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ABSTRACT
The constant growth of semantically-annotated data and an
increasing interest in cross-domain knowledge bases raises
the need for expressive query languages for RDF and novel
approaches that enable their evaluation for web-scale data
sizes. However, SPARQL, the W3C standard query lan-
guage for RDF, suffers from a rather limited capability to ex-
press navigational queries. More expressive languages have
been theoretically studied, however not implemented. In
this paper, we continue our work on TriAL-QL, an expres-
sive (SQL-like) RDF query language based on the Triple Al-
gebra with Recursion [31]. We present a new version of our
TriAL-QL processor, which takes advantage of the current
momentum in in-memory SQL-on-Hadoop solutions and is
built on top of Impala and SPARK while using one unified
data storage. We use our system to study the application
of multiple evaluation algorithms, storage strategies and op-
timizations on Impala and SPARK while highlighting their
properties. Comprehensive experiments examine the per-
formance of our system in comparison to other competitive
RDF management systems. The obtained results demon-
strate its suitability for querying semantic knowledge bases
by providing interactive query response times for selective
queries on datasets with more than one billion triple. More
data-intensive use-cases that produce, e.g. over 25 billion
results finished in the order of minutes.

1. INTRODUCTION
In past decade, we have witnessed the evolution from a

“Web of Documents” to a highly-interlinked “Web of Data”,
in which so-far human-consumable information is given a
well defined machine-processable meaning. Driven by the
wide adoption of Semantic Web technologies and in particu-
lar the so-called RDF data model [32], data from various do-
mains and in multiple languages is becoming more and more
interconnected. This facilitates the emergence of seman-
tic knowledge bases such as DBpedia [10], YAGO [26], Mi-
crosoft’s Satori, and Google’s Knowledge Vault [18]. How-
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ever, querying such semantic knowledge bases, which have
often a high degree of diversity in the structure and vocab-
ulary, poses new challenges for query languages and their
respective implementations [16]. Despite considerable work
that has been done in this area, recent work [31, 8, 40] has
proven that important properties in RDF data exist which
cannot be captured by current RDF query languages includ-
ing SPARQL 1.1 and its extensions. In order to exploit the
real potential of such data, RDF query languages need (1) to
capture all invariants inherent to the triple-based model of
RDF and (2) to allow one to query RDF data along with its
ontology and schema and (3) to enable querying path-based
connections between arbitrary resources. Given the graph-
like structure of highly-interconnected knowledge bases, we
found expressive navigational queries to be well-suited to
capture the aforementioned requirements, since they pro-
vide valuable information about the interlinking between ar-
bitrary things. Thus, we proposed in [38, 39] TriAL-QL,
an expressive (SQL-like) RDF query language based on the
Triple Algebra with Recursion (TriAL*) [31]. In contrast to
many other approaches TriAL* is a compositional algebra,
where the output is again RDF data.

While the constant growth of semantically-annotated data
and an increasing interest in cross-domain knowledge bases,
justifies such expressive, navigational query languages, it
raises also the need for novel approaches that enable their
evaluation for large data sizes. Therefore, we started to in-
vestigate in [38, 39] the application of Hadoop, the de-facto
standard platform for Big Data, to distribute the workload
associated with the evaluation of our language on a cluster of
machines. Apart from the widely deployed infrastructures,
we see the main advantages of the Hadoop ecosystem in its
continuous development which is reflected by novel frame-
works and layers that are added continuously. Furthermore,
we benefit, as we will also demonstrate in our work, from the
concept of a common data storage by means of HDFS (also
called data lake) that can be accessed by all applications
built on top of Hadoop.

In previous work [39], we presented the first prototype of
our TriAL-QL processor called TriAL-QL Engine which
was based on Impala, a massive parallel SQL query engine.
We described the process of compiling TriAL-QL queries
to the SQL dialect of Impala and presented an evaluation
algorithm for recursive expressions. In continuation of this
work, we study in the current paper our new TriAL-QL
Engine, which is implemented on top of Impala and Spark
[51], a fast general-execution framework for large-scale data
processing while sharing one unified data store in HDFS. We



investigate additional evaluation algorithms for the most im-
portant query patterns, discuss data storage strategies and
study their application on Spark and Impala.

We can summarize the contributions of this paper as fol-
lows: We present the architecture of TriAL-QL Engine de-
scribe how it is built on top of Spark and Impala while shar-
ing one unified data storage. The source code is published
on GitHub1 (cf. Section 4). We give a detailed description
of our evaluation algorithms, in particular we study patterns
going beyond the expressivity of SPARQL 1.1. We further
investigate the application of our proposed algorithms and
strategies on both, Impala and Spark while discussing their
strengths and weaknesses. A comprehensive evaluation ex-
amines the performance and scaling properties of our system
with respect to different execution strategies and in compar-
ison to other competitive RDF management systems.

The structure of the paper is as follows: Section 2 dis-
cusses related work. Section 3 introduces the problem de-
scription in more detail and gives the necessary background
of TriAL*. Section 4 describes the general architecture of
our TriAL-QL Engine, followed by data storage strategies
in Section 4.2 and evaluation strategies in Section 4.3 and
4.4. Finally, Section 5 presents a comprehensive evaluation
in which our engine is compared with other competitive RDF
management systems.

2. RELATED WORK
We can distinguish between three groups of RDF man-

agement systems: (1) centralized systems, (2) specialized
distributed systems, and (3) distributed systems built on
top of Big-Data frameworks.

Centralized systems operate on top of a single powerful
machine, often equipped with specialized hardware compo-
nents to enhance the performance. Common examples for
such systems are Sesame [13], Virtuoso [19], Jena [15], RDF-
3X [34] and 3store [23]. In case of an increased amount of
RDF data, resources such as processing power, main mem-
ory or hard disks can be improved. This strategy is known
as scale-up. Although very powerful, such systems are lim-
ited in their scalability and are known to not be very cost
efficient at larger scales.

In case of specialized distributed systems, the workload
parallelization is implemented as part of the RDF man-
agement system rather than relying on an underlying dis-
tributed framework such as Hadoop [50]. Interesting ap-
proaches are Virtuoso Cluster [11], TriAD [21], Dream [22],
4store [24], YARS2 [25] and Clustered TDB [35]. Some
of these are extensions of centralized systems, e.g. RDF-
3X [27] or Jena [35], which have to be independently in-
stalled on each machine in the cluster. Scaling in such sys-
tems is achieved by adding further machines, which is de-
noted as scale-out strategy. The main drawbacks of these
systems are (1) the need for a dedicated infrastructure that
has to be maintained solely for the purpose of querying RDF,
and (2) the fact that the initial graph partitioning used for
spreading data across machines is often done in a centralized
way, being the bottleneck for large-scale RDF data [30].

Furthermore, it is worth noting that, since TriAL* can be
translated into Datalog, parallel Datalog engines [47, 14, 2,
45] are also interesting candidates for distributing the work-

1The TriAL-QL Engine was further developed in the
course of a master thesis [12].

load on a cluster of machines. A more extensive comparison
and discussion with such engines is part of future work.

The last group of RDF management systems is the one
built on top of existing Big Data frameworks, such as MapRe-
duce [17] or SQL-on-Hadoop [48, 9] solutions. In recent
years, the Hadoop ecosystem has become the de-facto stan-
dard for processing Big Data. Large infrastructures are de-
ployed in research or industry and supported by major Cloud
providers such as Amazon Elastic Compute Cloud (EC2).
Due to its robustness, reliability and scalability while being
able to run on heterogeneous commodity hardware, Hadoop
gained lot of attention in manifold application fields. Conse-
quently, there have also been many different Semantic Web
tasks implemented on top of Hadoop ranging from the evalu-
ation of SPARQL queries [27, 28, 43, 44] to large-scale OWL
reasoning [49].

However, to the best of our knowledge, not much work
has been done on using Hadoop for the evaluation of expres-
sive, navigational RDF query languages as TriAL-QL. At
most, SPARQL 1.1 Property Paths are supported via Vir-
tuoso Cluster as being the only available distributed RDF
management system that runs on a cluster of machines [11].
Implementations of RDF query languages having a higher
expressiveness than Property Paths can only be found in
centralized systems, such as in extensions of Sesame and
Jena, which lack the support for querying web-scale RDF
data.

3. CHALLENGES OF RDF QUERYING:
THE TRIAL APPROACH

Most navigational RDF query languages are derivatives
from standard graph query languages like nested regular ex-
pressions (NRE) [37]. However, in contrast to the standard
graph model, an edge label in RDF (predicate) does not
come from a predefined alphabet and may also appear as
a source or destination (subject and object, respectively) of
another edge (triple). Consequently, they are not capable
of certain constructs and lose important features, e.g. rea-
soning over predicates within a query [6]. To the best of
our knowledge, there are only two RDF query languages
that enable expressive navigational capabilities with reason-
ing and can be evaluated in combined (low-degree) poly-
nomial time, namely Triple Query Language Lite (TriQ-
Lite) [8] and Triple Algebra with Recursion (TriAL*) [31].
TriQ-Lite is defined as a general Datalog extension that
captures SPARQL queries enriched with the OWL 2 QL pro-
file, whereas TriAL* is a closed language, i.e. the output is
a set of triples rather than mappings or bindings. Its core
idea is to work directly with triples rather than transform-
ing the RDF model into a graph-based model where, e.g.,
{(s, p, o), (p, s, o′)} would not be a valid graph [31]. These
features, together with the descent of TriAL* from rela-
tional algebra, predestinate it as a basis for more expressive
RDF querying on SQL-on-Hadoop solutions.

TriAL* takes the relational algebra as its basis with some
restrictions to guarantee closure. The most important oper-
ator is a triple join between two ternary relations E1 and E2

representing sets of triples, defined as: E1 ./
i,j,k
θ,η E2, where

i, j, k ∈ {s1, p1, o1, s2, p2, o2} indicate the implicit projection
on three fields to keep the operation closed with s1 refer-
ring to the subject of E1, etc. θ represents the join condi-
tions whereas η is a set of conditions between objects and



data values. To express paths of arbitrary length, recur-
sion is added with the right (e ./i,j,kθ,η )∗ and left (./i,j,kθ,η e)∗

Kleene closure, where e is a TriAL* expression. We refer
to [31] for a more detailed description of TriAL*.

Although TriAL* is a neat approach for querying RDF,
its algebraic notation is not easy to write. Thus, we have
introduced the TriAL* Query Language (TriAL-QL)
in [39] and defined its mapping to the algebra of TriAL*.
The basic idea behind TriAL-QL is to flatten the algebra
expressions of TriAL* to a sequence of SQL-like statements,
while preserving its expressiveness. We refer to [39], for a
more detailed introduction of TriAL-QL. For the sake of
brevity, we will follow the algebraic notation of TriAL* for
the remainder of the paper.

4. TRIAL WITH SQL-ON-HADOOP
The TriAL-QL Engine is a distributed processor of our

TriAL-QL query language. It is built on top of Hadoop,
where we make use of the current momentum on scalable
SQL-on-Hadoop frameworks. We published the code on
GitHub2. An essential advantage of such frameworks is the
possibility to use of SQL as an adequate intermediate layer.
This is particularly beneficial for processing query languages
such as TriAL-QL which are based on relational algebra,
due to an intuitive mapping between both. Furthermore,
we can (1) benefit from an inter-compatibility between dif-
ferent SQL-on-Hadoop solutions, (2) be independent from
future Hadoop changes, and (3) take advantage of the con-
tinuously optimized Hadoop stack. However, besides the
differences in syntax and expressiveness of the supported
SQL dialect, there are crucial differences in how the respec-
tive SQL-on-Hadoop solutions process a given SQL query,
revealing different characteristics for various query types.
In line with this, we examine the applicability of a scalable
processor for TriAL-QL on top of Hadoop using Impala,
Spark and Hive and compare its properties. Please note
that, although not included in the latest TriAL-QL En-
gine, we also consider Hive in the followed discussion and
experiments3. The architecture of our implementation can
be conceptually structured into three main components:

• RDF Store: The basis for distributed querying is an effi-
cient yet unified data pool which is supported by all three
of our systems: Spark, Hive and Impala. It maintains in-
put RDF data and in the case of a disk-based execution
also intermediate results and the final results of queries,
which can be (if specified within a query) reused as input
in a later query.

• Query Compiler: A Query Compiler composes compo-
nents required to translate a given TriAL-QL query into
the respective SQL dialect of the desired SQL-on-Hadoop
system. Furthermore, it is also the place where certain
query optimizations are applied. Most notable are two in-
teresting query patterns, for which we describe optimized
evaluation strategies, namely (1) the recursions captured
by the left and right Kleene Closure of TriAL* and (2)
the connectivity between two resources.

2http://github.com/martinpz
3The support for Hive was dropped. However, we could
execute the compiled SQL queries on Hive which formed
the basis for a few experiments shown later.

• Query Processor: The execution of SQL queries is
done by the Query Processor, where multiple execution
strategies are suggested which differ, for instance, in how
queries are composed and when intermediate results be-
come materialized to disk. Another important task that
this component is taking care of are termination condi-
tions. Based on which algorithms are chosen by the Query
Compiler, different termination constraints need to be
checked. Further, due to the differences in the support
of recursions in the respective SQL-on-Hadoop systems,
an individual query processor exists for each supported
system.

The architecture of our TriAL-QL Engine, illustrated
in Figure 1, reveals a much more granular view on all three
components, including the technical integration with Im-
pala, Spark, and HDFS.
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Figure 1: Architecture of TriAL-QL Engine

4.1 Relational Mappings for RDF
Typically, RDF triplestores with DBMS back-ends repre-

sent an RDF dataset in a so-called triples table with three
columns, containing one row for each RDF statement, i.e.
triples(sub, pred, obj). Query evaluation then essentially boils
down to a series of self-joins on this table. Therefore, it
is often accompanied by several indexes over some or all
(six) triple permutations, e.g. based on B+-trees, for query
speedup. However, this kind of indexes are not well-suited
and hard to maintain in a distributed computing environ-
ment like Hadoop. In [1] the authors propose a vertical par-
titioned schema having a two-column table for every RDF
predicate, e.g. knows(sub, obj), enabling more efficient prun-
ing strategies. Otherwise, having a separate table for every
predicate is not a well-suited schema for joins on predicates.
This may not be common in SPARQL but it is a natural



join pattern in TriAL*, e.g. for on the fly reasoning over
predicates (cf. Use Case 2 in Sec. 5).

Another typical approach is the use of so-called property
tables where all predicates (or properties) that tend to be
used in combination are stored in one table, e.g. all predi-
cates used to describe a person. This reduces the number
of subject-subject self-joins for star-shaped query patterns.
Although such patterns can also occur in TriAL*, it is not
the dominant pattern in navigational queries. Furthermore,
TriAL* is a closed language that allows to derive new triples
to be added to the triplestore which would result in update
operations on one or more property tables, an operation that
is currently not supported by any of the investigated systems
(Impala, Spark, Hive) due to the fact that the underlying
distributed filesystem (HDFS) is append-only.

In our use case, we basically need to consider two as-
pects in our table layout: (1) the fact that the data is dis-
tributed on a cluster of machines hampering the use of in-
dexes, and (2) the flexibility imposed by TriAL* to add
new triples and perform joins on all possible pattern com-
binations (i.e. also predicate-predicate joins). This in mind,
we use a triples table internally partitioned by predicates,
triplespred(sub, obj), to represent an RDF dataset and use
the name of the dataset as the name of the triplestore (ta-
ble). Tables are stored using Parquet [7] , an efficient colum-
nar storage format for Hadoop with built-in support for com-
pression (snappy), run-length and dictionary encoding. This
table layout is supported by all three systems, hence we can
use the very same table for all of them, demonstrating the
benefit of a unified data storage. Partition pruning is applied
transparently whenever possible, i.e. unnecessary partitions
are filtered out automatically, and table statistics (e.g. par-
tition sizes) are used to optimize the query plans, e.g. im-
proving join order. Thus, we combine the full flexibility of
a triples table with the efficiency enhancement of vertical
partitioning while having just a single unified data storage
without the need for expensive data exchange or conversion
from one system to another.

4.2 Evaluation of Kleene Closure
One of the most challenging expressions of TriAL* is the

right (e ./i,j,kθ,η )∗ and left (./i,j,kθ,η e)∗ Kleene closure, which
allows to express paths of arbitrary length. Its computation
requires a continuous sequence of iterations until all reach-
able instances are retrieved. Since neither Impala nor Hive
or Spark support any kind of recursion, such an expression
cannot be translated into a single SQL statement but need
to be broken down into several smaller queries that are ex-
ecuted subsequently. Therefore, an additional mechanisms
is needed that (1) initiates each of these iterations and (2)
determines the progress and decides whether it terminates.
For Impala and Hive, the intermediate result of each iter-
ation has to be materialized on disk and used as input for
the next iteration as there is no support to preserve those
intermediate tables in memory across multiple SQL queries.
However, Spark supports to cache tables in memory, such
that a subsequent iteration does not need to read from disk.

For the actual processing, we need to define an efficient al-
gorithm which evaluate the recursive expressions in TriAL*.
Indeed, we can reduce such an expression to the problem
of calculating the transitive closure (TC), which is a well-
studied research field [14, 20, 29]. There is an ongoing de-
bate whether the so-called semi-naive or smart TC algo-

rithm is superior in distributed environments like MapRe-
duce [3, 47]. However, there has not been much work yet on
investigating the trade-offs using novel SQL-on-Hadoop so-
lutions. We believe that, for our scenario, a semi-naive eval-
uation [14] is the better choice as it distributes the workload
over more rounds and produce less derivations on graphs
with cycles [4]. In contrast, a smart TC algorithm based on
a nonlinear (recursive-doubling) execution [29] uses a loga-
rithmic, rather than linear, number of rounds but with much
higher costs (with regard to the data volume) per round [4].
Thus, using the semi-naive evaluation leads to more but less
expensive joins, which in turn increases the chances that
the actual join processing can be done in memory without
spilling to disk.

Our algorithm for computing the right Kleene closure
(E ./i,j,kθ,η )∗ based on semi-naive evaluation is depicted in
Algorithm 1. E denotes the input triplestore (table) and
∆Pn contains those triples which were newly derived in the
n-th iteration. The final result, P , is the union of all previous
iterations.

Algorithm 1: Semi-naive eval. of right Kleene closure

input: triplestore E

1 n← 0, ∆P 0 ← E
2 while ∆Pn 6= ∅ do
3 n← n+ 1

4 tmp = ∆Pn−1 ./i,j,kθ,η E

5 ∆Pn = tmp−
(
∆P 0 ∪ ... ∪∆Pn−1

)
6 end

7 return P = ∆P 0 ∪ ... ∪∆Pn

In addition, this approach can be further improved by ex-
ploiting some properties of partitioned tables in Impala and
Hive. Instead of creating a new table for each ∆Pn, it is
far more effective to use a single table Piter(sub, pred, obj)
partitioned by iteration number iter and only add a new
partition to that table. This way, the amount of required
operations can be reduced since the results of all union oper-
ations used in line 5 and line 7 can be retrieved by partition
pruning without any computational effort. At the time when
we performed our experiments, the support of Spark for par-
titions was in a rather early stage, not allowing us to adapt
this strategy as efficiently as for Impala and Hive. Thus for
Spark we need to introduce two tables: one for newly de-
rived triples (∆Pn), and a second one that keeps the result of(
∆P 0 ∪ ... ∪∆Pn−1

)
. The algorithm terminates, if round i

does not derive any new triples, i.e. all the derived triples are
already contained in

(
∆P 0 ∪ ... ∪∆Pn−1

)
or

(
∆Pn−1 1 E

)
is empty. This step is realized by an additional SQL query
that counts the number of triples in ∆Pn.

4.3 Evaluation of Connectivity Patterns
A further challenging query type that we identified to

be relevant for many application fields is the connectivity
between two given resources, thus the existential question
whether there exists a path that connects both:

σ
s=<startNode>, o=<endNode>

(
(E ./i,j,kθ,η )∗

)
Like the aforementioned Kleene closure expression, its

computation involves a continuous sequence of iterations,
thus it cannot be translated into a single SQL statement. A



naive compositional evaluation with the previous algorithm
would derive a huge amount of redundant triples that need
to be discarded afterwards. However, instead of retrieving
all connections between both resources, we solely need to
check for the existence of at least one path connecting them.
The corresponding algorithms is depicted in Algorithm 2.

Again, we use the semi-naive evaluation, but this time we
start with two initial tables denoted by ∆P 0

l and ∆P 0
r , which

contain only those triples that start and end with the given
resources, respectively. The algorithms then alternately de-
rives new triples for ∆Pnl and ∆Pnr . In other words, we
perform a breadth-first search that starts from both ends.
As in the previous case, we can exploit Impalas partitioning
strategy by creating two tables, Pliter(sub, pred, obj) and
Priter(sub, pred, obj), partitioned by iteration number to re-
duce the computational effort. Finally, the existence of a
path of length i is checked by joining the two tables for
∆Pnl and ∆Pnr , where just the number of results is needed
(denoted by res). The algorithm terminates, if either a con-
nection is found, thus res 6= 0, or both ∆Pnl and ∆Pnr are
empty, i.e. we computed the reachability starting from both
ends without finding an intersection.

Algorithm 2: Semi-naive eval. of connectivity pattern

input: triplestore E, resource startNode, resource endNode

1 n← 0, ∆P 0
l ← σs = startNode(E), ∆P 0

r ← σo = endNode(E)

2 res = count
(

∆P
dn/2e
l ./i,j,kθ,η ∆P

dn/2e
r

)
3 while

(
∆P
dn/2e
l 6= ∅ & ∆P

dn/2e
r 6= ∅

)
& (res = 0) do

4 n← n+ 1
5 if (n mod 2) = 1 then

6 tmpl = ∆P
d(n−1)/2e
l ./i,j,kθ,η E

7 ∆P
dn/2e
l = tmpl −

(
∆P 0

l ∪ ... ∪∆P
d(n−1)/2e
l

)
8 else

9 tmpr = E ./i,j,kθ,η ∆P
d(n−1)/2e
r

10 ∆P
dn/2e
r = tmpr −

(
∆P 0

r ∪ ... ∪∆P
d(n−1)/2e
r

)
11 end

12 res = count
(

∆P
dn/2e
l ./i,j,kθ,η ∆P

dn/2e
r

)
13 end
14 return res

4.4 Query Composition
As described in the previous sections, each TriAL expres-

sion is mapped to one or more corresponding SQL queries.
In a sequence of queries, q0 . . . qi, where qi uses the out-
put of qi−1 as input, we can exploit the fact that SQL it-
self is also a closed and compositional language. Instead
of executing i isolated queries sequentially (referred to as
materialized execution), we can combine them into a sin-
gle composite query (referred to as composite execution).
This is especially interesting for Impala to avoid materializ-
ing the output of q0 . . . qi−1 to HDFS to serve as input for the
next query. Unfortunately, we cannot use this strategy for
recursive TriAL expressions as Impala does currently not
support recursion. In Spark, we have the choice whether to
materialize the result of a query in HDFS or not as Spark
supports to cache tables in memory. Moreover, we can even
use a composite execution for recursive TriAL expressions
by utilizing the fact that in Spark a user can embed SQL
queries in a general Scala or Java program used as a driver.

For Hive (on MapReduce), it does not make a difference
between both strategies as intermediate results are anyway
materialized in HDFS.

However, composition is not always superior to a sequen-
tial execution mainly for two reasons: (1) Composition com-
plicates the query plan and may lead to incorrect cardinal-
ity estimations in a sequence of joins and thus suboptimal
execution plans. (2) We observed that a sequence of small
queries reduces the overall memory usage compared to a sin-
gle pudgy query and thus increases the probability that the
system does not spill to disk which slows down join process-
ing substantially. Experiments in Sec. 5 demonstrate that
none of both strategies is clearly superior to the other.

5. EXPERIMENTS
The experiments were performed on a cluster with ten ma-

chines, each equipped with a six core Xeon E5-2420 CPU,
2×2 TB disks and 32 GB RAM. We used the Hadoop dis-
tribution of Cloudera CDH 5.7.0 with Impala 2.5.0, Spark
1.6.2 and Hive 0.13.1. The machines were connected via
Gigabit network. Both the Impala daemon and Spark ex-
ecutor were using 24 GB of main memory, broadcast joins
were disabled, and the Parquet filter push-down optimiza-
tion were enabled. For competitors executed on a single
machine we used a workstation equipped with a Intel Xeon
E5-2640 CPU with six cores, twelve threads, 192 GB main
memory and 2×1 TB disks.

5.1 Experimental Use Cases
The first part of our experiments is based on a set of repre-

sentative use cases with different characteristics that enable
us to demonstrate the expressiveness of TriAL-QL along
with its costs regarding scalability on large RDF graphs.
The actual queries are inspired by typical graph analytical
questions and recommendations on social networks. We use
the state of the art Social Network Benchmark (SNB) data
generator4 to generate synthetic social networks of up to 1.8
billion triples (edges) with power-law structure which also
has been used in the SIGMOD 2014 programming contest.
The load times and store sizes are listed in Table 1. We ex-
amine both execution strategies introduced in Sect. 4.4 (ma-
terialized and composite) for Impala and Spark and compare
them with an execution on Hive using MapReduce. All re-
sults are listed in Table 2. Each query was executed five
times, the corresponding coefficients of variation cv (ratio
between standard deviation and mean) are also given.

Table 1: Load times and store sizes
Scaling Factor 1 3 10 30

Triples (in M) 59.5 176.4 594.7 1,799
RDF size 4.1 GB 12.3 GB 41.4 GB 126 GB
Triples Table 0.6 GB 1.7 GB 6.2 GB 19 GB
Loading 32.4 s 90.4 s 299.3 s 893.1 s
Parquet file size 8 MB 8 MB 16 MB 32 MB

Use Case 1: Socialized Recommendations. In the
first experiment we ask for the posts of a users friends that he
has not liked yet, computed for all users in parallel. For the
sake of brevity, we omit the TriAL* expression for knows,

4http://ldbcouncil.org/developer/snb



posts and likes, where each is retrieved by an additional join
on the input table snb. However, they are included in the
execution times. The corresponding TriAL* expressions
are defined as follows:

friendsPosts = knows ./ s1, fposts, o2
o1=s2 posts

likedFriendsPosts = friendsPosts ./ s1, fposts, o2
s1=s2, o1=o2 likes

postSuggestions = friendsPosts− likedFriendsPosts

The query contains no recursion and could also be expressed
with SPARQL, but it illustrates the strength of composition
where an expression processes the results of previous ones.
In total it consists of five joins and a set operation that
process large portions of the underlying RDF graph. We
can see that the composite execution with Impala performs
best (2x faster than materialized on average) while scaling
almost linear with increasing data size. Spark is competitive
for smaller data sizes but gets significantly slower for larger
ones. Hive is an order of magnitude slower than Impala but
still scales out smoothly with larger data sizes. Summarized,
for rather data-intensive but not too complex queries as used
for this use case, Impala performs best while Hive exhibits
slightly better scaling properties.

Use Case 2: Reachability. This experiment defines a
reachability query that cannot be answered by just travers-
ing the input graph, but rather needs reasoning capabilities.
We consider two arbitrary persons to be reachable, if we can
derive a path between them where (1) each intermediate pair
of persons work together in the same company, and (2) all
persons along the path share the same spoken language. The
corresponding TriAL* expressions are as follows:

worksAt = snb ./ s1, worksAt, o2
o1=s2, p1=sn:workAt, p2=sn:hasOrga

snb

sameWork = worksAt ./ s1, worksWith, s2
o1=o2, s1!=s2

worksAt

sameLang = snb ./ s1, o1, s2
o1=o2, s1!=s2, p1=p2, p1=sn:speaks

snb

colleagues = sameLang ./ s1, p1, o1
s1=s2, o1=o2 sameWork h1

reach =
(
colleagues ./ s1, p1, o2

p1=p2, o1=s2

)∗ h2
We split the analysis of the execution times in Table 2 into
two parts: In h1 we summarize all non-recursive expressions
including colleagues and in h2 we investigate the computa-
tion of the transitive closure expressed by reach.

For h1 we can see that the Impala runtimes again scale
almost linear with increasing data sizes. But this time,
materialized execution is superior to composite for larger
datasets. We explain this behavior with a better execution
plan of Impala due to statistics computed for intermediate
tables. The costs for computing statistics are included in
Table 2 (cf. column statistics). For h2 again Impala outper-
forms Spark, although it was heavily spilling to disk during
query execution (starting from SF 10). Moreover, Spark
runs out of memory on larger datasets (indicated by MEM).
This might result from the two table approach required for
Spark (c.f. Sect. 4.2) compared to the partitioned table ap-
proach used for Impala. As a consequence, Spark needs
more memory and requires additional computational effort.
Again, Hive was significantly slower than Impala and Spark
but exhibits a better scaling for larger datasets. More care-
fully, we can observe that the performance benefit of Impala
is mainly attributed to the more efficient determination of
newly derived triples (∆P i) rather than join computation.
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Figure 2: Mean runtimes (in s) for Use Case 3: (left)
total mean, (right) by path distance for SF 30

Use Case 3: Connectivity. The last experiment asks
for the existence of a path between two given persons by
following the friendship relationship. We choose 50 persons
randomly and compute their connectivity based on the fol-
lowing TriAL* expressions:

knows = snb ./ s1, knows, s2
o1=s2, p1=sn:knows, p2=sn:hasPers

snb h3
path = σ

s=person 1, o=person 2
((knows ./ s1, p1, o2

o1=s2 )∗) h4
Note that h3 knows is only computed once and stored as
a new relation (table) in the triplestore and used to com-

pute h4 path over and over again, bridging the gap between
ETL-like workloads and explorative ad-hoc style queries.
Hive was not considered in this experiment since MapRe-
duce start-up costs are already higher than desired runtimes
for this query type. However, it will be interesting to inves-
tigate novel derivations of Hive (Hive on Tez, Hive on Spark)
that aim to replace MapReduce with a more interactive ex-
ecution framework for future work.

The mean runtime for computing the connectivity be-
tween two randomly chosen persons with Impala was only
2.3 seconds on a dataset with 1.8 billion triples while scaling
smoothly with the data size (cf. Figure 2). For Spark it is
6.4 seconds which is still competitive. The average distance
between two persons was 2.8 for the smallest dataset and
increased up to 3.2 for the largest one. Table 2 also lists
the runtimes by distance (denoted by h5 ). Considering dis-
tances of at most 2, we get runtimes of < 1 second and a
maximum runtime of 37 seconds for a distance of 7. This is
also illustrated in the right plot of Figure 2 where both Im-
pala and Spark exhibit same exponential scaling behavior.

Comparison of Impala and Spark
In summary, the overall performance our TriAL-QL En-
gine using Impala was continuously better than for Spark.
However, a more granular view on the actual costs for the re-
spective operations reveals some further interesting proper-
ties which highlight some strengths and weaknesses of both.
Figure 3 illustrates the percentage of the total runtime of
the respective operations for Use Case 2 (see Algorithm 1
in Sect. 4.2). Here we can see that computing ∆P i, i.e. de-
termine the newly derived triples in iteration i, dominates
the total execution time of Spark whereas this task is very
efficient in Impala due to the partitioned table approach
which is not applicable in Spark 1.6.2 (cf. Sect 4.2). How-
ever, if we consider the actual join processing costs (tmp =

∆P i−1 ./i,j,kθ,η E), the performance of Spark is even faster
than Impala. Thus, a better support for partitioned ta-
bles in future Spark versions might reveal other performance
characteristics.



Table 2: Mean runtimes (in s) comparing composite and materialized execution on Impala, Spark- and Hive,
cv = coefficient of variation, ∆P i and tmp match with Algorithm 1.

U
se

C
a
se

1

Impala (comp.) Impala (mat.) Spark (comp.) Hive

SF total (cv) write total (cv) stats write total (cv) write total (cv) results

1 15.7 (2.5%) 3.6 42.3 (4.8%) 6.9 5.3 24.1 (2.0%) 2.3 283.4 (1.3%) 1,161,253
3 29.0 (1.8%) 5.0 57.9 (2.9%) 9.4 5.0 57.8 (2.4%) 4.1 444.1 (0.8%) 3,569,709
10 67.5 (1.1%) 4.9 120.7 (1.0%) 20.1 4.7 188.1 (1.0%) 5.9 979.2 (0.5%) 12,635,382
30 188.8 (1.4%) 7.1 323.7 (1.4%) 51.6 5.4 831.5 (3.8%) 5.9 2553.5 (0.8%) 39,442,329

U
se

C
a
se

2

i 1 col
le
a
g
u
es

Impala (comp.) Impala (mat.) Spark (comp.) Spark (mat.) Hive

SF total (cv) write total (cv) stats write total (cv) total (cv) total (cv)

1 16.9 (2.2%) 3.9 29.3 (2.7%) 5.5 3.6 44.5 (1.3%) 50.0 (1.9%) 250.7 (1.0%)
3 38.3 (1.5%) 4.0 43.2 (4.9%) 6.4 4.2 83.8 (2.5%) 90.6 (1.1%) 294.4 (0.6%)
10 159.0 (0.7%) 5.1 121.1 (3.9%) 11.6 6.2 321.6 (1.3%) 333.2 (1.7%) 605.3 (0.8%)
30 866.6 (0.4%) 9.7 631.9 (6.2%) 42.4 9.1 2048.0 (5.2%) 2039.9 (2.7%) 2501.2 (0.3%)

U
se

C
a
se

2

i 2 rea
ch

Impala (mat.) Spark (mat.) Hive

SF total (cv) ∆P i tmp total (cv) ∆P i tmp total (cv) ∆P i tmp iterations results

1 201 (1.4%) 32 122 483.7 (2.2%) 396.1 87.6 2727 (0.3%) 1046 1101 17 2.6 M
3 431 (2.6%) 65 316 847.1 (0.7%) 539.6 307.5 4749 (1.5%) 1737 2424 17 19.3 M
10 5184 (1.0%) 362 4760 MEM MEM MEM 33048 (0.5%) 2768 29732 15 153 M
30 22933 (4.7%) 725 22148 MEM MEM MEM 60178 (1.4%) 4611 54929 14 591 M

U
se

C
a
se

3

S
p
a
r
k

Im
p
a
la

i3 knows i4 connect. (mean) i5 connectivity by distance, total (cv)

SF total (cv) total ∅distance 1 2 3 4 5 6 7

1 4.4 (4%) 1.3 (∅ 2.8) 0.1 (0%) 0.5 (0%) 1.3 (3%) 2.7 (2%) 4.8 (3%) 7.9 (2%) 13 (2%)
3 8.1 (4%) 1.5 (∅ 3.0) 0.1 (0%) 0.5 (3%) 1.4 (3%) 2.9 (2%) 5.3 (2%) 8.9 (2%) 14 (1%)
10 13.0 (6%) 1.7 (∅ 3.0) 0.1 (24%) 0.6 (7%) 1.6 (5%) 3.2 (4%) 5.9 (3%) 9.9 (2%) 20 (1%)
30 25.1 (2%) 2.3 (∅ 3.2) 0.2 (0%) 0.8 (2%) 1.8 (3%) 3.6 (3%) 7.7 (2%) 13 (2%) 37 (1%)

1 3.3 (0%) 3.7 (∅ 2.8) 0.4 (2%) 1.5 (6%) 4.1 (4%) 6.8 (5%) 12.1 (5%) 18 (5%) 33 (3%)
3 7.7 (0%) 4.2 (∅ 3.0) 0.5 (1%) 1.6 (3%) 4.2 (1%) 6.8 (0%) 12.3 (3%) 19 (2%) 34 (1%)
10 18.8 (3%) 4.7 (∅ 3.0) 0.5 (2%) 1.6 (1%) 4.2 (1%) 7.1 (7%) 12.6 (7%) 20 (4%) 35 (3%)
30 56.6 (1%) 6.4 (∅ 3.2) 0.7 (30%) 2.0 (28%) 5.2 (15%) 8.0 (10%) 13.7 (5%) 23 (10%) 41 (9%)
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Figure 3: Runtimes by task (in %) for Use Case 2

Another aspect is the superlinear increase in time required
to compute h2 reach starting from SF 10 which is mainly
attributed to the actual join processing (tmp). Spark runs
out of memory and fails while Impala starts to spill heavily
to disk but is able to complete the job. This demonstrates
that Impala is currently more robust when it comes to mem-
ory bottlenecks and thus the need for on-disk joins.

5.2 Waterloo SPARQL Diversity Test Suite
We based the second part of our experiments on the Wa-

terloo SPARQL Diversity Test Suite [5] (WatDiv), which
provides a test environment for RDF data management sys-
tems with more diverse workloads than other benchmarks.
We generated datasets from ten million to a billion RDF
triples using the WatDiv data generator with scaling factors

100, 1000, and 10000. Since we focus in this dissertation on
path-based queries, we used the Incremental Linear Testing
use case which focus on path-shaped patterns. It consists of
three query types (IL-1, IL-2, IL-3) which are bound by user,
retailer or unbounded, respectively. Each query starts with
a length of 5 (IL-1-5) and becomes incrementally increased
up to 8 (IL-1-8).

We compare our TriAL-QL Engine with six competitive
RDF Management systems and one graph database5. Since
the original WatDiv queries are written in SPARQL, we
translated them in the languages supported by the respective
system. As two representative SPARQL-query-processors
that use MapReduce we chose Shard [41] and PigSPARQL
[42]. Shard is written directly in MapReduce, where each
triple pattern is mapped to exactly one reduce-side-side-join.
Data is stored in HDFS, where triples are grouped by their
subjects and put together in one line. PigSPARQL is a
SPARQL query processor which, instead of a direct map-
ping, translates into Pig Latin as an intermediate layer be-
tween MapReduce. Data is stored vertically-partitioned in
HDFS. With H2RDF+ [36], we have one representative
SPARQL engine built on top of a NoSQL store. H2RDF+
uses HBase to store triples sorted by row keys in six differ-
ent triple permutations. Based on the selectivity of a triple
pattern, queries are either executed on a single node or dis-
tributed using MapReduce. Two representative SPARQL

5Results for TriAL-QL, S2RDF and Neo4j are based on two
master thesis [12, 46]



engines that utilize in-memory processing frameworks are
Sempala [43] and S2RDF [44]. Sempala is built on top of
Impala. Its RDF data layout is highly optimized for star-
shaped queries and enables interactive querying times on
large RDF graphs. S2RDF is a fast SPARQL-on-Hadoop
engine built on top of Spark SQL. It stores its data using Ex-
tended Vertical Partitioning (ExtVP), which efficiently min-
imizes the query input size regardless of the query pattern
shape and diameter. Virtuoso Open Source Edition v7.1.1
[19] represents a state-of-the-art centralized RDF data man-
agement system using a relational database to store data. It
supports SPARQL 1.1, OWL reasoning, and benefits from
indexes and a two-level compression strategy optimized for
RDF. As a last competitor we chose the graph database
system Neo4j [33]. Neo4j, of which we used version 3.0.6,
is one of the most prominent native graph-databases run-
ning on a single-machine. Data representation is based on
the Labeled Property Graph model, which consists of enti-
ties (nodes) and relationships (labeled edges). A connection
between two entities is then represented by a directed and
named relationship. While loading the WatDiv data into
Neo4j, we modeled an RDF triple (s, p, o) of entities s and
o connected by a relationship p. Here it was crucial to en-
sure that two identical IRIs (only subjects and objects) refer
to the same node in the property graph. We skipped liter-
als, since they are not required for the Incremental Linear
Testing use case, although they could have been easily rep-
resented by so-called attributes. Further, we translated the
WatDiV queries into Cypher, Neo4j’s graph query language,
which is a declarative, pattern-matching language compara-
ble to regular path queries.

Table 3: WatDiv load times and HDFS sizes
SF100 SF1000 SF10000

tu
p
le
s

original 10.91 M 109.2 M 1091.5 M
TriAL-QL VP 10.91 M 109.2 M 1091.5 M
S2RDF VP 10.91 M 109.2 M 1091.5 M
S2RDF ExtVP 119.94 M 1197.9 M 11967 M
Neo4j Graph 9.58 M 95.99 M 959.4 M

H
D
F
S

si
z
e

original 507 MB 5.3 GB 54.9 GB
TriAL-QL VP 103 MB 1.2 GB 13.2 GB
S2RDF VP 82 MB 0.6 GB 6.6 GB
S2RDF ExtVP 914 MB 6.2 GB 63.7 GB
H2RDF+ 517 MB 5.2 GB 57.0 GB
Sempala 249 MB 3.5 GB 40.4 GB
PigSPARQL 871 MB 8.9 GB 92.5 GB
SHARD 981 MB 9.9 GB 100 GB
Neo4j Graph 4425 MB 50.9 GB 536.7 GB

Discussion on Store Sizes. The store sizes for all
three generated datasets are listed in Table 3. We can see
that the store sizes of our engine are significantly smaller
than the sizes of the original RDF graph. This is achieved
by Parquets built-in support for run-length and dictionary
encoding in combination with snappy compression that per-
form great for storing RDF in a column-oriented format.
The largest store sizes are created by Neo4j’s Labeled Prop-
erty Graph model, which was also reflected in its loading
times. Loading the smallest dataset took 12 hours and the
largest one ten days. The main workload was therefore the
insertion of nodes and the updating of their indexes.

Discussion on Performance. Figure 4 illustrates the
runtime differences between all benchmarked systems in a

log-scaled bar chart. The first result is that our Trial-QL
Engine executed on Impala outperforms most competitors.
Regarding individual runtimes, we want to emphasize that
for IL-3 on SF 10000, which produces more than 25 billion
results, TriAL-QL required less than 24 minutes to finish. In
comparison, the slowest execution, which was PigSPARQL
on MapReduce, lasts for more than 11 hours and the best
competitor, S2RDF, required about 34 minutes to compute
its results. Both single-machine engines, Neo4j and Virtu-
oso, were not able evaluate this query on the largest dataset
using a time constraint of 24 hours. The other range of ex-
ecution times is also worth noting. For IL-1 and IL-2, the
mean runtimes for TriAL-QL are 1.2 seconds on SF 100,
which contains 11 million triples. On SF 10000, which is
a graph with over one billion triples, TriAL-QL finished its
execution in 7.8 seconds for Il-1 and 7.5 seconds for Il-2.

Next, we discuss the performance differences between both
Spark and Impala. We can see that our engine perform sig-
nificantly better using Impala rather than Spark, which is in
line with our previous experimental observations in the first
part of this section. One reason for the better performance
of Impala are our proposed algorithms and storage strategies
that are closely related to relational algebra, which in turn
is the core component of Impala. Moreover, Impala is a pure
SQL-engine, whereas Spark is a general-purpose execution
framework with support for many other querying interfaces.
Overall we can conclude, that the synergy effects of using
Impala together the proposed evaluation and storage strate-
gies are a good fit for the examined queries. Nonetheless,
both, Impala and Spark, have their strengths and weak-
nesses while being continuously improved. Future Spark
versions might therefore reveal other performance charac-
teristics.

Next, we have a closer look at both MapReduce engines
(Shard and PigSPARQL), which are clearly outperformed
by all other systems. This is actually not a surprising re-
sult due to the batch-oriented workflow of MapReduce and
the usage of disk-based operations. On the positive side we
can note that all queries were executable even on the largest
datasets, whereas single-machine approaches such es Neo4j
and Virtuoso failed on the heavy-load query (IL-3). Due
to their disk-based operators, we expect that these systems
work also on much larger datasets, whereas our approaches
based on in-memory frameworks are expected to fail once
they run out of main memory. There is also support for
disk-based operations in Impala and Spark, which are sig-
nificantly slower but at least ensure the execution without
running out of memory. However, this has to be specified in
advance while compiling a query. During query execution,
there is only support to perform so-called spilling to disk,
which massively decreases the overall performance and is
only applicable in cases where just a relatively small amount
of data needs to be moved to disk.

Summary. Overall, the evaluation clearly demonstrates
that distributed frameworks such as Impala and Spark, com-
bined with proper evaluation strategies and good data stor-
age, provide an excellent basis for the evaluation of naviga-
tional query languages such as TriAL-QL. Our implementa-
tion outperformed most evaluated competitors. For selective
queries we exhibit runtimes in the order of a few seconds. On
data-intensive queries, which produced more than 25 billion
results, we obtained runtimes in 25 minutes.
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Figure 4: Comparison of mean runtimes on a log scale for WatDiv Incremental Linear Testing 1, 2, and 3.

6. CONCLUSION
Our TriAL-QL Engine demonstrated that the Hadoop

ecosystem provides suitable solutions for processing expres-
sive, navigational queries against web-scale knowledge bases.
Selective queries exhibit query response times in the order
of seconds on datasets with more than one billion triples.
More data-intensive use-cases that produces, e.g. over 25
billion results finished in the order of minutes. Yet one of
the main benefits we see in the usage of the Hadoop ecosys-
tem is the concept of a common data pool that is shared
across various RDF management engines, developed on top
of Hadoop. This key concept further constitutes a compat-
ible ecosystem for processing RDF data where we see our
engine as complementary tool that can then be embedded
in a workflow for, e.g. preprocessing more complex paths.
For future work, we are planing to extend TriAL-QL with
the concept of provenance, to trace the origin of a triple by
means of paths and consider Apache Kudu for storing data.
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