
Shasta: Interactive Reporting At Scale

Gokul Nath Babu Manoharanα, Stephan Ellnerα, Karl Schnaitterα, Sridatta Cheguα,
Alejandro Estrella-Balderramaα, Stephan Gudmundsonα, Apurv Guptaα, Ben Handyα,
Bart Samwelα, Chad Whipkeyα, Larysa Aharkavaα, Himani Apteα, Nitin Gangaharα,

Jun Xuα, Shivakumar Venkataramanα, Divyakant Agrawalα, Jeffrey D. Ullmanβ∗

αGoogle, Inc. βStanford University

ABSTRACT
We describe Shasta, a middleware system built at Google to support
interactive reporting in complex user-facing applications related to
Google’s Internet advertising business. Shasta targets applications
with challenging requirements: First, user query latencies must
be low. Second, underlying transactional data stores have com-
plex “read-unfriendly” schemas, placing significant transformation
logic between stored data and the read-only views that Shasta ex-
poses to its clients. This transformation logic must be expressed
in a way that scales to large and agile engineering teams. Finally,
Shasta targets applications with strong data freshness requirements,
making it challenging to precompute query results using common
techniques such as ETL pipelines or materialized views. Instead,
online queries must go all the way from primary storage to user-
facing views, resulting in complex queries joining 50 or more ta-
bles.

Designed as a layer on top of Google’s F1 RDBMS and Mesa
data warehouse, Shasta combines language and system techniques
to meet these requirements. To help with expressing complex view
specifications, we developed a query language called RVL, with
support for modularized view templates that can be dynamically
compiled into SQL. To execute these SQL queries with low latency
at scale, we leveraged and extended F1’s distributed query engine
with facilities such as safe execution of C++ and Java UDFs. To
reduce latency and increase read parallelism, we extended F1 stor-
age with a distributed read-only in-memory cache. The system we
describe is in production at Google, powering critical applications
used by advertisers and internal sales teams. Shasta has signifi-
cantly improved system scalability and software engineering effi-
ciency compared to the middleware solutions it replaced.

1. INTRODUCTION
Many business applications at Google aim to provide interac-

tive data-rich UIs, allowing users such as advertisers, publishers
and video content creators to manage and analyze their data. It
is not uncommon for such applications to combine interactive re-
porting (OLAP) and update (OLTP) functionality in the same UI.
∗Work performed while at Google, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.

SIGMOD/PODS’16 June 26 - July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2904444

For a representative example, consider AdWords, Google’s search
advertising product: In a Web UI, advertisers configure their cam-
paigns. Campaign configurations are stored in the F1 database [13]
in hundreds of normalized tables backed by Spanner storage [5].
Google serves ads based on these configurations, and log aggrega-
tion systems [1] use ad server logs to continuously update hundreds
of metrics tables stored in Mesa [8], tracking the performance of the
running ad campaigns in near real-time. Deeply integrating OLTP
and OLAP functionality, the AdWords Web UI allows advertisers to
view interactive reports with campaign performance metrics and to
make changes to campaign configurations. Corresponding SOAP
developer APIs allow advertisers to interact with their campaign
and reporting data programmatically.

A challenge in scaling such applications in practice are vast data-
base schemas with hundreds of tables, placing significant transfor-
mation logic between stored data and user-facing concepts. This
“concept gap” tends to be particularly wide for OLAP functional-
ity, posing non-trivial questions for application designers:
• How to encapsulate complex data transformations? Without

proper abstractions, business logic tends to leak into inappropri-
ate parts of the system or get duplicated, creating problems for
code ownership, readability, consistency, and release velocity.

• How to express the transformations? Even if business logic
is encapsulated well, the right paradigm to express it is non-
obvious. Procedural languages such as Java or C++ are pow-
erful, but can be cumbersome for expressing complex query
operations on top of vast database schemas, e.g., joins of 50 ta-
bles. SQL on the other hand naturally captures relational opera-
tions, but doesn’t scale gracefully to code artifacts of thousands
of lines of code. Furthermore, applications that allow users to
interactively change data visualization parameters such as col-
umn selection, segmentations, and filters require that develop-
ers express queries with a large degree of dynamic variation in
query operations such as joins, aggregations, and filters.

• How to compute the transformations? Deciding during which
phase of data processing to compute the transformations poses
awkward tradeoffs. A common data warehousing approach is
to rely on precomputation, maintaining a “read-friendly” denor-
malized copy of transactional data optimized for OLAP work-
loads [4]. If the denormalized copy is stale with respect to data-
base updates, it tends to not satisfy applications with a high bar
for fresh and consistent data, and the necessary offline pipelines
tend to make systems more stateful and operationally complex.
Transactionally updated materialized views on the other hand
increase the cost of writes. Finally, computing most transfor-
mations as part of online queries makes achieving interactive
(sub-second) latencies challenging, especially if queries read

1393

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

from multiple data stores with different performance character-
istics.

In this paper we describe Shasta, a middleware system built at
Google to power interactive reporting functionality in critical busi-
ness applications. Using a combination of techniques in language
and system design, Shasta addresses the challenges listed above at
scale. Shasta encapsulates the transformation logic between stored
data and user-facing concepts and hides it from applications by pro-
viding an abstraction similar to denormalized views over diverse
data stores. To its clients, Shasta views are parameterized vir-
tual read-only tables that are significantly easier to understand and
query than the underlying schemas. Shasta’s system components
power several critical business applications at Google, including
the AdWords Web UI and corresponding developer APIs. Figure 1
shows Shasta as part of the AdWords data processing architecture.

What makes Shasta quite different from common approaches to
data warehousing is how its views are expressed and computed.
First, Shasta views are expressed in RVL, a declarative language
that combines SQL-like functionality with limited but powerful
procedural constructs, designed to succinctly capture the dynamic
nature of interactive applications. RVL code is dynamically com-
piled to SQL. Second, Shasta does not rely heavily on precom-
putation to minimize query time transformations, although view
definitions are highly complex. Rather, many view queries “go
all the way” from normalized data storage to user-facing concepts.
This stateless and dynamic approach enables rich interactive UIs,
with fresh and consistent data everywhere, yet without the burden
of maintaining separate denormalized storage dedicated to query
workloads. Shasta uses F1’s distributed SQL engine to execute
complex generated queries over multiple data sources. With key
extensions – including a cache that leverages spatial and temporal
locality of data accessed by application users – F1 runs the result-
ing interactive workloads reliably at low latency and scales well to
more data-intensive workloads.

The contributions of this paper are:
• We introduce an integrated language and system approach to

designing application middle tiers for interactive reporting ap-
plications. The approach is unusual in its heavy reliance on
online data transformations.

• We show how, using a new SQL templating language, we have
made the maintenance of complex business logic on top of vast
legacy schemas by large engineering teams more efficient.

• We show how, thanks to F1’s distributed query execution ar-
chitecture, our approach achieves a high degree of operational
simplicity and data freshness, keeps interactive query latencies
low, and scales to more data-intensive workloads.

• We describe an implementation of this approach, our experi-
ence with it, its benefits, and its limitations.

The rest of the paper is structured as follows: Section 2 lists Shasta’s
system requirements, Section 3 presents the overall architecture,
and Sections 4-6 describe the major components in more detail. In
Section 7 we report from our experience running Shasta in produc-
tion at Google. Section 8 summarizes related work.

2. SYSTEM REQUIREMENTS
The design of Shasta was driven by the following requirements

of critical interactive business applications at Google:

Data stores are diverse. Generally, user-facing business appli-
cations at Google depend on multiple data stores. Data transac-
tionally updated by users, or dimensions, is often stored in the F1
RDBMS, which is backed by Spanner storage. On the other hand,

MesaF1 storage

logs

Google search

AdWords web UI

EditCampaign() GetCampaign()

write()

Bigtable

Campaign
(dimension table)

CampaignStats
(fact table)

CampaignReport
(denormalized view)

frontend server

ad server log aggregator (Photon)

Shasta

Figure 1: Simplified AdWords data-processing architecture.

performance metrics, or facts, may be stored in systems like Mesa,
where they can be continuously updated by Google’s internal sys-
tems. In AdWords for instance, advertiser-provided campaign con-
figurations are stored in F1, and financially critical metrics about ad
campaign performance are stored in Mesa. Completing the picture,
some application state is stored in Bigtable [3] for legacy reasons.
Intuitively, different data stores have different performance charac-
teristics. Mesa supports high throughput updates by batching them
and low latency reads by virtue of its sophisticated data versioning,
its storage format, and other techniques [8]. On the other hand,
system parameters and schemas in F1 deployments tend to be opti-
mized more for write latency and less for read latency, in order to
mitigate the overhead (50–150ms) of cross-region two-phase com-
mits [13].

View computations are complex. For schema design and legacy
reasons, there is often a large gap between the concepts shown to
application users and the schemas of underlying data stores. For in-
stance, computing the main table in the AdWords UI “Campaigns”
tab involves joining and aggregating approximately 20 F1 tables
and 20 Mesa tables, with intricate business logic applied to the
scanned data. Furthermore, interactive reporting UIs often display
multiple pivots of the same data next to each other, e.g., a table
breaking down metrics per campaign, a chart showing the same
metrics over time, and a single row summarizing the table metrics.
In order to power such UIs efficiently and ensure that different piv-
ots are fully consistent, shared query portions should be computed
only once. Given these complexities, view computations tend to be
expensive and difficult to formulate.

Views must reflect data updates immediately. To be truly in-
teractive, applications allow users to explore performance metrics
and modify their business data. The AdWords Web UI is a good
example, allowing advertisers to explore how their campaigns are
performing and update campaign configurations inline, in the same
tables. Consider a scenario where a table in the UI shows that an
ad campaign’s budget is exhausted. In response, the advertiser may
decide to increase the budget, which is easily done in the same UI
table row. Any future rendering of the table must then consistently
reflect the budget change. Due to the complexity of view defini-
tions, a user changing a single cell in a sorted UI table can induce
subtle changes to other columns in the same row and the applica-
tion may choose to recompute the entire table immediately after
the write. In AdWords, advertiser changes to campaign data result
in writes to F1, bypassing Shasta. Immediately after the write, the

1394

frontend server may request table data for the given Shasta view
and expect subsequent queries to return fresh and consistent data,
taking into account the most recent update by the user.

View queries from interactive UIs must be fast. Shasta queries
are on the critical path to rendering pages in user-facing applica-
tions with sub-second latency targets. Importantly, interfaces and
APIs in such applications are often scoped to an individual user’s
business data, so that typical Shasta queries process only a mod-
est subset of data in underlying data stores. Still, individual fully
optimized queries can scan gigabytes of raw data from 50 or more
physical tables, and the transformations required for a query can be
computationally demanding. Fortunately, interactive applications
tend to be used in user sessions, allowing Shasta to leverage tem-
poral and spatial locality of accessed data.

View definitions are parameterized. To its clients, Shasta views
are parameterized virtual tables, which provide access to denormal-
ized data while hiding complex storage schemas with hundreds of
tables. Issuing a Shasta query is straightforward: The client speci-
fies a view name, a list of column names, a simple specification for
how to filter and sort resulting rows, and more ad-hoc parameters
that customize the view semantics. To answer a given Shasta query,
Shasta then needs to compute the view in the context of the given
parameters. In practice, parameter values can have a major effect
on the semantics of a view. For instance, depending on whether the
user is part of a feature whitelist, a Shasta view may require data to
be read from different tables and joined in a different structure.

View implementation must be manageable. In practice, hun-
dreds of software engineers across different teams need to modify
shared view definitions and schemas. Resulting changes need to
be released to production multiple times per week, without down-
time. In order to achieve these goals, Shasta needs a view definition
format that helps developers easily reason about and modify views,
and this format needs to scale to complex and highly parameterized
view definitions. Ideally, view definitions should be mostly declar-
ative, but views must be allowed to invoke some application code
written in a procedural language such as C++ or Java.

3. SYSTEM ARCHITECTURE
In principle, it would be reasonable to express Shasta view trans-

formations using SQL and leverage F1’s distributed query engine
for scalable query execution, since the transformations required by
Shasta views are a natural fit for SQL. However, it is challenging
in practice to define Shasta views in terms of SQL and meet the
latency requirements of interactive applications, given the complex
nature of queries. Shasta’s system architecture overcomes these
two challenges, thus allowing query execution to be handled by F1.

In order to push all computation to F1, Shasta needs to trans-
late each client query into a single SQL query. This is difficult
due to the complexity of data transformations, paired with a wide
variety of queries corresponding to different view parameter val-
ues. The Shasta architecture simplifies the task of SQL generation:
View definitions are expressed in a new language called RVL and
are translated to SQL using a just-in-time compiler. The syntax of
RVL is SQL-like, but extended with higher-level constructs which
make it easier to define Shasta views concisely while accounting
for dynamic view parameters. RVL supports user-defined functions
(UDFs), allowing Shasta view definitions to invoke procedural ap-
plication code.

The following extensions to the F1 query engine were made to
meet the needs of Shasta:

F1 Query Engine

Frontend Server

F1 Coordinator

F1 Slave

F1 storage BigtableMesa

RVL
code
RVL
code
RVL
CodeView Gateway RVL Compiler

read (Shasta query)

SQL

write

TableCache UDF Server

Figure 2: Shasta architecture.

• We improved support for UDFs in F1. Specifically, we added a
component called UDF server to F1, which supports safe eval-
uation of compiled C++ and Java UDFs with high throughput.

• In order to meet the latency constraints of Shasta, we added
an in-memory read-only cache between F1 storage and query
engine, called TableCache. Shasta uses TableCache to access
consistent snapshots of F1 data significantly faster than reading
from F1 storage directly. The cache is kept up-to-date using
a light-weight protocol based on F1’s Change History feature.
For Shasta applications, maintaining similar caches for other
data sources such as Mesa and Bigtable has proven either less
critical or too expensive in practice.

Figure 2 shows how the components of Shasta fit together to an-
swer queries. A query issued by the application’s frontend server
specifies a view name, columns to query, and view parameters such
as application user ID or feature ID. In addition, the client often
specifies a timestamp, which tells Shasta to use F1 data which is
consistent with the snapshot at that timestamp. Exposing the list of
available view schemas to application developers is typically done
via shared code repositories. The view gateway receives the Shasta
query and invokes the RVL compiler with view parameter bindings
to generate a potentially large SQL string. The F1 query engine
executes the generated SQL, using UDF servers to evaluate any
UDFs in the query. TableCache accelerates access to F1 storage
during query execution, while the query engine reads directly from
data sources other than F1 such as Mesa and Bigtable. F1 supports
access to such “external” data sources using a plugin API [13], al-
lowing for tight integration with the query engine. F1 pushes filters
and projections to external data sources where possible, performing
other computations itself. Optimizations that would delegate more
complex query operations to external data sources [9] are left as
future work.

It is worth noting that Shasta does not rely on precomputation
and materialization of intermediate view query results. Although
precomputation may improve the latency of Shasta queries, it tends
to be a poor fit for Shasta applications, especially when dealing
with financial user data: Keeping materialized results synchronized
with user-issued changes to underlying data stores makes writes
more expensive, which is often not an option. It would also be
impractical to use stale materializations while satisfying freshness
requirements, due to the complexity of Shasta views. These draw-
backs can be avoided by evaluating queries on raw data.

The following sections provide more details on RVL (Section 4),
Shasta’s use of the F1 query engine and UDF servers (Section 5),
and TableCache (Section 6).

1395

Request
Handler

RVL
Compiler

Shasta
Query

Generated
SQL Query

Query
Result

Template
Parameter
Bindings

RVL
Code

Table
Metadata

View Gateway

F1 SQL
Execution

Figure 3: Using the RVL compiler in Shasta.

4. RVL: RELATIONAL VIEW LANGUAGE
As described in Section 3, Shasta uses a language called RVL

(Relational View Language) to define Shasta views, and compiles
RVL into equivalent SQL which can be executed in the F1 query
engine. RVL helps view definition authors focus on the specifics of
each view and to not concern themselves with the problem of gen-
erating SQL. The features of RVL can be summarized as follows:

• At the core of RVL is a self-contained query language. The syn-
tax of the query language is similar to SQL, but with important
differences in semantics. In particular, RVL uses information in
the schema to automatically aggregate data when columns are
projected, which makes it easier for developers to express the
complex aggregation logic of Shasta views.

• RVL embeds its query language in higher-level constructs called
view templates. A view template specifies a dynamic query us-
ing replaceable parameters. Within each template, a query can
be built as a sequence of subquery assignment statements. Each
subquery in a template may refer to template parameters and in-
stantiate other view templates. Overall, composable templates
and sequential query construction allow a view’s implementa-
tion to be factored into manageable and reusable pieces.

RVL code is structured as a collection of view templates. In order
to actually generate SQL, the RVL compiler requires one template
to be specified as an entry point, along with parameter bindings
for that template. Figure 3 illustrates the role of the RVL compiler
in the view gateway of Shasta. When Shasta receives a query, the
request handler first translates that query into parameter bindings
to pass to the RVL compiler, which returns generated SQL. The
request handler then executes the SQL query on F1 and forwards
the query results back to the Shasta client.

In this section, we provide an overview of RVL. We start by de-
scribing the query language in isolation, and then show how the
query language is embedded in view templates. We next describe
the most interesting aspects of RVL compilation and conclude with
an end-to-end RVL example.

4.1 Query Language
RVL includes a query language to specify data transformations.

The syntax and semantics are similar to SQL, with one fundamental
difference: RVL automatically determines how to aggregate query
results. As we show in examples below, automatic aggregation
can help simplify the specification of view queries for reporting
applications built on Shasta. To take advantage of automatic ag-
gregation, the metadata of each column may optionally specify an
implicit aggregation function. If a column has an implicit aggrega-

tion function, we refer to that column as an aggregatable column.
Otherwise, it is a grouping column. When a query operation is per-
formed in RVL, the result will only preserve the unique values of
the grouping columns, and the aggregatable columns are implicitly
aggregated for each row based on the associated aggregation func-
tion. In other words, the grouping columns always form a unique
key for a relation in RVL, and the aggregatable columns represent
measures associated with values of the unique key. In the special
case where all columns are grouping columns, the behavior of RVL
is consistent with relational algebra on sets. In practice, Shasta ap-
plications specify implicit aggregation functions as overlays on an
existing database schema and include this information in the table
metadata given to the RVL compiler. RVL also supports syntax
to modify or remove implicit aggregation functions assigned to the
columns of a relation (see Section 4.4).

RVL queries may use several syntactic constructs borrowed from
SQL such as SELECT, FROM, WHERE, JOIN, and UNION. The
behavior of these operations is similar to SQL, except that implicit
aggregation is applied after each operation to yield a set of unique
rows. There is no GROUP BY clause in RVL, since aggregation
is implicit for each SELECT. RVL also makes extensions to SQL
in order to help with large-scale code maintenance, as described in
Section 4.2.

We can illustrate the behavior of RVL queries on the following
two tables representing information about employees and buildings
of a company:

Employee table: EmpId DeptId BldgId Salary [SUM]
I A X 20
J A Y 30
K B Y 40
L B Z 50

Building table: BldgId CityId Capacity [SUM]
X M 100
Y N 200
Z N 300

The columns for salary and capacity have the [SUM] annotation to
indicate that they use SUM as their implicit aggregation function.

An application may need to derive the total salary or capacity for
a variety of grouping columns. Using RVL, we can start by com-
bining the tables with a left join, and let Q0 denote this subquery:

Q0 = SELECT *
FROM Employee LEFT JOIN Building USING (BldgId);

This provides a list of employees and information about their build-
ing, if known. We may use this subquery to write a very simple
query for the total salary in each department:

Q1 = SELECT DeptId, Salary FROM Q0;

Evaluating Q1 will return the unique DeptId values and automati-
cally compute the sum of salaries in each department, yielding the
final result:

DeptId Salary [SUM]
A 50
B 90

This could be expressed in SQL using an explicit SUM and GROUP
BY clause:
SELECT DeptId, SUM(Salary) FROM Employee
GROUP BY DeptId;

The RVL compiler will actually generate this SQL for Q1. The join
with the Building table can be pruned since none of the Building

1396

columns are required. Join pruning is a key feature of RVL, which
we discuss in Section 4.3.

Implicit aggregation becomes more interesting when data is re-
quested from both tables. For example:

Q2 = SELECT CityId, Salary, Capacity FROM Q0;

This will return the unique CityId values and automatically com-
pute the total salaries of employees in each city, along with the
capacity of the buildings in that city:

CityId Salary [SUM] Capacity [SUM]
M 20 100
N 120 500

The RVL compiler generates the following SQL representation of
Q2 which adds two GROUP BY steps:

SELECT CityId, SUM(Salary) AS Salary,
SUM(Capacity) AS Capacity

FROM
(SELECT BldgId, SUM(Salary) AS Salary
FROM Employee GROUP BY BldgId)

LEFT JOIN Building USING (BldgId))
GROUP BY CityId;

Observe that the inner subquery removes EmpId and DeptId, in
order to aggregate the remaining columns of the Employee table
before the join. The inner aggregation ensures that the capacity is
computed correctly. If we naively removed all unwanted columns
after the join and performed the aggregation in a single step, the ca-
pacity values would be multiplied by the number of employees in
each building. Our desired result should only count the capacity of
each building once. We will revisit this example and the RVL com-
piler’s strategy for arranging GROUP BY clauses in Section 4.3.

The value of RVL can be seen by comparing Q1 and Q2 to the
corresponding SQL representations. In RVL, we can define a sin-
gle subquery Q0 such that Q1 and Q2 can be expressed as simple
projections over Q0. In contrast, the SQL representations of Q1 and
Q2 have drastically different structure. RVL also makes it easy to
derive meaningful aggregate values from Q0 for many other com-
binations of grouping columns. A direct SQL representation of all
possible projections over the join would need to account for all the
potential arrangements of GROUP BY clauses and invocations of
aggregation functions. In practice, real Shasta queries can be more
complex, requiring dozens of tables to be joined. It becomes chal-
lenging for developers to formulate the correct aggregation seman-
tics using SQL directly whereas formulating queries using RVL
makes it much more simple and intuitive.

4.2 View Templates
As described above, the RVL query language provides implicit

aggregation to help developers express aggregation semantics when
the set of requested columns is not fixed. However, implicit aggre-
gation does not solve all the challenges of implementing Shasta
views. In particular:
• The parameters of a Shasta view may have a large impact on

the RVL query. For instance, the view parameters may change
the tables used in joins or the placement of filters in the query.
RVL needs to be more dynamic in order to capture this wide
range of possible query structures.

• An RVL query could grow quite large with many column trans-
formations and deeply nested joins. A typical Shasta view would
require 100s of lines of code, and expressing that as a single
large query can be difficult to read and maintain.

RVL view templates solve these problems. View templates allow
large queries to be constructed dynamically from smaller pieces

which can be composed and reused by multiple Shasta views. A
view template takes input parameters which are used to represent
the dynamic aspects of a query (e.g., list of requested columns),
and returns a corresponding RVL query using the parameter values.
In other words, for any fixed choice of parameter values, a view
template is shorthand for an RVL query (similar to the traditional
notion of a view).

A view template may be referenced in the FROM clause of RVL
queries by passing values for its input parameters, and the reference
will be replaced with the query generated by the view template. The
following values may be bound to view template parameters:
• RVL text: A string containing valid RVL syntax can be bound

to a view template parameter, and that parameter can be refer-
enced in places where it would be valid to inject the RVL syntax
string. For example, a template parameter bound to the string
"X,Y" could be referenced in a SELECT clause, and the tem-
plate parameter reference will behave exactly as if "X,Y" were
written directly in the query.

• Nested dictionary: A template parameter can be bound to a
dictionary of name-value pairs, where the values can either be
another dictionary, or RVL text. Intuitively, a nested dictionary
is a collection of RVL text parameters with hierarchical names.

• Subquery: A template parameter can be bound to an RVL sub-
query, and referenced anywhere a table can be referenced. A
subquery value differs from RVL text values, in the sense that
subquery values are substituted in a purely logical manner which
is independent of the syntax used to create the subquery. In con-
trast, an RVL text value is purely a text injection, which allows
any variables in the RVL text to be interpreted based on the
context where the parameter is referenced.

RVL text values allow RVL parameters to be more flexible than tra-
ditional SQL runtime parameters, since RVL allows parameters to
represent large substructures of queries. However, RVL text values
do not allow for arbitrary code injection. In order to make view
templates less error-prone, an RVL text value is only allowed to
contain a few specific syntactic forms, such as scalar expressions,
expression lists, and base table names. There are also strict rules
controlling the locations where each syntactic form can be substi-
tuted.

We use the following example to illustrate the basic template
syntax and semantics:

view FilterUnion<input_table, params> {
T1 = SELECT $params.column_name FROM $input_table;
T2 = SELECT $params.column_name FROM Employee;
T = T1 UNION T2;
return SELECT * FROM T

WHERE $params.column_name >= $params.min_value;
}

The view template contains three assignment statements which give
aliases to subqueries, and the fourth statement returns the final
query. There are two template parameters:
• input_table can be bound to a table name or subquery. It is

referenced in the first FROM clause as $input_table.

• params must be bound to a nested dictionary. In this example,
$params.column_name should be the name of a column in
$input_table, and $params.min_value is a lower bound
that we want to apply to that column.

The behavior of the view template is intuitive: The first two state-
ments fetch a dynamically chosen column from the $input_table
parameter as well as the Employee table, the third statement com-
bines the two sets of values, and the final statement applies a lower
bound to the values before returning them.

1397

A view template can be designated as an entry point in the RVL
code, in which case it is called a main view template. RVL provides
an API to invoke a main view template, with a nested dictionary as
a parameter. The main view template can use one or more output
statements to specify the desired result. For example, using the
previous FilterUnion view template:

main OutputValues<params> {
b = SELECT * FROM Building;
all_values = SELECT * from FilterUnion<@b, $params>;
output all_values AS result;

}

The output statement specifies a table to produce as the final result
when the main view template is invoked, as well as an alias for that
table. If there are multiple output statements, the aliases must be
unique so that the Shasta view gateway can distinguish the results.
Multiple output statements can reference the same RVL subquery
by name which is useful when applications need to display multi-
ple pivots of the same shared view computation. To achieve con-
sistency between different data pivots within a view query, RVL
guarantees that each named subquery is only executed once.

In Section 4.4 we present a larger RVL example which uses ad-
ditional syntax features. Most interestingly, RVL view templates
may use control structures written as if/else blocks to dynamically
choose between two or more subqueries.

4.3 RVL Compiler and Query Optimization
The RVL compiler generates SQL which will produce the out-

put tables specified by a main view template, given the required
parameter bindings. Shasta executes the generated SQL using the
F1 query engine, taking advantage of F1’s query optimizations and
distributed execution. In order to perform SQL generation, the RVL
compiler first resolves references to view templates and named sub-
queries, producing an algebraic representation of an RVL query
plan that includes all outputs of the invoked main view template.
The RVL compiler performs some transformations to optimize and
simplify the query plan before translating it to SQL. In this section,
we describe some details of RVL query optimization and explain
why it is important.

The RVL compiler optimizes query plans using a rule-based en-
gine. Each rule uses a different strategy to simplify the plan based
on algebraic structure, without estimating cost. In practice, rule-
based optimization is sufficient because the only goal is to simplify
the generated SQL, rather than determine all details of query execu-
tion. We avoid using cost-based optimization because a cost model
would tie the RVL compiler to a specific SQL engine and make it
less generic.

The intuitive reason to optimize an RVL query plan before gen-
erating SQL (as opposed to relying on F1 for all optimizations) is
to take advantage of RVL’s implicit aggregation semantics. Several
optimization rules are implemented in the RVL compiler relying on
properties of implicit aggregation to ensure correctness. The RVL
compiler also implements optimization rules which do not depend
directly on implicit aggregation, because they interact with other
rules that do depend on implicit aggregation and make them more
effective. We describe a few of the more interesting rules below.

Column Pruning: Recall the Employee/Building example earlier
in this section. Our SQL representation of Q2 performed a projec-
tion and aggregation before the join, which differs from the order
of operations in the RVL for Q2. The join and aggregation steps
are reordered by an RVL optimization rule called column pruning.
Without column pruning, the equivalent SQL representation of Q2
would be:

SELECT CityId, SUM(Salary) AS Salary,
SUM(Capacity) AS Capacity

FROM
(SELECT BldgId, CityId,

SUM(Salary) AS Salary, Capacity
FROM Employee LEFT JOIN Building USING (BldgId)
GROUP BY BldgId, CityId, Capacity)

GROUP BY CityId;

Observe that this SQL representation performs two stages of aggre-
gation after the join, in order to compute correct aggregate values
for both salary and capacity. A sufficiently advanced SQL opti-
mizer may be able to optimize this query by pushing the inner ag-
gregation below the join, but this is a difficult optimization to gen-
eralize in the context of SQL [16]. For larger RVL queries, the SQL
representation may become much more complicated when comput-
ing aggregate values after joining. In the worst case, an implicit
aggregation may require aggregatable columns to be computed in
a temporary table and joined back into the original query. That
pattern in particular is extremely difficult for a SQL engine to opti-
mize, so column pruning is needed in order to simplify the task of
the F1 query optimizer. Moreover, the logic for pruning columns
in the RVL compiler is straightforward due to implicit aggregation
semantics. For all these reasons, the RVL compiler aggressively
prunes unneeded columns and performs aggregations before joins
whenever possible.

Filter Pushdown: In a SQL database, filter pushdown could be
considered one of the most basic optimizations, where the goal is
to filter data as early as possible in the query plan. At first glance,
it might seem unnecessary for RVL to push down filters, since the
F1 query optimizer is fully capable of performing this optimiza-
tion. However, filter pushdown can improve the effectiveness of
the column pruning optimization. For example, if there is a filter
on a column which is not part of the final result, the filter will pre-
vent column pruning from removing the column before the filter is
applied. It is crucial for the filter to be pushed down as early as
possible in the query plan, so that the column can be pruned early
as well.

Left Join Pruning: In RVL, if a left join does not require any of the
columns from its right input, the right input can be removed from
the query plan. In a general SQL database, this optimization is less
obvious and less likely to apply, since a left join may duplicate rows
in the left input. Consider the following example of a SQL left join,
using the example Employee and Building tables:

SELECT EmpId, SUM(Salary)
FROM Employee LEFT JOIN Building USING (BldgId);

If it is known that each Employee row will join with at most one
row in the Building table, the join can be pruned, resulting in:

SELECT EmpId, SUM(Salary) FROM Employee;

A SQL optimizer might be able to perform this optimization if it
knows that BldgId is a unique key of the Building table. The op-
timization would become more difficult to do if the Building table
were replaced with a complex subquery. On the other hand, the
left join in RVL is trivial to prune, since the inputs of the join are
always guaranteed to be sets, and the column pruning optimization
will prune all Building columns except BldgId.

The join pruning optimization makes RVL programming more
convenient. A user can add many left joins to their view templates
to fetch columns which might not be required, and they can be con-
fident that the RVL compiler will know which joins can be skipped.

4.4 Example View Template
Figure 4 shows example schemas for F1 and Mesa tables, using

advertising concepts from the AdWords application. The example

1398

Customer(root table) BudgetSuggestionV1 BudgetSuggestionV2
CustomerId CustomerInfo

20 { name: "flowers" }
CustomerId BudgetId SuggestionInfo

20 200 { suggested_amount: 120 }
CustomerId BudgetId SuggestionInfo

20 200 { suggested_amount: 118 }

Campaign Budget
CustomerId CampaignId CampaignInfo

20 100 { name: "Rose" status: "ENABLED" budget_id: 200 }
20 101 { name: "Tulip" status: "ENABLED" budget_id: 200 }
20 102 { name: "Daisy" status: "ENABLED" budget_id: 201 }

CustomerId BudgetId BudgetInfo
20 200 { amount: 100 }
20 201 { amount: 50 }

CampaignStats CampaignConversionStats
CustomerId CampaignId Device Impressions Clicks Cost

20 100 ’Desktop’ 20 5 3
20 100 ’Tablet’ 10 3 1
20 101 ’Mobile’ 30 4 2
20 102 ’Desktop’ 40 10 5

CustomerId CampaignId Device ConversionType Conversions
20 100 ’Desktop’ ’Purchase’ 2
20 100 ’Desktop’ ’Wishlist’ 1
20 101 ’Mobile’ ’Wishlist’ 2

Figure 4: Example storage schema. Bolded column names refer to primary keys.

view CampaignDimensions<params> {
campaign = SELECT *,
CampaignInfo.name AS Name,
CampaignInfo.budget_id AS BudgetId
FROM Campaign;

budgets = SELECT *,
BudgetInfo.amount AS BudgetAmount
FROM Budget;

budget_suggestion_table =
if ($params.use_budget_suggestion_v2) {

BudgetSuggestionV2;
} else {

BudgetSuggestionV1;
}

budgets_with_suggestion = SELECT *
FROM budgets LEFT JOIN budget_suggestion_table
USING CustomerId, BudgetId;

return SELECT *,
ComputeCampaignStatus(CampaignInfo, BudgetInfo,

BudgetSuggestionInfo) AS Status
FROM campaign LEFT JOIN budgets_with_suggestion
USING CustomerId, BudgetId;

}
view CampaignFacts<params> {
return SELECT *,
MakePair(Impressions, Clicks)

AS ClickThroughRate [aggregation = "RateAgg"]
FROM CampaignStats FULL JOIN CampaignConversionStats;

}
main CampaignReport<params> {
campaign_report = SELECT $params.main_table_columns
FROM CampaignDimensions<$params>

LEFT JOIN CampaignFacts<$params>
USING CustomerId, CampaignId;

output SELECT *
FROM campaign_report
WHERE $params.filters
ORDER BY $params.order_by_columns
LIMIT $params.limit as top_k_table;

output SELECT $params.summary_columns
FROM campaign_report as summary;

}

Figure 5: CampaignReport RVL code.

uses F1 dimension tables Customer, Campaign, Budget, Budget-
SuggestionV1, and BudgetSuggestionV2, using CustomerId as the
root ID BudgetSuggestionV1 and BudgetSuggestionV2 tables cap-
ture a case that often comes up in practice: The application is mi-
grating from an older to a newer, higher quality representation of
budget suggestions. The application may want to use the new sug-
gestions for only a small whitelist of advertisers initially, and ramp
up slowly to all customers. We therefore maintain both versions
during the transition period. Since different teams maintain the re-
spective backend pipelines, separate tables help clarify ownership.

The example also uses Mesa fact tables CampaignStats and Cam-
paignConversionStats. Impressions, Clicks, Cost, and Conversions
columns use SUM for implicit aggregation. CampaignConversion-
Stats is a separate table because conversions can be broken down
by the additional dimension ConversionType.

Abstracting over the complex storage schema, Shasta exposes
a flat denormalized view CampaignReport. The view schema ex-
poses the following columns: CustomerId, CampaignId, Name,
Status, BudgetAmount, Device, Impressions, ClickThroughRate,
Clicks, and Conversions. RVL code for CampaignReport is shown
in Figure 5. The following aspects are worth noting:

• The CampaignDimensions view template performs a join of F1
tables. The input parameter use_budget_suggestion_v2 in-
dicates which version of budget suggestion to use. The Status
column is computed with a user-defined function (UDF).

• The CampaignFacts view template performs a join of Mesa ta-
bles. ClickThroughRate is made explicitly aggregatable by a
user-defined aggregation function (UDAF) RateAgg. No ex-
plicit GROUP BY is specified, as the RVL compiler generates
the correct GROUP BY clauses based on the request context.

• The main view template CampaignReport joins data from Cam-
paignDimensions and CampaignFacts. The two view outputs
top_k_table and summary share the campaign_report sub-
query, ensuring consistency of the two data pivots.

• params.filters typically contains a filter on CustomerId,
but it can also contain filters on aggregatable columns like Im-
pressions. The RVL code filters the data after projecting the
final columns, but the RVL compiler may move filters to be
applied earlier when possible.

Figure 6 illustrates the entire flow of a sample Shasta query with
(i) a specific Shasta query issued by a Shasta client against the
"CampaignReport" Shasta view, (ii) RVL template parameters gen-
erated from the Shasta query by the view gateway, and (iii) the
Shasta query result. Note the result contains only two campaigns
because of the "limit: 2" clause in the query, while the summary
row contains aggregate stats for all campaigns.

5. QUERY EXECUTION ON F1
F1’s SQL query engine has been described in [13]. It supports

both centralized and distributed execution of queries. Centralized
execution can deliver low latencies for simple queries with input
data volumes that are easily processed on a single F1 server, and
distributed F1 queries are a natural fit for workloads with larger in-

1399

Shasta query RVL template parameters
view_name: CampaignReport
columns: CampaignId, Name, Status, Budget, Impressions,

Clicks, ClickThroughRate, Conversions
sort order: Clicks Descending
limit: 2
summary: on
application_params: CustomerId=20, BudgetSuggestionVersion=2

main_table_columns: CampaignId, Name, Status, BudgetAmount,
Impressions, Clicks, ClickThroughRate, Conversions

filters: CustomerId = 20
order_by_columns: Clicks DESC
limit: 2
summary_columns: Impressions, Clicks, ClickThroughRate, Conversions
use_budget_suggestion_v2: true

Query result
CampaignId Name Status BudgetAmount Impressions Clicks ClickThroughRate Conversions

102 Daisy Enabled 50 40 10 0.25 0
100 Rose BudgetThrottled 100 30 8 0.27 3

Summary 100 22 0.22 5

Figure 6: Shasta view invocation.

puts and less stringent latency requirements, e.g., queries scanning
all rows in a large F1 or Mesa table. Shasta represents a novel use
of F1’s query engine as it places heavily distributed query execution
at the heart of latency sensitive and business-critical applications.
While Shasta queries are typically scoped to a modest subset of
data in underlying databases (e.g., a single advertiser’s campaign
configurations and performance metrics), the combination of re-
mote input data, diverse data stores, data freshness requirements,
and complexity of query logic make it challenging to achieve low
latencies reliably using centralized execution, in Google’s produc-
tion environment based on shared commodity hardware. In the re-
mainder of this section, we describe core F1 query engine features
that were critical for the Shasta workload, our approach to support-
ing user-defined functions in F1, and how we tuned the distributed
query processing pipeline for low latency.

5.1 Engine Features Critical for Shasta
In distributed F1 query execution, a query coordinator receives

the incoming SQL query. The query is parsed and an execution
plan is laid out as a directed acyclic graph (DAG) of potentially
hundreds of plan parts. Each plan part is a tree of operators like
scan, filter, project etc. Data flows from the leaves of the DAG
towards the coordinator. F1 aims to maximize streaming of data
between operators and to minimize pipeline stalls. Each plan part is
annotated with the degree of parallelism at which it is to be run. The
coordinator schedules plan parts to run on F1 slaves and configures
the data flow between them as per the plan’s DAG structure.
Hash-based repartitioning: The F1 query engine was designed
for settings where co-partitioning of data between storage and query
processing is not feasible, and where storage systems such as Span-
ner apply effectively arbitrary partitioning of data. To this end,
F1 supports hash-based repartitioning of data during query execu-
tion. This support is critical for Shasta workloads, where input data
stores are diverse and often not read-optimized. Hash-based repar-
titionings are used for co-partitioining in joins and for distributed
aggregations. Shasta prefers to arrange large numbers of joins and
aggregations in shallow, bushy trees to reduce latency and to allow
for increased parallelism. As a result, latency depends more on tree
depth than on the number of joins. Using SQL hints, skew-sensitive
joins to small tables are often executed by broadcasting the smaller
input, leaving the distribution of the larger input unchanged.
DAG-structured query plans: It is idiomatic in RVL to assign
variable names to subqueries and then refer to them multiple times
in subsequent RVL code. For instance, an RVL template may out-
put a table and a summary row as different pivots of the same
named subquery. For data consistency and computational efficiency,
the underlying query engine should compute the subquery only

once and feed results into multiple downstream computations. F1
supports such common table expressions using standard SQL WITH
syntax. F1 internally represents multiple references to the same
subquery as a DAG structure in which the subquery has multiple
parent operators. Buffering mitigates the case of parent operators
consuming result rows from the shared subquery at different rates.

External Data Sources: Shasta queries commonly scan and join
data from storage systems as diverse as Spanner, F1 TableCache,
Mesa, and Bigtable. Using a plugin framework for federated query-
ing, the F1 query engine supports these data sources and several
others. Central to the plugin framework is the abstraction of a
ScanOperator. For every supported data source, a ScanOperator
implementation translates between the data source API and the F1
SQL runtime. ScanOperator implementations can be carefully tai-
lored to peculiarities of each data store. The resulting deep inte-
grations between query engine and data stores were key in meeting
the latency and scalability requirements in Shasta query workloads.
A prime example for this is how F1 determines the degree of par-
allelism for distributed table scans, a fundamental feature of dis-
tributed query processing. The appropriate degree of parallelism
for a table scan depends on how much data the table scan is ex-
pected to return, which in turn depends on the given query and
data source. For each supported data source, the F1 ScanOpera-
tor plugin implements a GetPartitions() function. The F1 query
planner calls this function to retrieve cardinality information in the
context of a specific query. GetPartitions() implementations are
naturally tailored to each data store. For instance, the Mesa Scan-
Operator’s GetPartitions() implementation leverages precise Mesa-
internal metadata only accessible by issuing Mesa RPCs, while
the GetPartitions() implementation for TableCache uses metadata
stored by an offline job in F1 storage. Compared to F1 maintain-
ing cardinality metadata for all data sources centrally, the GetParti-
tions() protocol allows for more precise and up-to-date cardinality
information. Federated ownership of metadata for different data
stores also tends to be more scalable operationally.

5.2 UDF Servers
RVL code can invoke user-defined functions (UDFs) written in

procedural languages such as C++ or Java. Motivations include
sharing critical procedural code between RVL definitions and other
systems processing the same data, re-use of subtle legacy code, and
expressivity. UDFs are a common feature in SQL engines. How-
ever, UDF support in F1 allows users to deploy compiled C++ or
Java UDF code in custom binaries called UDF servers that run in
production alongside the F1 query engine, as separate processes
and under client teams’ credentials. In order to be able to register
with the F1 query engine, UDF server binaries must implement a

1400

standard RPC API defined by F1. F1 provides “glue” libraries that
make building a compliant UDF server trivial, given just a library
of C++ or Java functions written by the client team. During exe-
cution of queries with UDF calls, F1 slaves issue RPCs to appro-
priate UDF servers, which in turn invoke corresponding UDF code.
Compared to dynamically loading UDF libraries in F1 processes,
this model provides the same release schedule flexibility but sig-
nificantly stronger system isolation and security properties: UDF
code never runs using F1’s credentials and the F1 SQL runtime is
protected from crashes or memory corruptions introduced by bugs
in C++ UDFs, and from garbage collection spikes or exceptions
introduced by Java UDFs.

One challenge in this decoupled approach is to minimize the la-
tency costs that often come with turning function calls into RPCs.
We have managed to largely mitigate these costs using two tech-
niques. First, F1 slaves and UDF servers have independent degrees
of parallelism: While F1 slaves use a single thread to process each
plan part, an F1 slave thread calling a UDF can distribute rows
across hundreds of UDF servers. Second, matching other parts of
the F1 query engine, we heavily leverage batching and pipelining
for UDF calls: As rows stream through the CallUdf operator, the
operator maintains a queue of UDF server RPCs and blocks on re-
sults only if more than a certain threshold of RPCs are in-flight.
RPC results are processed out-of-order if possible, reducing the im-
pact of slow RPCs in a batch and hence reducing tail latency.

5.3 Distributed Execution Improvements
We highlight two distributed execution improvements that were

key in meeting Shasta’s low latency and scalability requirements.

Query Planning: During query planning, the query coordinator
needs to determine the degree of parallelism for each plan part.
Choosing this parameter well is key in scaling queries to different
input sizes. Using GetPartitions() as explained above, we deter-
mine the degree of parallelism for scan plan parts (i.e., leaves), aim-
ing to assign each scan partition to a different slave. For non-leaves,
parallelism information is propagated up the DAG. For each plan
part, the degree of parallelism is set to the maximum value among
its children. This ensures that each internal plan part’s parallelism
takes input data size into account, improving scalability.

Query scheduling: After query planning, the coordinator assigns
plan parts to specific F1 slave jobs and connects them with each
other as sources and sinks per the query plan’s DAG structure.
Common Shasta queries have hundreds of plan parts. Instead of
delaying the start of query execution until all plan parts are sched-
uled, scheduling is done in a bottom-up fashion: Leaf plan parts are
scheduled first and can start working while their sink plan parts are
still being scheduled. Once the sinks are scheduled, leaf parts are
updated to use the respective sinks. This approach is used all the
way up the DAG. By interleaving scheduling and execution in this
way, we reduced query latency by tens of milliseconds.

6. F1 TABLECACHE
TableCache is a distributed in-memory read-through cache for

data stored in F1, situated between F1 storage and the F1 query
engine. As Shasta applications access data in per-user sessions,
TableCache is designed for workloads where individual queries are
scoped to one specific root ID. In F1, a root ID is the primary key of
the root in a hierarchy of tables, and application users are identified
by a root ID in typical F1 schemas. Given (table, root ID, times-
tamp) triples, TableCache serves data to the F1 query engine faster
and at significantly higher throughput compared to raw F1 storage.
For advertiser sessions in the AdWords Web UI for example, Table-

Cache often achieves 20 times higher read throughput. TableCache
is multi-versioned and provides the same snapshot read semantics
as F1, but only for a moving window of timestamps from “just com-
mitted” to a few minutes in the past. TableCache does not support
reads across root IDs or for timestamps further in the past.

The intuition behind TableCache is that, for F1 storage backed by
Spanner, there is a natural tension between optimizing the database
for reads vs. for writes: write latencies tend to benefit from keeping
the number of shards per Spanner directory modest, to minimize
participants in transactions. Read throughput on the other hand
benefits from a larger number of smaller shards. A distributed read-
only in-memory cache can avoid this tension: Read throughput can
be dramatically increased by serving data from RAM and by using
shard sizes and data structures solely optimized for reads. However,
as important Shasta applications cannot tolerate stale data with re-
spect to recent user updates, the cache must be kept consistent and
fresh without significant negative impact on write or read latencies.
TableCache achieves this using F1 Change History.

The following subsections describe TableCache’s design in three
parts. First, we divide F1 rows for (table, root ID) pairs into small
table shards using periodic offline analysis. Second, a set of poten-
tially hundreds of distributed in-memory cache servers lazily load
and evict table shards. The cache server API is designed to work
well as a data source for distributed F1 SQL queries, and a hash-
based protocol balances table shards across cache servers. Finally,
loaded table shards are versioned based on F1 timestamps. If a
shard is not fresh enough for a given query, we update it by incre-
mentally applying changes from F1 Change History.

6.1 Sharding of Cached Data
To allow for more read parallelism compared to reading from

F1 directly, we divide F1 rows for a given (table, root ID) into ta-
ble shards significantly smaller than shards at the F1 storage level,
often 10x smaller. A periodic offline job stores TableCache shard-
ing metadata in an F1 system table, mapping each (table, root ID)
pair to a list of table shard boundary keys and size estimates. The
sharding algorithm aims to create small yet evenly sized shards,
maximizing read throughput yet minimizing input data skew dur-
ing F1 query processing. The offline job reruns its analysis for
root IDs with a significant number of recent changes, which can be
determined easily in F1 using a Change History SQL query. We de-
scribe TableCache’s use of F1 Change History in more detail later
in this section.

6.2 Cache Serving
TableCache was designed to be used as a data source in dis-

tributed F1 SQL queries such as the following:

DEFINE TABLE tablecache_Campaign(format=’tablecache’,
table_name=’Campaign’);

SELECT * FROM tablecache_Campaign WHERE CustomerId = 20;

The F1 query engine works best with external data sources that
support separate RPCs for dynamic cardinality estimation and for
reading data. TableCache servers therefore expose two RPCs. Both
are called from within the F1 ScanOperator implementation – i.e.,
query engine plugin – for TableCache.
• GetPartitions(table, root_id) returns to the F1 coordinator a list

of shard split points.

• Read(table, root_id, read_timestamp, shard_id) returns to an F1
slave an ordered list of F1 rows for one table shard.1

Table shards are not statically mapped to cache servers – any cache
server will readily load any table shard for which it receives a re-
1In practice, F1 can push down additional filters to TableCache.

1401

quest. Rather, the client (the F1 query engine) is responsible for
distributing table shards evenly across cache servers, by issuing
Read() requests for specific shards to specific cache servers. To de-
cide which server to talk to, TableCache clients use the determinis-
tic hash based function GetServer which maps a table shard (table,
root_id, shard_id) to a specific cache server.2 GetServer tends to
return different cache servers for different table shards, balancing
table shards evenly across cache servers. Using the (table, root_id)
pair (Campaign, 20) from the SQL query above and assuming the
query client requests data as of F1 snapshot timestamp TQuery, a
TableCache scan is executed in F1 as follows.

The F1 coordinator issues a GetPartitions RPC to the cache server
determined by GetServer(Campaign, 20, 0). Note shard_id is al-
ways set to 0 for GetPartitions calls. The cache server looks up
and returns shard split points stored by the offline job in F1 for
(Campaign, 20). The coordinator schedules one F1 slave to is-
sue a Read RPC for each table shard as determined by GetParti-
tions. Each slave then issues the RPC Read(Campaign, 20, TQuery,
shard_id) to the cache server determined by GetServer(Campaign,
20, shard_id). The cache servers now need to load the requested ta-
ble shards, if not yet present in RAM. Before loading, each server
confirms that there is enough RAM available or evicts other table
shards, using an LRU-based replacement policy. The server then
reads the CampaignId range corresponding to the shard split points
for shard_id from F1.Campaign at timestamp (TQuery – 15 minutes).
“15 minutes” is a system parameter, configuring the moving win-
dow of consistent data versions that TableCache supports. The
server stores read F1 rows in a modified B-tree data structure and
records the checkpoint TCache = TQuery – 15m to mark how fresh the
cache for this table shard currently is. Clearly the cache is not fresh
enough yet to answer queries at timestamp TQuery. The process of
updating the cache immediately after loading a table shard or later
in a session is essentially the same, and we describe that next.

6.3 Updating the Cache
TableCache heavily leverages F1’s Change History feature as de-

scribed in [13]. We give a brief overview of the feature before ex-
plaining how data loaded in TableCache is kept up-to-date.

Unlike traditional DBMSs, F1 provides a user-queryable change
log called Change History. This log is maintained by the database
system itself, not by application business logic, so it is guaranteed
to capture all changes to change-tracked tables, including manually
applied emergency data changes. Whether an F1 table is change-
tracked or not is configured in the schema. Every F1 transaction
that writes to a change-tracked table creates one or more Change-
Batch Protocol Buffers, which include the primary key and before
and after values of changed columns for each updated row. These
ChangeBatch records are then written to a Change History table,
the primary key of which includes the associated root ID and trans-
action commit timestamp. Change History tables are first-class ta-
bles in F1, meaning they are tunable in the schema and queryable
by F1 clients like any other F1 table. Based on the primary keys
in Change History tables, clients can process Change History en-
tries strictly ordered by root ID and commit timestamp of the cor-
responding F1 transactions and build a precise image of F1 data
physically outside F1. This can be done using a relatively simple
protocol based on checkpoints and before/after values contained in
Change History records. A good example for this is how F1 Table-
Cache keeps loaded data up-to-date.

2In practice, GetServer returns a specific permutation of the list
of available cache servers, and clients iterate through the list, for
failover in case of unhealthy cache servers.

Whenever a loaded table shard’s timestamp TCache is older than
the requested timestamp TQuery, the cache server updates the table
shard by querying F1 Change History at snapshot time TQuery, re-
trieving all change records for (table, root ID) with a commit times-
tamp > TCache. Our system and schema are optimized to make this
read fast enough to be placed on the latency critical path of interac-
tive applications. For every returned change record, if the changed
CampaignId is in range for the given table shard, the cache server
applies the change to its in-memory representation, but preserving
older versions within the configured moving window of snapshots
supported. Once all changes are applied, the table shard’s check-
point is updated to TQuery, and the read request can be satisfied.

Using this protocol, TableCache achieves a powerful property:
As long as queries are grouped into user sessions by root ID so that
the cost of loading table shards from F1 storage is amortized over
subsequent cache reads, TableCache can provide an order of mag-
nitude higher read throughput to an application that expects 100%
fresh data in requests issued immediately after writes to F1. Still,
TableCache’s design is relatively simple, especially when compared
to alternatives such as write through caches: TableCache never
needs to invalidate and reload an entire data set in response to
writes. Furthermore, the write path at the database level can be
unaware of the existence of the cache. This is critical, as putting
cache updates on the critical path of F1 writes would re-introduce
the tension we described above: Cache writes would have to be ap-
plied across shards and across geo-replicated regions, and to keep
those fast, fewer and larger cache shards would be needed, in turn
hurting reads.

7. PRODUCTION EXPERIENCE
Shasta powers multiple critical interactive reporting applications

at Google. In this section, we report on our experience using Shasta
for an important advertiser-facing application. Before Shasta, the
views in this application were defined in C++ and computed us-
ing a custom query engine. When compared to this legacy system,
Shasta has made software engineering more efficient, while also
improving the performance and scalability of the system.

Software engineering efficiency: The design of the legacy system
followed a common pattern for domain-specific backends, starting
as a fairly simple C++ server and evolving into a mix of complex
view definitions and query processing code. Without the strong
boundaries that come with a declarative language like RVL, the
query processing “engine” code overlapped with the code for view
definitions, making it infeasible to separate ownership of the two
pieces. As a result, feature development was bottlenecked on 15
engineers who had sole expert knowledge of both the custom en-
gine and approximately 100 view definitions. Using Shasta’s RVL
view declarations, more than 200 code contributors across multiple
teams now share view development, concentrating solely on busi-
ness logic, while a smaller, separate team focuses on engine and
compiler work. We replaced around 130k lines of C++ view defi-
nition code with 30k lines of RVL and 23k lines of C++ UDF code.
The new code encapsulates all the logic of view transformations
without relying on additional precomputed results for performance.
This stateless design simplifies rollout of application changes and
adds to the software engineering benefits of Shasta. For instance,
changing a Shasta view column definition does not require updat-
ing data materializations previously stored using the old definition.

Relative system performance: The legacy reporting system was
tailored for a particular storage schema, with limited support for
query planning and distributed processing. Figures 7 and 8 show
performance of Shasta relative to the legacy system for two views

1402

Small

Medium

Large

Median 90%ile 95%ile 99%ile
0

1

2

3

4

Latency buckets

S
pe

ed
up

Small

Medium

Large

Median 90%ile 95%ile 99%ile
0

1

2

3

4

5

6

7

Latency buckets

S
pe

ed
up

Latency (ms)

Number of
tables scanned
and joined

1M 10M 100M 1G 10G
10

100

1000

10000

Query input size

Figure 7: Speedup of Shasta vs. legacy
system for View 1.

Figure 8: Speedup of Shasta vs. legacy
system for View 2.

Figure 9: System scalability.

used in production. A “Speedup” value of 2 means Shasta is two
times faster than the legacy system, 1 means latency is on par, and
0.5 means Shasta is two times slower. For each view, performance
is compared for different query input data sizes (small, medium,
large) which for this interactive workload are at most a few giga-
bytes per query. The views have varying business logic and query
plan structures, yet the performance pattern is the same: Shasta is
2.5x to 7x faster for large queries and 2x to 4x faster for medium
queries, thanks to more parallelism and data balancing via dynamic
repartitioning available in F1’s query engine. Only at the median
for small queries does the legacy system consistently outperform
Shasta. This is due to overhead inherent in the Shasta architec-
ture, incurred by parsing and optimizing RVL code, generating
SQL strings, parsing and planning SQL in F1 and scheduling query
plans for execution. The overhead is typically modest in absolute
terms (10s of ms), and not the majority portion of user-perceived
latency, which includes network latency and latency from other sys-
tems higher in the stack. For larger and higher percentile queries on
the other hand, the speedups achieved by Shasta were significant in
terms of user-perceived latency. Future work may further reduce
planning overhead using techniques such as prepared queries.

System scalability: While underlying tables in storage can be ter-
abyte scale, Shasta queries issued by interactive applications are
typically scoped to a single user’s data. Carefully structured in-
dexes in Mesa and data clustering by F1 root ID in TableCache then
allow F1 queries to scan modest amounts of input – at most a few
gigabytes for queries that run at interactive latencies. On the other
hand, query plan complexity is high: important individual queries
scan data from 50 tables and perform 60 join operations.

Despite the fact that input data size for most interactive queries
is relatively modest, we made a conscious design decision to place
highly distributed query processing at the core of the Shasta ar-
chitecture, for two reasons. First, achieving reliably interactive la-
tencies for workloads with the query complexities outlined above
on single machines is challenging in Google’s production environ-
ment, where commodity hardware shared between different ser-
vices is the norm. Second, we find that in practice, sophisticated
business applications are not truly limited to interactive queries
with modest input sizes: As businesses evolve, data sizes and schema
complexity tend to increase in ways that are hard to predict. Fur-
thermore, applications tend to become platforms, offering to users
not only interactive UIs, but also powerful programmatic developer
APIs where query input sizes are larger and interactive latencies are
less critical, yet where data freshness and consistency requirements
are just as stringent. Shasta scales naturally to this setting and is
used as a shared layer powering vastly different application inter-
faces of such platforms, guaranteeing fully consistent concepts and
semantics in the different interfaces.

Combining data measured across one such platform at Google,
Figure 9 illustrates the scalability of Shasta. As the size of input
data increases, query latency has sublinear growth, made possible

by F1’s distributed query processing. Using statistical regression
analysis, we found that the latency follows a trend of O(n0.36)
when n bytes are scanned. The chart also illustrates that structural
query complexity – measured by the number of tables scanned and
joined in the query – is largely constant across different input sizes.
In Shasta applications, query input size tends to be determined by
view parameters such as date ranges and the size of the given user’s
account, whereas query plan complexity is a function of schema
complexity and application design, so the two are orthogonal.

Impact of TableCache: TableCache is critical for achieving low
query latencies. The F1 query engine achieves at least 20x higher
throughput reading from TableCache compared to reading from F1
storage directly. This is primarily due to the fact that TableCache
partitions data much more finely, allowing much higher read paral-
lelism, and leverages read-optimized data structures.

8. RELATED WORK
When comparing RVL to other query languages, one interesting

feature to consider is implicit aggregation. The support for implicit
aggregation has parallels to the MDX language [15] for query-
ing OLAP data cubes. Dimensions and measures in the schema
used by MDX are analogous to grouping columns and aggregat-
able columns in RVL, since measures are automatically aggregated
for any selection of dimensions. RVL provides more flexibility than
MDX, by supporting automatic aggregation on arbitrary joins. This
makes RVL more readily applicable to existing SQL databases.

We can also compare RVL’s view templates and sequential as-
signment statements to the features of other languages. The support
for sequential subquery assignments has become particularly pop-
ular in query languages, as this syntax comes naturally to many de-
velopers. The scripting languages SCOPE [17] and Pig Latin [12]
have support for assignment statements and output statements sim-
ilar to RVL. The view templates of RVL allow blocks of assign-
ment statements to be grouped together and reused with dynamic
parameters, which can help developers organize a large code base.
Spark SQL [2] supports the DataFrame API which can be used in
various programming languages to formulate queries as a sequence
of steps. Using DataFrames, a developer may create dynamic and
reusable subqueries using constructs of the programming language
(e.g., Java methods). RVL is intended to combine the best aspects
of these approaches, allowing dynamic and reusable subqueries to
be specified in one unified language.

TableCache acts as an extra layer of caching between the F1
query engine and F1 storage backed by Spanner. It can be com-
pared to the usage of buffer pools in traditional database archi-
tectures [14, 6] since the goal is to exploit database access pat-
terns to accelerate I/O. However, TableCache is read-only, which
allows the design to be optimized for the read path without sac-
rificing write performance. In particular, TableCache uses fine-
grained sharding to perform many small reads in parallel, and trans-

1403

actional writes become more expensive with higher degrees of par-
allelism. Also, TableCache provides a higher-level abstraction than
traditional block-based caches, where data from a table is accessed
based on root ID and timestamp. Oracle TimesTen [10] can be de-
ployed as a read-only cache in a similar way, but without timestamp-
based access. We may also compare TableCache to the in-memory
data management used by the scale-out extension (SOE) of SAP
HANA [7], which allows reads at specific timestamps. The Shasta
architecture differs from the SAP HANA SOE since the cache is
decoupled from the query processing nodes, which allows Table-
Cache to communicate directly with other server processes. Main-
taining the freshness of TableCache is facilitated by F1 Change His-
tory which is conceptually based on the classical notion of write-
ahead logging [11] in commercial DBMS engines. However, the
implementation of F1 Change History is very different in that it is
exposed as a first-class database entity which can be operated upon
as a regular database table.

9. CONCLUDING REMARKS
Exposing interactive reporting and data analysis to users is cru-

cial in business applications. For UIs to be truly interactive, user
query latency must be low, and query results must provide fresh
data that always include the most recent user updates. Data stores
holding the transactional truth of underlying business data often
have vast and complex schemas, placing significant transformation
logic between stored data and user-facing concepts. The necessary
data transformations often have to access data from multiple data
stores, not all of which are read-optimized. In order to provide fresh
data to applications while allowing for agile application develop-
ment, it is ideal to avoid relying on precomputation and perform all
transformations at query time. This results in two significant chal-
lenges: First, complex data transformations must be expressed in
a way that scales to large engineering organizations and supports
dynamic generation of online queries, based on rich query-time pa-
rameters. Second, the resulting online queries are complex – e.g.,
queries read from diverse data stores and join 50 or more tables –
yet need to be executed reliably at interactive latencies.

Shasta takes an integrated approach to solving these challenges,
using both language-level and system-level advances. In partic-
ular, Shasta provides a hybrid language interface to its users via
RVL. RVL combines SQL-like functionality with limited but pow-
erful procedural constructs. Using RVL, user queries can be stated
succinctly and view definitions can naturally capture the dynamic
nature of applications. At the system level, Shasta leverages a
caching architecture that mitigates the impedance mismatch be-
tween stringent latency requirements for reads on the one hand
and the underlying data store being mostly write-optimized on the
other. Shasta also extends F1’s distributed query processing frame-
work to support user-defined function (UDF) calls at low latency
yet with strong system isolation. As a result, Shasta incurs low
latencies in computing complex views with little reliance on view
materialization and without compromising on data freshness.

10. ACKNOWLEDGEMENTS
We would like to thank all current and past members of the

Shasta team, especially Tuan Cao, Kelvin Lau, Patrick Lee, Wei-
Hsin Lee, Curtis Menton, Aditi Pandit, Shashank Senapaty, Alejan-
dro Valerio, and Junxiong Zhou. We’d also like to thank members
of application teams that migrated to RVL, including Dmitry Chur-
banau, Daniel Halem, Raymond Ho, Anar Huseynov, Sujata Kos-
alge, Luke Snyder, and Andreas Sterbenz. We are grateful to the F1
team, including Brian Biskeborn, John Cieslewicz, Daniel Tenedo-

rio, and Michael Styer, and to the Mesa team, including Mingsheng
Hong, Kevin Lai, and Tao Zou. Finally, we thank Ashish Gupta,
Sridhar Ramaswamy, and Jeff Shute for guidance throughout vari-
ous stages of Shasta’s development, and Nico Bruno, Ian Rae, Jeff
Shute, and SIGMOD reviewers for insightful comments on our pa-
per draft.

11. REFERENCES
[1] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang, T. Qiu,

A. Reznichenko, D. Ryabkov, M. Singh, and S. Venkataraman.
Photon: Fault-tolerant and scalable joining of continuous data
streams. In SIGMOD, pages 577–588, 2013.

[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark SQL:
Relational data processing in Spark. In SIGMOD, pages 1383–1394,
2015.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. TOCS, 26(2):4, 2008.

[4] S. Chaudhuri and U. Dayal. An overview of data warehousing and
OLAP technology. ACM SIGMOD Record, 26(1):65–74, 1997.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 31(3):8, 2013.

[6] W. Effelsberg and T. Haerder. Principles of database buffer
management. TODS, 9(4):560–595, 1984.

[7] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber,
F. Gropengiesser, C. Mathis, T. Bodner, and W. Lehner. Towards
scalable real-time analytics: An architecture for scale-out of OLxP
workloads. PVLDB, 8(12):1716–1727, 2015.

[8] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G.
Dhoot, A. R. Kumar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron,
M. Siddiqi, D. Jones, J. Shute, A. Gubarev, S. Venkataraman, and
D. Agrawal. Mesa: Geo-replicated, near real-time, scalable data
warehousing. PVLDB, 7(12):1259–1270, 2014.

[9] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. In VLDB, pages 276–285, 1997.

[10] T. Lahiri, M.-A. Neimat, and S. Folkman. Oracle TimesTen: An
in-memory database for enterprise applications. IEEE Data Eng.
Bull., 36(2):6–13, 2013.

[11] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M.
Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging. TODS, 17(1):94–162, 1992.

[12] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A not-so-foreign language for data processing. In SIGMOD,
pages 1099–1110, 2008.

[13] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner,
J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte. F1: A distributed
SQL database that scales. PVLDB, 6(11):1068–1079, 2013.

[14] M. Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412–418, 1981.

[15] P. Vassiliadis and T. Sellis. A survey of logical models for OLAP
databases. ACM SIGMOD Record, 28(4):64–69, 1999.

[16] W. Yan and P.-A. Larson. Performing group-by before join. In ICDE,
pages 89–100, 1994.

[17] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and
D. Shakib. SCOPE: Parallel databases meet MapReduce. VLDB
Journal, 21(5):611–636, 2012.

1404

