
SLQ: A User-friendly Graph Querying System

Shengqi Yang1 Yanan Xie2 Yinghui Wu1 Tianyu Wu2

Huan Sun1 Jian Wu2 Xifeng Yan1

1University of California Santa Barbara 2Zhejiang University
{sqyang, yinghui, huansun, xyan}@cs.ucsb.edu

{xyn, tywu, wujian2000}@zju.edu.cn

ABSTRACT
Querying complex graph databases such as knowledge
graphs is a challenging task for non-professional users. In
this demo, we present SLQ, a user-friendly graph query-
ing system enabling schemaless and structureless graph
querying, where a user need not describe queries precisely as
required by most databases. SLQ system combines search-
ing and ranking: it leverages a set of transformation func-
tions, including abbreviation, ontology, synonym, etc., that
map keywords and linkages from a query to their matches
in a data graph, based on an automatically learned rank-
ing model. To help users better understand search results
at different levels of granularity, it supports effective result
summarization with “drill-down” and “roll-up” operations.
Better still, the architecture of SLQ is elastic for new trans-
formation functions, query logs and user feedback, to itera-
tively refine the ranking model. SLQ significantly improves
the usability of graph querying. This demonstration high-
lights (1) SLQ can automatically learn an effective ranking
model, without assuming manually labeled training exam-
ples, (2) it can efficiently return top ranked matches over
noisy, large data graphs, (3) it can summarize the query
matches to help users easily access, explore and understand
query results, and (4) its GUI can interact with users to
help them construct queries, explore data graphs and in-
spect matches in a user-friendly manner.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query pro-
cessing

Keywords
schemaless graph querying; keyword query; graph databases

1. INTRODUCTION
Graph querying is widely adopted to retrieve information

from emerging graph databases, e.g., knowledge graphs, in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594516.

formation and social networks. Given a query, it is to find
reasonable top answers from a data graph. Searching real-
life graphs, nevertheless, is not an easy task especially for
non-professional users. (1) Either no standard schema is
available, or schemas become too complicated for users to
completely possess. (2) Graph queries are hard to write
and interpret. Structured queries (e.g., XQuery [4] and
SPARQL [5,7]) require the expertise in complex grammars,
while keyword queries [8, 10] can be too ambiguous to re-
flect user search intent. Moreover, most of these methods
adopt predefined ranking models [5, 8], which is barely able
to bridge the gap between queries and their desired matches.
(3) Moreover, it is a daunting task for users to inspect a large
number of matches produced from querying large-scale het-
erogeneous graph data.

"Jaguar"

"history" "America"

"Jaguar" ...

"Panthera
On ca"

Panthera

"Black
Panther"

Melanism

ontology

Query

result summarization

G

history habitat

"America"
(continent)

offer company

city history

Black
Panther

(animal)

history habitat

south American
(continent)

Panthera
On ca

(animal)

history habitat

north American
(continent)

result 1 result 2 result 3

USA
(country)

Jaguar XK
(car)

result

Dearborn

(country)
United States

history

(animal)

Ford
(company)

(city)

"America"
 (country)

Chicago(city)

offer1 ... offern

(city)New York

k

...

 (car)
XJ Line

schemaless & structureless search

ontology-based search

Figure 1: Searching a knowledge graph

Example 1: Consider a query asking“tell me about the his-
tory of Jaguar in America”. The query can be presented as
either a keyword query “Jaguar history America”, or a small
graph in Fig. 1. To find answers for such a simple query
is, nevertheless, not easy. (1) A keyword e.g., “Jaguar”may
not have identical matches, but instead can be matched with
entities that are semantically close, i.e., luxury cars or ani-
mals. How to find matches that are semantically related to
the query? (2) A large number of possible answers can be
identified by various matching mechanisms. For example,
“Panthera Onca” is closely related with “Jaguar” as its sci-
entific name, while “Jaguar XK” is another match obtained
simply by string transformations. Which one is better? A
ranking model should be employed and tuned with or with-
out manual tuning effort. (3) There are a large number of
good results, e.g., different species related to Jaguar (result

893

1 and result 2), or various car prototypes (result 3 to re-
sult k). How to help users better understand results without
inspecting them one by one? This kind of complexity con-
trasts to the impatience of web users who are only interested
in finding good answers in a short time. �

To answer these questions, we propose SLQ, a novel
graph querying system for schemaless and structureless
querying [13]. (1) To better understand search intent, SLQ
interprets queries with external ontologies to find semanti-
cally close matches. (2) It automatically supports multi-
ple mapping functions, namely, transformations, e.g., syn-
onym, abbreviation, ontology, to identify reasonable answer
via learning to rank, and works with both (a) a cold-start
strategy that requires no manual effort for system tuning,
and (b) a warm-start strategy to adjust the ranking model
with available user feedback and query logs. (3) To help
users better understand results and refine queries, it sup-
ports concise result summarization. Users may inspect small
summaries, and then decide to (a) drill-down for details, or
(b) interactively refine queries with interesting summaries.
To the best of our knowledge, these features are not seen
before in any previous graph querying systems (e.g., [4–8]).
SLQ system is among the first efforts of developing a uni-

fied framework for schemaless and structureless querying.
Designed to help users access complex graphs in a much eas-
ier and powerful manner, it is capable of finding high-quality
matches when structured query languages do not work.

Queries and datasets. SLQ supports a wide range of
queries. Users may issue (1) a keyword query as a set of key-
words, where each keyword describes an entity; or (2) a (not
necessarily connected) graph query, where each query node
has a set of labels as conditions, and an edge between two
nodes, if any, specifies the relation constraints posed on two
query nodes by users. We demonstrate SLQ over three ma-
jor knowledge graphs, i.e., DBpedia, YAGO2 and Freebase
as described in the table below. A single such knowledge
graph could have more than 10K types of entities, making
it difficult for users to fully grasp.

Graphs entities relations node types relation types
DBpedia [1] 3.7M 20M 359 800
YAGO2 [5] 2.9M 11M 6,543 349
Freebase [2] 40.3M 180M 10,110 9,101

Table 1: Knowledge graphs

We next introduce SLQ and its features in detail.

2. ONTOLOGY-BASED QUERYING
In contrast to conventional graph querying systems, SLQ

does not limit itself with single, fixed search semantic. In-
stead, it employs a set of matching functions that are more
capable to find good matches in heterogeneous graphs [13].
We start by demonstrating ontology-based search, as an ex-
ample for various matching mechanisms integrated in SLQ.

One of the challenges is to find the semantically related
matches. SLQ leverages ontology-based search [12] to bridge
the entities from queries and data graphs via a set of ontol-
ogy closeness metrics. Given external ontology graphs (e.g.,
DBPedia Ontology [1]), SLQ finds the semantically related
entities (specified by a closeness measure) in the ontology
graphs for each entity (keyword) in a query [12]. A straight-
forward “substituting-and-querying” method may next in-
terpret the query by substituting the keywords with their

related entities, which in turn have matches in the data
graph. Top matches can then be extracted by processing
each new query. However, it may yield a tremendous num-
ber of queries. Instead, SLQ leverages an effective ontology
index [12]. In a nutshell, it computes several sketches of the
data graph using the ontology graph. Each sketch is induced
by grouping the nodes that are semantically close. Upon re-
ceiving a query, SLQ can efficiently identify the top matches
by querying on these small sketches only.

Example 2: While there are no similarly labeled entities for
“Jaguar” in the data graph (Fig. 1), SLQ checks an ontology
graph, and identifies its two semantically related matches
(as a type of animal): “Panthera Onca”, its scientific name
and “Black Panther”, its melanistic color variant. These
can hardly be found by conventional IR metrics or string
similarity, or by using the query and data graph alone. �

SLQ wraps ontology-based searching with (a) an ontology
transformation function that maps a keyword to a set of
valid entities, and (b) an ontology index. These are seam-
lessly integrated in the query processing of SLQ (Section 3).

3. QUERYING PROCESSING MODULE
SLQ does not require a user to describe a query precisely

as required by most search applications. To render this high
flexibility to the users, in the core of the framework is a
mechanism of transformation: given a query, the query eval-
uation is conducted by checking if its matches in a graph
database can be reasonably “transformed” from the query
through a set of transformation functions.

Transformations. To characterize query matches, SLQ
adopts transformations defined on the attributes and val-
ues of both nodes and edges of the query [13]. A query node
(or edge) has a match if it can be converted to the latter via
a transformation. For example, a query node “IBM” shall
be matched to a node with label “International Business
Machines.” The table below summarizes several common
transformations supported by SLQ.

Category Transformations
String First token, Last token, Abbreviation, Prefix,

Acronym, Drop word, Bag of words
Semantic Ontology, Synonym (WordNet [3])
Numeric Unit conversion, Date gap, Date conversion, Nu-

meric range
Topology Distance, Labeled path

Better still, SLQ exposes a generic interface abstracted for
any transformation. New transformations complying with
the interface can be readily plugged in.

Example 3: Recall the query in Fig. 1. SLQ captures
the matches for the keyword “Jaguar” as follows. (1) The
matches “Panthera Onca” and “Black Panther” can be iden-
tified by ontology transformation (Section 2). (2) The match
“Jaguar XK” can be matched by “First token”, a String
transformation. (3) The match “XJ Line” can be captured
by “Bag of words”, indicating that “Jaguar” appears in its
text description. For edge (“Jaguar”, “America”), an topol-
ogy transformation “Distance”maps it to a path from“Pan-
thera Onca” to “north America” in result 1. �

Matching Quality Measurement. To measure the qual-
ity of the matches induced by various transformations, SLQ
adopts a ranking function of weighted transformations. The

894

function incorporates two types of score functions: node
matching and edge matching score function. Each score
function aggregates the contribution of all the possible trans-
formations with corresponding weights. More specifically, by
harnessing the probabilistic graphical model, we define the
ranking function with Conditional Random Fields [9], since
it satisfies two key considerations: using training data, its
formulation could optimize the weights of the transforma-
tions for good ranking quality; the inference on the model
provides a mechanism to search top-k matches quickly.

Ranking model learning. A key issue is how to select
a ranking function by determining reasonable weights for
the transformations. Instead of assigning equal weights or
calibrating the weights by human effort, SLQ automatically
learns the weights from a set of training instances. Each
instance is a pair of a query and one of its relevant (labeled
as “good”) answers. The learning aims to identify for each
transformation a weight, such that if applied, the model
ranks the good answers as high as possible for each instance.

SLQ begins with a cold-start stage where no manual effort
is required for instances labeling, and can be “self-trained”
in the warm-start stage, using user feedback and query logs.
(Cold-start) When no user query log is available, SLQ ran-
domly extracts a set of subgraphs from the data graph as
“query templates.” It then injects a few transformations to
the template and generates a set of training queries. In-
tuitively, each training query should have the correspond-
ing templates as its “good matches,” since the query can be
transformed back to the template.

Query Processing. SLQ efficiently finds top matches,
leveraging approximate inferencing [9]. It treats a query
as a graphic model and the matches as assignment to its
random variables (query nodes). By propagating messages
among the nodes in the graphical model, the inference can
identify top assignments (matches) that maximize the joint
probability (ranking score) for the model. Together with
a graph sketch data structure, this technique dramatically
reduces the query processing time, with only small loss of
match quality (less than 1% in our validation).

4. RESULT SUMMARIZATION
Due to the sheer volume of data, graph querying usually

generates a lot of results that are too many to inspect. This
not only makes the understanding of the results a daunting
task, but also frustrates the users to continue refining the
search. The result summarization feature of SLQ addresses
the two challenges in a “two-birds-with-one-stone” way by
leveraging [11]. (1) Given a query and a set of matches,
SLQ effectively describes all the matches (as graphs) with a
few summary graphs. A summary graph preserves the con-
nectivity of the keyword pairs. By reviewing the summary
graphs, users easily get intuitive “big pictures” of all the
matches. (2) The summary graphs can further be used to
refine the search by suggesting new query nodes or edges, or
be issued directly as new queries.

Example 4: SLQ provides two intuitive summaries for the
matches in Fig. 1. The first summary indicates that“Jaguar”
refers to animals living in America continents with evolution
history. The second shows that it refers to a certain type of
cars sold by dealers and companies in major cities of USA,
with the company history in car industry. In addition, new

��������	�
����� ���������������

���������	

����	

���

����

��������

��

����

����������

����������

� �������

����� !���

��	
�	������

�����������������������

������������������

�����

 ��!���

"��#$��%

��!"#�����

 ������

��$$���%�

&�����

&��� !��'

&����'(��)�� (������	*��)���	�'

+�� �%

,����'$ �

,�

,�

Figure 2: SLQ: Architecture

nodes or keywords, e.g., “offer”, are suggested to users to
inspire queries with new interests. �

5. SYSTEM DESIGN
The system SLQ consists of back-end and front-end mod-

ules, as illustrated in Fig. 2. For the back-end, SLQ inte-
grates (1) a full fledged indexing module (the lower left part
in Fig. 2) which implements all the indices in Section 3, and
(2) an offline learning module for the ranking model (the
lower right part in Fig. 2). Each module in the back-end
can be maintained dynamically in response to data updates,
without affecting the front-end, i.e., online query process-
ing. We also separate the information for graph structure
and its node and edge content, and store the latter in the
database. This enables SLQ to perform fast graph traver-
sal by only loading much smaller graph structure into the
memory, while accessing richer content, e.g., attribute val-
ues, documents, pictures in the database.

The front-end modules reside in the application layer (on-
line query processing), as shown in the upper level in Fig. 2.
Upon receiving a query, (1) the “query prepare” module
first interprets the query to an internal format, and pre-
pares the match candidates by looking up the indices; (2)
SLQ next invokes “top-k query process” using the rank-
ing model to find accurate matches; (3) once the top-k re-
sults are generated, SLQ directly renders the results to the
user through our“GUI/REST service”; (4) SLQ can also pro-
vide the users with the summarized views of the results via
“summarize”; and (5) the user queries and result preferences
are memorized by “Logger” to improve the ranking model.

SLQ is designed with elasticity. It can be scaled up easily
by duplicating a module without affecting the others. For
example, when there are intensive query requests, we can
duplicate the application layer in multiple servers and then
evenly distribute the queries among the servers.

6. DEMONSTRATION OVERVIEW
Setup. We will demonstrate SLQ over the knowledge graphs
in Table 1. The system is implemented in Java and is de-
ployed on an Intel Core i7 2.8GHz, 32GB server.

895

query drawing panel
(a) Query formalization interface (b) Graph exploration interface

Figure 3: SLQ: User interface

Demo Scenario. SLQ provides user interfaces for query
formalization and query result exploration (Fig. 3). We in-
vite users to experience (1) how to easily form a query with-
out prior training in query languages or graph databases,
(2) how the results, summaries and even the data graph can
be conveniently navigated and viewed.

As shown in Fig 3(a), the query formalization interface
renders the users with two major query panels to form
queries. (1) Users can conveniently draw a graph query
in the query drawing panel, and can freely add and edit
the properties and values in the the property panel for
each query node or edge. (2) Alternatively, users are in-
vited to use our built-in query language SLQL in the query

editing panel. SLQL is designed for simplicity. It con-
sists of two types of statements: (1) the node statement,
“$x.property = value”, where “$x” denotes a query node
with a label constraint “property = value”, and (2) the edge
statement, “$x predicate $y”, where “$x” and “$y” are the
query nodes as in (1) and “predicate” indicates the relation-
ship between the two nodes. A graph query and its SLQL
representation is shown in Fig. 3(a).

The second demonstration scenario invites users to run
their queries and inspect the results. A user can also run
the query on various knowledge graphs, e.g.,Freebase, cho-
sen from setting. The results of the query in Fig. 3(a) are
shown in the graph exploration interface (Fig 3(b)). The
graph explore panel renders top-1 result (the highlighted
part) as well as its peripheral structure (the dim part) in the
data graph. The user can then inspect the detail informa-
tion of a node/edge shown in the information panel. By
double-clicking a node, users are able to explore the one-
hop neighbors of the node from the data graph. Moreover,
the result control panel enables the user to navigate the
next/previous result or return to the top-1 result. The user
feedback will be recorded if they click the like button on
specific results. We also invite users to try the summarize

button to view the summarized results from a large collec-
tion of returned matches, and drill down to find details.

7. ACKNOWLEDGMENTS
This research was sponsored in part by the Army Research

Laboratory under cooperative agreements W911NF-09-2-

0053, NSF IIS-0954125 and NSF IIS-0905084. The views
and conclusions contained herein are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government.

8. REFERENCES
[1] Dbpedia. dbpedia.org.

[2] Freebase. freebase.com.

[3] Wordnet. wordnet.princeton.edu.

[4] D. Chamberlin et al. XQuery 1.0: An XML Query
Language. W3C Working Draft, June 2001.

[5] J. Hoffart, F. M. Suchanek, K. Berberich,
E. Lewis-Kelham, G. de Melo, and G. Weikum. Yago2:
Exploring and querying world knowledge in time,
space, context, and many languages. In WWW, 2011.

[6] D. Mottin, M. Lissandrini, V. Yannis, and
T. Palpanas. Exemplar queries: Give me an example
of what you need. In VLDB, 2014.

[7] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. TODS, 34(3), 2009.

[8] J. Pound, I. F. Ilyas, and G. Weddell. Expressive and
flexible access to web-extracted data: a keyword-based
structured query language. In SIGMOD, 2010.

[9] C. Sutton and A. McCallum. An introduction to
conditional random fields for relational learning.
Introduction to statistical relational learning,
93:142–146, 2007.

[10] H. Wang and C. Aggarwal. A survey of algorithms for
keyword search on graph data. Managing and Mining
Graph Data, pages 249–273, 2010.

[11] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan.
Summarizing answer graphs induced by keyword
queries. VLDB, 6(14), 2013.

[12] Y. Wu, S. Yang, and X. Yan. Ontology-based
subgraph querying. In ICDE, 2013.

[13] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. VLDB, 7(7), 2014.

896

