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ABSTRACT
Building interactive tools to support data analysis is hard because
it is not always clear what to build and how to build it. To address
this problem, we present Precision Interfaces, a semi-automatic
system to generate task-specific data analytics interfaces. Precision
Interface can turn a log of executed programs into an interface, by
identifying micro-variations between the programs and mapping
them to interface components. This paper focuses on SQL query
logs, but we can generalize the approach to other languages. Our
system operates in two steps: it first build an interaction graph,
which describes how the queries can be transformed into each other.
Then, it finds a set of UI components that covers a maximal number
of transformations. To restrict the domain of changes to be detected,
our system uses a domain-specific language, PILang. We give a
full description of Precision Interface’s components, showcase an
early prototype on real program logs and discuss future research
opportunities.

1 INTRODUCTION
Data analysis and exploration tools let users navigate their datasets
through interface components such as dropdown lists, sliders, or
buttons. Those applications dramatically accelerate analysis by ab-
stracting out a common set of operations and lifting them into the
visual domain [18]. A successful application of this principle is
Tableau, which optimizes OLAP exploration [22]. Another exam-
ple is Crossfilter, which targets filtering [21]. Yet, building those
applications is hard. The process involves high development costs
in terms of time or expertise, combined with the reality that it is
not always clear what to build. Therefore, interfaces do not exist
for all but the most common and highest profile analysis tasks.

One approach is to provide tools and libraries that make it easier,
perhaps for even end-users, to build interfaces. This is the rationale
behind Shiny, a framework that helps statisticians quickly create
Web interfaces for R scripts. Similarly, tools such as Sikuli [25] or
Microsoft Access enable users with no engineering background to
build software. Although easier to use than lower level libraries such
as NodeJS or Bootstrap, they still require learning and practice. To
illustrate, Shiny’s Website claims that “no HTML, CSS or JavaScript
knowledge [is] required”, but its users need to understand reactive
programming. Simply put, programming is hard [5].
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Q1: SELECT * FROM Sales WHERE Country = 'US'
Q2: SELECT * FROM Sales WHERE Country = 'UK'

Q3: SELECT TOP 5 * FROM Sales
Q4: SELECT * FROM Sales

(a) Two pairs of consecutive queries.

Country

Top 5

FR

(b) Matching interface.

Figure 1: Example of automated interface design.

When task-specific interfaces are not available, users default to
more generic systems. For example, Tableau is a powerful interface
for performing OLAP-based exploration, however any given task
only utilizes a small fraction of the interface’s capabilities (Section 5
describes a case study in more detail). In practice, users will use
whatever tools are available on-hand, or rely on technical experts
to perform the analysis on their behalf. This approach has two
important limits. It is not discoverable [20]: users often struggle to
identify the features that will let them perform their analysis. It
is not efficient: the short cuts that could be tailored to a common
task are do not exist in more general systems. Ideally, users should
have interfaces tailored to their set of tasks [6, 10, 15, 23, 26]. The
programming languages community has seen this pattern in the
rise of domain specific languages [7] and this can be viewed as the
analogy for visual interfaces.

To this end we argue for Precision Interfaces, an automatic tool
to generate task-specific data analytics interfaces. We believe that
two observations point towards the promise of Precision Interfaces.
First, modern applications [1, 2] and analysis frameworks [8] are
increasing storing rich metadata about user analysis operations,
including the programs that are run; simply consider the query logs
that nearly all databases maintain. These traces indirectly capture
the user’s analytic needs and may be mined to identify patterns
and common analyses that can be translated into interfaces. Sec-
ond, data analysis is inherently incremental [3]. Consequently, the
programs in the log also change incrementally. By identifying these
incremental changes, we can more readily map them to interface
components. With the confluence of these observations, we hope
to move towards a future where “no interface is left behind”.

In the rest of this paper, we will describe how to build data
analytics interfaces from program logs. Our current prototype and
examples focus on SQL query logs, however the techniques can apply
to any other language. The main idea is to detect small differences
between programs, and map those to user interactions. Consider
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Figure 2: Overview of PI’s architecture.

for instance the two pairs of SQL queries pictured in Figure 1a. We
can transform Q1 into Q2 by changing the equality predicate in the
WHERE clause. Similarly we can obtain Q4 from Q3 by adding a TOP
5 statement. Precision Interfaces can recognize those interaction
patterns, and infer an interface from them as shown in Figure 1b.

The rest of this paper is organized as follows. In Section 2, we
give an overview of the PI pipeline. Sections 3 and 4 focus on two
specific aspects of our system: how to describe interactions, and
how to map widgets to interactions. We present a use case with
real data in Section 5. We conclude in Section 6.

2 SYSTEM OVERVIEW
Precision Interfaces generates tailored interfaces from sequences
of queries expressed in a query log. It does so by mapping struc-
tural changes between the queries (e.g., adding an attribute to the
SELECT clause) to user interactions in a generated web application
(e.g., clicking a button, dragging a label). As illustrated in Figure 2,
Precision Interfaces employs a two step process. First, the Interac-
tion Miner transforms the query log into a transformation graph
where each query is a node and edges represent simple structural
changes between the queries. Second, the Interface Generator maps
the transformation graph to interactions in an application interface.

Detecting interactions in general is very challenging because
differences between two queries may be arbitrarily complex. Our
main insight is that the set of commonly used UI components and
interactions—such as form elements, selection boxes, hovering,
clicking—have a limited expressiveness. This observation simplifies
the types of query differences that the system must consider. The

rest of this section describes the key design consideration for each
system component.
Parsing. Although this paper focuses on precision interfaces for
SQL query logs, our vision is to build a general system that can be
applied to different programming languages. To this end, program
strings are not the appropriate abstraction because they lack the
necessary structure and semantics for detecting structural program
changes. Instead, we assume the existence of a language grammar
and a parser that maps the program log into a sequence of abstract
syntax trees (ASTs).
InteractionMiner.This component runs treematching algorithms
between pairs of ASTs to identify sub-tree differences. One major
challenge is to identify the types of differences that can be mapped
to user interactions. For instance, mapping two completely different
queries such as Q1 and Q3 in Figure 1a may not help us build a prac-
tical interfaces. In our current implementation, developers use our
PILang language to pre-specify the set of desirable tree differences
and add them to the Interactions Library (Section 3). For instance,
one PILang statement may be “only a number in the WHERE clause
changed”, or “an expression was added to the SELECT clause”. If a
statement matches a pair of ASTs, the Interaction Miner creates an
edge in the transformation graph between the two corresponding
queries that is typed by the PILang statement. Therefore, running
tree matching between all pairs of queries in the query log will
produce a transformation graph. In a near future, we will study
automated methods to map interactions and widget specifications.
Interface Generator.We take a two step approach towards gen-
erating interfaces. First we map edges in the transformation graph
to abstract UI components (e.g., radio buttons, slider, hover) in the
interface. This task is a challenge because we must take into con-
sideration the resulting interface’s coverage—meaning the set of
queries that the interface can express—as well as its complexity—
meaning the difficulty for users to understand the interface. For
instance, a trivial interface would simply map each query in the log
to a button that executes the query and presents the results. Such a
UI would have a high coverage but also high complexity. Similarly,
edges that represent a numerical value change (e.g., changing a
threshold in the WHERE clause) could be represented as a slider, a set
of radio buttons, or a textbox. Each options has its own trade-offs,
depending on the range of options that the widget must cover, how
much complexity the interface allows and how frequently the com-
ponent is accessed. Section 4 describes our approach for selecting
UI components and balancing these trade-offs.

Once we have selected a set of abstract UI components, the
second challenge is to populate the components with data (e.g.,
specify the minimum and maximum values of a slider), lay out the
components, and render the interface. Our current implementation
simply renders the components is a grid-based web template and
allows the user to populate, customize and reposition them. We are
working on automating this step.
Discussion. Our graph-based formulation provides considerable
flexibility in the types of interfaces that we can generate by simply
changing the subset of query log that Precision Interfaces analyzes.
For instance, we might generate a fully expressive but complex
interface by considering the complete query log. In contrast, parti-
tioning the log by analyst generates analyst-specific interfaces to
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// PI_Lang statement 1:
FROM project//projectclause AS cols
WHERE cols@old subset cols@new AND |cols@old| = |cols@new|+1
MATCH ???

// Example of matched queries for statement 1:
SELECT region, revenue FROM clients
SELECT revenue FROM clients

// PI_Lang statement 2:
FROM from//tableclause//tablename as T
WHERE T@old not equal T@new AND |T| = 1
MATCH ???

// Example of matched queries for statement 2:
SELECT * FROM Clients
SELECT * FROM Regions

Figure 3: Examples of PI-Lang statements andmatched pairs
of queries.

each analyst, while partitioning by task can generate task-specific
interfaces.

3 PILANG
We now describe PILang, a domain-specific language to express

structural differences between two ASTs T1 and T2.
A PILang statement is composed of three clauses. The FROM

clause specifies where differences occur. It binds range variables
to paths in the ASTs, using an XPath-like syntax. The semantics is
that T1 and T2 are identical except for the sub-trees rooted at the
matching nodes.

The WHERE clause is a boolean expression over the range variables
that specifies how they may differ. The statement generates a match
when the expression evaluates to true. The suffixes @new and @old
can be appended to a range variable to reference the corresponding
nodes in T1 and T2, respectively. Finally, we support convenience
expressions to help perform set comparisons between the two ver-
sions of the path expressions. For instance, T@old subset T@new
specifies that new nodes were inserted into T, whereas |T| = 1
checks that there is only one matching node.

The MATCH clause labels the statement. In our implementation, we
model the range variables as relational tables and translate PILang
into SQL. In the future, it can also expose the range variables that
have changed so that their values can be dynamically bound to UI
component state.

To illustrate, the following statement identifies pairs of queries
with different string literals in an equality expression within their
WHERE clause (Figure 1a):
FROM where//expr[op="="]//strliteral AS T
WHERE T@old not equal T@new AND |T| = 1
MATCH change_where_equal

The FROM clause matches all string literal nodes that are children
of equality expressions in the filter clause. These nodes are bound
to T. The WHERE clause checks that there is a single string literal
that has changed (and implicitly that nothing else in the ASTs have
changed). If there is a match, then we add an edge between the two
input ASTs and label the edge change_where_equal.

Figure 3 presents two additional examples of PI-Lang statements,
along with matching pairs of queries. Note that PILang statements
are language agnostic and can be expressed over any programs that

Q1

Q2

Q3

WHERE-CHANGETABLE-CHANGE

Q4 Q6

Q7

Q8
ADD-TOP

dropdown

Transformation Graph

UI Widgets

Figure 4: Examples of mapping the transformation graph to
UI components.

can be parsed into ASTs. Currently, we are developing a library
of standard transformations for SQL and plan to extend support
for both query languages such as SPARQL and HIVE, as well as
programming languages such as R and Python.

4 INTERFACE GENERATION
We model the interface generation problem as identifying a map-
ping from sets of edges in the transformation graph to UI compo-
nents that can express those edges. For instance, Figure 4 shows
how edges that describe change the table in the FROM clause of a
query may be mapped to a dropdown to select from the set of tables
in the database; adding a TOP 5 clause may map to a check box,
whereas changes to a numerical attribute may map to a textbox or
a slider.

In general, there can be many possible mappings to generate
interfaces, and the natural question is “what is a good interface?”.
Interface theory literature has decomposed the data analysis process
into high level steps and identified the sources of friction that can
impede user progress [11, 16]. These sources include mapping high
level goals to interface operations—which is impeded by complex
interfaces—and fatigue from physically performing the operations.
Based on this theory, our optimization follows three principles:
coverage, simplicity, and efficiency.

The interface should maximize coverage in terms of the pro-
portion of the graph that the interface can express. Trivially, an
interface can achieve full coverage by mapping each program to
a button that executes the corresponding program when pressed.
However, such an interface will have high complexity and it will be
challenging for a user to identify the appropriate button to click. For
this reason, we emphasize interface simplicity by reducing the set
of interaction components that are used in the interface. However,
a large query input box has full coverage and is simple, but defeats
the original purpose of designing an interactive interface. Thus,
we seek to maximize efficiency, which is modeled as the amount of
human effort needed to express any given analysis.

Given a transformation graph (V, E) with nodesV and edges E,
a mappingM = {(Ei , ii ) |Ei ⊆ E, ii ∈ I} maps a subset of edges Ei
to an interface component ii selected from a pre-defined interaction
library I. The overall problem statement is:
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SELECT "ontime"."distance" AS "distance",
SUM("ontime"."arrdelay") AS "sum:arrdelay:ok",
SUM("ontime"."depdelay") AS "sum:depdelay:ok"

FROM "public"."ontime" "ontime"
GROUP BY 1
HAVING (MIN("ontime"."distance") >= 30.99)

AND (MIN("ontime"."distance") <= 4983.00))

SELECT "ontime"."distance" AS "distance",
SUM("ontime"."arrdelay") AS "sum:arrdelay:ok",
SUM("ontime"."depdelay") AS "sum:depdelay:ok"

FROM "public"."ontime" "ontime"
GROUP BY 1
HAVING (MIN("ontime"."distance") >= 30.99)

AND (MIN("ontime"."distance") <= 2863.00))

Figure 5: Pair of queries from Tableau’s logs, with a value
change in the WHERE clause.

Definition 4.1 (Component Mapping). Given a transformation
graph (V, E), identify the optimal mapping

M∗ = argminM Ce (M ) (1)
s .t . Cc (M ) < Smax

We seek to minimize the interaction cost Ce (M ) to transform
any query from the log to any other, subject to a constraint on the
interface complexity Cc (M ).

Ce (M ) is the average cost to transform between all the queries in
the log qi and qj . We assume that it costs ce (ii ) to traverse an edge
in the graph by using a given interaction ii ∈ M . Thus, the cost to
transform between the two queries ce (qi ,qj ;M ) is the minimum
cost path that only uses interactions in M . If such a path doesn’t
exist, then we assign a default cost penalty. With those notations,
we can express Ce (M ) as the average cost between all query pairs
in the log:

Ce (L,M ) =
1
|L|

∑
qi ,qj ∈L2

ce (qi ,qj ;M ) (2)

Our prototype simply considers all adjacent pairs of queries in the
log.

We approximate the interface complexity by assigning each UI
component a complexity score cc (i ), and model the total interface
complexity as the sum of all components:

Cc (M ) =
∑

(e,i )∈M

cc (i )

In future versions, we intend to use complexity measures from the
interface literature [17, 19].
Solution Sketch. The problem described in Definition 4.1 is NP-
hard, as it is a generalization of the knapsack problem. We ap-
proximate the solution with a greedy heuristic. At each step, PI
computes all the possible widget-transformation assignments, elim-
inates those that violate the complexity constraint, and choses the
one which leads to the best improvement of the objective function
Ce (M ). The system then removes all the edges and vertices con-
cerned with the corresponding transformation, and reiterates the
procedure on the reduced graph. The algorithm stops when there
is no space left on the interface, that is, when Cc (M ) ≥ Smax .
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Figure 6: Interfaces generated by Precision Interfaces for the
first student, with a mock-up output. We filled the data in
the components, placed them on the page and wrote cap-
tions through the template generated by our system.

5 EARLY RESULTS
We now present experiments with on our prototype implementa-
tion. We asked Computer Science students to analyze the On-Time
Database1 with Tableau and collected the generated SQL queries.
Our aim is to show that (1) each user only uses a small set of analy-
sis operations, (2) Precision Interfaces can recognize those patterns
from the query logs and (3) Precision Interfaces can automatically
produce custom interfaces for each user.
Setup. We asked students to answer 3 out of 12 predetermined
questions (e.g., “how delayed are flights to California”) and answer
one free-form question (“tell us something you find interesting”).
We report an analysis based on the two longest query logs we
collected (from two different students), which contain 167 and 137
queries respectively. We used 9 PILang statements and the default
generation parameters for both logs, and simply report our results.
Results. Figure 6 demonstrates the first interface generated by our
system, along with mock-up outputs2. Our first student decided
to analyze the cause of flight delays by projecting and selecting
subsets of the OnTime dataset. The interface presented Figure 6
expresses 166 out of the 167 queries that she produced, using only
5 components.

In this interface, the main component is the “Show Columns”
list-box on the top left, which lets the student select which columns
of the table to visualize. The tick box at the bottom toggles sorting
by State. The right part of the interface consists of three filters.
The top filter restricts the flight distance using a range slider. The
second one toggles whether or not to filter the flights from either

1521,000 rows and 91 columns. https://www.transtats.bts.gov
2This paper focuses on UI inputs. See relatedwork [9, 13, 24] for automatic visualization
generation.
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Figure 7: Interfaces generated by Precision Interfaces for the second student, with mock-up outputs.

New York or California. The bottom filter restricts the analysis to
weekend flights.

Figure 7 represents the UI generated for the second student. This
interface is more complex because the user performed three distinct
subtasks. The leftmost panel lets her analyze all the flights in the
database. The central panel focuses on flights to California. The
rightmost panel focuses on delayed flights. The interface covers
120 out of 137 queries in the log.

To understand why Precision Interfaces chose to generate three
separate interfaces, we plot the transformation graph in Figure 8.
Recall that each edge corresponds to a transformation between
two queries—for instance, the blue edges represent changes in the
SELECT clause. Thus each isolated cluster represents a distinct set
of analyses, either by focusing on a different subset of the data-
base, or by executing structurally different queries. If the user had
performed incremental changes between the clusters, Precision
Interfaces would have created a single interface to express them all.

6 CONCLUSIONS AND FUTUREWORK
We have argued for Precision Interfaces and described our prototype
system that generates such interfaces from program logs. We de-
scribed a domain specific language for specifying interesting struc-
tural changes between program parse trees, modeled the program
log as an interaction graph, and described a graph-based algorithm
for mapping the graph to a set of interface components. Our case
study on query traces generated from several open-ended Tableau
exploration sessions showed that different users (and even the same
user) perform different types of analysis tasks, and Precision In-
terfaces generated simple, custom interfaces for each task. This
research is still in the early stages, and we are actively working on
the following extensions to the system.
Optimizations. In practice, interaction graphs are extremely dense
because most transformations are transitive. Consider changing
the table name in the FROM clasue. If Q1 can transform into Q2,
and Q2 can transform into Q3, then Q1 certainly transforms into
Q3. Similarly, many transformations are also reflexive. This forms

Figure 8: Transformation graph for one of the analysis ses-
sions. Blue edges describe changes in the SELECT clause, red
edges describe changes in the WHERE clause.

dense, strongly connected clusters in the graph with O (N 2) edges
for N queries.

We are exploring blocking-based techniques [4] that can avoid
all pair-wise comparisons within a dense cluster of programs, as
well as sampling techniques that can guarantee that the sampled
interaction graph will result in equivalent generated interfaces.
Rendering. This paper described generating interface components
that the user can use to express program changes, however we
have actively not considered how program outputs should be ren-
dered in the interface. A simple approach is to provide default
tabular visualizations or use existing visualization generation tech-
niques [12, 13, 24], however we are also exploring ways to identify
the rendering functions in the programs themselves and incorporate
them into the interface.
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Incremental Maintenance. We envision running Precision In-
terfaces as a system process that monitors and recommends new
interfaces automatically. In such a setting, the program log is con-
stantly evolving and it is desirable to generate new or enhanced
interfaces without re-running the whole pipeline. Similarly, it is de-
sirable to identify and discard obsolete interfaces. We are exploring
incremental approaches to dynamically maintaining the interaction
graph [14] as well as the set of generated interfaces.

Automatic PILang. The quality of the generated interfaces
depends on a rich set of PILang statements that represent the core
set of structural changesin the log. Identifying and specifying these
statements is a key challenge. We are working on automatically
inferring PILang statements from program logs and richer interface
component specifications. For instance, consider a simple slider—it
is parameterized by the minimum and maximum numbers, and
can modify a single number. This specification naturally restricts
the classes of PILang statements that it can map to. Similarly, we
might not consider complex strutural changes such as adding and
removing quantification expressions because the only interface
components that may express those are text boxes or specially
crafted interface components.
Acknowledgements: We thank Yifan Wu, who provided the ini-
tial inspiration for this project, and Laura Rettig who worked on
early formulations of the problem.
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