
Method of Complex Event Processing over XML Streams

Tatsuki Matsuda
Hosei University
3-7-2 Kajinocho

Koganei, Tokyo, Japan
14t0011@cis.k.hosei.ac.jp

Yuki Uchida
Hosei University
3-7-2 Kajinocho

Koganei, Tokyo, Japan
13t0005@cis.k.hosei.ac.jp

Satoru Fujita
Hosei University
3-7-2 Kajinocho

Koganei, Tokyo, Japan
fujita_s@hosei.ac.jp

ABSTRACT
This paper describes a query processing engine for multi-
ple continuous XML data streams with correlated data as
a notification mechanism for navigating data exploration.
Stream processing, including formal models for stream filter-
ing, union, activation, decomposition, and partition, is for-
mulated in algebraic expressions. In addition, a query lan-
guage, called QLMXS, over XML streams for complex event
processing is described. QLMXS supports all functions of
the algebraic expressions in a SQL-like form. QLMXS queries
are converted into a visibly pushdown automaton (VPA)
that analyzes complex event data from the XML streams.
The VPA engine concurrently processes multiple XML data
on multiple levels; therefore, it is very important to tune
the performance of the engine. Four optimization methods
are proposed to improve performance by utilizing VPA and
XML features: VPA-state reduction, VPA unification, de-
layed evaluation, and elimination of unnecessary XML pro-
cessing. Experimental results demonstrate that VPA uni-
fication increases the processing speed of the VPA engine
1.6 times, and the overall processing speed is increased 2.6
times.

Categories and Subject Descriptors
H.2.3 [Information Systems]: DATABASE MANAGE-
MENT - Languages, Query languages

Keywords
Complex Event Processing, Stream Data Processing, Navi-
gation, XML, Visibly Pushdown Automaton

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ExploreDB’15 May 31-June 04 2015, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3740-3/15/05 $15.00
DOI: http://dx.doi.org/10.1145/2795218.2795220.

1. INTRODUCTION
Exploration of databases and the web is one of hot top-

ics in data processing area. Most of researchers interesting
to this topic are focusing on methodologies how to express
user’s information needs in a smarter way, how to navigate
users with interaction to find information around their goals,
and how to present related items to widen the users’ scopes.
In such researches, internal issues in the exploration are
mainly discussed, though external changes in surrounding
environments also make some impacts to data exploration
since the exploration is a time-consuming task so that users’
interests might be changed during the exploration affected
by the environments. This paper concerns a relationship
between internal and external navigation in the data explo-
ration. The external stuffs give a trigger to the users at
the beginning of the exploration and continuously influence
them during the internal exploration. Important factors in
the external navigation are sensitivity to changes interesting
to the users, immediate information delivery just on time,
and relevance to the current interests in exploration.

Under such consideration, complex event processing (CEP),
which is a method to find a combination of events coming
from several information sources, plays an important role for
the external navigation. Although there are many types of
sources, this paper specially focus on XML streams since the
XML format is widely used in the Internet communication.
XML is a general purpose data format for representing hier-
archically structured documents with tags. XML documents
are used in many situations, such as system configuration
files, data interchanging formats for Web services, and stan-
dard business documents. Currently, such XML formats are
used in weather sensing broadcasts, stock information trans-
fers, and GPS data communication so that these data are
useful to apply to the external navigation in the exploration.

Several studies have examined high performance XML
processing. For example, XSeq has been proposed to pro-
cess time-dependent XML streams[4]. XSeq is an extension
of XPath for representing patterns of correlated XML stream
data and an analysis engine based on visibly pushdown au-
tomaton (VPA)[1].

This paper first describes requirements of the CEP for the
external navigation in the exploration and then describes a
way to build an efficient CEP engine which analyzes XML
data in a stream. Currently, many data sources that send
heterogeneous data continuously are available on the Inter-
net. Therefore, this paper focuses on multiple stream pro-
cessing in this context. A formal representation of multiple
stream processing in algebraic expression is proposed, and a

query language for multiple XML streams (QLMXS) is de-
signed to describe filtering conditions and formatting rules
over multiple XML streams. Finally, a processing engine
based on VPA is proposed and optimization techniques are
introduced.

2. COMPLEX EVENT PROCESSING
CEP is a well-known technique for high speed analysis

over continuous stream data. Many studies have examined
stream analysis and effective use of CEP systems. Stream
data have distinguishing characteristics that differentiate them
from large scale databases, such as difficulty in predicting
data arrival time, incremental data growth, and a variety
of data formats. Therefore, stream data processing by the
analysis engine should run only when specific conditions are
fulfilled. In contrast to traditional analysis of data stored in
a database, stream processing can output results at low la-
tency so that it is possible to navigate user’s exploration on
time. In addition, in recent years, CEP engines have become
able to process multiple streams because of the wide-spread
use of sensor networks and a variety of Internet business ac-
tivities. As a result, CEP engines must be able to handle
more complex and combined analysis.

XSeq is a stream processing engine for XML streams that
uses a query language that can retrieve and analyze sequen-
tial events from a data stream[4]. Since traditional query
languages for XML, such as XPath and XQuery, are insuf-
ficient for representing patterns for CEP applications, XSeq
extends XPath to support the Kleene-* operation and a
’\’ operator, which specifies the immediately next sibling
of XML element. XSeq is effective for analyzing sequen-
tial XML streams; however, it cannot process multiple XML
streams simultaneously. The XSeq engine uses VPA, which
is a restricted pushdown automaton, as the basis of the pro-
cessing engine. VPA stack operations are categorized into
push, pop, and internal operations, and its competence is
equivalent to finite state automata (FSA), i.e., VPA can
be optimized as well as FSA[1]. VPA can model nested
data structures, such as XML and JSON, with the stack
operations such that it can process XML data efficiently.
Because of these characteristics, VPA can also express and
optimize XSeq queries effectively. In the XSeq engine, op-
timizations are applied to the VPA, such as shortening the
prefixes, which are predictable from queries, removing the
non-determinacy in VPA, and reducing the number of states.
As a result, XSeq achieves high-performance processing over
an XML stream.

Cayuga is another stream processing engine that attempts
to process stream data from multiple sources[2]. Cayuga’s
query language provides a way to retrieve necessary data
from multiple streams in an SQL-like form. In addition,
Cayuga employs NEXT and FOLD operators to handle time-
dependent causality between events in multiple stream data.
Cayuga can produce a combined result from such depen-
dent events. Cayuga also adopts a single queue architec-
ture to avoid disordered data arrival when handling multi-
ple streams. Note that this architecture guarantees the time
dependency between the target events.

3. EXPLORATION AND MULTI-STREAM
PROCESSING

This paper models an exploratory process as interaction

among internal and external forces, and users. The internal
forces are caused by navigation. Navigation system at least
produces three types of forces, such as directing, widening
and reminding. The directing leads the users toward their
goals, the widening provides additional information related
to their interests, and the reminding brings back historical
searching memories to the users. On the other hand, the ex-
ternal force comes out of the system. At first, user’s motiva-
tion of exploration is caused by the external force. Then un-
expected events interrupt their exploration and sometimes
change their directions. This paper focuses on a way to find
important and relevant events from changes of surrounding
states and designs a stream processing engine.

Three types of information are required for the stream-
ing engine to capture, that is, a situation appearing at that
time, a fusion of multiple situations appearing, and a time-
sequential pattern of events. The first requirement for a
stream engine corresponds to a notification mechanism for
users when the engine detects changes of situation. There-
fore, the engine must monitor and filter the data satisfied
with a condition. The second requirement corresponds to
generation of useful events by fusion of multiple events from
multiple information sources. Then, the engine needs to
implement functions which combine or partition streams,
and have a scalable performance to process highly-parallel
streams. The third requirement corresponds to detecting
patterns of temporal change in any situations. The engine
has to store past situations temporarily and find time de-
pendency.

This section proposes a model in algebraic expressions for
fundamental processing over multiple XML streams, satis-
fied with the above requirements of external forces.

(1) Filtering
Filtering represents a conditional selection from streams.
For example, a process that applies a filter f to a stream
s and outputs the result to a stream s’ is expressed as fol-
lows.

s|f >> s′ (1)

(2) Union
Union joins two streams into a single stream. For example,
a process that joins streams s1 and s2 into another stream
s3 is expressed as follows.

s1 + s2 >> s3 (2)

(3) Activation
Activation represents a chain of events in which the first
event triggers the second event. The output of the process is
composed of data elements from both events. For example,
there is a case wherein an event that occurs in stream s1
activates the next event processing in stream s2, and the
result is given to stream s3. This is expressed as follows.

s1 ∗ s2 >> s3 (3)

Note that this model implies order relation, i.e., it is not
associative.

s1 ∗ s2 6=s2 ∗ s1 (4)

Figure 1: QLMXS Process Flow

(4) Decomposition
Decomposition is a process that splits stream data according
to a specific key that corresponds to an element tag in XML.
For example, a process that decomposes data from stream s
to partial data by key k and outputs the results to stream
s’ is expressed as follows.

s/k >> s′ (5)

(5) Partition
Partition is a process that divides a stream into multiple
streams as an array according to each specific key-value pair.
For example, a process that partitions stream s into a stream
array s’[] by key k is expressed as follows.

s[k] >> s′[] (6)

Extraction from the stream array according to a specific
value is expressed as follows.

s′[′value′] >> s′′ (7)

4. QLMXS

4.1 Overview of QLMXS System
We designed the QLMXS query language for multiple XML

streams with reference to prior query languages. QLMXS is
based on the model discussed in Section 3. QLMXS in-
troduces additional unique expressions to achieve multiple
stream, sequential, and loop processing. QLMXS queries are
compiled into engines using VPA, which is suitable for XML
processing, to analyze XML streams accurately and quickly.
Compiling QLMXS queries into VPA is described in Section
5. Figure 1 shows a process flow of the QLMXS engine, in
which several VPA engines are deployed to analyze multiple
XML streams. In each VPA engine, input XML is initially
filtered according to the conditions described by the QLMXS
queries. Then, the engine formats the XML according to the
format described by the queries. The processing results of
these VPA engines are then sent to other VPA engines or
clients.

4.2 Language Specifications of QLMXS
QLMXS adopts simplified XPath expressions to apply XML

pattern matching to XML documents and adopts SQL-like
expressions to write queries in a way that is similar to XSeq
and Cayuga. A standard QLMXS query is composed of
from, select, and return clauses. The from clause specifies
the name of the input stream. The select clause specifies
the output XML format of the result. The return clause
specifies the name of the output stream.

In addition to these fundamental clauses, QLMXS sup-
ports optional clauses that express filtering conditions, mul-
tiple correlated input streams, and simple calculations. The
following examples illustrate the use of these clauses and spe-
cial writing styles in a virtual situation that analyzes stock
quote streams.

Example 1.

return MyStockStream1

select stock/price

from StockStream1

where stock[price/text()>=100 and @name=’A’]

This query searches a stock quote with a price that is greater
than 100 with company name A from StockStream1. In the
where clause, filtering conditions are described in an XPath-
like form. The result is a partial XML structure that begins
from a price element. The output is written into a stream
named MyStockStream1. This query corresponds to the for-
mal model (1) in Section 3.

Example 2.

return MyStockStream1

select stock/price

from (select *

from StockStream1

where stock[@name=’A’])

where stock[price/text()>=100]

The result of this query is the same as the result of Ex-
ample 1. However, this query differs from Example 1 rel-
ative to filtering conditions. The from clause specifies an
inner query that extracts a stock quote of company A from
StockStream1 in a nested description. The result of the in-
ner query is filtered by the condition described in the where

clause of the outer query. This nested description is useful
for expressing combined queries without specifying interme-
diate stream names. This query corresponds to the following
formal model.

(s|f1)|f2 >> s′ (8)

Example 3.

return MyStockStream2

select mystock[$1/stock, $2/stock]

chaining StockStream3, StockStream4

where [$1/stock/price/text()

=$2/stock/price/text()]

This query extracts a pair of stock quotes with the same
price from two different streams. The chaining clause is
used instead of the from clause to specify two interdepen-
dent streams. The special paths $1 and $2 are used in the
select and where clauses to access data elements in the first
and second input streams, respectively. A data arrival event
in the first stream StockStream3 activates the query pro-
cessing in the second stream StockStream4. The final result
is generated from a combination of the two streams with a
specific parent tag mystock. This query corresponds to the
following formal model.

(s1 ∗ s2)|f >> s3 (9)

Figure 2: VPA Example

Example 4.

return MyStockStream3

select mystock[$1/stock, @ave=$sum div $cnt]

chaining StockStream5, StockStream6

setting $sum=0, $cnt=0

processing $sum=$sum+$1/stock/price/text(),

$cnt=$cnt+1

where [$1/stock/volume/text()

>=$2/stock/volume/text()]

while 10 min

This query detects a duration wherein the trading volumes
in the first stream are greater than the volumes in the sec-
ond stream. The result involves the last data and the av-
erage price in the first stream within the duration. Note
that the setting clause declares variables used in other
clauses. In this query, variables sum and cnt are declared.
The processing clause specifies the operations that run re-
peatedly when the conditions are satisfied. The processing
of this query terminates when the conditions are not satisfied
or the processing period is greater than the limit described
in the while clause. This query corresponds to the formal
model (9).

5. VPA GENERATION FROM QLMXS
As described in Section 2, the stack operations of VPA

are categorized into push, pop, and internal operations such
that VPA can be optimized easily and can model an inter-
pretation of nested XML data structures. Therefore, VPA
is effective for real-time XML stream processing.

VPA operations are defined with states, stack, and tran-
sition functions that refer to input symbols and the top of
the stack. Thus, such information must be extracted from a
QLMXS query to generate a VPA engine. The nested data
structures for pattern matching in QLMXS are represented
by simplified XPath expressions, in which node names cor-
respond to input symbols, drill-down search in element hier-
archy corresponds to transition functions, and intermediate
stages in search correspond to VPA states. In other words,
push-transition functions are associated with open tag pro-
cessing, pop-transition functions are associated with close
tag processing, and internal-transition functions are associ-
ated with attribute and character processing. As a result,
valid levels of XML can be interpreted. Figure 2 shows the
VPA that corresponds to the following query.

Example 5.

return MyArticleStream

select articles/article

from ArticleStream

where articles/article[initPage/text()>100]

Figure 3: QLMXS Engine Architecture

This query attempts to find articles whose starting pages are
greater than 100. In this query, it is obvious that articles

and article tags and article and initPage tags have parent-
child relations, respectively. The VPA states are generated
by states after processing tag nodes in the XPath expressions
of the query, in addition to the initial state. In Example 5,
four states are generated, i.e., initial, post-articles, post-
article, and post-initPage states. Here, transition func-
tions are defined to connect these states for drill-down inter-
pretation of XML. In addition, two else transition functions
are defined to skip irrelevant tags.

The conditional predicates in XPath expressions must be
handled in VPA operations to judge whether the conditions
are satisfied. Such judgement should be performed just after
encountering close tags. In Example 5, the filtering condi-
tion is evaluated after the article close tag arrives.

Activation plays an important role in detecting an event
wherein correlated data come from multiple streams. Acti-
vation is implemented with a bridge between two VPA en-
gines, such that satisfaction in the first engine triggers the
second engine and satisfaction in the second engine produces
the final result. Example 3 shows a typical case of acti-
vation in which data coming from StockStream3 activates
data processing from StockStream4. Here, assume respec-
tive VPAs for StockStream3 and StockStream4 are named
VPA1 and VPA2, respectively. VPA2 remains inactive un-
til the stock close tag arrives from StockStream3 in VPA1.
Then, the arrival of the close tag activates VPA2 and trans-
fers the internal data of VPA1, such as price, to VPA2.
Finally, VPA2 outputs the result into MyStockStream2 in
a form described by the select clause if the condition of
[$1/stock/price/text() = $2/stock/price/text()] is sat-
isfied.

6. IMPLEMENTATION OF QLMXS ENGINE

6.1 QLMXS Engine
Figure 3 shows the overall flow of QLMXS stream pro-

cessing. As described in Section 5, the QLMXS engine pro-
cesses XML streams with a combination of VPA-based ana-
lytical engines precompiled from QLMXS queries. The XML
stream data are temporarily stored in a queue when they ar-
rive to the engine, and the dispatcher transfers the data to
the appropriate VPA engines in sequence. The result of each
VPA engine might be re-sent to the queue if it is processed
recursively by the VPA engines. Otherwise, it is output to
the outer streams. The following descriptions explain each
module in the QLMXS engine in further detail.

(1) Queue
The QLMXS engine attempts to process a series of XML
data from multiple sources in correct order; therefore, strict
time stamp management must be performed for all arriving

and intermediary data produced. Similar to Cayuga, the
QLMXS engine achieves this time management using a sin-
gle queue architecture, in which stream data are sorted by
time stamp. If the arriving data do not have time stamps,
the engine assigns a system time stamp before queuing. Note
that the time stamps of intermediary data are identical to
the original time stamps.

(2) XML Parser
The QLMXS engine uses the StAX parser to extract XML
documents from the queue, divide them into elements, at-
tributes, and text nodes, and send the nodes to the dis-
patcher. When multiple VPA engines require XML docu-
ments from the same stream, the StAX parser parses the
XML documents once and sends the parsed data to the dis-
patcher, which then transfers the data to the appropriate
VPA engines separately.

(3) Dispatcher
The dispatcher transfers the parsed data to the VPA engines
according to a dispatch table in which the stream names
are associated with the appropriate VPA IDs. Thus, the
dispatcher can dispatch data to several VPAs.

(4) VPA Engines
Before initiating the QLMXS engine, QLMXS queries are
interpreted and are compiled into the VPA engines. The
engines sequentially process the XML data nodes received
from the dispatcher. VPA processing uses many tokens,
which have VPA stacks and move around VPA states to
trace the transition functions when the XML nodes arrive.
Therefore, the VPA engine runs slower as more tokens are
used. In addition to standard VPA functions, the token has
registers that cache the XML data for later use, such as data
for conditional judgments and producing output. Note that
a VPA can activate another VPA and transfer the cached
data as required.

6.2 Optimization of VPA Engines
The performance of the VPA engines in the QLMXS en-

gine affects the total processing time. Therefore, it is im-
portant to optimize the VPA engines.

6.2.1 Reduction of VPA States
For a case in which an XML schema is provided, a state

generated from the path expression, which is not referred to
in the filtering conditions or predictable from the subsequent
states, is considered unnecessary and is removed from the
VPA. This reduces the number of token operations in the
corresponding states and achieves significant acceleration for
large VPA.

6.2.2 Unification of VPA
If independent QLMXS queries have the same partial path

expressions, the identical structures of VPA are duplicated
in the independent VPA engines. In such a case, a new VPA
engine is integrated to unify these structures for optimiza-
tion. This reduces duplicate token operations and enhances
the scalability of the VPA.

6.2.3 Delayed Evaluation
Note that the filtering conditions of QLMXS queries will

not be satisfied if the nodes of the elements of the corre-

Table 1: Performance Evaluation
Number of data Processing Time Processing Speed

1000 87.4 ms 8.74× 10−2ms/data

2000 168.4 ms 8.42× 10−2ms/data

3000 281.4 ms 9.38× 10−2ms/data

4000 361.3 ms 9.03× 10−2ms/data

Table 2: Queries Set
Q1 /issue/articles/article/title/text()
Q2 /issue/articles/article/endPage/text()
Q3 /issue/articles/article[title/text() or endPage/text()]

sponding conditional evaluation do not arrive. Thus, the
nodes are stored in a queue and token operations are sus-
pended temporarily until the required node arrives. When
the required node arrives, the nodes stored in the queue
are popped and processed in a burst. If the node does not
arrive, the stored nodes are discarded and the token opera-
tions are omitted. This optimization is effective for retrieval
of optional elements in XML data.

6.2.4 Elimination of Unnecessary Nodes
Most of the search targets of the queries are located in

limited parts of the XML documents. Therefore, eliminat-
ing unnecessary XML node processing reduces the number
of token operations drastically. The QLMXS engine con-
siders such unnecessary nodes as a sequence of characters
without conversion to separated nodes such that the nodes
are processed by a single token operation.

7. EXPERIMENTS
This section evaluates the effects of the optimizations dis-

cussed in Section 6.2. The experiments use Intel(R) Core(TM)
i5-2500K 3.3 GHz with 8 GB memory. The first experiment
measures the primary performance of the QLMXS engine
using the queries described in Example 3, in which data
from two streams are compared in terms of price. Table 1
shows the results of processing times and speeds. As can
be seen, the time increased linearly with the number of pro-
cessed XML documents. The average processing time for
a single XML document is approximately 9 × 10−2 ms. In
other words, 11,000 data can be processed in one second.

The second experiment evaluates the effects of the pro-
posed optimization methods. The target search document
in this experiment is a SIGMOD Record[3], in which biblio-
graphic items are stored. Table 2 shows the target queries.
Here, queries Q1 and Q2 independently search documents
from an identical stream, and query Q3, which is equivalent
to the unification of Q1 and Q2, searches documents with
two conditions simultaneously. Therefore, comparing the
sum of execution performance of Q1 and Q2 with the exe-
cution performance of Q3 demonstrates the efficiency of the
optimization discussed in Section 6.2.2. In addition, the op-
timizations discussed in Sections 6.2.1 and 6.2.4 are applied
to Q3 to examine the efficiency of those optimizations.

Figure 4 shows the performance profiles against the data
size for the optimized VPA engines, and Table 3 shows the
number of token operations for each process. For process-
ing of 467 KB of XML data, the processing time of Q3 is
38% less than that of the sum of Q1 and Q2. This de-

Table 3: Number of Token Operations (467 KB)
Q1+Q2 Q3 Q3(6.2.1) Q3(6.2.4)
69518 34759 33188 15107

Figure 4: Experimental Results

crease in processing time results from the decreased num-
ber of token operations in common VPA states generated
by /issue/articles/article. As can be seen in Table 3,
the number of token operations in Q3 is approximately one-
half of the sum of the number of token operations in Q1
and Q2. The processing times for the optimized VPA en-
gines discussed in Sections 6.2.1 and 6.2.4 are 9% and 37%
less than that of Q3, respectively. As described in Section
6.2.4, a more localized search target for the query results in
increased unnecessary node processing. As a result, the effi-
ciency of the elimination of unnecessary nodes is notable. As
seen in Fig. 4 and Table 3, the number of token operations
affects processing speed, and the differences in the process-
ing times between the unoptimized and optimized engines
increase linearly.

8. DISCUSSION
This paper discussed roles of stream processing in the data

exploration. Three requirements were defined from a situ-
ation of the exploration, and then transferred to the alge-
braic representation of the stream processing. QLMXS is
proposed as a query language over multiple XML streams.

Note that Cayuga achieves multiple stream processing us-
ing NEXT and FOLD operators. The NEXT operator ex-
presses time-dependent events from multiple streams. When
the second event occurs just after the first one, Cayuga de-
livers the events immediately. The NEXT operator cannot
apply to an iteration of events occurring in several times. On
the other hand, the FOLD operator keep monitoring until
the specified condition is satisfied. QLMXS achieves sim-
ilar capability by adopting the activation model discussed
in Section 3. The chaining clause specifies the multiple
target streams and the while clause specifies the expired
time. In contrast to Cayuga’s operators, QLMXS can dis-
tinguish the expressions of time-sequential processing and
multiple streams processing clearly. Furthermore, compared
to Cayuga, which was designed for general data processing,
the QLMXS engine uses VPA to enable XML stream anal-
ysis.

XSeq has operators that represent a Kleene-* operation

and the immediately next sibling elements in XML, and
XSeq achieves complicated XML pattern matching using
these operators. Conversely, the QLMXS engine is lim-
ited to simple pattern matching during detection, such as
monotonically increasing and decreasing values. However,
the processing speed of the QLMXS engine is faster than
that of XSeq[4], because the QLMXS engine reduces the
non-determinacy in VPA. In the QLMXS engine, several
small VPA engines work together to process combinational
queries, and the QLMXS engine achieves complex analysis
across multiple data streams.

9. CONCLUSION
This paper has described a method to analyze XML data

over multiple data streams as a notification mechanism for
navigating data exploration. Algebraic expressions have been
proposed for multiple stream processing. In addition, a
query language, i.e., QLMXS, and an execution engine with
several optimizations have also been proposed. The results
of our experiments demonstrate that the proposed VPA op-
timizations result in significant acceleration.

In future, we plan to validate the proposed methods with
more complex queries and implement acceleration by con-
current execution using a combination of QLMXS engines
in distributed computing, such as MapReduce.

10. REFERENCES
[1] R. Alur and P. Madhusudan. Visibly pushdown

languages. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages
202–211. ACM, 2004.

[2] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, W. M. White, et al. Cayuga: A general
purpose event monitoring system. In CIDR, volume 1,
pages 412–422, 2007.

[3] P. Merialdo. Acm sigmod record in xml.
http://www.cs.washington.edu/research/

xmldatasets/data/sigmod-record/SigmodRecord.xml.
Accessed: 2015-02-27.

[4] B. Mozafari, K. Zeng, and C. Zaniolo.
High-performance complex event processing over xml
streams. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,
pages 253–264. ACM, 2012.

