a) with nodes activated by the newly selected seed-node (maxId)

12: end for

Algorithm 2 AssignScore

Input: Graph G = (V, E), o, p, ϕ, l

Output: Δl

1: if ¬ Opinion then
2: Δl ← EaSyIM(G(V, E), p, l) //Opinion-Oblivious
3: else
4: Δl ← OSIM(G(V, E), o, p, ϕ, l) //Opinion-Aware

5: end if

the contributions of all u � v paths of length at most l4 (L(u �

v) ≤ l). We start with a description of the score assignment step
for the opinion-oblivious (EaSyIM) case and then follow it up with
the opinion-aware (OSIM) case. The following explanations of the
score assignment algorithms assume the IC model of information
diffusion. Their extensions to the linear threshold (LT) and the
weighted cascade (WC) models are discussed in Sec. 3.3.

3.2.1 EaSyIM
As mentioned in Sec. 3.2, a function of the number of directed

simple paths from a node u to another node v can be used to es-
timate the influence of the former on the latter. However, direct
application of this notion to design solutions for the influence max-
imization problem poses two inherent challenges of maintaining
– 1) Scalability and Efficiency, 2) Correctness guarantees. Since,
counting the number of s-t paths is shown to be in #P -Complete
[47], computing the expected influence of a node is #P -hard for
both the IC [17] and the LT [19] models. This further shows that it
is impossible to come up with a score-assignment algorithm capa-
ble of correctly selecting a seed-node with maximum influence.

Although counting s-t paths is #P -Complete, there exists a poly-
nomial time algorithm to count all possible walks of length at most
l between all node-pairs (∀(u, v) ∈ V ) in G that takes O(n3 log l)
time and consumes O(n2) memory. The P ath-Union (P U ) algo-
rithm (Algorithm 3) extends this algorithm by initializing the ad-
jacency matrix of the graph M with the pair-wise influence prob-
abilities (line 2). Since the contributions of these paths cannot be
simply aggregated, we define a new operator ⊗ for matrix multipli-
cation (line 4). Under this operator, the multiplication of ith row
(M [i][:]) with jth column (M [:][j]) is defined using Eq. 1. This al-
gorithm has an inherent problem that it counts cyclic paths as well,
which eventually serves as a source of error while computing the
influence of a node. We try to reduce the impact of this error for
each node, by removing the contributions of the walks that pass
through the node itself (lines 5–7). Finally, the score of each node
u is computed as indicated in line 10.

M [i][j] = M [i][:] ⊗ M [:][j] =
n⋃

k=1

M [i][k] × M [k][j]. (1)

4l is the maximum path length considered for score assignment,
where l ≤ D. D is the diameter of the graph.
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Algorithm 3 P ath-Union(P U)
Input: Graph G = (V, E), n = |V |, p, l

Output: Δl

1: Matrix Mn×n ← 0, P U ← In×n

2: Δ0(u) ← 0 (∀u ∈ V ), M [u][v] ← p(u,v) (∀u, v ∈ V )

3: for each i ∈ {1, . . . , l} do
4: P U ← P U ⊗ M
5: for each v ∈ V do
6: P U [v][v] ← 0
7: end for
8: for each u ∈ V do
9: for each v ∈ V do

10: Δi(u) ← Δi−1(u) + P U [u][v]
11: end for
12: end for
13: end for
14: return Δl

Owing to its huge time and space complexity, the P U algorithm
cannot be used in practice. The EaSyIM algorithm (Algorithm 4)
describes a score-assignment method, with efforts to tackle this
scalability bottleneck. Paths of length l from a node u can be cal-
culated as the sum of all paths of length l − 1 from its neighbors.
Δl(u) (∀u ∈ V ) is defined as the weighted sum of the number of
paths of length at most l starting from u and is computed as indi-
cated in line 5 of Algorithm 4. The weight for each path is defined
as the product of probabilities p(u,v) of the edges composing that
path. EaSyIM score of a node u tries to mimic closely the expected
value of the spread when u is chosen as a seed node.

For every iteration of EaSyIM, the outgoing neighbours Out(u)
of each node u ∈ V are visited to accumulate the contribution of
paths of different lengths (l). The parameter l can be as large as the
diameter (D) of the graph. Thus, the total time taken by the score-
assignment step using the EaSyIM algorithm is O(D(m + n)), in
the worst-case. Moreover, the total time taken for selecting k seeds
using our modified greedy algorithm (ScoreGREEDY) is O(kD(m+
n)). The space complexity of this algorithm is O(n), as the only
additional overhead is the storage of a score (O(1)) at each node. A
detailed analysis on the correctness of P U and EaSyIM algorithms
is present in Sec. 3.4.1.

3.2.2 OSIM
We now describe the OSIM algorithm (Algorithm 5), to assign a

score to each node of a graph for the opinion-aware case. This algo-
rithm extends EaSyIM by accommodating for the change in opin-
ion (Sec. 2.2) during the information propagation process. Since,
the change in opinion is captured using a second layer over and
above the activation step of a node, we incorporate the use of the
following intermediate terms αi, ori and sci for each node. At
each iteration, these intermediate terms contain only the contribu-
tions for a given path length i ≤ l. For a given node u, the term
ori(u) contains the weighted sum of the initial 2opinions of all
nodes, reachable via paths of length i starting at u (line 6). In other
words, ori(u) constitutes the contribution of nodes reachable by u
via paths of length i to its score (Δi(u)), without considering the
change in opinion during information propagation. Similarly, the
term αi(u) computes the weighted sum of the interaction probabil-
ities (ϕ) associated with all the paths of length i, starting at u (line
7). For a given path of length i (L(u � v) = i), scv

i (u) contains
the contributions of all nodes in this path to the change in opinion
of node v (line 8). The term sci(u) further contains the aggregation
of scv

i (u) for all i length paths starting at u (line 10).
Similar to EaSyIM, the weight for each path is defined as the

product of probabilities p(u,v) of the edges composing that path.
Moreover, the weight, for term αi, additionally incorporates the
interaction probabilities (ϕ(u,v)) as well. In line 11, the score for

a node u (Δi(u)) is iteratively updated with the aggregation of all

Algorithm 4 EaSyIM

Input: Graph G = (V, E), p, l

Output: Δl

1: Δi(v) ← 0 (∀i ≤ l, ∀v ∈ V )
2: for each i ∈ {1, . . . , l} do
3: for each u ∈ V do
4: for each v ∈ Out(u) do
5: Δi(u) ← Δi(u) + p(u,v)(1 + Δi−1(v))
6: end for
7: end for
8: end for
9: return Δl

Algorithm 5 OSIM

Input: Graph G = (V, E), o, p, ϕ, l

Output: Δl

1: α0(u) ← 1, or0(u) ← ou, sc0(u), Δ0(u) ← 0 (∀u ∈ V )
2: for each i ∈ {1, . . . , l} do
3: for each u ∈ V do
4: αi(v), ori(v), sci(v) ← 0
5: for each v ∈ Out(u) do
6: ori(u) ← ori(u) + p(u,v)ori−1(v)
7: αi(u) ← αi(u) + p(u,v)αi−1(v)(2ϕ(u,v) − 1)/2
8: sci(u) ← sci(u) + p(u,v)sci−1(v)
9: end for

10: sci(u) ← sci(u) + ouαi(u)
11: Δi(u) ← Δi−1(u) + ori(u)+sci(u)+ouαi(u)

2
12: end for
13: end for
14: return Δl

the intermediate terms (ori(u), αi(u), and sci(u)). Finally, Δl(u)
contains the score of a node u with the contributions of all paths of
length at most l, starting at u. Note that, since the loop invariants
in lines 2, 3 and 5 of OSIM is exactly the same as that of EaSyIM
(lines 2, 3 and 4), its time and space complexity analysis is exactly
the same as EaSyIM.

3.3 Extensions
Please see Appendix C.

3.4 Analysis of Score Assignment
As a first step towards analyzing our algorithms, we prove that

the ScoreGREEDY algorithm produces a 1 − 1/e approximate solu-
tion to the IM problem, under the condition that the score assigned
to each node captures the expected value of spread using that node.

LEMMA 3. Given a graph G(V, E), if score-assignment is cor-
rect, i.e., the score assigned to each node Δl(u) captures the ex-
pected value of its spread Δl(u) = σσ(S)({u}) where S is the set
of seed nodes, then σ(Sk) = σ(S∗

k) where Sk is the set of seed
nodes selected using the ScoreGREEDY algorithm while S∗

k is the
set selected using GREEDY algorithm.

PROOF. Please see Appendix E.

CONCLUSION 1. Given a correct score assignment algorithm,
the ScoreGREEDY algorithm produces a 1 − 1/e approximate solu-
tion to the IM problem.

As discussed in Sec. 3.2, it is impossible to devise a scoring algo-
rithm that captures the expected value of spread for each node, for
graphs. Thus, the ScoreGREEDY algorithm cannot produce a 1−1/e
approximate solution to the IM problem. Next, we show a detailed
analysis of both EaSyIM and OSIM score assignment strategies.

3.4.1 EaSyIM
In this section, we first state the causes for the introduction of

errors in P U & EaSyIM, and follow it up by a concrete analysis on
the exact quantification of these errors.
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We first show the amount of error introduced by P U for DAGs5.
Although, the P U algorithm can enumerate the exact number of
paths for DAGs, errors might still creep in while assigning scores,
owing to the presence of non-disjoint paths between any pair of
nodes as shown in Figure 3a. More specifically errors are intro-
duced in the score-assignment of a node when none of the paths
starting from that node to any other node in the graph are disjoint.

LEMMA 4. Given a DAG, G(V, E) and a set of paths, Puw, s.t.
(w, v) ∈ E, if the contribution of w in the score of u is correct then
the maximum possible relative error introduced by v in the score of
u using the P U algorithm is εDAG

1 =
∑

w∈In(v)

(
(p(w,v) − 1)A1

)
,

where A1 =
∑

ρ∈Puw

∏
e∈ρ

pe.

PROOF. Please see Appendix F.

LEMMA 5. Given a DAG, G(V, E) and a set of paths, Puv ,
the maximum possible relative error (w.r.t P U ) introduced by v
in the score of u using the EaSyIM algorithm is εDAG

2 ≤ B1 =∑
ρ∈Puv

∏
e∈ρ

pe.

PROOF. Please see Appendix G.

Using Lemma 4 and 5 the total error (worst-case) introduced by
EaSyIM for DAGs is εDAG

1 + εDAG
2 ≤ ∑

w∈In(v)
(2p(w,v) − 1)A1.

Moving ahead, we analyze the errors introduced by P U and
EaSyIM on graphs. The error due to cycles that end up at a node
u itself are discounted using the P U algorithm (lines 5–7). The
largest amount of error would be introduced by cycles of length
3, owing to the exponential decrease of the influence probabilities
with length of a path. Next, we analyze the errors introduced by
other cyclic paths as shown in Figure 3b.

LEMMA 6. Given a graph G(V, E) and a set of cyclic paths
Pww, s.t. (u, w) ∈ E, the maximum possible relative error, assum-
ing just the effect of cycles, introduced by w in the score of u us-
ing approximate score-assignment algorithms (P U and EaSyIM)
is εcycle =

∑
ρ∈Pww

(
∏
e∈ρ

pe)/|ρ|, where |ρ| ≤ D.

PROOF. Please see Appendix H.

THEOREM 2. Given the expected spread of u is greater when
compared to the spread of v using the GREEDY algorithm i.e., σ∗(u) >
σ∗(v), the corresponding expected spreads achieved using seeds
selected by any approximate score-assignment algorithm preserve
this relationship i.e., σ(u) > σ(v), if εv

σ∗(v) − εu
σ∗(u) ≤ σ∗(u)−σ∗(v)

σ∗(v) ,
where εu = σ(u) − σ∗(u) and εv = σ(v) − σ∗(v).

PROOF. Let εu and εv be the errors introduced in u and v re-
spectively using any approximate score-assignment algorithm. Given
σ∗(u) > σ∗(v), for σ(u) and σ(v) to violate this relationship the
relative error introduced in v ( εv

σ∗(v) ) should exceed the relative er-

ror introduced in u ( εu
σ∗(u) ) by the amount of gap between u and v

relative to v. Figure 3c portrays this observation. Mathematically,

εv

σ∗(v) − εu

σ∗(u) ≤ σ∗(u) − σ∗(v)
σ∗(v) . Since, σ∗(u) > σ∗(v)

⇒ εv − εu ≤ σ∗(u) − σ∗(v) ⇒ σ(v) ≤ σ(u). (2)

Thus, if the above condition holds then the errors introduced by
any approximate score-assignment algorithm preserves the relative
ordering between σ∗ and σ.

5Directed acyclic graphs would be abbreviated as DAGs.

3.4.2 Discussion
Eq. 2 (theorem 2) presents the condition for any approximate

score-assignment algorithm to maintain the same relative ordering
of nodes as produced by the greedy-gold standard6. This condi-

tion evaluates to ε1 − ε2 ≤ σ∗(u)
σ∗(v) − 1, where ε1 = εv

σ∗(v) and

ε2 = εu
σ∗(u) are the relative errors incurred in the scores of v and u

respectively. This condition could further be simplified, by putting

ε1 − ε2 = ε, to σ∗(v) ≤ σ∗(u)
1+ε

. Let us now analyze the above
mentioned condition and identify the cases where it gets violated.
Firstly, when ε << 1, i.e., 1 + ε ≈ 1, the condition always holds
as it is given that σ∗(u) > σ∗(v). Now, when ε is large, we can

rewrite the condition as ε ≤ σ∗(u)
σ∗(v) − 1. A large ε means that the

difference of relative errors in the two chosen nodes is high. Given
this, if σ∗(v) and σ∗(u) are close then choosing any one of u and
v as a seed-node would not impact the expected spread much, thus,
producing a correct ordering is no longer important. On the other
hand, when σ∗(v) and σ∗(u) are far apart, we can safely assume
σ∗(v) to be equal to σ∗(u) in the worst case7. Finally, the only
case for which the condition in Eq. 2 gets violated is when ε > 0.
To better explain the previous result, we provide an in-depth anal-
ysis of lemma’s 4, 5, and 6 to get an expression for the relative
error. Please note that, unlike above, all the analyses in the follow-
ing discussion are based on the score of a node v w.r.t contribution
of another node w.

Using lemma 4 and 5, it is evident that the relative error, for
DAGs, introduced by v in the score of u using the EaSyIM algo-
rithm is ≤ ∑

w∈In(v)(2p(w, v) − 1)A1. To quantify this error, we

evaluate A1 under different information-diffusion models. Con-
sidering the average degree of the underlying graph to be η, the
expected value of the total number of u-v paths of a given length
(l) can be upper-bounded by ηl−1. Under the IC model, the con-
tribution of a path of length l is

∏
pe = pl where p = 0.1 which

simplifies A1 to
∑l−1

i=2 ηi−1pi. It can be seen that this error is not
as large as it looks, since the number of paths usually do not in-
crease exponentially (w.r.t η) with the increase in length. Let us
consider a graph with small value of η, i.e., ηp < 1 and analyze the
growth of A1 with the addition of paths of increasing length. With
the addition of paths of a given length i, A1 increases by (ηp)i−1p,
which in turn decreases exponentially since ηp < 1. Thus, we can
observe that A1 grows sub-logarithmically. On the contrary, when
η is large it dominates the growth of A1 and thus, the error increases
with the increase in path-length. However, the path-length is upper-
bounded by the diameter D of the graph, which is usually small for
large η [34]. Hence, the overall error introduced by the EasyIM al-
gorithm is upper-bounded by η(2p − 1)A1, which is small in case
of DAGs. Similarly, lemma 6 computes the error introduced by v
in the score of u due to cycles by the P U algorithm. Eq. 11 can be

re-written as
∑l

i=2(ηi−1pi)/i, which is similar to the error term
evaluated for DAGs. Using similar analysis as above, this term is
also small. Moreover, EaSyIM incurs an additional error owing to
the cycles of varying lengths that contain u. It is evident that the er-
ror due to these cycles is similar to that of the P U algorithm. Thus,
the total error introduced by EaSyIM is not large for graphs as well.

Under the WC model, we can safely assume that ηp = 1 as the
probability associated with each edge e = (u, v) is 1/in-degree(v)≈
1/η. The analysis for the IC model holds for this case as well and
thus, the error is small. Our results are even stronger for the LT
model, as EaSyIM always maintains the same ordering of nodes

6GREEDY ranks the nodes in the order of their expected influence.
7The chance of any score-assignment algorithm to distort the rel-
ative ordering by introducing errors would be the highest when
σ∗(u)=σ∗(v).
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Figure 3: Error analysis for the score-assignment step.

as produced by the GREEDY algorithm for DAGs. This clearly fol-
lows from the live-edge model, where each node possesses at most
one incoming edge and thus, in our analysis all the ∪’s can be re-
placed by

∑
’s which in turn eradicates all the sources of errors for

DAGs (and other simpler structures as well). One can also observe
that using a similar analysis, the error introduced by EaSyIM for
tree-like structures is 0 for the IC and WC models as well. More-
over, the errors introduced for graphs are due to the cycles alone,
and following the similar analysis as above (edge probabilities are
1/in-degree), the overall error remains small.

Now we revisit the expression ε > 0. Since ε1 is not close
to ε2, we can conclude, owing to the above analysis that the er-
ror increases significantly with length only if the number of paths
increase exponentially, that there exist a large number of longer
paths contributing to ε1. Let there be t1 paths of length l1 which
contribute towards ε1 and t2 paths of length l2 which contribute to-
wards ε2. Assuming that the other set of paths introduce an equal
amount of error in both u and v, the expression ε > 0 reduces
to t1pl1 − t2pl2 > 0 for the IC model. Thus, the condition in
Eq. 2 gets violated if the length of the paths contributing to v, i.e.,
l2 < l1 < l2 − logp( t1

t2
). Considering an alternate analysis, we

can see that if there are t paths of length l, with an individual con-
tribution of pl, ending at a node v, then the correct score would be
∪pl = 1 − (1 − pl)t. Since pl << 1 this expression reduces to
≈ 1− (1− tpl) = tpl. This is the same as the score assigned using
the EaSyIM algorithm.

In summary, we identify the conditions where the error intro-
duced by EaSyIM does not distort the relative ordering of nodes,
as produced by the greedy gold standard. For the cases, where this
relative ordering cannot be maintained we show that the error intro-
duced is small, and thus the overall impact to the spread of a given
set of seed-nodes is also small. Before analyzing OSIM, we state
the conclusions drawn on the results presented in this section.

CONCLUSION 2. Score-assignment using the EaSyIM algorithm
captures the expected spread of a node for tree-like structures, un-
der the IC, WC and LT models of information diffusion. Thus, the
ScoreGREEDY algorithm produces a 1 − 1/e approximate solution
to the IM problem for tree-like structures.

CONCLUSION 3. Score-assignment using the EaSyIM algorithm
captures the expected spread of a node for DAGs under the LT
model. Thus, the ScoreGREEDY algorithm produces a 1 − 1/e ap-
proximate solution to the IM problem for DAGs under the LT model.

3.4.3 OSIM
Please see Appendix I.

4. EXPERIMENTS
All the simulations were done using the Boost graph library [7]

in C++ on an Intel(R) Xeon(R) 20-core machine with 2.4 GHz CPU
and 100 GB RAM running Linux Ubuntu 12.04. We present re-
sults on real (large) graphs, taken from the arXiv [3] and SNAP [6]
repositories, as described in Table 2. In addition to these, a snap-
shot of the Twitter network crawled from Twitter.com in July 2009
was downloaded from a publicly available source [1]. We consider

Dataset n m Type Avg. Degree 90-%ile Diameter
NetHEPT 15K 62K Undirected 4.1 8.8

HepPh 12K 237K Undirected 19.75 5.8
DBLP 317K 2.1M Undirected 6.63 8

YouTube 1.13M 5.98M Undirected 5.29 6.5
SocLiveJournal 4.85M 69M Directed 14.23 6.5

Orkut 3.07M 234.2M Undirected 76.29 4.8
Twitter 41.6M 1.5B Directed 36.06 5.1

Friendster 65.6M 3.6B Undirected 54.88 5.8

Table 2: Datasets.
a mix of both directed and undirected graphs, however to ensure
uniformity the undirected graphs were made directed by consider-
ing, for each edge, the arcs in both the directions. As a conventional
practice, the spread, and hence the opinion-spread as well, is cal-
culated as an average over 10K Monte Carlo (MC) simulations8.
Next, we state the information-diffusion models and the algorithms
used for obtaining the results described in the rest of this section.

Information-Diffusion Models: We incorporate the use of three
fundamental diffusion models, namely – IC, WC and LT [32], for
the opinion-oblivious case. The IC model is used with a uniform
probability p(u,v) = 0.1, assigned to all the edges (∀(u, v) ∈ E)
of the graph G. On the other hand, the WC model associates a
probability of p(u,v) = 1

|In(v)| with all the edges, where |In(v)| de-

notes the in-degree of v. As opposed to the IC and WC models, the
LT model requires an additional parameter, apart from the weights
w(u,v) = 1

|In(v)| associated with all the edges, on all the nodes of

the graph specifying the node threshold θv = rand(0, 1), ∀v ∈ V .
Note that the rand(0, 1) function generates numbers randomly and
uniformly between 0 and 1. Moreover, all these parameter assign-
ments follow the conventional practice in the literature [28, 32, 35,
46]. For the opinion-aware case, we employ the use of two diffu-
sion models, namely – OC [48] and OI (Sec. 2.2). This choice is
driven by our thorough analytical comparisons in Sec. 1 and later in
Sec. 5 with other related models. The details about dataset prepa-
ration using the opinion-aware model parameters – opinion (o) and
interaction (ϕ) are present in Sec. 4.1.

Algorithms: We portray the effectiveness of OSIM by compar-
ing with the Modified-GREEDY (Appendix K) algorithm which, be-
ing tuned to maximize the effective opinion spread (Def. 7), serves
as a baseline to evaluate the quality of spread for the opinion-aware
scenario. We compare EaSyIM for effectiveness, efficiency and
scalability with a representative set of state-of-the-art algorithms
and heuristics, as established by us in Secs. 1 and 5, namely –
CELF++, TIM+, IRIE and SIMPATH. For all these algorithms, we
adopt the C++ implementations made available by their authors.

Parameters: The value of spread reported by the Modified-
GREEDY, CELF++ [28], OSIM and EaSyIM algorithms is an aver-
age over 10K MC simulations. Thus, we report the total time taken
to complete all the MC simulations for these algorithms. Unless
otherwise stated, we set l = 3 and λ = 1 for the score-assignment
step of OSIM and EaSyIM. For the TIM+ [46] algorithm we use
ε = 0.1. We set the IRIE parameters α and θ to 0.7 and 1/320,
respectively, and SIMPATH’s parameters η and l to 10−3 and 4,
respectively. All the parameters have been set according to the rec-
ommendations by the authors of [29, 31, 46].

Comments: Note that we do not perform scalability compar-
isons of OSIM with the OVM algorithm [48] as (1) Asymptotically,
the time complexity of OSIM

(
O(kD(m+n)), where D is a small

constant
)

is better when compared to OVM
(
O(k2(m + n))

)
, (2)

It is rather difficult to extend OVM to work with the OI model and
(3) OVM is designed to work with just the LT model at the first-
layer while OSIM works with both IC and LT models. Moreover,
since the time and space complexity analysis of OSIM is exactly

8These instances were run in parallel on 20-cores for OSIM,
EaSyIM and Modified-GREEDY. However, for a fair comparison
with other techniques we report the total time taken.
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the same as that of EaSyIM, the scalability comparisons performed
for the latter serve for the former as well.

4.1 Opinion-Aware

4.1.1 Real Data: Twitter
To motivate the importance of the OI model in real-world scenar-

ios, we employed the use of data extracted from the Twitter social
network. This data has two aspects, namely – (1) the underlying
(directed) social network, and (2) the tweets by users of this net-
work. A snapshot of the Twitter network, crawled in June 2009
containing 41.6M users (nodes) and 1.5B connections (edges),
available publicly from [1] is used as the underlying graph. A col-
lection of 476M tweets gathered from a subset (17M users) of
the users (41.6M ) in the underlying graph, crawled during the pe-
riod of June 2009 to December 2009, available publicly from [6]
constitutes the second part of our dataset. This dataset contains
the following information for each tweet, namely – (1) user-id, (2)
time-stamp, and (3) the original text message or the tweet.

As discussed in previous sections, the motive of IM, and hence
MEO, is to maximize the spread of information about a content,
which can be a product, person, event and many more. For instance,
in Twitter, the diffusion of information about a topic corresponds
to the retweeting of or replying to a tweet or even tweeting about
the topic. In fact, the temporal sequence of tweets by users, about
a topic, guided by their connections in the network, defines the
spread of information about that topic. Thus, as a first step towards
analyzing information diffusion in real-world settings, there is a
need to extract topic-focussed subgraphs.

To this end, we pre-processed our dataset to retain all the tweets
that possess at least one hashtag (#), where hashtags constitute our
topics. Thus, we were left with 48.5M tweets corresponding to
1.6M users. Moreover, we projected the underlying twitter net-
work on this identified subset of 1.6M users. This gave us a graph
of 1.6M users with 75M edges among them. We denote this graph
with the term background graph in the rest of this section. Moving
ahead, we describe the procedure for construction of topic-focussed
subgraphs. A topic-focused subgraph evolves by including nodes
and edges when users tweet (or retweet) on the same topic, thus
(re)activating the edges between them. Following this procedure,
we scan the tweets in the increasing order of their time-stamps, and
the users associated with the tweets are added as nodes incremen-
tally. Moreover, a directed edge is constructed from a node A to an-
other node B if this edge (directed) exists in the background graph
and vice versa. All the nodes with an in-degree of 0 are considered
to be originators or seeds of information. We stop growing a topic-
graph if no new seed-nodes were added for a significant amount of
elapsed time and start growing a new topic graph. The threshold on
the elapsed time was learnt from the data. We look at the average
frequency of tweets and identify a time difference as threshold that
deviates significantly from the expected. This procedure resulted
in ≈ 10–12 topic-focussed subgraphs per hashtag. Note that the
construction of topic-focused subgraphs requires just a single scan
of the background graph.

With all the data preparation steps in place, next, we use popular
sentiment analysis APIs [4, 5] to extract opinions from the tweets.
These sources learn a hierarchical classifier, which first determines
whether a tweet is neutral or not. Neutral tweets are assigned an
opinion score of 0. If the tweet was not neutral, then another clas-
sifier determines the probability of this tweet towards the positive
class. Finally, we map this probability value ([0, 1]) to our opinion
scores ([−1, 1]). Note that the error introduced by the sentiment
classifier would equally effect all the following results and thus, it
can be safely ignored for all the analsyes.

Next, we show our analyses using topic-focussed subgraphs ex-
tracted from high frequency hashtags (top-100), each of which pos-
sesses at least 50K tweets. Unless otherwise stated, the following
portrayed results are averaged over all the topic-subgraphs and the
normalized root-mean-square error is used as the quality metric.
We first show the results of opinion estimation for nodes on unseen
topics. The opinions extracted from the tweets of a user, may in-
clude the effects of (1) her personal opinion, (2) the influence of her
social contacts and (3) external factors. Modelling of external fac-
tors is relatively hard from the data, and thus, we consider just the
first two factors. As discussed in Sec. 1, we estimate the opinion of
a node for a given topic, by considering the opinions of this node
for similar topics. Since our topics possess a temporal aspect as
well, we estimate the opinion of a node for a topic A, by perform-
ing a weighted average of the opinion of this node on all the related
topics in the past. In addition, since we also possess the true value
of the opinion of nodes for the topic A, as output by our classifier,
we portray the quality of this estimation procedure from our data.
We were able to estimate the opinions of the seed-nodes with an
error9 of 3.43% and the opinions of all other nodes with an error of
8.57%. Note that the error on non-seed nodes is higher when com-
pared to that on the seed nodes. This is indicative of the fact that
the tweets of the seed-nodes indeed express their personal opinion,
however the tweets of other nodes additionally include the effect of
the opinions of their network. Moreover, this also proves that there
is a need for models that: (1) consider the change of opinion dur-
ing information diffusion, and (2) consider the effect of interaction
between two nodes.

Having computed the opinion of each node, the interaction asso-
ciated with an edge between two nodes (directed) is calculated as
the fraction of the times they agree with each other across the sub-
graphs corresponding to all the topics in the past and not just those
corresponding to the related topics. Note that both the parameters
for the OI model, namely – opinion and interaction, can be easily
computed during the topic-subgraph construction step and do not
incur any additional cost for their estimation. As mentioned earlier
in this section that topic-subgraph construction is a required step
for analyzing information diffusion, thus, the parameter estimation
cost for the OI model is amortized constant.

Next, we show that the opinion-spread in real-world follows the
OI model. For this experiment, we consider the top-100 extracted
topic-subgraphs and use the identified seeds or originators of infor-
mation from the real-world, as the seed nodes for the information
diffusion process to measure the opinion spread. For each topic
subgraph we calculate the opinion-spread using the opinions ex-
tracted from their tweets, which serves as our ground truth. Sim-
ilarly, we use the estimated parameters on these topic subgraphs
and obtain the opinion spread under the OI, OC and the IC models.
Although, depending upon the distribution of opinions and interac-
tions, the opinion-spread achieved using all the three models can
fall on the either side of the ground-truth, our results in Figure 4a
show that the opinion-spread obtained under the OI model is always
closest to the ground-truth opinion-spread and thus, possesses the
least error. Moreover, Figure 4b shows a similar analysis on the av-
erage opinion-spread using the OI, OC and IC models with varying
seeds, and it is evident that the opinion-spread under the OI model
possesses the least error.

Having empirically proved that the OI model closely mirrors the
opinion-spread in real world scenarios, finally, we show our re-
sults on opinion-aware IM. As mentioned earlier in this section, we
show the average opinion-spread achieved for different topics by
performing the information diffusion process on the entire back-

9The error in estimation can be on the either side of the true value.
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Figure 4: Comparison of average opinion-spread under OI, OC and IC with ground-truth for different topic-graphs on Twitter data
with (a) k=50 seeds and (b) varying seeds. Opinion-spread (λ = 1) comparison of OI with OC and IC on (c) Twitter data and
(d) PAKDD data (churn analysis). (e) Opinion-spread comparison of λ = 1 with λ = 0 on NetHept and HepPh. (f) Growth of
opinion-spread (λ = 1) with l and k on NetHEPT (OI). (g) Growth-rate of running time with l and k on NetHEPT (OI). (h) Memory
consumed for k = 100 on Medium Datasets.
ground graph. Figure 4c shows that the opinion-spread achieved
using the seeds selected by the OI model is much better when com-
pared to that of the OC and the IC model. Apart from the results on
quality, OSIM with l = 1, took 497 minutes and 1.72GB of RAM
to identify 100 seeds on the background graph.

4.1.2 Real Data: Analyzing Customer Churn
We used the PAKDD 2012 data mining competition dataset, avail-

able publicly from [2], to motivate the applicability of MEO and
the OI model in solving real-world problems. The dataset con-
tains profiles of ≈ 100K customers, including billing information,
usage data, service requests and complaints, of a large telecommu-
nications company for a period of 1 year from January 1, 2011 to
December 31, 2011. The data also contains information about the
churn (termination of services) date for each customer, where 17K
customers are churners and the rest are non-churners. Using this
data, the objective of the challenge was to predict which customers
are liable to churn. We extend this problem of modelling customer-
churn further to perform a novel analysis using opinion-aware IM.
Since the main objective of this paper is not churn-prediction, to
make the data preparation step for our analysis simpler we work on
a balanced subset of the original data containing 34K customers
with equal number of churners and non-churners.

Owing to the increasing popularity of label propagation [50]
and similarity based learning [20], we build upon the hypothesis
that customers with similar attributes possess similar churn behav-
ior. Under this hypothesis, we induce a graph, of customers, us-
ing attribute-value similarity and a similarity threshold to construct
edges between two customers. The graph obtained thus, consists
of 34K nodes (customers) and 1.5M edges (relationships), with
churners assigned a label of −1 and non-churners that of 1. Us-
ing this data, we build a model using label-propagation to predict
the susceptibility of a customer towards churn. After convergence,
the value ([−1, 1]) at each node represents the affinity, or in other
words the opinion, of a customer to churn with −1 and 1 denoting
strong affinity towards churn and non-churn respectively. In this
way, we estimate the opinion (o) parameter of the OI model. The
attribute-value similarity defines the influence-proability (p) asso-

ciated with each edge, while the interaction probability (ϕ) for each
edge is generated using the rand(0, 1) function described above.

Acquainted with the likelihood of customers to churn combined
with the availability of a churn-prediction model, a service provider
would like to identify potential targets, under a marketing buget,
capable of maintaining its reputation, thus, indirectly preventing
the cascades of churn. This task boils down to identifying seeds
that maximize the difference of positive and negative opinions, or
in other words maximize the effective opinion (MEO). Figure 4d
shows that the opinion-spread achieved using the seeds selected by
the OI model is much better when compared to that of the OC and
the IC model. This proves the importance of the OI model and the
notions of opinion and interaction in solving real-world problems.

4.1.3 Other Real Datasets
Having highlighted the importance of opinion, interaction, the

OI model and the MEO problem using two real-world datasets
in the previous sections, here we present an in-depth analysis of
opinion-aware IM on the benchmark datasets (Table 2) used for
the evaluation of classical IM. Since these datasets do not inher-
ently possess the properties of opinion and interaction with nodes
and edges of the graph respectively, we annotate them as follows.
The opinions are generated by two methods, namely – (a) o ∼
rand(−1, 1), where the opinion of each node is generated uni-
formly at random in the range [−1, 1] and, (b) o ∼ N (0, 1), where
the generated opinions follow the standard normal distribution, while
the interaction probability for each edge is only generated uni-
formly and randomly using the function ϕ ∼ rand(0, 1). The
reported results are averaged over 3 different instances of the gen-
erated data. For additional results please see Appendix J.

Quality: The first set of results show the importance of the
choice of optimization-objective. We compare the effective opinion-
spread (λ = 1) with the opinion-spread (λ = 0) for the NetHEPT
dataset using OSIM under the OI model. It is evident from Fig-
ure 4e that λ = 1 outperforms λ = 0 and hence, maximizing the
effective opinion-spread is better. With this, we fix λ = 1 for a
comparison of the effective opinion-spread obtained using OSIM
(with varying l) with Modified-GREEDY for different datasets. Fig-
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Figure 5: Growth of spread with l and k on (a) NetHEPT (LT), (b) DBLP (IC) and (c) YouTube (WC). Spread comparison of EaSyIM
with TIM+ and CELF++ on (e) HepPh (IC), (f) DBLP (IC). Running time comparison of EaSyIM with CELF++ and TIM+ on (h)
NetHEPT (LT), (i) DBLP (IC) and (j) YouTube (WC). Memory consumption comparison of EaSyIM with CELF++ and TIM+ on
(m) NetHEPT and DBLP (IC), and with all algorithms for k = 100 on (n) Medium Datasets (IC).
ure 4f presents the results with varying seeds for NetHEPT under
the OI model (o ∼ N (0, 1)). It can be seen that the reported opin-
ion spread improves with increase in l, however, it starts to dip
when l → D owing to a significant increase in the number of cyclic
paths, which in turn causes the error in the assigned scores to in-
crease as discussed in Sec. 3.4.2. Using these results, we conclude
that l = 3 serves as the best choice for OSIM. Moreover, OSIM
closely mirrors Modified-GREEDY with respect to the quality of ob-
tained opinion-spread.

Efficiency: In continuation to the comparison on quality, here we
compare OSIM with Modified-GREEDY on its running-time for the
NetHEPT dataset. Figure 4g shows that OSIM is at least 103 times
more efficient when compared to Modified-GREEDY with the gain
going as high as 105 for some cases. Moreover, this figure (with y-
axis in log-scale) also shows that the running-time of OSIM grows
linearly with increase in l.

Scalability: Figure 4h shows a comparison of the memory-con-
sumed by OSIM with Modified-GREEDY for all the 4 datasets dis-
cussed above. It is important to note that the memory consump-
tion of these algorithms is independent of the parameters, namely –
path-length (l), number of seeds (k) and the number of MC simula-
tions. Both the algorithms scale linearly in the size of the graph and
require constant-factor overheads to solve the MEO problem. This
is indicated by the stacked bars, which show that these algorithms
require only a small amount (constant-factor) of memory over and
above the memory required to load the graph.

As stated earlier, in addition to the scalability and efficiency
analysis for OSIM, next, we present a more involved analysis for
EaSyIM which serves the purpose for the former as well.

4.2 Opinion-Oblivious
Quality: The first set of results portray the effect of the param-

eter l on the spread obtained using EaSyIM. Figures 5a, 5b and 5c
present the results with varying seeds on the NetHEPT, DBLP and
the YouTube datasets under the LT, IC and WC models respec-
tively. It can be seen that the reported spread follows a similar
pattern as that of OSIM, i.e., it improves with increase in l, how-
ever, it starts to dip when l → D. Using these results, we conclude
that l = 5 serves as the best choice for EaSyIM, with l = 3 being
marginally worse when compared to l = 5. Moreover, owing to
l = 3 being ≈ 2 times more efficient when compared to l = 5

(detailed analysis on efficiency in the following paragraph), we fix
l = 3 for a comparison of the spread obtained using EaSyIM with
other algorithms. Figures 5d and 5e present the spreads obtained
for the HepPh and DBLP datasets under the IC model. Note that
the sudden drop in the spread of TIM+ in Figure 5e indicates that
it crashed on our machine after that point. These results show that
EaSyIM mirrors the state-of-the-art techniques closely for majority
of the datasets, while being even better at certain instances, with
respect to the quality of the obtained spread.

Efficiency: Figures 5f, 5g and 5h show a comparison of the
running-times of EaSyIM with CELF++ and TIM+ for varying
seeds on the NetHEPT, DBLP and the YouTube datasets under
the LT, IC and WC models respectively. These figures show that
EaSyIM grows linearly (y-axis in log-scale) with the parameters
l and k, therefore EaSyIM is ≈ 2 times faster for l = 3 when
compared to l = 5. Owing to the marginal improvement in the
spread from l = 3 to l = 5 (quality analysis in the previous para-
graph), we choose l = 3 for EaSyIM as it provides the best tradeoff
between efficiency and quality. Moreover, it can be seen that nei-
ther CELF++ nor TIM+ scale well with the increase in graph size.
CELF++ was not able to complete on the DBLP and the YouTube
datasets even after running for 7 days, while TIM+ crashed on the
DBLP dataset for k > 10, 25, 50 with ε = 0.1, 0.15, 0.2 respec-
tively owing to its huge memory requirement. In addition, it is
evident from Tables 3 and 4 that EaSyIM is 10–15 times more ef-
ficient while consuming 3-4 times less memory when compared
to CELF++, and requires 8–10 times more time to run while its
memory-footprint is ≈ 500 times smaller when compared to TIM+.
We argue that since EaSyIM can be efficiently parallelized owing to
the independence of the MC simulations, its lack of efficiency when
compared to TIM+ can be easily mitigated by running it in parallel
on 8 cores10 while ensuring the memory gain to be the same.

Scalability: Figure 5i portrays the growth of the memory-footprint
of EaSyIM, CELF++, and TIM+ with varying seeds for the NetHEPT
and the DBLP datasets. It is evident that the memory-consumption
of all other techniques, barring TIM+ (which grows at a much
faster rate), grows linearly with the number of seeds. It is also clear
that EaSyIM possesses the smallest memory-footprint, being ≈ 4
and ≈ 500 times smaller when compared to CELF++ and TIM+

10Considering the ease of availability of multiple cores in a single
machine when compared to large amount of RAM.
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Dataset Running Time (min) Memory (MB)
TIM+ EaSyIM (l=1) Gain TIM+ EaSyIM (l=1) Gain

DBLP 783.1 2183 0.36x 35234.75 46.5 758x
YouTube NA 5089.5 8 NA 158.3 8

socLive NA 15433.33 8 NA 974.94 8

Table 3: Comparing EaSyIM with TIM+, k = 50, ε = 0.1.

respectively. Moreover, TIM+ (ε = 0.1) crashed for k > 10 on the
DBLP dataset due to going out of memory on our machine. To fur-
ther this, our experiments revealed that even after relaxing ε to 0.15
and 0.2 it crashed for k > 25 and k > 50 respectively. This anal-
ysis unravels the obvious problem with TIM+, i.e., though being
efficient it requires an exorbitantly high amount of main-memory
and thus, cannot be termed scalable. Figure 5j shows the additional
amount of memory required, over and above the memory required
to load the graph, by each of our benchmarking algorithms for 4
different datasets. It is clear that EaSyIM possesses the least over-
head while SIMPATH possesses the highest. Note that we omit the
bar corresponding to TIM+, as it hinders the comparison with other
techniques owing to its memory consumption being too high. This
shows that EaSyIM possesses the capability of scaling to very large
graphs. For additional results please see Appendix J.

In summary, both OSIM and EaSyIM provide the best trade-off
between memory-consumption and running-time, and possess the
capability to perform IM on large graphs using moderately sized
machines or even a laptop.

5. RELATED WORK
The IM problem has been studied extensively over the past decade,

thus, it is rather difficult to write a complete literature review in
one section. A detailed comparison of the OI model with both IC-
N [16] and OC [48], the only other models for opinion-aware IM,
has been done qualitatively (Sec. 1) and empirically (Sec. 4). Here,
we overview the existing works that overlap with our problem.

(1) Topic-Aware and Competitive IM: The motive of topic-aware
IM [8, 11, 15] is to design strategies for maximizing the collective
spread of information under a given topic-distribution. It allows
different influence probabilities for each topic (assuming a joint
distribution of topics), without considering the opinions (of a node)
towards these topics. On the other hand, the objective of competi-
tive IM [30,36,39] is to maximize the spread of information, about
a specific content, in the presence of competitors. It is rather in-
tuitive that competitive IM is similar to topic-aware IM, thus, both
of them suffer with same set of deficiencies, i.e., (a) the absence
of opinions and negatively activated nodes, and (b) the incapability
of capturing their change as information propagates. In addition,
another limitation for competitive IM lies with the information-
diffusion process, where each node (strictly) propagates informa-
tion about a particular content and any newly activated node (by
the former) also (strictly) follows the same content. In summary,
both of them consider maximization of the number of active nodes
(opinion-oblivious notion of spread), rendering the spread function
to be submodular and thus, are closer to the classical IM problem.

(2) IM in signed networks: IM in signed networks [37] considers
the presence of an opinion, from a binary valued set containing
exactly opposite opinions, at each node with the notion of friends
– capable of activating a node with their own opinion and foes –
capable of doing the opposite. The major limitation in this model
is the stringent constraint on the parameters to attain values from
a discrete binary valued set. On the contrary, OI allows opinions
and interactions to come from a real-valued domain. Moreover, the
interaction between two nodes is given a probabilistic aspect which
is missing in the signed network voter model. In fact, the signed
network voter model is rather a special-case of the OI model.

(3) Classical IM: Kempe et al. [32] proved that finding an op-

Dataset Running Time (min) Memory (MB)
CELF++ EaSyIM (l=1) Gain CELF++ EaSyIM (l=1) Gain

NetHEPT 5352.25 118 45.35x 23.26 3.39 6.86x

HepPh 9746.74 230 41x 24.60 3.47 7.08x

DBLP NA 5071.67 8 NA 44.73 8

Table 4: Comparing EaSyIM with CELF++, k = 100.

timal solution for the IM problem is NP-Hard, and that a sim-
ple greedy (GREEDY) algorithm provides the best approximation
guarantees in polynomial time. It required O(kmnr) time to pro-
duce a solution, where r is the number of MC simulations (usually
r ≈ 10K). This high time complexity renders the GREEDY al-
gorithm inapplicable to the networks of today. Since then, a host
of works have introduced optimizations in GREEDY with CELF++
[28] being the most efficient of all within this class of algorithms.
Note that these optimizations never improved the asymptotic time
complexity of the algorithm. In pursuit of better time complex-
ity, researchers have recently resorted to techniques that use sam-
pling with memoization [13, 23, 45, 46], to portray superior effi-
ciency while retaining approximation guarantees. Among them,
TIM+ [46], that runs in O((k + l)(m+n) log n/ε2) expected time
and produces a (1 − 1

e
− ε)-approximate solution, where ε is a

constant, with probability as high as 1 − n−l, and its improvement
IMM [45] are the most efficient. Despite their superior efficiency
these algorithms lacked scalability, owing to their exorbitantly high
memory footprint. The worst case space complexity of TIM+ is
O(n2 log

(
n
k

)
/ε2), which can be very high for small values of ε.

In addition to the above mentioned techniques, literature has wit-
nessed many heuristic algorithms [17–19, 29, 31]. Among them,
IRIE and SIMPATH [29, 31] are considered state-of-the-art heuris-
tics for the IC and LT models respectively. Although, these tech-
niques build upon a similar idea as that of EaSyIM, its algorithm
design and analysis is very different from them with an additional
advantage of running in linear space and time. Moreover, as shown
in Sec. 4, both of these techniques are not capable of scaling to
larger datasets.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of influence maximiza-

tion in social networks under a very generic opinion-aware setting,
where the nodes can possess any one of the – positive, neutral
and negative opinions. To this end, we introduced the novel MEO
problem and devised a holistic solution to the influence maximiza-
tion problem; by coming up with an opinion-cum-interaction (OI)
model, and scalable algorithms – OSIM and EaSyIM. Since major-
ity of the works in the literature operate oblivious to the existence
of opinions and are not scalable, there are efficiency concerns in
real-world scenarios with huge graphs. Consequently, we designed
efficient algorithms that run in time linear to the size of the graph.
Moreover, the space complexity of our algorithms is also linear;
which is orders of magnitude better when compared to the state-
of-the-art techniques. Our empirical studies on real-world social
network datasets showed that our algorithms are effective, efficient,
scale well – providing the best trade-off between running time and
memory consumption, and are practical for large real graphs. In
future, we would like to come up with a distributed version of our
algorithms, thus enabling it scale to even larger graphs.
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APPENDIX
A. PROOF OF LEMMA 2

PROOF. Let us consider a bipartite graph G(V, E) (Figure 6a) contain-
ing two sets of nodes X and Y = V \ X . The set X contains nx = |X|
nodes while the set Y contains ny = |Y |, ny ≥ 2nx nodes. Moreover,
let us assume that the opinions of the nodes ∀xi ∈ X to be oxi = +1,
while that of nodes ∀yj ∈ Y to be oyj = 0. There exist directed edges
from each node xi ∈ X to two consecutive nodes y2i−1, y2i ∈ Y . Fur-
ther, the influence probabilities are initialized as p(u,v) = 1, ∀(u, v) ∈ E
and the interaction probabilities ϕ associated with all but the last two edges
is 1, which attain a value of 0. Mathematically, ϕxi,yj = 1 | 1 ≤ i ≤
nx − 1, j = 2i − 1 or j = 2i while ϕxi,yj = 0 | i = nx, j = 2i − 1 or

j = 2i. An analysis of the properties of the spread function Γ(·), assuming
the above construction, is presented next.

Consider a scenario where the set of seeds S is initialized with a single
node xi | 1 ≤ i ≤ nx − 1. With this seed, both of the nodes y2i−1 and
y2i will get activated with final opinion +1/2. Hence, the effective spread
Γo(S) = 2 × (1/2) = +1. Now if the node x|X| is added to the set
S, the nodes y2|X|−1 and y2|X| will also get activated. The final opinion

of these newly activated nodes will be −1/2 each. The effective spread of
the updated seed set is Γo(S) = 1 − 1 = 0. On adding another node
xj | j �= i and 1 ≤ j ≤ nx − 1 to the set S, the nodes y2j−1 and y2j will
become active with a final opinion of 1/2 each. Thus, the effective spread
is now Γo(S) = 0 + 1 = 1. In the above case it can be seen that the
effective spread varied from 1 → 0 → 1 on subsequent additions of nodes
to the seed set. This clearly shows that the opinion spread function Γo(S)
is neither monotone nor submodular.

B. PROOF OF THEOREM 1
PROOF. We show that the classical set cover problem can be decided in

polynomial time if an approximation, with a constant ratio, for MEO exists
in polynomial time. To this end, we reduce the set cover problem to an
instance of MEO. Given a set of elements Q = {q1, . . . , qn} and a collec-
tion of subsets R = {R1, . . . , Rm} where Ri ⊆ Q, ∀i ∈ {1, . . . , m},
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Figure 6: Reductions for the submodularity and tractability analysis
of MEO.

the set-cover decision problem returns true if ∃C ⊆ R; |C| = k and
∪Cj = Q, ∀Cj ∈ C.

Now given the set-cover problem, we construct a graph as shown in Fig-
ure 6b to obtain an instance of MEO by adding three layers of nodes in addi-
tion to a sink node. For each subset Ri ∈ R, a node xi is added in the first
layer of the graph with opinion oxi = 0. In the second layer, for each ele-

ment qi ∈ Q, we add a node yi with opinion oyi = 1
n

. We add a third layer

containing m+n−2 nodes denoted by zi with opinion ozi = − 1
2n

. More-

over, we add a sink node s with opinion os = −1+ 1
n

. Now, a directed edge

(xi, yj) is added iff qi ∈ Rj . For each node yi in the second layer, edges
(yi, zj), ∀j ∈ {1, 2, . . . , m + n − 2} are added in the graph. To finalize
this construction, we add the edge (zi, s), ∀i ∈ {1, 2, . . . , m + n − 2} .

For the IC model, all the edges (u, v) ∈ E are assigned p(u,v) = 1 and
ϕ(u,v) = 1. Moreover, the LT model uses the same activation threshold
for each node θu = 1. It can be seen that for both these models, the seeds
should be chosen from the first layer (any of the xi’s), because they will
activate yj ’s which in turn will activate any of the zi’s and thus, s would
always be activated.

We instantiate MEO with λ = 1. Without loss of generality, assuming
∃ a set-cover of size k, C = {x1, x2, . . . , xk}, then choosing these nodes
as seeds ensures the maximum spread. The final opinion of yi, o′

yi
=

(0 + 1
n

)/2 = 1
2n

. Similarly, the final opinion of zi, o′
zi

= 1
2n

− 1
2n

= 0
and the final opinion of s, o′

s = (0 − 1 + 1
n

)/2 = − 1
2 + 1

2n
. Hence,

the spread = n 1
2n

+ 0 − 1
2 + 1

2n
= 1

2n
> 0. When a set cover of size k

does not exist, the maximum spread achieved is |Q′| 1
2n

+ 0 − 1
2 + 1

2n
≤

(n − 1) 1
2n

− 1
2 + 1

2n
= 0, where Q′, |Q′| ≤ n − 1 is the maximum

number of elements covered by the k chosen sets. Hence, the maximum
spread achieved when the set-cover does not exist is 0.

If there is a polynomial time algorithm which approximates MEO within
a constant ratio, then we can decide the set-cover problem in polynomial
time using the above mentioned reduction. In other words, if an approxi-
mate algorithm gives a spread ≤ 0 on the reduced graph, then a set-cover
does not exist while a set-cover exists if the spread > 0. This renders
the set-cover problem decidable in polynomial time, which means P=NP.
Therefore, approximating MEO within a constant ratio is NP-hard.

C. EXTENSIONS
The extension to the WC model is rather trivial, as instead of assuming a

fixed value of p (usually p = 0.1 for IC), we assign ∀(u, v) ∈ E, p(u,v) =
1/|In(v)|. All the previously presented algorithms can readily accommo-
date this change. However, the changes required for the LT model are much
more involved.

Extension to the LT model is difficult when considering its classical def-
inition where each node possesses a threshold, while it is quite intuitive
using the live-edge model. Kempe et al. proved the equivalence between
the LT and the live-edge model in [32]. Similar to the IC and WC models,
under the live-edge model each edge (u, v) ∈ E possesses a probability
with which u activates its neigbour v. Moreover given an instance of the
graph, it has an additional constraint of each node possessing one (live) in-
coming edge. The expected value of spread is then calculated using the
spreads achieved for each of these graph instances. Thus, by associating in-
fluence probabilites with each edge and generating various graph instances
satisfying the above constraint, our algorithms get extended to the live-edge
model and hence, the LT model without undergoing any change. Since

each node can possess only a single incoming edge, the error introduced in
score-assignment owing to the non-disjoint nature of the paths gets com-
pletely removed (a unique u–v path ∀u, v ∈ V ), which in turn facilitates
stronger theoretical analysis for the LT model when compared to the IC and
WC models.

Next, we present a detailed analysis for the EaSyIM and the OSIM algo-

rithms for score-assignment, assuming the IC model of information diffu-

sion. Sec. 3.4.2 provides discussions on methods to extend these analyses

to the WC and LT models as well.

D. LEMMA 7
As a first step towards analyzing our algorithms, we derive a relation

between the expected value of spread achieved using a set of seed-nodes
and any possible partition of this set.

LEMMA 7. σ(A ∪ B) = σ(A) + σσ(A)(B)
PROOF. Using Kempe’s [32] analysis of the IC model it can be seen

that,

σ(A ∪ B) =
∑

X

P (X)σX(A ∪ B)

=
∑

X

P (X)σX(A) +
∑

X

P (X)
(

σX(B) − σX(A ∩ B)
)

= σ(A) + σσ(A)(B). (3)

A similar analysis can be done for the LT model using the reduction to the
live-edge model [32]. Under the live-edge model each node possesses a
single (live) incoming edge, thus, a node v is activated via a path either
from a node in A or in B.

σ(A ∪ B) =
∑

X

P (X)σX(A ∪ B)

=
∑

X

P (X)σX(A) +
∑

X

P (X)σX(B)

Since, σ(A) and σ(B) are disjoint,

σ(A ∪ B) = σ(A) + σσ(A)(B). (4)

E. PROOF OF LEMMA 3
PROOF. If k = 1, σ(Sk) = σ(S∗

k) because ScoreGREEDY(G, k, l)
chooses the node with the maximum score. Since the score assigned to
each node captures the expected value of its spread, the seed-node selected
by the former is the same as that selected by the GREEDY algorithm. Let us
assume that σ(Sk) = σ(S∗

k) holds for k = i. Now for k = i + 1,

σ(S∗
i+1) = σ(S∗

i+1) − σ(S∗
i ) + σ(S∗

i )

Paritioning Si+1 as Si ∪ {ui+1}, Lemma 7 yields the following,

= σσ(S∗
i

)({ui+1}) + σ(S∗
i )

= σσ(Si)({ui+1}) + σ(Si)

= Δl({ui+1}) + σ(Si)
= σ(Si+1).

Since σ(Si+1) = σ(S∗
i+1), by the principle of mathematical induction

σ(Sk) = σ(S∗
k) holds ∀k.

F. PROOF OF LEMMA 4
PROOF. The exact contribution of a node v to the score of another node

u is

γ∗
v (u) =

∑
w∈In(u)

(
p(w,v)

⋃
ρ∈Puw

∏
e∈ρ

pe

)
. (5)
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Similarly, the contribution of v to the score of u using the P U algorithm is

γv(u) =
⋃

ρ∈Puv

∏
e∈ρ

pe. (6)

Using the standard inclusion-exclusion principle,

⋃
ρ∈Puv

∏
e∈ρ

pe =
( ∑

ρ∈Puv

∏
e∈ρ

pe −
∑

ρ′∈Puv

∑
ρ∈Puv\{ρ′}

∏
e∈ρ

pe

∏
e′∈ρ′

pe′

+ . . . + (−1)|Puv|−1
∏

ρ∈Puv

∏
e∈ρ

pe

)
.

Thus, Eq. 5 and 6 can be written as follows.

γ∗
v (u) =

∑
w∈In(u)

(
p(w,v)

(
A1 − A2 + . . . + (−1)t−1At∗

))
.

γv(u) = B1 − B2 + . . . + (−1)t−1Bt.

where t∗ = |Puw|, t = |Puv | and Ai, i ≤ t∗, Bj , j ≤ t stand for the

larger terms in the expansion of
⋃

ρ∈Puw

∏
e∈ρ

pe and
⋃

ρ∈Puv

∏
e∈ρ

pe

respectively.

Assuming A2 << A1 and henceforth B2 << B1, all the higher or-
der terms can be neglected (significance of this assumption is described in
Sec. 3.4.2). Moreover, the relationship between A1 and B1 is defined as
follows.

∑
w∈In(v)

p(w,v)A1 =
∑

w∈In(v)

p(w,v)
( ∑

ρ∈Puw

∏
e∈ρ

pe

)

=
∑

ρ∈Puv

∏
e∈ρ

pe = B1.

Neglecting the summation over the pair-wise product of the paths between
different intermediary nodes wi, wj , ∀(i, j) | wi, wj ∈ In(v), we devise
a relationship between B2 and A2.

B2 =
∑

ρ∈Puv

∑
ρ′∈(Puv\{ρ})

∏
e∈ρ

pe

∏
e′∈ρ′

p′
e

≥
∑

w∈In(v)

p2
(w,v)

∑
ρ∈Puw

∑
ρ′∈(Puw\{ρ})

∏
e∈ρ

pe

∏
e′∈ρ′

p′
e

=
∑

w∈In(v)

p2
(w,v)A2.

The relative error εDAG
1 , is now defined as,

εDAG
1 = |γ∗

v (u) − γv(u)|
γ∗

v (u)
≈

B2 −
∑

w∈In(v)
p(w,v)A2

∑
w∈In(v)

p(w,v)(A1 − A2)

Since, A2 << A1, A2 < A2
1

≈

∑
w∈In(v)

p(w,v)(p(w,v) − 1)A2

∑
w∈In(v)

p(w,v)A1

≤
∑

w∈In(v)

(
(p(w,v) − 1)A1

)
. (7)

G. PROOF OF LEMMA 5
PROOF. Using the same nomenclature as Lemma 4, the contribution of

v in the score of u using the P U and the EaSyIM algorithm is stated as
follows

γP U
v (u) =

t∑
i=1

(−1)i−1Bi ≈ B1 − B2. (8)

γEaSyIM
v (u) = B1. (9)

The relative error (w.r.t P U ) εDAG
2 , can now be stated as follows

εDAG
2 = B2

B1 − B2
≈ B2

B1
≤ B1. (10)

H. PROOF OF LEMMA 6
PROOF. The contribution of a node w in the score of another node u,

considering the effect of cycles exclusively, is dependent upon all possible
cyclic paths that contain w. Moreover, since the combined contribution of
the participating nodes in each cycle ρ should only be considered once to
the score of u, we scale γw(u) by 1/|ρ|. Mathematically,

γw(u) =
∑

ρ∈Pww

p(u,w)(1 + 1/|ρ|)
∏
e∈ρ

pe.

However, the contribution using the GREEDY algorithm is

γ∗
w(u) = p(u,w).

Now, the relative error εcycle, is

εcycle = |γ∗
w(u) − γw(u)|

γ∗
w(u)

=

∑
ρ∈Pww

p(u,w)(1/|ρ|)
∏

e∈ρ
pe

p(u,w)

=
∑

ρ∈Pww

( ∏
e∈ρ

pe

)
/|ρ|. (11)

I. ANALYSIS OF OSIM
Since the analysis over generic graphs is quite complex, we analyze

OSIM on DAGs with fixed value of ϕ(u,v). Moreover, since OSIM is fun-
damentally similar to EaSyIM and the analysis involving opinions is com-
plex, thus, we reduce (without introducing any limitation in the algorithm)
the analysis effort with results on a single path and not for all possible paths
from a node. These results can further be easily extended.

Both the below mentioned results talk about the expected spread of a
single node. Since the overall function is neither submodular nor mono-
tone, we cannot employ the use of a greedy algorithm to achieve a constant
approximation. (Proof in Sec. 2).

The following notation would assume these definitions for the rest of

this section. δj({A}) is the Dirac11 measure, ψi =
2ϕ(ui,i+1)−1

2 and
Þj = p(uj ,uj+1).

LEMMA 8. Given a path of length l, consisting of nodes u0, u1, . . . , ul,
with the penalty parameter on opinion spread, λ = 1, the effective opinion
spread under the OI model of information-diffusion, considering this path,

on choosing u0 as the seed node is σo({u0}) =
l∑

i=1

(( i∏
j=1

Þj−1

) i∑
j=0(

ouj

2

(
1 + δj({0})

) i−j∏
k=1

ψi−k

))
.

PROOF. It is evident that the contribution of a path of length l in the
expected opinion spread of a seed node u0, is the sum of expected effective
opinions of nodes in that path. Now we try to solve the following recursive

11The Dirac measure δj({A}) is defined for any set A, where
δj({A}) = 1 if j ∈ A and 0 otherwise.
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Figure 7: (a) Opinion-spread comparison of λ = 1 with λ = 0 on DBLP and YouTube. Growth of opinion-spread (λ = 1) with l and k
on (b) HepPh (OC), and (c) DBLP and YouTube (OI). Spread comparison of EaSyIM with SIMPATH and IRIE on (d) NetHEPT (LT) and
(e) YouTube (WC). Growth-rate of running time of OSIM with l and k on (f) HepPh (OC) and (g) DBLP and YouTube (OI). Running time
comparison of EaSyIM with IRIE on (h) Medium Datasets (WC), and SIMPATH on (i) Medium Datasets (LT). (j) Memory consumption of
EaSyIM for k = 100 on Large Datasets.

relation to get a closed expression for the expected opinion of the nodes.
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LEMMA 9. Given a path of length l and λ = 1, the score assigned to
a node u using the OSIM algorithm captures the effective opinion spread,
considering the contribution of this path, on choosing u as the seed node.
Mathematically, Δl(u) = σo({u}).

PROOF. Please see the full version in arXiv 1602.03110.

J. ADDITIONAL EXPERIMENTAL RESULTS
Quality: It is evident from Figure 7a that λ = 1 outperforms λ = 0 and

hence, maximizing the effective opinion-spread is better. Figures 7b and 7c
present the results with varying seeds for HepPh under the OC model (o ∼
N (0, 1)), and DBLP & YouTube under the OI model (o ∼ rand(−1, 1))

respectively. We omit the results for the Modified-GREEDY algorithm in
Figure 7c owing to its lack of scalability. Figures 7d and 7e present the
spreads obtained for the NetHEPT and YouTube datasets under the LT and
WC models respectively.

Efficiency: Figures 7f show that OSIM is at least 103 times more ef-
ficient when compared to Modified-GREEDY with the gain going as high
as 105 for some cases. Figure 7g portrays the running time of OSIM for
the DBLP and the YouTube datasets. Note that the solid line overlapping
with the y-axis and the horizontal top part of the plot shows the time for
Modified-GREEDY, which is indicative of the fact that it did not complete
even after a month’s time. Figures 7h and 7i show a comparison of the
running times of EaSyIM with the state-of-the-art heuristics – IRIE (WC)
and SIMPATH (LT). It is evident that both of these techniques do not scale
well. EaSyIM is 2 − 3 and 4 − 6 times faster when compared to IRIE for
small and medium sized datasets respectively. It is slower when compared
to SIMPATH on smaller datasets, however, highly efficient for the medium
sized datasets as SIMPATH did not complete even after 5 days on the DBLP
dataset.

Scalability: Eventually as a part of our scalability experiments, we present
the memory required by EaSyIM for the 4 large graph datasets (Table 2) in
Figure 7j. This shows that EaSyIM possesses the capability of scaling to
graphs with billion-scale edges.

K. MODIFIED-GREEDY ALGORITHM
Algorithm 6 Modified-GREEDY

Input: Graph G = (V, E),#seeds k = |S|
Output: Seed set S
1: S ← ∅
2: for i = 1 to k do
3: maxId = arg max

w∈V \S

(
Γo

λ(S ∪ {w}) − Γo
λ(S)

)

4: S ← S ∪ {maxId}
5: end for

L. ADDITIONAL NOTE ON CELF++
This algorithm exploits the sub modularity of the problem by using a

“lazy-forward” optimization while selecting seeds. This technique calcu-
lates marginal gain of nodes in decreasing order of their probability of being
a seed node, which in turn is calculated form its marginal gain in previous
iterations. Another optimization which helped engineer the running time
of this algorithm was to ignore the nodes which do not hold a chance to
become a seed node in consequent iterations.
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