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ABSTRACT 
Database systems have always been designed and optimized to 
maximize a specific target metric. For over four decades, 
throughput has been the target metric of choice for Online 
Transaction Processing engines. Traditionally, OLTP engines 
were deployed on uniprocessors with high-performance disk 
arrays. Given the guaranteed improvement in single-threaded 
performance provided by Moore's law, disk-based OLTP engines 
focused on optimizing for the then-dominating source of overhead 
– disk I/O. Research into multitasking and buffer caching
techniques steadily provided improvements in throughput and 
research into concurrency control and recovery techniques 
guaranteed that such improvements could be achieved without 
compromising data consistency. 

Around mid 2000s, Dennard scaling came to a crushing halt and 
processor vendors were no longer able to raise clock frequencies 
without substantially increasing power consumption. This led to 
the birth of multicore processors, which provide explicit thread-
level parallelism as an alternative to frequency scaling for 
increasing throughput. Multicore processors, however, also 
challenge OLTP engine design, as the transition from 
multitasking-style parallelism to true concurrency requires both 
thread synchronization to protect data structure consistency and 
transaction synchronization to protect database consistency. Thus, 
OLTP research focused on developing scalable synchronization 
techniques for exploiting parallelism provided by multicore 
processors [1,2,3]. 

Towards the late 2000s, DRAM price free-fall reached a level 
where it was possible for a single server to have terabytes of 
memory. With the exception of a few rare cases, it is now possible 
to fit most operational databases entirely in memory. Research 
from the database community quickly demonstrated the lack of 
scalability of traditional disk-based OLTP engines in the new 
main-memory contexts [4]. Subsequent research efforts on 
scalable main-memory OLTP engines adopt radically different 
designs when compared to their disk-based counterparts [5,6,7]. 

Today, state-of-the-art main-memory OLTP engines can handle 
millions of transactions per second and provide near-linear 
scalability under most workloads. However, three recent trends 
indicate an impending change in OLTP engine design once again: 
changes in application workloads, shifting hardware landscape, 
and new target metrics. We describe these trends briefly, and then 
outline the contents of the talk. 

Changes in application workloads. As main-memory OLTP 
engines are increasingly adopted in new application domains 
ranging from online gaming to metadata back-ends for high-
performance file systems, it has become important to support 
high-contention workloads with skewed data accesses. Such 
workloads pose a challenge for even state-of-the-art main-
memory OLTP engines, because synchronization inherent to 
concurrency control protocols emerges as a scalability bottleneck 
[8,9]. What’s more, emerging hybrid transactional and analytical 
processing (HTAP) workloads demand ACID semantics, high 
throughput, and performance isolation (for OLTP), as well as 
interactive response times and data freshness (for OLAP) [16]. 

Shifting hardware landscape. Today’s high-end servers are 
multi-socket multi-cores, packing hundreds of cores in a single 
chassis. As the number of cores will soon enter the thousands, 
there is increasingly high variability in core-to-core 
communication latencies:  cores within a socket communicate 
faster than cores across sockets. As cores employ increasingly 
deeper caching hierarchies, communication latencies within a 
socket are also different, with cores that share a cache being able 
to communicate faster than cores that do not share a cache. 
Ignoring variations in communication latency will inevitably 
result in lost performance optimization opportunities [10], but will 
also lead to poor scalability under high-contention workloads that 
already severely stress communication on current multicore 
processors[11]. At the same time, GPGPUs evolve from memory-
limited, niche accelerators into general-purpose processors that 
support advanced features, which can be used to meet the 
aforementioned emerging applications’ requirements [16].  

New target metrics. The past few years have also witnessed a 
rise in the adoption of cloud-hosted database engines. The 
migration of OLTP engines to cloud-native setting has resulted in 
energy efficiency as being recognized as an important metric to be 
optimized in addition to throughput [12,13]. Improving energy 
efficiency requires a concerted effort from both hardware and 
software, as the hardware must be energy proportional and the 
software must avoid resource underutilization. Unfortunately, 
recent research has shown that the current state is far from ideal as 
servers used for deploying OLTP engines are not energy 
proportional and even state-of-the-art main-memory OLTP 
engines substantially underutilize hardware [14,15]. 

In this talk, we discuss the implications of these trends on the 
design of next-generation transaction processing engines. We 
revisit old designs, examine current designs, and explore new 
designs with the twin goal of meeting changing application 
demands and optimizing for newer metrics by exploiting 
emerging hardware. We also discuss our ongoing projects to 
address the issues stemming from the changing hardware and 
software landscape and adapt engine designs to emerging trends, 
in order to demonstrate that transaction processing is a dynamic 
research area with a rich history, a vibrant present, and a 
revolutionary future. 
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