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ABSTRACT
The ever-growing data storage and I/O demands of modern
large-scale data analytics are challenging the current distri-
buted storage systems. A promising trend is to exploit the
recent improvements in memory, storage media, and net-
works for sustaining high performance and low cost. While
past work explores using memory or SSDs as local storage or
combine local with network-attached storage in cluster com-
puting, this work focuses on managing multiple storage tiers
in a distributed setting. We present OctopusFS, a novel dis-
tributed file system that is aware of heterogeneous storage
media (e.g., memory, SSDs, HDDs, NAS) with different ca-
pacities and performance characteristics. The system offers
a variety of pluggable policies for automating data manage-
ment across the storage tiers and cluster nodes. The policies
employ multi-objective optimization techniques for making
intelligent data management decisions based on the requi-
rements of fault tolerance, data and load balancing, and
throughput maximization. At the same time, the storage
media are explicitly exposed to users and applications, allo-
wing them to choose the distribution and placement of repli-
cas in the cluster based on their own performance and fault
tolerance requirements. Our extensive evaluation shows the
immediate benefits of using OctopusFS with data-intensive
processing systems, such as Hadoop and Spark, in terms of
both increased performance and better cluster utilization.
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1. INTRODUCTION
The need for improvements in productivity and decision

making processes for enterprises has led to considerable in-
novation in systems for large-scale data analytics. Parallel
databases dating back to 1980s have added techniques like
columnar data storage and processing [18], while new distri-
buted platforms such as MapReduce [5] and Spark [37] have
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been developed. Other innovations aimed at creating alter-
native platforms for more generalized dataflow applications,
including Dryad [14] and Stratosphere [2]. All aforementi-
oned systems share two common aspects: (1) they run on
large clusters of commodity hardware in a shared-nothing
architecture and (2) they process data often residing in dis-
tributed file systems like HDFS [30], GFS [8], and QFS [27].

Commodity machines in these clusters have seen signifi-
cant improvements in terms of memory, storage media, and
networking. Memory capacities are constantly increasing,
which is leading to the introduction of new in-memory data
processing systems (e.g., Spark [37], RAMCloud [26]). On
the storage front, flash-based solid state drives (SSDs) offer
low access latency and low energy consumption with lar-
ger capacities [19]. However, the high price per gigabyte
of SSDs makes hard disk drives (HDDs) the predominant
storage media in datacenters today [21]. Finally, network-
attached storage has also been coupled with direct-attached
storage in cluster environments for improving data mana-
gement [24, 17]. This heterogeneity of available storage me-
dia with different capacities and performance characteristics
must be taken into consideration while designing the next
generation of distributed storage and processing systems.

At the same time, modern applications exhibit a variety of
I/O patterns: batch processing applications (e.g., MapRe-
duce [5]) care about raw sequential throughput, interactive
query processing (e.g., via Hive [33]) benefits from lower la-
tency storage media, whereas other applications (e.g., HBase
[7]) make use of random I/O patterns. Hence, it is desirable
to have a variety of storage media and let each application
choose (or automatically choose for it) the ones that best fit
its performance, cost, and durability requirements.

Recent work takes advantage of the increase in memory si-
zes and targets on improving local data access in distributed
applications by using memory caching, storing data directly
in memory, or using re-computation through lineage [3, 11,
21, 37]. SSDs have also been used recently as the storage
layer for distributed systems, such as key-value stores [6,
25] and MapReduce systems [15, 20]. Finally, [9, 24] focus
on improving data retrieval from remote enterprise or cloud
storage systems to local computing clusters by utilizing on-
disk caching at compute nodes for persistent data.

Whereas previous work explores using memory or SSDs
for (or as a cache for) local storage, or combines local with re-
mote storage, our work focuses on managing multiple storage
tiers together in a distributed setting. In this paper, we pre-
sent a novel design for a multi-tier distributed file system,
called OctopusFS, that utilizes multiple storage media (e.g.,
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Figure 1: OctopusFS architecture configured with four storage tiers.

memory, SSDs, HDDs, remote storage) with different per-
formance and capacity characteristics.

Our design focuses on two antagonistic system capabili-
ties: controllability and automatability. On one hand, the
heterogeneous storage media are explicitly exposed to users
and applications, allowing them to choose the distribution
and placement of replicas in the cluster based on their per-
formance and fault tolerance requirements. On the other
hand, OctopusFS offers a variety of pluggable policies for au-
tomating data management with the dual goal of increasing
performance throughput while improving cluster utilization.

Higher-level processing systems can take advantage of the
unique controllability features of OctopusFS to improve their
efficiency and effectiveness in analyzing large-scale data. We
believe this work will open new research directions for impro-
ving the functionality of various distributed systems, such
as the task scheduling algorithms of MapReduce, the query
processing of Pig and Hive, the workload scheduling of Oozie
and Spark, and many others (discussed in Section 6).

Automatability features are equally, if not more, impor-
tant as they simplify and automate data management across
storage tiers and cluster nodes, alleviating the need for any
manual user intervention. Towards this end, we formulate
the problem of making smart data placement and retrieval
decisions as a multi-objective optimization problem that ta-
kes into consideration the trade-offs between the conflicting
requirements of data and load balancing, fault tolerance, and
throughput maximization. At the same time, OctopusFS of-
fers the de facto features of fault tolerance, scalability, and
high availability. Finally, in order to support multitenancy,
the system also offers security measures and quota mecha-
nisms per storage media to allow for a fair allocation of li-
mited resources (like memory and SSDs) across users.

In summary, the key contributions of this work are:

1. The design of OctopusFS, a novel distributed file
system with tiered storage management capabilities

2. Simple file system API extensions that provide
visibility and controllability of data management

3. Automated data management policies based on
a multi-objective optimization problem formulation

Our high-level design is inspired by other popular distri-
buted file systems such as GFS and HDFS. Thus, we have
chosen to use HDFS as the basis for our implementation and
have made it backwards compatible with it. Hence, Octo-
pusFS can be used as a drop-in replacement of HDFS, one
of the most widely used file systems in cluster deployments
[30]. Our extensive evaluation offers an in-depth study of
the OctopusFS features and showcases the immediate be-
nefits of using OctopusFS with (unmodified) data-intensive
processing systems, such as Hadoop and Spark, in terms of
both increased performance and better cluster utilization.

The rest of the paper is organized as follows. Section
2 presents the overall architecture and API extensions of
OctopusFS. Sections 3, 4, and 5 discuss the data placement,
retrieval, and replication operations, respectively. Section
6 outlines some key enabling use cases. The experimental
evaluation is presented in Section 7, while Section 8 discusses
related work and Section 9 concludes the paper.

2. SYSTEM ARCHITECTURE
OctopusFS enables scalable and efficient data storage on

compute clusters by utilizing directly-attached HDDs, SSDs,
and memory, as well as remote (network-attached or cloud)
storage. It is designed to store and retrieve files, whose data
will be striped across nodes and replicated for fault tole-
rance. OctopusFS employs a multi-master/slave architec-
ture similar to HDFS, shown in Figure 1, that consists of:

• Multiple (Primary) Masters that manage the directory
namespace and regulate access to files

• Multiple Backup Masters that maintain an up-to-date
image of the namespace and create checkpoints

• Multiple Workers that store the data and manage the
heterogeneous storage media attached to each node

• A Client that exposes an enhanced file system API and
allows users/applications to interact with the system

The operational goals of OctopusFS are twofold: (1) ensure
efficient and effective utilization of the heterogeneous storage
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media present in the cluster, and (2) preserve the scalabi-
lity and performance benefits of compute-data co-location.
Towards this, both Masters and Workers are aware of the
different storage media, while the Client exposes locality and
storage-media information to the users.

2.1 Primary and Backup Masters
Each Primary Master is responsible for maintaining two

metadata collections, the directory namespace and the block
locations. The directory namespace offers a traditional hier-
archical file organization as well as typical operations like
opening, closing, deleting, and renaming files and directo-
ries. The file content is split into large blocks (128MB by
default) and each block is independently replicated at multi-
ple Workers [30]. The Master also maintains the mapping of
file blocks to Workers and storage media. In order to scale
the name service horizontally, multiple Masters are used to
form a federation [28] and are independent from each other.

Each Primary Master can have a Backup Master for incre-
ased fault tolerance and availability. The Backup is respon-
sible for periodically creating and persisting a checkpoint of
the namespace metadata so that the system can start from
the most recent checkpoint upon a Master’s failure. It also
maintains an in-memory up-to-date image of the namespace
and is standing by to take over in case the Master fails [30].

2.2 Workers
The Workers are typically run one per node in the clus-

ter and are responsible for (i) storing and managing the file
blocks on the various storage media, (ii) serving read and
write requests from the file system’s Client, and (iii) per-
forming block creation, deletion, and replication upon in-
structions from the Masters, in a similar way as HDFS [30].

Each Worker is configured to use all available storage me-
dia in the node it is running on. The same type of storage
media (with similar I/O characteristics) across all Workers
are logically grouped into a virtual storage tier. Equiva-
lently, a storage tier (e.g., the “SSD” tier) will encompass
all Workers in a cluster that are associated with the same
storage media type (e.g., SSDs). If some nodes in the cluster
do not have SSDs, they will not be included in the “SSD”
tier. It is also possible for some nodes to have different types
of SSDs, for example PCIe and SATA SSDs, with very dif-
ferent performance characteristics. In this case, the system
can be configured to use two distinct tiers for them (e.g.,
“SSD-1” and “SSD-2”). This design allows OctopusFS to (i)
distinguish the different storage tiers based on performance
rather than physical storage type, and hence, utilize them
more efficiently; and (ii) achieve extensibility as new types of
storage media like non-volatile RAM (NVRAM) and phase-
commit memory (PCM) can be readily added as new storage
tiers, even on an existing OctopusFS instance.

The file blocks can be stored and replicated in one or more
storage tiers, based on requests from the Client or plugga-
ble management policies. For example, consider the cluster
shown in Figure 1 that shows 4 tiers, namely “Memory”,
“SSD”, “HDD”, and “Remote”. A block may have 3 replicas
on the “SSD” tier (on 3 different nodes); or it may have 1
replica on each of the “Memory”, “SSD”, and “HDD” tier (on
1, 2, or 3 different nodes); or any other combination. Hence,
users and applications have tremendous flexibility on how to
place and move data in the file system. Sections 3–5 discuss
the relevant operations and policies in detail.

2.3 Client
A user or application interacts with OctopusFS through

the Client. The Client exposes APIs for all typical file sy-
stem operations like creating and deleting directories, and
reading, writing, and deleting files. Table 1 lists the mi-
nimal API extensions that were introduced in the Apache
Commons FileSystem API v2.7.0 [12] for enabling tiered
storage. In particular, the management of files with respect
to the storage tiers is achieved through a replication vector
that specifies the number of replicas for each storage tier.
For example, the replication vector V = 〈M,S,H,R,U〉 =
〈1, 0, 2, 0, 0〉1 for a file F indicates that F has 1 replica in
the “Memory” tier and 2 replicas in the “HDD” tier.

The special entry “U” (which stands for “Unspecified”) in
the replication vector indicates the number of replicas to be
placed on any storage tier. OctopusFS is responsible for se-
lecting the actual tiers using the pluggable data placement
policies, discussed in Section 3. Therefore, the replication
vector mechanism enables the full spectrum of choices bet-
ween controllability and automatability. An application can
either (i) explicitly select all storage tiers for a file (and let
U = 0); (ii) only set the total number of replicas through U
and let the system decide the tiers; or (iii) select some tiers
and also provide a number of unspecified replicas in the re-
plication vector (e.g., V = 〈M,S,H,R,U〉 = 〈0, 1, 0, 0, 2〉).
Backwards compatibility is also straightforward to achieve
by simply replacing the single replication factor r provided
in the old API with a replication vector where U = r. Fi-
nally, a replication vector is encoded into 64 bits and, hence,
it is very efficient to use and store.

V can be specified during file creation with the create
API and can be modified with the setReplication API (see
Table 1) to achieve various functionalities:

• Move a file between tiers. For example, changing
〈1, 0, 2, 0, 0〉 to 〈1, 1, 1, 0, 0〉 will result in moving 1 re-
plica from the “HDD” tier to the “SSD” tier.

• Copy a file between tiers. For example, changing
〈1, 0, 2, 0, 0〉 to 〈1, 1, 2, 0, 0〉 will result in copying 1 re-
plica to the “SSD” tier. This also increases the overall
number of replicas from 3 to 4.

• Modify the number of replicas within a tier.
For example, changing 〈1, 0, 2, 0, 0〉 to 〈1, 0, 3, 0, 0〉 will
result in increasing the number of HDD replicas from
2 to 3 (and the overall from 3 to 4).

• Delete a file from a tier. For example, changing
〈1, 0, 2, 0, 0〉 to 〈0, 0, 2, 0, 0〉 will result in deleting the
in-memory replica. This also decreases the overall
number of replicas from 3 to 2.

Each time the replication vector of a file changes, a network-
aware and tier-aware placement policy is invoked for deci-
ding where the addition or deletion of a replica will take
place (discussed in Section 3). Finally, the Client exposes (i)
the Workers and storage tiers of the block replicas through
the getFileBlockLocations API and (ii) the active storage
tiers in the system along with useful information per tier
(e.g., total/remaining capacity, read/write throughput, etc.)

1〈M,S,H,R,U〉 is a shorthand notation for the tiers
〈“Memory”, “SSD”, “HDD”, “Remote”, “Unspecified”〉
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Table 1: OctopusFS API extensions to the Apache Commons FileSystem API v2.7.0.

API Comments

FSDataOutputStream create ( Path f ,
Rep l i ca t i onVector repVector ,
long b l o ckS i z e )

Creates a file and returns an output stream for wri-
ting. The original API uses “short replication ” instead of
“ReplicationVector repVector”.

boolean setReplication ( Path f ,
Rep l i ca t i onVector repVector )

Sets the replication vector for an existing file. The original API
uses “short replication ” instead of “ReplicationVector repVector”

BlockLocat ion [ ] getFileBlockLocations (
Path f , long s ta r t , long l en )

Returns the list of block locations containing the data in the re-
quested byte range. Each block location indicates the storage tier.

StorageTierReport [ ]
getStorageTierReports ( )

Returns the list of active storage tiers along with useful information
per tier (e.g., total/remaining capacity, read/write throughput).

through the getStorageTierReports API. These APIs al-
low applications to make fully informed decisions for which
replica to read from and how to specify replication vectors
for files, respectively, in order to improve I/O performance.

2.4 Remote Storage
The remote storage can have the form of another distri-

buted file system running in a different cluster (e.g., HDFS,
MapR), a cloud-based storage system (e.g., Amazon’s S3,
Azure Blob Storage), or network-attached storage. Remote
storage can be attached to OctopusFS in two modes: inte-
grated and stand-alone. In the integrated mode, the remote
storage is treated like any other storage media in the cluster
and the Workers use it for writing and reading file blocks.

In the stand-alone mode, the remote storage is considered
as an independent entity that stores files and it is used as
a virtual extension to OctopusFS mounted at a particular
directory. As such, the directory namespace is appended
with information from the remote storage and provides a
unified view and access methods to all data. Applications
can then use any of the Workers (through the Client) for
reading and writing file blocks. The stand-alone mode is
a generalized concept of the idea introduced in MixApart
[24], which utilizes on-disk caching at compute nodes for
persistent data stored in data warehouses. Hence, it is not
elaborated further in this paper.

3. DATA PLACEMENT
The awareness of storage media with different performance

characteristics adds a significant level of complexity to the
main file operations of the system and creates the need for
heterogeneous-aware placement and retrieval policies for im-
proving the I/O performance of the cluster. This section
focuses on the data-placement aspects of the system.

3.1 File Write Operations
An application adds data to OctopusFS by creating a new

file and writing the data to it using the Client. At file cre-
ation, the Client can optionally specify a block size as well
as a replication vector (recall Section 2.3). The Client then
writes the data one block at a time. Upon a block crea-
tion, the Client first contacts the Master and obtains a list
of locations (i.e., storage media, each belonging to a parti-
cular Worker and storage tier) that will host the replicas of
that block. This list is determined using a pluggable block
placement policy, described in Section 3.3.

Next, the Client organizes a Worker-to-Worker pipeline
and sends the data. For example, suppose the block loca-
tions for writing are [〈W1,M〉, 〈W3, H〉, 〈W6, H〉]. Here,

the data is pipelined from the Client to the “Memory” tier
in Worker W1 to the “HDD” tier in W3 to the “HDD” tier
in W6. When a block is filled, the Client requests new loca-
tions to host the replicas of the next block. A new pipeline
is organized and the process repeats.

3.2 Data Placement Modeling
Formally, the data placement problem can be defined as:

Given all available storage media (belonging to
Workers W1..Wn and tiers T1..Tk) and a number
of replicas r to place in the cluster, the placement
policy must select a list −→m = (m1, ...,mr), mi 6=
mj∀i, j, of r media for hosting those replicas.

The above formulation deals with the general case of the
problem in which the policy must decide both the Workers
and the storage tiers. The scenario where the user specifies
required tiers in the replication vector, either partially or
fully, is a special case discussed at the end of this section.

The block placement policy is tasked with making a criti-
cal decision that can have significant impact on the overall
data reliability, availability, and system performance, while
taking into consideration the Workers, the storage tiers, and
various other parameters. Worker nodes are typically spread
across multiple racks creating a hierarchical network topology
[30]. It is important to take this topology into account in
order to improve fault tolerance and availability (e.g., by
placing replicas across racks). At the same time, the pre-
sence of multiple tiers with different I/O characteristics can
be utilized to significantly improve the I/O throughput of
the system (e.g., by placing more replicas in higher tiers).

Two additional decision criteria are data and load balan-
cing across both the Workers and the storage tiers. In dis-
tributed storage systems, there is typically a trade-off bet-
ween the two aforementioned criteria. Placing a replica on
a storage media with plenty of capacity left might be detri-
mental to overall performance if that media is already ser-
ving several concurrent I/O requests. Similarly, placing data
on a currently idle storage media may hurt data balance, es-
pecially in the presence of long sequential writes. As both
the data and load balancing are critical performance factors
that can hurt each other, a policy must carefully consider
the trade-offs in order to achieve high system throughput.

In total, we have identified four objectives that need to
be optimized simultaneously: data balancing, load balancing,
fault tolerance, and throughput maximization. The trade-offs
and intricacies of these objectives have motivated our deci-
sion to formulate the placement problem as a multi-objective
optimization problem (MOOP). For each objective that we
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need to maximize, we define an objective function and an
upper-bound function associated with the optimal solution.

Data balancing objective: The goal of data balancing is
to ensure the even distribution of data across the available
storage media in the cluster. For each media mi, the sy-
stem knows the Worker it is on (Worker [mi]), its storage
tier (Tier [mi]), as well as its remaining capacity (Rem[mi])
and total capacity (Cap[mi]). The usage statistics are main-
tained at each Worker and are frequently reported to the
Master during heartbeat operations.

To achieve data balancing, each replica to be stored next
should be placed to the storage media with the most remai-
ning capacity percentage, after accounting for the block size
to be stored. We consider remaining rather than used capa-
city to account for the fact that storage media might contain
other local data not in the control of our file system, such
as log and temporary data of other systems running on the
cluster. In addition, we are using a percentage to normalize
across storage media with different total capacities.

The data balancing objective function fdb is defined as:

fdb(
−→m) =

∑
mi∈−→m

Rem[mi]− blockSize

Cap[mi]
(1)

Given a list of selected storage media −→m, fdb computes the
sum of the remaining capacity percent of each selected me-
dia, and hence, it is maximized when the r media with the
highest remaining percent are selected. The theoretical up-
per bound function value of fdb of Pareto optimal solutions
occurs when the media with the highest remaining percent
is always selected. Hence, the ideal function f∗db of data
balancing is defined as:

f∗db(
−→m) = |−→m| ×max

∀m

Rem[m]

Cap[m]
(2)

Load balancing objective: The goal of load balancing
is to efficiently distribute the I/O requests across all avai-
lable storage media in the cluster. Each Worker is respon-
sible for maintaining the number of active I/O connections
(NrConn[mi]) to each media mi, which are frequently re-
ported to the Master during heartbeat operations.

The number of connections to a media is inversely propor-
tional to the throughput rate that can be achieved from each
connected reader or writer. Hence, to achieve load balan-
cing, each replica to be stored next should be directed to the
storage media with the lowest number of active connections.

The load balancing objective function flb is defined as:

flb(
−→m) =

∑
mi∈−→m

1

NrConn[mi] + 1
(3)

flb is maximized when the r media with the lowest number
of connections are selected. The theoretical upper bound
function value of flb of Pareto optimal solutions occurs when
the media with the lowest number of connections is always
selected. Hence, the ideal function f∗lb of load balancing is:

f∗lb(
−→m) = |−→m| × 1

min∀m (NrConn[m] + 1)
(4)

Fault tolerance objective: Fault tolerance in our setting
refers to the ability of the file system to avoid any data loss

(to the extend possible). To meet the fault-tolerance re-
quirement, multiple replicas of a block should be stored on
different storage tiers on different Workers on different racks.
Given the disparate failure rates of storage media (e.g., of
SSDs vs. HDDs or even of low-end vs. high-end HDDs),
placing replicas on different tiers is a wise decision. Sto-
ring replicas across different Workers will obviously protect
against node or media failures, while storing them across
racks will help in the case of switch or power failures that
could take down an entire rack. However, correlating failures
that simultaneously disconnect multiple racks from the clus-
ter are very rare [30]. Hence, storing replicas in more than
2 racks offers almost no additional fault tolerance benefits
while lowering the write I/O performance.

The fault tolerance objective function fft is defined as:

fft(
−→m) =

NrTiers[−→m]

min (|−→m|, k)
+

NrNodes[−→m]

min (|−→m|, n)

+

(
t = 1 ? 1 :

1

|NrRacks[−→m]− 2|+ 1

) (5)

The numbers k, n, and t refer to the total number of storage
tiers, nodes, and racks in the cluster, respectively, while
NrTiers[−→m], NrNodes[−→m], and NrRacks[−→m] respectively com-
pute the distinct number of tiers, nodes, and racks that ap-
pear in the storage media list −→m.

fft is maximized when the r media are located all on
different tiers, on different racks, and on 2 distinct racks
(if multiple racks are present). The upper bound function
value of flb is maximized when each one of the ratios in the
above equation equals one, and hence, the ideal function f∗ft
of fault tolerance is simply a constant:

f∗ft(
−→m) = 3 (6)

Throughput maximization objective: The final objec-
tive seeks to optimize the overall I/O throughput of the file
system by taking advantage of the fastest storage tiers pre-
sent in the cluster. When a Worker is launched, it performs
a short I/O-intensive test for measuring the sustained write
and read throughputs of each storage media mi, denoted
by WThru[mi] and RThru[mi], respectively. The values are
subsequently averaged per storage tier and reported to the
Master.

To maximize throughput, each replica to be stored next
should be placed to the storage media with the highest write
throughput. In order to generate normalized values, we do
not use the raw throughput values but rather the ratio of
each media’s throughput to the maximum one among all
tiers. Further, we use the logarithm of those values in order
to scale them down and decrease the large differences that
may exist between some media such as memory and HDDs.

The throughput maximization objective function ftm is:

ftm(−→m) =
∑

mi∈−→m

log (WThru[mi])

log (max∀m WThru[m])
(7)

Given a list of selected storage media −→m, ftm computes the
sum of the throughput ratios explained above, and hence, it
is maximized when the r media with the highest throughput
are selected. The theoretical upper bound function value
of ftm of Pareto optimal solutions occurs when the media
with the highest throughput is always selected, for which all
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Algorithm 1 Algorithm for solving an instance of MOOP

1: procedure SolveMoop(mediaOptions[], chosenMedia[])
2: bestScore =∞, bestMedia = null
3: for each option in mediaOptions do
4: chosenMedia.add(option)
5: score = ‖f(chosenMedia)− z∗(chosenMedia)‖
6: if score < bestScore then
7: bestScore = score
8: bestMedia = option

9: chosenMedia.remove(option)

10: return bestMedia . Best storage media

ratios become equal to 1. Hence, the ideal function f∗tm of
throughput maximization is defined as:

f∗tm(−→m) = |−→m| (8)

Multi-objective optimization problem: The four afo-
rementioned objective functions are combined to define the

vector-valued objective function f :
−→
M → R4 as:

f(−→m) =
(
fdb(
−→m), flb(

−→m), fft(
−→m), ftm(−→m)

)T
(9)

The set
−→
M represents the feasible decision space, that is the

set of all r-length combinations of storage media that can
be used for hosting r replicas for a file block. There are two
constraints affecting the feasible set. First, all storage media
in a potential solution−→m = (m1, ...,mr) must be unique, i.e.,
mi 6= mj∀i, j, since no media should ever store the same
block twice. Second, any storage media mi can appear in a
solution only when there is enough space to hold it, that is,
the following constraint must hold: Rem[mi]−blockSize ≥ 0.

Given the conflicting nature of our objectives, there does
not exist a feasible solution that maximizes all objective
functions simultaneously. Hence, we focus on the Pareto
optimal solutions, which are bounded by the ideal objective
vector z∗ defined as:

z∗(−→m) =
(
f∗db(
−→m), f∗lb(

−→m), f∗ft(
−→m), f∗tm(−→m)

)T
(10)

Even though z∗ corresponds to a non-existent solution, it
denotes the vector with the theoretical upper bounds of all
objective functions. Hence, we wish to find a solution that
is as close as possible to the point of the ideal objective
vector. In other words, we use the well-known method of
global criterion [23] to formulate our MOOP as:

min ‖f(−→m)− z∗(−→m)‖, s.t.−→m ∈
−→
M (11)

The above formulation belongs to the category of MOOP
methods with no articulation of preferences. The main be-
nefit is avoiding the use of weight parameters, whose set-
tings typically fall to the hands of system admins with little
knowledge on how to set them effectively. In addition, our
objective functions are already normalized into a uniform,
dimensionless scale, making this method ideal to use [23].

3.3 MOOP Data Placement Policy
OctopusFS provides a configurable block placement policy

as well as a default one that offers a trade-off between mi-
nimizing the write cost and maximizing data reliability and

Algorithm 2 MOOP data placement policy

1: procedure PlaceReplicas(client , repVector)
2: chosen[] = ∅
3: for each entry in repVector do
4: options = GenOptions(client , chosen, entry)
5: bestMedia = SolveMoop(options, chosen)
6: chosen.add(bestMedia)

7: return chosen . Best list of chosen media

read I/O performance. The default policy, called the MOOP
policy, makes placement decisions based on the solution of
the multi-objective optimization problem from Equation 11.
There are several techniques for solving such problems [23]
but they cannot be efficiently applied in our setting because

our decision space
−→
M is combinatorial in nature. There-

fore, any algorithm attempting to enumerate
−→
M would yield

O(sr) potential solutions (where s is the total number of
storage media in the cluster and r is the number of requested
replicas) while each function evaluation takes O(r). This le-
ads to an exponential running time of O(r × sr).

Instead, we have developed a greedy algorithm for finding
a near-optimal solution to the MOOP. The key idea is to
build the list of selected storage media −→m = (m1, ...,mr)
incrementally by evaluating and selecting the best storage
media for hosting one replica at a time. In other words, we
first solve the MOOP formulation to find m1; then we solve
it again to find m2; and so on. However, in each iteration
(say to find mi), we always take into account the previously
selected media (m1..mi−1).

Algorithm 1 outlines our approach for finding the best
storage media to host one replica, given a list of available
media to choose from and the list of previously chosen media
(line 1). For each available media m (line 3), we evaluate
the scenario of adding m into the list of chosen media (line
4) and compute a score based on the MOOP formulation
from Equation 11 (line 5). We keep track of the media with
the lowest computed score (lines 6-8), which constitutes the
final output of the algorithm. Given the algorithm iterates
over the list of media options with size s and each function
evaluation takes O(r), the overall running time is O(s× r).

The above procedure could be invoked r consecutive ti-
mes for selecting the r storage media to host a given block
from the list of all available media. However, there are se-
veral heuristic techniques that can be used for safely pruning
down the large space of storage media options as well as for
navigating the search space more efficiently. As discussed
earlier in Section 3.2, the best approach to achieving fault
tolerance across racks is to distribute replicas on two racks.
Hence, after selecting the first replica’s location m1, we can
prune all storage options located on the same rack as m1;
and after selecting m2, we can restrict the search space to
only those two racks. In addition, the Client’s location is also
known to the system. If the Client is collocated with one of
the Workers, it is best to consider storing the first replica
on that Worker for better performance and predictability.
Furthermore, the two constraints on the feasible decisions
space can be handled with ease by simply removing from
the list of options (i) all already chosen media and (ii) all
media with remaining capacity less than the block size. Fi-
nally, if the user has provided a replication vector asking for
replicas on specific tiers, those requests are used for pruning
the space of options accordingly.
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Algorithm 2 contains the data placement algorithm used
by the MOOP policy. Given the location of the client and
the requested replication vector (line 1), the algorithm will
incrementally build the best list of storage media to host the
replicas. In each iteration (lines 3-6) over the replication vec-
tor, the algorithm will first generate a list of available media
based on the heuristics discussed above (line 4). Next, it will
invoke Algorithm 1 to generate the best media for hosting
the next replica (line 5) and add it to the list (line 6). As the
loop will execute r times, the total running of our algorithm
is O(s× r2), a huge improvement over the exponential time
O(r×sr) explained before. In addition, given that r is typi-
cally very small (with the most popular value being 3), the
algorithm is essentially linear with respect to the number of
storage media, and hence, very efficient. Finally, since me-
mory is volatile, its use is optional by the data placement
policy and it is disabled by default. When enabled, it will
not place more than 1/3 of the replicas in memory.

Similar to query optimizers in conventional database sys-
tems, the MOOP policy does not aim at finding the optimal
placement but rather a good solution near the optimal one.
This is achieved by exploiting the optimal substructure pro-
perty (OSP) exhibited by each of the objective functions
individually; i.e., the best r media for maximizing a parti-
cular objective function include the best r − 1 media. For
example, maximizing fdb is equivalent to finding the r me-
dia with the highest remaining capacity percentage, which
include the r− 1 media with the highest remaining capacity
percentage. Even though the formulation of the problem in
Equation 11 does not necessarily exhibit OSP, the selection
of the r best media is based on the best r−1 media, while for
r = 1, the algorithm returns the optimal solution. Hence,
the MOOP policy is able to find a near-optimal solution.

4. DATA RETRIEVAL
This section describes the process by which users and ap-

plications access data stored in OctopusFS.

4.1 File Read Operations
When an application reads a file, the Client first contacts

the Master for the list of locations (i.e., storage media, each
belonging to a particular Worker and storage tier) that host
replicas of the file blocks. The Master returns the list or-
dered based on a pluggable data retrieval policy, discussed
below. The order is determined using the network location
of the Client, the network topology of the Workers, as well
as the storage tiers that host the replicas. The Client then
contacts the first Worker directly and requests the transfer
of the desired block. In case of a read failure, the Client
contacts the next Worker on the list for reading the data.

4.2 Data Retrieval Policy
Formally, the data retrieval problem can be defined as:

Given the list of storage media (m1, ...,mr) be-
longing to some Workers and storage tiers as well
as the location of the Client, the retrieval policy
must provide an ordering (mi1 , ...,mir ) for the
Client to read from.

A data retrieval policy strives to maximize the read I/O
efficiency of the file system. Similar to the data placement
policy, the retrieval policy must take into consideration both

the network location of the Workers as well as the tiers hos-
ting the replicas. On one hand, the Client should read the
replica from its nearest Worker in order to reduce inter-rack
and inter-node traffic and generally improve the read per-
formance. On the other hand, the Client should access the
replica from the fastest tier for improving the I/O latency.
However, the nearest replica may be on a slow tier whereas a
replica on a faster tier is on a more distant node. For exam-
ple, given a network transfer rate of 10 Gbps and a memory
transfer rate of 40 Gbps, it might be more efficient to read an
in-memory replica from a nearby node rather than reading
a local HDD-based replica with a transfer rate of 2 Gbps.

There are two more important aspects to consider: the
current network and storage media utilization. The avai-
lable (network or media) bandwidth gets split among all
connected readers and writers and can decrease significantly
if the device gets overloaded. In the example above, if there
are already 10 active network connections to the node, the
expected transfer rate from it will be 1 Gbps not 10. In this
case, a local read is probably the best option. The policy
must be aware of the various trade-offs and aim for selecting
the replica ordering that provides the highest overall I/O.

Our data retrieval policy implements a replica ordering
algorithm that takes into consideration the following:

• the Client location (may be on or off the cluster)

• the replica locations (Worker and storage tiers)

• the network topology and the average data transfer
rates from each Worker (NetThru[Wj ])

• the read throughput rate of each media (RThru[mi])

• the number of active network connections per Worker
(NrConn[Wj ])

• the number of active I/O connections per storage me-
dia (NrConn[mi])

For each replica location (i.e., storage media mi on Worker
Wj), the policy calculates the potential rate of transferring
the block data from there to the Client using the formula:

min

(
NetThru[Wj ]

NrConn[Wj ]
,

RThru[mi]

NrConn[mi]

)
(12)

Finally, it sorts the locations based on the decreasing cal-
culated transfer rates. Locations with the same rates for
which the network is the bottleneck are sorted only based
on the storage media throughput rates. If those rates are the
same as well, the corresponding locations are then shuffled
randomly to help spread the load more evenly.

5. REPLICATION MANAGEMENT
One of the main purposes of the Master is to ensure that

each block always has the intended number of replicas on
each storage tier. The Master can detect the situations of
under- or over-replication during the periodic block reports
received from the Workers.

When a block becomes under-replicated (e.g., due to block
corruption or Worker failure), the Master must select one (or
more) Workers for hosting the new replica(s). Block repli-
cation follows a similar policy to the block placement one
described in Section 3.3. In particular, it uses SolveMoop
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(recall Algorithm 1) to select the best storage media for re-
placing the lost replica, given (i) the list of available storage
media generated from GenOptions, and (ii) the existing
replica locations. The Worker that is meant to host the
new replica will utilize the data retrieval policy (described
in Section 4.2) for copying from the most efficient location.

When a block becomes over-replicated on some particu-
lar tier, the Master must select a replica to remove. Block
removal decisions are also based on the MOOP formulation
from Section 3.2. Given the list of current replica locati-
ons −→m = (m1, ...,mr), we generate r lists of size (r − 1)
by removing each time one location from −→m. We compute
the score of each option using Equation 11 and select the
location whose removal from −→m let to the lowest score.

As discussed in Section 2.3, the Client offers an API for
altering the replication vector of a file. This API can be used
to increase or decrease the number of block replicas within a
tier, as well as move or copy blocks from one tier to another.
Similar to HDFS [30], these operations are asynchronous by
design; that is, the Client will not wait until the copying
or removal of blocks is completed. However, the Client will
become aware of which locations were selected for future
reference. Internally, the system will use the same policies
for under- and over-replication of blocks described above.

6. ENABLING USE CASES
One of the most powerful features of OctopusFS is the

fine-grained control it provides over the various storage me-
dia it manages. Applications can explicitly store data in
different storage media and change the replication factors of
blocks within and across tiers while taking into consideration
their workload types (e.g., offline vs. interactive analytics),
the expected I/O patterns (e.g., full vs. partial scans), and
custom data layouts (e.g., row vs. column format). These
capabilities can also provide significant benefits to large-
scale analytics frameworks (e.g., MapReduce, Hive, Spark,
Impala) in terms of manageability and performance as they
can schedule their data processing jobs in both a location-
aware and a storage-tier-aware manner. This section outli-
nes a variety of application-centric and data-centric use cases
enabled by our novel design that can inspire new research
opportunities for data-intensive processing systems.

Multi-level cache management: OctopusFS is a gene-
ral purpose file system that could be transformed into a
multi-level caching system for improving I/O performance
and cluster utilization. Cache management policies can be
implemented both inside and outside the system, allowing
applications the maximum possible flexibility on how to take
advantage of OctopusFS. The Client, through the use of re-
plication vectors, offers a rich enough API such that an en-
tity that sits on top of OctopusFS can control the number
and placement of replicas in the various storage tiers. In
this scenario, an application can use its own knowledge and
understanding of its workload to increase or decrease the
replication factor per tier in order to maximize its perfor-
mance or meet customer service-level agreements (SLAs).
At the same time, OctopusFS offers pluggable policies for
managing the storage resources as a cache internally.

MapReduce Task Scheduling: In Hadoop [35], the Job
Scheduler is responsible for scheduling the Map and Reduce
tasks to execute on the compute nodes of the cluster. Cur-
rently, the scheduling is done based on the block locations

Table 2: Average write and read throughput (MB/s)
per storage media in the cluster.

Storage Write Read
Media Throughput Throughput

Memory 1897.4 3224.8
SSD 340.6 419.5
HDD 126.3 177.1

exposed by HDFS. With OctopusFS, the Job Scheduler can
also exploit the tiering information of each block for ma-
king better scheduling decisions. Furthermore, since the Job
Scheduler maintains the job queue and knows which tasks
will execute next, it also knows which files will be accessed
soon. The new APIs provided by OctopusFS allows for the
Job Scheduler to implement a prefetching mechanism and
instruct OctopusFS to start moving (or copying) block re-
plicas to a higher storage tier. This approach better overlaps
I/O with task processing and increases cluster utilization.

Workload scheduling: Analytical workloads are typically
expressed as directed acyclic graphs of jobs [35, 37]. In such
workloads, the output data from one job becomes the input
to the following job(s), and hence, smart intermediate data
placement can have great benefits to the overall workload
execution time. OctopusFS provides the flexibility of placing
the intermediate data in local memory or SSDs in order to
speed up the overall processing. In addition, the workload
processing system has intricate knowledge of any common
data among jobs or workloads and can utilize OctopusFS
for dynamically moving data up and down the storage tiers.

Interactive analytics: Apart from the typical batch orien-
ted analytics, interactive data exploration is becoming in-
creasingly important. In addition, more complex iterative
algorithms for machine learning and graph processing are
becoming popular [37]. A common attribute for these ty-
pes of applications is the need to share data across multiple
analysis steps (e.g., multiple queries from the user, or multi-
ple steps of an iterative computation). By allowing explicit
memory management, OctopusFS empowers applications to
pin their working sets in cluster memory. Fault tolerance is
provided by keeping multiple replicas in memory or creating
extra replicas on persistent storage. Recent work on lineage
(e.g., [37, 21]) is complementary to our work and could be
used for achieving fault tolerance without replication.

7. EXPERIMENTAL EVALUATION
The experimental setup used is a 10-node cluster running

CentOS Linux 7.2 with 1 Master and 9 Workers. The Master
node has a 64-bit, 8-core, 3.2GHz CPU, 64GB RAM, and
a 2.1TB RAID 5 storage configuration. Each Worker node
has a 64-bit, 8-core, 2.4GHz CPU, 24GB RAM, one 120GB
SATA SSD, and three 500GB SAS HDDs. OctopusFS is con-
figured to use 4GB, 64GB, and 400GB of memory, SSD, and
HDD space, respectively, for storing blocks on each Worker
node. Table 2 lists the average write and read throughput
for each storage media type as measured by the Workers.
Our evaluation methodology is as follows:

1. We study the effect of tiered storage in a cluster.

2. We evaluate the data placement policy along with the
four optimization objectives and compare it against
the original HDFS and a rule-based policy.
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Figure 2: (a) Average write and (b) average read throughput per Worker for five degrees of parallelism and
six replication vectors (〈M,S,H〉 = 〈“Memory”, “SSD”, “HDD”〉).

3. We evaluate the data retrieval policy.

4. We study the efficiency of namespace operations.

5. We compare the use of OctopusFS against HDFS in
managing data for Hadoop and Spark workloads.

6. We study the effectiveness of our controllability featu-
res with Pegasus [16], a graph mining system.

For our evaluation we used three well-known benchmarks:
(i) DFSIO [30], a distributed I/O benchmark that measu-
res average throughput for write and read operations; (ii)
S-Live Test [31], which is used for stress testing the name-
space operations of a distributed file system; and (iii) Hi-
Bench [13], a benchmark suite consisting of both synthetic
micro-benchmarks and real-world applications executed on
both Hadoop MapReduce [35] and Spark [37].

7.1 Effect of Tiered Storage
This section studies the effect of storing block replicas on

multiple storage tiers. We used the DFSIO benchmark to
write 10GB of data with a total replication factor of 3 (i.e.,
30GB of data is stored on OctopusFS) and then read it while
measuring the system performance. We controlled the pla-
cement of replicas to tiers by explicitly specifying the repli-
cation vector during file creation. Since the I/O bandwidth
of any storage media is sensitive to the number of concur-
rent writers/readers, we repeated the experiments multiple
times while varying the number of parallel writers/readers.

The average write and read throughput per Worker node
are shown in Figures 2(a) and 2(b), respectively. We fo-
cus on the average throughput per node because the total
bandwidth is linear with the number of nodes [30]. We use
three replication vectors for testing storing all 3 replicas on
the same tier and three for storing them on multiple tiers.
As expected, storing all replicas in memory yields the hig-
hest performance, which decreases as we increase the de-
gree of parallelism d due to network congestion. Interes-
tingly, storing all replicas in the “SSD” tier is better compa-
red to the “HDD” tier only for small d, while it gets worse
as we increase d. This is explained by the facts that (i)
our SSDs are only ∼2.6x faster than our HDDs and (ii)
we have 3 HDDs per node. For example, when d = 27,
3 blocks (on average) are concurrently stored on each node.
For V = 〈M,S,H〉 = 〈0, 3, 0〉, all 3 blocks are placed on
the SSD while for V = 〈0, 0, 3〉 the 3 blocks are distributed
across the 3 HDDs. Another interesting observation is that
placing replicas on multiple tiers does not have any effect

for small d since the data are written in a pipeline and the
performance is bottlenecked by storing at least 1 replica on
HDD. However, as d increases, the network bandwidth per
thread decreases more than per media, so the benefits of
using multiple tiers (and media) start to show and can lead
to up to 2x performance improvement compared to storing
all replicas on HDDs.

The read throughput patterns for the first three replica-
tion vectors are very similar to the write throughput ones
analyzed above. One unique observation here is that by pla-
cing just 1 replica in memory, the average read throughput
increases 2–5x over storing all replicas on HDDs. At the
same time, the error bars (showing the standard error of the
mean) indicate a large variation in the read throughput rate
because some reads are local (i.e., the Client is located on the
same machine as the node hosting a replica to read) while
others are non-local. Note that the way this experiment
was performed yielded only about 1/3 local reads. Hadoop
and Spark are known to typically achieve about 90% locality
rates, which would yield even larger performance gains [13].

7.2 Data Placement Evaluation
The purpose of this section is threefold. First, in order

to study the individual effects of each one of the optimiza-
tion objectives introduced in Section 3.2, we implemented
and tested four placement policies, one for each objective.
Second, we evaluate the benefits of the MOOP policy (re-
call Section 3.3) compared to the original HDFS placement
policy, both in terms of write and read I/O performance.
In order to further analyze the effect of SSDs, we configure
the original HDFS with two settings: (a) HDFS using only
HDDs for storing replicas (“Original HDFS”); and (b) HDFS
using both HDDs and SSDs for storing replicas (“HDFS with
SSD”) but without differentiating between the two storage
media types (since it is not capable of doing so). Finally, we
compare the MOOP policy against a Rule-based policy in
order to validate the need for a model-based approach. The
Rule-based policy takes both network topology and storage
tiers into account by placing replicas across the tiers in a
round robin fashion on randomly-selected nodes across two
racks. For these experiments, we run the DFSIO benchmark
with degree of parallelism 27 for writing and reading 40GB
of data with a replication vector of U = 3.

Figure 3(a) shows the average write throughput per Wor-
ker for the 8 data placement policies during the generation
of the 40GB of data, while Figure 4 shows remaining ca-
pacity percent per storage tier. The Throughput Maximiza-
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Figure 3: (a) Average write and (b) average read throughput per Worker for eight data placement policies.

Figure 4: Remaining capacity percent per storage tier for eight data placement policies.

tion (TM) policy starts with the highest throughput of ∼200
MB/s as it is heavily exploiting the “Memory” tier. Howe-
ver, throughput quickly degrades as the memory space gets
exhausted and all the burden falls on the SSDs. Both the
Load Balancing (LB) and the Fault Tolerance (FT) policies
offer relatively good performance that averages ∼110 MB/s
with some minor fluctuations, as they utilize all three tiers
more uniformly. Recall that FT strives to maximize the use
of all tiers and we enabled the use of the “Memory” tier for
fairness. The Data Balancing (DB) policy tries to equate the
percent remaining capacities of the storage media. Given the
large differences in total capacities, DB is biased towards the
“HDD” tier and yields the lowest performance (∼58 MB/s),
as it completely ignores any performance metrics.

The MOOP policy successfully combines the strengths of
the four individual-objective policies and achieves the best
overall and most reliable performance of ∼125 MB/s. Initi-
ally, the MOOP policy uses all three tiers for placing replicas
and achieves good performance. As the memory usage in-
creases, the policy starts utilizing the “SSD” tier more while
spreading the load on the “HDD” tier among the individual
devices (see Figure 4). On the other hand, the Original
HDFS policy spreads the load fairly evenly across all disks
on the Workers with an average and steady throughput of
∼88 MB/s. Allowing HDFS to also store data on SSDs adds
a moderate improvement to the write throughput averaging

∼98 MB/s, even though 25% of the data gets placed on SSDs.
This result highlights the need for smart management of the
available storage media; simply adding better media in a
cluster will not yield significant performance improvements.
Overall, the MOOP policy achieves a 42% and 29% increase
on average write throughput over Original HDFS and HDFS
with SSD, respectively.

In comparison, the write throughput of the Rule-based po-
licy at ∼108 MB/s is better compared to both versions of the
HDFS policies but inferior to the performance achieved by
the MOOP policy. Taking into account the current load and
remaining capacity per storage media provides a significant
advantage to the MOOP policy, which is able to achieve a
17% increase of write throughput per Worker node in the
cluster compared to the Rule-based policy.

In order to study how data placement effects the read
performance, the average read throughput per Worker is
shown in Figure 3(b). The TM policy exhibits a similar
pattern with the write throughput, where very good read
throughput is achieved until memory gets exhausted. The
LB policy exhibits an interesting oscillating trend explained
by combining two facts: (i) LB tries to evenly distribute I/O
requests across all storage media and (ii) the cluster has 3
times as many HDDs as SSD or Memory media. Hence,
it will periodically write many blocks having all three re-
plicas on HDDs, which in turn leads to periods of slower
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Figure 5: Average read throughput per Worker for
five degrees of parallelism and two retrieval policies.

read performance while reading those blocks. The FT and
DB policies exhibit average and poor read performance, re-
spectively, while the Rule-based policy behaves similarly to
the FT one. The Original HDFS policy offers the lowest
overall read performance, while the addition of SSDs led to
marginal improvement. Once again, MOOP offers good and
reliable performance, even though there is some decline in
throughput after it starts utilizing memory less. Even at
that point, it significantly outperforms both HDFS policies
with a 2.1x better read throughput rate.

7.3 Data Retrieval Evaluation
This section compares the OctopusFS data retrieval policy

described on Section 4.2 against the original HDFS policy,
which only focuses on data locality (and ignores the storage
tiers). DFSIO was used to generate 10GB of data using the
MOOP data placement policy, followed by reading the data
with each of the two policies. Figure 5 shows the average
read throughput per Worker achieved for various degrees of
parallelism. In all cases, the OctopusFS retrieval policy exhi-
bits much higher throughput rates compared to HDFS as it
schedules more reads from replicas stored on higher tiers. As
the degree of parallelism d increases—and along it network
congestion—the throughput rates decrease for both policies,
as expected. The benefits from using OctopusFS also decre-
ase from ∼4x to ∼2x as d increases, but stay significant from
efficiently utilizing all storage tiers.

7.4 Efficiency of Namespace Operations
The OctopusFS Master (and equivalently, the HDFS Na-

meNode) is responsible for handling all directory namespace
operations efficiently. This experiment utilizes the S-Live
Test [31] for stressing both the Master and the NameNode
with the same workload of typical file system operations.
The experiment was repeated four times and the average
numbers of successful operations per second per Worker are
shown in Table 3 along with the standard error of the mean.
The results indicate that OctopusFS, despite the extra pro-
cessing related to the tiers and the management policies,
offers very similar performance to the original HDFS. Most
operations exhibit less than 1% overhead, which is within
the standard errors recorded during the experiments.

The memory overhead introduced by the extra informa-
tion kept by OctopusFS is also trivial. The replication vector
for each file is encoded into 64 bytes (48 bytes more than
the old replication factor). In addition, the Master keeps 448
bytes of extra statistics for each storage media and 704 bytes
for each tier. Even for a huge cluster with 3500 nodes and

Table 3: HDFS vs. OctopusFS on namespace ope-
rations per second per Worker.

Operation HDFS OctopusFS

Make directory 140.5 ± 4.6 135.9 ± 6.1
List files 7089.0 ± 43.8 7143.0 ± 85.3
Create file 54.9 ± 1.6 53.4 ± 1.6
Open file 5937.4 ± 116.3 5897.1 ± 41.2
Rename file 111.5 ± 6.2 111.1 ± 3.7
Delete file 49.8 ± 1.7 47.1 ± 1.5

more than a dozen storage media each [30], the additional
overhead is only a few tens of megabytes.

7.5 Evaluation over Hadoop and Spark
This set of experiments evaluates the end-to-end bene-

fits OctopusFS can immediately provide to data processing
workloads running on any platform that supports HDFS. We
used the HiBench benchmark [13], which provides implemen-
tations for various workloads on both Hadoop MapReduce
and Spark. In total, nine workloads were used spanning
three categories: micro benchmarks (Sort, Wordcount, Te-
rasort), OLAP queries (Scan, Join, Aggregation), and ma-
chine learning analytics (Pagerank, Bayesian Classification,
k-means Clustering). We executed all workloads over Ha-
doop v2.7.0 and Spark v1.6.2, once storing data in HDFS
and once in OctopusFS. None of the systems were modified
as OctopusFS is backwards compatible with HDFS.

Figure 6 shows the normalized execution time with Octo-
pusFS over HDFS for all workloads on both platforms. (The
actual execution times of the workloads varied between 1 and
42 minutes.) The OctopusFS usage translated into perfor-
mance gains for every single workload ranging from 6% up
to 72% (i.e., 3x speedup) of execution time improvement.
The performance benefits for Hadoop MapReduce were pro-
found with an average of 35% improvement (∼1.8x speedup),
while for Spark they were more modest, with an average of
17% improvement (∼1.2x speedup). The lesser benefits for
Spark are expected given it already utilizes cluster memory
heavily. We are confident that extending both platforms
to take advantage of the controllability features offered by
OctopusFS can lead to even larger performance gains.

7.6 Evaluation of an Enabling Use Case
Section 6 presented various use cases enabled by the fine-

grained control OctopusFS provides to applications. As a
proof of concept, we have modified Pegasus [16], a graph
mining system running over Hadoop, to include two opti-
mizations. First, when an iterative workload starts running,
Pegasus will identify the datasets that are reused in each ite-
ration and will instruct OctopusFS to prefetch (i.e., move)
one replica into the Memory tier. Second, Pegasus will iden-
tify short-lived intermediate data produced and consumed
between jobs, and instruct OctopusFS to store one copy in
the “Memory” tier. For the experiments, we generated a
graph with 2 million vertices (3.3 GB in size) and run four
typical graph mining workloads: Pagerank, Connected Com-
ponents (ConComp), Graph Diameter and Radius (HADI),
and Random Walk with Restart (RWR) [16]. All workloads
converged and concluded in less than four iterations.

For comparison purposes, we first executed the workloads
using the unmodified Pegasus over HDFS and OctopusFS.
Then, we used the modified Pegasus enabling the two opti-
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Figure 6: Normalized execution time of Hadoop and
Spark workloads using OctopusFS over using HDFS.

mizations separately and together. Figure 7 shows the nor-
malized execution time over HDFS for all workloads. The
automated policies of OctopusFS are able to provide perfor-
mance benefits on their own ranging from 15% to 34% over
HDFS. The addition of the two optimizations in Pegasus
increases the gains further: prefetching adds 3–7% of gains
while intermediate data handling adds 7–16% of gains over
OctopusFS. The latter gains are substantial in some cases
due to the large amount of intermediate data. For example,
the HADI workload generates about 18 GB of intermediate
data per iteration. As the two optimizations are comple-
mentary to each other, enabling both leads to even greater
benefits of 10–18% over OctopusFS and 25-52% over HDFS.

8. RELATED WORK
Distributed file systems: HDFS [30] has been the basis
for our implementation. We have made significant modifica-
tions and additions to HDFS, including the introduction of
performance-based storage tiering, the use of memory and
remote storage for hosting blocks, the notion of the repli-
cation vector, and the use of automated data management
policies. A recent version of HDFS has added the notion of a
“storage type” to the attached media but it is based only on
the type of the devices, not their performance characteristics
[1]. In addition, there is support for a limited number of sta-
tic policies for storing and moving files but all block replicas
must be hosted on the same tier [29]. These policies require
manual configuration and are meant primarily for archival
purposes [4, 32]. The MapR File System [22] and Ceph [34]
have similar architectures to HDFS but both offer a distri-
buted metadata service as opposed to the centralized HDFS
NameNode. The Quantcast File System (QFS) [27] employs
erasure coding rather than replication as its fault tolerance
mechanism for reducing the amount of storage used.

Multi-tier file storage: Hierarchical storage management
(HSM) provides a policy-based way of managing data across
a storage hierarchy that typically consists of arrays of tapes,
compressed disks, and high-performance disks [36]. The
main focus is on archiving inactive files to the lower tiers
and retrieving them upon reference. Unlike our system,
HSM does not offer any locality or storage-media awareness
to higher-level applications. Storage-tier-aware file systems
form the evolution of HSM and are aware of abstract device

Figure 7: Normalized execution time of Pegasus
workloads with various optimizations.

“types” (arrays of SSDs and HDDs). They typically offer
some control over initial placement and movement of data
based on policies [10]. However, each file must reside com-
pletely on a tier and there is no notion of locality awareness.

Memory usage in compute clusters: Memory caching
is a standard technique for improving local data access in
distributed applications. PACMan [3] is a memory caching
system that explores memory locality of data-intensive pa-
rallel jobs but always places all replicas of all file blocks in
memory. Furthermore, PACMan does not allow applicati-
ons to specify hot data in memory for subsequent efficient
accesses. Resilient Distributed Datasets (RDDs) are a distri-
buted memory abstraction and a new programming interface
for in-memory computation [37]. In addition, it allows ap-
plications to persist a specified dataset in memory for reuse
and uses lineage for fault tolerance. RDDs are specialized
for iterative algorithms and interactive data mining tools,
whereas OctopusFS offers a general-purpose file system with
superset capabilities. Tachyon [21] also incorporates lineage
to speedup mainly the write throughput of workloads con-
sisting of batch jobs.

Remote storage use in clusters: MixApart [24] and Rhea
[9] focus on improving data retrieval from remote enterprise
storage systems to local computing clusters by utilizing on-
disk caching at the local disks. In addition, MixApart sche-
dules tasks according to both on-disk caching and remote
data. Rhea uses static analysis techniques of application
code to generate storage-side filters, which remove irrelevant
or redundant data transfers from storage nodes to compute
nodes. However, the target applications of Rhea are not I/O
intensive; they are supposed to have high data selectivity.

9. CONCLUSIONS
This paper presented the design for a novel distributed

file system (OctopusFS) for cluster computing that is aware
of various heterogeneous storage media, such as memory,
SSDs, HDDs, and remote storage, with different capacities
and performance characteristics. OctopusFS contains auto-
mated data-driven policies for managing the placement and
retrieval of data across the nodes and the storage tiers of
the cluster. In addition, it exposes the network locations
and storage tiers of the data in order to allow higher-level
applications to make locality-aware and tier-aware decisions,
opening up new interesting research directions. Overall, Oc-
topusFS offers a flexible storage solution that can achieve
better I/O performance and cluster utilization.
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