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ABSTRACT
In this paper, we propose generic tuple routing schemes
that allow the computation of distributed multi-way theta-
joins over streaming data. We present an architecture which
compiles query plans in form of logical operators into Apache
Storm topologies and report on first results of evaluating
TPC-H data using Amazon EC2 instances running these
topologies.
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1. INTRODUCTION
Processing data streams is a classical and ubiquitous prob-

lem. It ranges from monitoring enterprise-internal system
access logs for ad placement or anomaly detection, to provid-
ing real-time analytics over social network streams. What
many applications ultimately demand is relating information
across multiple streams—for instance joining query and ad-
click streams in Google, or relating blog posts and Twitter
tweets for enriched, user-specific content delivery. In this
paper, we propose generic tuple routing schemes that allow
processing distributed multi-way theta-joins over streaming
data. In contrast to equi-joins, theta-joins are provided with
a generic predicate that tells whether or not tuples can be
joined. The desired algorithms need to assure that all po-
tential join partners eventually meet each other, once and
only once, reflecting anomalies like delayed tuples, skewed
distribution of stream loads, node failures, and dropped mes-
sages. This is very challenging for generic theta-joins and
even more so for natively addressing multi-way joins over
such generic predicates. On the other hand, the problem also
opens various ways to optimize performance. In this paper,
we give a first overview of the potential of sophisticated tuple
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Figure 1: Tuples of multiple
input streams arrive.
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Figure 2: Routing of tuples
in BiStream.

routing schemes for processing multi-way theta-joins in a
scale-out fashion.

1.1 Problem Statement
We consider theta-joins where the join predicate is a con-

junction of binary predicates. For brevity, let us introduce
the computational model and problem by walking through
an example. Consider a join between four relations R, S, T ,
and U , with θ = θR,S ∧ θS,T ∧ θT,U . Figure 1 depicts how
tuples of multiple relations occur interleaved.

Tuples that fulfill the partial predicate, e.g., r1 and s2
satisfy θR,S , are connected together. Such tuples might
belong to the overall join result. However, since s2 does not
find a join partner in T (yet), they do not. On the other hand,
r1, s1, t1, and u2 simultaneously satisfy all partial predicates,
thus, should be joined and included to the result, likewise
for r2, s3, t1, and u2.

Answering queries which not only relate two but many
streams has been studied before [12, 8, 3], but with a focus
on equi-joins. The restriction to equi-joins allows for simple
yet extremely effective partitioning schemes, which are not
applicable for the more general case of theta-joins.

In this paper, we present the architecture and general idea
behind our approach, sketch optimization possibilities, how
to compile routing schemes into Storm topologies, and report
on the first results of an experimental evaluation over TPC-H
data using Amazon EC2 instances running Apache Storm.

2. RELATED WORK
There is a vast amount of research work that is being

dedicated to processing join queries, both in data streaming
contexts as well as classical database systems. Considering
scale-out architectures, there is work on processing theta-
joins in the MapReduce framework [11], and recent work on
doing so for data streams [6, 10]. The main idea of such
works is to assign relations to nodes such that all possibly
matching tuples of the join eventually coincide at the same
machine. The simplest case is the so called join matrix [6],
where a relation R gets replicated across n machines, and
each tuple of relation S is forwarded to one of the n machines,



and vice versa. The BiStream approach [10] on the other
hand, proposes tuple routing schemes that avoid replication
of data stream tuples. Both works address traditional two-
way joins, and briefly sketch to model multi-way joins by
fully materializing intermediate results and treat it as input
to another stage of the algorithm. The generalization to n-
way joins, that is, joins involving n relations or data streams,
brings additional challenges for assuring that all potential join
partners will eventually meet. On the other hand, addressing
multiple joins at once promises wider freedom in optimizing
tuple routing across machines. Zhou et al. [12] propose
PMJoin and optimizations for processing distributed multi-
way stream joins, but are also limited to handling equi-
joins. Joglekar and Ré [9] propose using information on the
multiplicity of values to optimize multi-way joins, also limited
to equi-joins, and not considering distributed computation
(although some results are of generic nature). Specifically
addressing window stream joins, Hammad et al. [7] present
two algorithms for processing multi-way joins in a centralized
setting, there is no consideration of how such algorithms
could potentially be executed in a distribution fashion. The
algorithms are, however, oblivious to the matching predicate,
and, thus, not bound to simple equi-joins.

3. PRELIMINARIES
The task of joining multiple streamed relations differs from

joining static relations, as in classical DBMSs, by the fact
that there is no control about the order of the arriving tuples.
While in a DBMS the query execution component can chose
a join order of relations R, S and T , e.g., first join R and S,
and then join the resulting relation R 1 S with T without
accessing R or S anymore, in a streaming scenario this is
not feasible. Consider a fresh tuple r arriving at relation R
after R 1 S was computed. Then this tuple has to be probed
against the entire part of S that was observed so far and if
it matches elements of S, R 1 S has to be updated.

Further, with passing time more and more tuples arrive in
a data stream, eventually exceeding the available memory.
This problem can be solved by considering windows over the
datastream [5], such that the content of the window can be
handled by the system.

3.1 The BiStream Model
To compute a θ-join between two relations R and S, the

BiStream model of Lin et al. [10] suggests to store tuples from
R in partitions R1, . . . , Ri and tuples from S in partitions
S1, . . . , Sj as illustrated in Figure 2. If a tuple r of R arrives,
it is sent to a randomly selected partition R1 or R2 (indicated
by the green, solid arrows). At the same time, it is sent to all
partitions of S (indicated by the blue, dashed arrows) where
the partial joins r 1 S1 and r 1 S2 are computed.

With this partitioning and routing scheme in place, it is
possible to dynamically scale the number of nodes storing a
relation as only the routing has to be changed to consider
the new node.

4. APPROACH
We propose a system architecture that is able to compute

multi-way theta-joins, illustrated in Figure 3, for the case of
three relations. The system consists of several components
that can be individually parallelized and deployed on multiple
computing nodes: Data sources, here R, S, and T , that
constantly emit tuples into the system. The dispatcher,
which is responsible for forwarding the tuples to the correct
nodes, depending on the query to be answered. Several
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Figure 3: Architecture for theta-join computation handling
continuous inputs.
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Figure 4: Non-materialized join operator over three streams.

components, we call “Stores” in the join-computation block,
interconnected in such a way that tuples sent amongst them
can be iteratively joined and eventually a result is produced.
Finally, an output component that emits resulting tuples.

The task of the stores is twofold: First, they store tuples
from the relation or intermediate join results, e.g., the R-
store contains tuples from R. Second, they receive tuples
from other relations, say s ∈ S, and produce the join result,
here, s 1 R. We also say that s is “probed” against R. The
green, solid arrows in the illustration indicate that tuples
are sent along these connections, in order to be stored at the
receiving store. The blue, dashed arrows indicate that tuples
are sent in order to be probed against the receiving store.

We use the same basic idea to scale-out operators that
also BiStream [10] uses: When it is necessary to utilize more
computing nodes, e.g., due to overloaded nodes in terms of
memory usage or CPU-time consumption, further partitions
can be added to the stores.

In the example sketched in Figure 3, the intermediate
result of R 1 S is materialized in the RS-store. Consider
now an alternative deployment, where the RS-store is missing.
From a static viewpoint, this would save resources, as there
are |R 1 S| tuples less that have to be stored for the join
computation. At the same time, if a tuple t of T arrives,
it cannot find potential join partners at a single location.
Instead it has to be routed to the S-store, where the partial
join t 1 S is computed, and the result is sent to the R-store
in order to get the final result. This way, the overall number
of communication actions is increased.

4.1 Operator Model
The two routing/storing schemes discussed in the previous

paragraph represent two different ways of computing a join
between three streams. We now generalize these options and
introduce an operator model consisting of operators that
can be combined into a tree to realize different schemes in
a flexible and generic manner. The inner nodes of the tree
have 2 to n children and are labeled either as materializ-
ing (drawn in boxes) or as non-materializing (drawn in
ellipses). The root is always a non-materializing join, since
the system does not reuse final result tuples. The leaf nodes
are also drawn in boxes, as they are all materialized.

In order to understand the semantics of a join operator,
consider the query R 1 S 1 T . Three cases need to be



handled in order to guarantee the correct join results: (i) A
tuple of R arrives at the operator, (ii) a tuple of S, (iii) or
a tuple of T . For each of these cases, a local join order is
produced, e.g., R→ S → T , S → R→ T , and T → S → R.
Such a local join order dictates the routing of each individual
tuple: R → S → T means, the tuple r is sent to the S-
store first, there the partial result r 1 S is computed, and
all resulting tuples are then sent to the T -store in order to
produce the final join result. The order of the joins should
be selected in such a way, that the size of the intermediate
results is minimized.

In our system, this operator is implemented in form of the
routing between the inputs’ stores as indicated in Figure 4b.
There, the routing of incoming tuples from R is displayed
with dotted, blue arrows, and for tuples from S with dashed,
violet arrows. The routing for tuples from T is omitted in
order to avoid more visual cluttering. The stores for R, S
and T all are partitioned into two tasks, thus half of the
tuples of R reside in partition R1, the other half in partition
R2. A newly arriving tuple s ∈ S is sent to both partitions,
R1 and R2, where the partial results s 1 R1 and s 1 R2 are
computed. These partial results again are sent to both, T1

and T2. After that the following partial results are on hand
s 1 R1 1 T1, s 1 R1 1 T2, s 1 R2 1 T1, and s 1 R2 1 T2,
which means, that s 1 R 1 T is computed completely. The
process is analogously for tuples arriving from R and S.

In order to estimate the communication volume produced
by this operator, let σi = 〈Si, Sσi(2), . . . , Sσi(n)〉 be the cho-
sen local join order if a tuple arrives at Si and let Nσi(j) be
the degree of parallelism for this store. For input stream
Si, |Si| tuples are sent to the Nσi(2) tasks where the tuples
of the second stream in order i are stored. The number of
tuples that are generated by this join in total is |Si 1 Sσi(2)|.
For the next step, all these tuples are sent to the Nσi(3) tasks
of the third input where |Si 1 Sσi(2) 1 Sσi(3)| tuples are
produced and so on. Since these messages occur for all n
inputs, the total number of tuples sent is:

n∑
i=1

n−1∑
j=1

|Sσi(1) 1 Sσi(2) 1 · · · 1 Sσi(j)| ·Nσi(j+1) (1)

The sum over the cost for the intermediate join results is
known from textbook query optimization in database sys-
tems, where the cost of a join is composed of the cost for
materializing all intermediate results (the inner sum). But
in contrast, in a streaming environment, all input streams
can be first and thus not only one but n orders have to be
considered (the outer sum). Here, also the downside of paral-
lelization is included explicitly, as the communication of the
intermediate results is multiplied by the target’s parallelism.
Thus, effectively, communication cost grows linearly with the
parallelism of the operators.

Operators can materialize their results. This is done by
sending the resulting tuples of such an operator to an own
store. Such a materializing join operator allows the
construction of deeper join trees, where the inner nodes of
the tree function as barriers for the necessary communication.

Consider the running example where R 1 S is now joined
using a materializing join, and its result is joined with T .
The resulting operator tree is depicted in Figure 5a, where
the box around the join operator above R and S indicates
that the resulting tuples are materialized. The routing for
tuples arriving at R and S is the same as before, as seen
in Figure 5b, with the exception that each of the resulting
tuples are also copied to one of the RS-partitions (not shown).
When a tuple from T arrives, it does not have to travel first
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Figure 6: Different possibilities of constructing query plans
for Q2 and Q5.

to R and then to S, depending on the selectivities generating
many unused intermediate tuples, but it only has to be sent
to the two partitions of RS, where the final result can be
computed.

4.2 From Query Plans to Storm Topologies
When a query plan is chosen, it is automatically translated

into a Storm topology [1] which ultimately executes the plan.
A Storm topology consists of sources (called spouts in Storm
terminology), operators (called bolts), and named streams
connecting them. For each bolt a “parallelism hint” can be
set, which indicates how many instances of a spout or bolt
should be deployed in parallel. The named streams have
different grouping modes: all grouping, which sends a tuple
to each instance of the receiving bolt, and shuffle grouping,
which sends tuples to randomly selected instances. Each
topology that we generate consists of a dispatcher and a sink
bolt as well as a spout for each source stream. Further, there
is a bolt for each materialized operator of the query plan.

5. EVALUATION
We implemented the described approach in a system that

translates queries given as operator trees into Apache Storm
topologies. These topologies are then deployed on Amazon
EC2 instances running where Ubuntu Server. OpenJDK-8,
and Storm 1.0.2 were used for the implementation/execution.
We conduct the experiments on two sets of instances, one
consisting of five t2.xlarge instances, each of which has 4
CPUs and 16GB main memory, the other one comprises
twenty t2.micro instances, each of which is granted 1 CPU
with 1GB main memory. According to Amazon, the micro
instances have lower network capabilities compared to the
large instances. On the first setup instance, up to eight
instances of each bolt are deployed on the same machine,
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while on the second, each bolt-instance is on its own machine.
We use TPC-H data [2] (scale factor 0.1) and the joins

given by TPC-H queries Q2, Q3, and Q5. Q2 comprises
a join over 5 relations, Q3 over 3, and Q5 over 4 relations.
Queries Q2 and Q3 have a linear query graph and while
Q5 has a cyclic one. For each query, we fed data from the
according base tables into the Storm topology and measure
the wallclock time until every tuple was handled. For queries
Q2 and Q5 each query we build a leftdeep plan (L), a plan
that only consists of a non-materialized join operator over
all relations as root (M), and a third plan (mixed, M), which
materializes only a part of the intermediate results, illustrated
in Figure 6. This mixed plan is to a certain extent a middle
ground between the other two plans. As query Q3 only
combines three relations, there is no option of building a
mixed plan which is not already a leftdeep one. All joins
between these relations are in fact equi-joins over foreign-keys,
however, we refrain from exploiting this in the routing. Still,
every pair of tuples has the chance of meeting each other,
which is necessary for computing actual theta-joins and thus
our results are also applicable for other join predicates.

The overall memory occupation of a topology is actu-
ally independent of the degree of parallelism, but it depends
heavily on the size of the intermediate results stored by
materializing join operators. The lower bound for the re-
quired memory is the sum of the source stream sizes, which is
achieved when using only a single non-materializing join over
all input relations. Table 7 shows that for a query with large
intermediate results like Q2, the amount of tuples that need
to be stored for a leftdeep query plan is doubled compared
with the single non-materialized root variant. For the other
queries, the non-materializing and the leftdeep plan only
differ by a factor of 1.2. Predicates with a higher selectivity,
of course, produce even more intermediate results, thus ren-
dering the materialization of infeasible. However, if still a
part of the join predicate has a low selectivity, materializing
exactly that part can be an option, as Q2 indicates.

Looking at the throughput of these query plans, mea-
sured in tuples per second, we found, that for queries Q3
and Q5, the throughput is roughly the same (independent of
used plan) with 1600 tuples/s for Q3 and 2200 tuples/s for
Q5. For Q2, however, the plans L and N could handle about
2700 tuples per second, while plan M had only a throughput
of about 2000.

We expect the throughput to raise when the operators have
a higher degree of parallelism as, thus, more parts of the join
computation can be done concurrently. When scaling up,
the question is, which operator should get which degree of
parallelism. A simple proceeding is, to assign every operator
the same number and scale this up linearly. The results for
this method for query Q5 are shown in Figure 8, where the
scale-out factor indicates, how many parallel instances of each
store are deployed. Here, all plans gain throughput when the
number of instances is doubled or tripled, however at a scale-
out factor of four, additional communication slows down
the processing. This suggests, that there is a sweet spot

where parallelization can be beneficially applied in
order to improve throughput. Another approach to
scaling, by parallelizing these stores more which have higher
storage requirements, did neither significantly boost nor
degrade performance. Thus, performance is not expected to
degrade if a scale-up becomes necessary.

While these results were on the set with five instance,
we repeated the same experiment on the second set with
forty instances, where processing units were more likely to
be placed on different physical machines or even off-rack.
Here the throughput went down to about two thousand
tuples/second for each query plan, only a slight bump at a
scale-out factor of 2 was visible. This indicates, that when
network is a limiting factor, a scale out should only be done
if necessary due to memory restrictions on single machines
and that otherwise the communication overhead overshadows
the performance gains that comes with parallelization.

6. CONCLUSION AND OUTLOOK
We have presented an approach that enables the compu-

tation of theta-joins over multiple data streams based on
an flexible operator model. The model essentially allows
to exploit parallelism with n-ary nodes as alternatives to
simple leftdeep join processing. It further also allows trad-
ing off minimal memory usage vs. result materialization,
where needed. We envision that using this model, we can
further automate the construction of query plans. If also
characteristics of the network are known, a cost model can
be established which predicts the performance of plans.
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