
PALM: Machine Learning Explanations For Iterative
Debugging

Sanjay Krishnan
UC Berkeley

sanjaykrishnan@berkeley.edu

Eugene Wu
Columbia University

ewu@cs.columbia.edu

ABSTRACT
When a Deep Neural Network makes a misprediction, it can be
challenging for a developer to understand why. While there are many
models for interpretability in terms of predictive features, it may be
more natural to isolate a small set of training examples that have the
greatest influence on the prediction. However, it is often the case that
every training example contributes to a prediction in some way but
with varying degrees of responsibility. We present Partition Aware
Local Model (PALM), which is a tool that learns and summarizes
this responsibility structure to aide machine learning debugging.
PALM approximates a complex model (e.g., a deep neural network)
using a two-part surrogate model: a meta-model that partitions
the training data, and a set of sub-models that approximate the
patterns within each partition. These sub-models can be arbitrarily
complex to capture intricate local patterns. However, the meta-
model is constrained to be a decision tree. This way the user can
examine the structure of the meta-model, determine whether the rules
match intuition, and link problematic test examples to responsible
training data efficiently. Queries to PALM are nearly 30x faster than
nearest neighbor queries for identifying relevant data, which is a key
property for interactive applications.

ACM Reference format:
Sanjay Krishnan and Eugene Wu. 2017. PALM: Machine Learning Expla-
nations For Iterative Debugging. In Proceedings of HILDA’17, Chicago, IL,
USA, May 14, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3077257.3077271

1 INTRODUCTION
Machine learning (ML) is an integral part of many software systems
such as fraud detection, content recognition, and automation. This
increased reliance on ML leads to the crucial need to develop tools
to debug and explain these models in order to understand failure
cases and further improve their accuracy. In the past, ML models
were often highly structured (e.g., decision trees are constrained to
axis-aligned splits), and this structure could be used for debugging
(e.g., whether the splits match intuition of how variables relate to
the labels). However, a recent trend is to use deep neural networks,
whose structure is more complex and difficult to directly interpret.
This results in black-box models that render existing ML evaluation,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HILDA’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5029-7/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3077257.3077271

Figure 1: (Left) ML developers need to understand the relation-
ship between training data and a model’s predictions, i.e., how
are similar points predicted in the training data. But effectively
determining the size and range of this neighborhood is challeng-
ing in expressive models which can have very complex geome-
try. (Right) We propose an approximation technique that can
represent a black-box model in terms of sub-models applied to
feature-space partitions. The developer can quickly determine
which data are related based on these partitions.

debugging, and interpretation strategies ineffective. While the data-
base community has made substantial contributions in other areas
of machine learning (e.g., training scalability and model specifica-
tion [1, 2, 5, 8, 10]), the opportunity is ripe for developing scalable
tools to debug modern machine learning models.

One approach is to explain a complex model using a simplified
approximation (a surrogate model) [13, 14, 16]. For example, we
could identify a subset of the training data in the neighborhood of a
mis-predicted test record, and fit a sparse linear model. [13, 14, 16].
Although these approximations can identify salient features, the
developer might also want to select a subset of training examples
most responsible for the prediction. This could help the developer
answer questions such as: (1) what training data most influenced
this prediction? (2) how different was this training data from the
test example? and (3) where the differences were due to genuine
variation or systematic errors in the training data? Answering these
questions can help the developer focus on cleaning the training
dataset, gather more training data, or augmenting the model.

For these reasons, we propose a new model explanation technique
that helps explain a model in terms of partitions of the training
dataset. These partitions reflect how training examples influence a
prediction from the model. By influence, we mean that if the labels
or features were perturbed for this subset, it would be more likely
to change the prediction. This notion is similar to responsibility in
the data lineage and explanation literature [4, 17], in the context of

HILDA’17, May 14, 2017, Chicago, IL, USA Sanjay Krishnan and Eugene Wu

black-box machine learning models as opposed to database queries
with well defined semantics. The problem in machine learning is
more challenging because every training data point has some impact
on every prediction. High-dimensional, non-linear models, such as
Neural Networks, have complex decision boundaries, which makes a
simple nearest neighbor search unreliable. Thus, we have to identify
a subset of data that aligns with the decision structure of model.

We present Partition Aware Local Model (PALM), which ap-
proximates a complex model (e.g., a deep neural network) using a
two-part surrogate model: a meta-model that partitions the training
data, and a set of sub-models that approximate the patterns within
each partition. These sub-models can be arbitrarily complex to cap-
ture intricate local patterns. However, the meta-model is constrained
to be a decision tree. This formulation ensures that sub-models are
accurate, while the partitions are interpretable as rules. In contrast to
existing model interpretation techniques that return locally relevant
features, our approach returns the most informative neighborhood
(partition).

Applying PALM to a debugging task is very simple—if a test
point is mispredicted, then we can identify the partition it belongs
to and investigates that subset of the training data and its associated
sub-model. As our experiments show, the developer can tune the
total number of sub-models and the depth of the decision tree to
control the trade-off between the specificity of the partitions and how
similar the surrogate model is to the complex model. We anticipate
that PALM is a starting point for the developer to further explore the
training data and more quickly identify the problematic training data
using other visualization or data summarization tools.

The rest of this short paper describes the PALM problem formu-
lation, an algorithm sketch for training surrogate models, as well as
an illustration of how PALM can be integrated into a visual model
building interface. Our experiments show that we can generate Fast
And Clear Explanations using PALM. We show that the explanations
found by PALM select subsets of data that better align with the struc-
ture of the original model than the nearest neighbor or clustering
baseline. Furthermore, we show that PALM is nearly 30x faster than
a nearest neighbor query, which is the next most accurate baseline.

2 FRAMEWORK AND API
Given a dataset with a mix of “interpretable” (structured features)
and “uninterpretable” (unstructured / high-dimensional features),
PALM uses an EM-like algorithm to learn a set of rules over the
interpretable features that partition the predictive behavior of the
model. These partitions can be used to isolate subsets of training
data that affect the prediction of a new test example.

2.1 Notation
Let the training dataset D contain tuples of features xi and labels
yi that are categorical or real-valued. train(D) is a training
algorithm that returns a model model(·) that takes as input a test
point xnew and predicts a label ŷnew :

ŷnew = model(xnew)
Consider the following running example of car insurance fraud

detection. The training dataset D has the following schema:

D(make, amount, at fault, descr, fraud?)

where make is a categorical attribute describing the make of the
car, amount is a double-valued amount that the person is claiming,
at fault is a boolean variable describing whether the claimant is
at fault, descr is a string-valued attribute describing the nature of
the claim, and fraud? is the yes/no label if the claim is fraudulent.

Suppose model(·) issues an incorrect prediction and erroneously
flags a fraudulent claim as not fraudulent. The data scientist is now
tasked with debugging the model to understand why this error hap-
pened. If she was using a simple model, like a decision tree, she
might be able to look at the structure of the model and determine
whether it matches intuition (e.g., fraudulent claimants tend not to
claim they were at fault). However, sometimes the prediction prob-
lem necessarily needs a more complex learning model. For example,
there is a textual field descr, which might be a very valuable fea-
ture for predicting fraud. Processing such data typically requires
translating the data into a higher-dimensional feature space by us-
ing NLP methods such as word-embeddings, stop word removal,
bi-gram featurization, etc. By design, this feature space may not be
interpretable by anyone other than a language expert, and using a
simpler model may not achieve the desired accuracy. Furthermore,
highly expressive deep models such as deep neural networks, which
in principle can learn any deterministic function, are susceptible to
adversarial examples (i.e., imperceptible perturbations to the fea-
tures that cause a change in prediction)[15]. This means that relying
on neighboring points can be unreliable or even misleading because
they may inadvertently be adversarial.

2.2 Debugging with PALM
The approach that we propose identifies records that the classifier
considers similar, rather than naive similarity in the feature space.
As an illustrative example, imagine if we hard-coded the following
logic:

def smodel (x) :
i f amount > 10000 :
one model f o r l a r g e r c l a i m s

re turn submodel 1 (x)
e l i f a f a u l t :
one model f o r s m a l l a t f a u l t c l a i m s

re turn submodel 2 (x)
e l s e :
#a d e f a u l t model

re turn submodel 3 (x)

In this function, interpretable rules assign new data to submodels
(which encapsulate the complexity). Although the rules are simple,
the full function smodel can still model complex patterns due to
the complex sub-models. If we observe an anomaly, the developer
can precisely blame one of the submodels; thereby, providing a
coarse predicate to select tuples that are assigned to that model.
Furthermore, the rules illustrate the implicit partitions and decision
structure of the function.

Given this intuition, PALM explores whether we can synthesize
such code structure automatically to mimic black-box (but differ-
entiable) models. An interpretable meta-model over the structured
features (e.g., make, amount, at fault), assigns a test example to a
more complex sub-model over all features. The interpretable meta-
model is represented as a decision tree (if-else statements), and the

PALM: Machine Learning Explanations For Iterative Debugging HILDA’17, May 14, 2017, Chicago, IL, USA

sub-model is allowed to be of the same class as the original model.
In the inference procedure, we learn the most likely decision tree
over the interpretable features a set of sub-models that explain a
models predictions. There is an inherent tradeoff, a meta-model that
contains a single partition true can create a sub-model that is nearly
identical to the original complex model. However the partition is
not useful to the developer. In contrast, increasing the complexity
of the meta-model makes each partition smaller, but the resulting
model potentially diverges from the original model. At the limit, the
meta-model may simply build a decision tree over the training data,
and each partition contains nearly identical points. We present initial
results exploring these tradeoffs in the experiments.

The inference algorithm can run offline during the training phase
and is no-more than a constant factor more expensive than standard
model training We presented a generalization in prior work [6, 11].
At a high-level, the algorithm takes the dataset D and the model
model as input, and returns smodel, which consists of a decision-
tree meta model that selects from a collection of k submodels. Given
a new record, the user can evaluate both:

ŷnew = model(xnew)

ŷnew = smodel(xnew) ≈ model(xnew)
and use the structure of smodel to debug with knowledge that it
approximates model.

2.3 API and System
Our current implementation is in Python and focused on TensorFlow
models. The user supplies:

• Featurized Dataset. The user provides a dataset of feature
and label tuples.

• Explainable Features. The user lists a subset of features
that are understandable.

• Tensorflow Model Description. The user provides a sym-
bolic description of the model in Tensorflow.

• Number of Sub-models. The user provides the number of
submodels to include in the surrogate model (denoted as
k).

The output of the system is:

• Original Model. The original model trained to completion
• K Sub-Models. The system returns K submodels trained

on different partitions of the feature-space.
• Decision Tree Meta Model. The system returns a meta

model that switches between the K submodels based on the
input record.

3 ALGORITHM DESCRIPTION
In prior work, we designed an algorithm in a completely different
context—to decompose complex control policies to reduce planning
horizons [6, 11]. Surprisingly, when we started discussing our ideas
with ML developers, we realized a very similar approach could apply
for problems in debugging.

For intuition on how the algorithm works, consider a standard
KMeans clustering of dataset. First, k random cluster centers are
placed over the feature-space. Then, data are assigned to the nearest
cluster. Finally, the clusters are updated based on the assignment,

and the algorithm repeats by re-assigning data based on the most
recent update.

Similarly, we can do the same thing for model training. k ran-
dom sub-models are initialized. During the “assignment” step, a
data point is assigned to the sub-model that best predicts it. Then,
during the update step, the models are updated based on the new
assignments with gradient descent. This is a variant of the popular
Expectation-Maximization algorithm, that instead of a Maximization
step computes a gradient instead.

This algorithm to run efficiently at scale and directly integrate
with TensorFlow’s Python API. So, at training time (offline) the user
can not only train the original model but also the surrogate. We also
integrated the algorithm into a local web interface that visualized
the results.

3.1 Technical Details

Fitting Step: To construct smodel(·) from model(·), we first start
off by fitting the parameters to a simplified probabilistic model. The
first step is to run model(·) over the entire training dataset and get
feature-prediction (x , ŷ) tuples. We can define f (ŷ | x) which is
the probability of the label ŷ given the feature x to represent how
model(·) generates predictions. Arbitrary probability distributions
are hard to reason about so we consider parametrized distributions
f (ŷ | x ,θ). We want to find k such distributions that best explain all
the observations:

{ f (ŷ | x ,θ1), ..., f (ŷ | x ,θk)}
Our results in prior work [6] show how this can be optimized with a
two-step algorithm:

• Initialize θ1, ...,θk randomly.
• Repeat until convergence
• For each data point i ∈ {1, ...,N }:
• – For each component distribution j ∈ {1, ...,k}:

– w(i, j) = f (ŷi | xi ,θ j)
• Gradient Ascent for each θ :

θ j ← θ j + λ
N∑
i
w(i, j)∇ log f (ŷi | xi ,θ j)

The intuition behind this algorithm is that after random initializa-
tion the initial models will have higher accuracy on different data
points (by chance). w(i, j) is a soft-assignment–assigning data points
to the model that best explains its prediction. Then, w(i, j) becomes
a weight to update the models with Gradient Ascent (or descent over
the negative log likelihood). This process repeats until convergence.
This is very similar to the K-Means or EM algorithm, but instead of
updating the cluster centers with a formula, we take a gradient step.

Distillation Step: The result of the first step is a set of model
parameters k θ1, ...,θk , and a weighting function w(i, j). The next
step is to distill w(i, j) into a set of explainable rules that select the
one of the k models. We first generate a set of hard assignments for
each data point:

h(i) = argmax
j

w(i, j)

Each h is an indicator 1, ...,k of the most likely assignment of each
data point. We can now train a more explainable model to select h as

HILDA’17, May 14, 2017, Chicago, IL, USA Sanjay Krishnan and Eugene Wu

a function of the data. This intuition is that this is a simpler model
that just selects one of the component models.

The user provides us with a list of features that are considered
“explainable”, and let xe denote the projection of an example onto
this subset of features. Then, we can train a decision tree over the
tuples (xe ,h), which have the desirable property of resembling pro-
grammatic statements. This decision tree is a multi-class classifier
that predicts the assignment to a submodel as a function of the in-
trepretable features. We call this model the meta-model, as it selects
between the component models. Finally, putting everything together,
we return something that looks similar to the hard-coded example in
the previous section. The surrogate model smodel(·) encapsulates
submodels that apply in different parts of the feature-space. Suppose,
we observe an anomaly, we can now blame a specific model and
efficiently get a predicate that selects all of the data the contributed
to the model.

4 HIGHLIGHTED EXPERIMENTS
This section presents key experimental results that highlight use
cases where PALM models can help identify training data that cause
mispredictions, when PALM diverges from the user’s more complex
model, and a comparison with alternative explanation approaches.

4.1 Setup
We consider the following scenario. Suppose, the model receives a
previously unseen test point that is mispredicted, can we identify the
subset of training data that “influences” this prediction error. PALM
returns a subset of training data using the hierarchical approximation,
but we could, in principle, apply the following approaches to select
relevant training data:
Nearest Neighbors: Suppose, we measure influence purely in
terms of similarity to the new data point. We could select the k-
nearest neighbors in the training dataset and return them to the user.
We set k to be the same as number of data points returned by PALM
for the new data point.
Clustering: Another approach would be to cluster the training
examples, and then return the cluster closest to the new data point.
We use K-Means and set the number of clusters to 10.
Random: Finally, as a baseline, we could randomly select training
examples. We set the number of selected examples to be the same
as number of data points returned by PALM for the new data point.
We measure influence in the following way. If a sample of labels

of the training data outside of the selected subset are randomly
perturbed, and the model is retrained, how often does the prediction
change. In other words, this is a measure how “true” the selected
neighborhood is w.r.t how the model implicitly partitions the feature
space.

4.2 Datasets
We split each dataset into a training dataset 80% and test dataset
20%. Movie: We have a dataset of movie descriptions IMDB 1

and Yahoo 2. Each movie has a title, a short 1-2 paragraph plot

1 ftp://ftp.fu-berlin.de/pub/misc/movies/database/
2 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

description, year, rating, language, and a list of categories, and the
goal is to train a model to predict whether a movie is a “Horror”
or “Comedy” from the description and title. The total dataset has
506,244 records. First, using TensorFlow, we trained a LSTM-based
model to predict these categories. The first layer of this model
computes what is called a word-embedding, where the LSTM learns
a feature-space in which similar words (co-occuring) are closer
together. The next two layers consist of dense layers that map the
words from the feature-space to classification outputs. The result
is a model that achieves 93% accuracy, which is far more accurate
than simpler alternatives on a Bag-of-Words featurization (random
forests 90%, Linear SVM 81%, Kernel SVM 85%).

Fraud: ProPublica collected a dataset of corporate donations to
medical researchers to analyze conflicts of interest. Records contain
the PI’s medical specialty, the drug brand name (null if not drug),
the device brand name (null if not a device), name of pharamceutical
donor, the amount donated, and whether the research is disputed.
The dataset comes with a status field that describes whether or
not the donation was allowed under the declared research protocol.
We used a Multi-Layer Perceptron to classify disallowed donations
which achieved a 82% accuracy (random forest 81%, Linear SVM
80%, Kernel SVM 80%).

4.3 Experiments

Exp 1. Isolating Mispredictions In the first experiment, we illus-
trate one benefit of PALM in terms of how it can explain predictions
in terms of subsets of training data. We measure the quality of an
explanation in the following way: (1) select a test data point that
is mispredicted, (2) construct an explanation of this prediction by
selecting a subset of training data, (3) for all examples outside of
the selected subset randomly flip the labels of 25% of the points,
(4) retrain the model and observe if the test data point changes its
prediction. We run 1000 trials of this procedure for 10 randomly
sampled mispredictions and plot the results in Figure 2. This metric
measures how well isolated the selected neighborhood is from the
other points–in other words, if the other points were changed how
much would the prediction change. The random baseline changes it
prediction roughly 25% of the time. The clustering and the nearest
neighbor approaches only consider the feature-space, not the struc-
ture of the classifier. While they are significantly more robust than
random (≤ 5%) prediction changes, PALM is much more robust (≤
1 %) prediction changes.

Exp 2. Discovering other Misprediction with PALM In the next
experiment, we explore whether mispredictions concentrate around
particular submodels. We train the models on 80% of the dataset,
and test on the remaining 20%. We measure the fraction of mis-
predictions attributed to each submodel. We want to show that
mispredictions concentrate around specific submodels and are not
evenly distributed throughout the feature-space. Figure 3 shows
this effect when we apply our algorithm to approximate the Movie
and Fraud models with k = 10 submodels. For the Movie dataset,
70% of the mis-predictions are attributed to a single submodel. For
the Fraud dataset, 78% of the errors are attributed to two of the
submodels.

ftp://ftp.fu-berlin.de/pub/misc/movies/database/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

PALM: Machine Learning Explanations For Iterative Debugging HILDA’17, May 14, 2017, Chicago, IL, USA

Figure 2: PALM isolates relevant training data more effectively
than baselines.

Figure 3: On two datasets, we show how mispredictions con-
centrate around specific submodels. This means there are spe-
cific regions of the feature-space most associated with mispre-
dictions.

Exp 3. Agreement With the Original Model We now measure the
agreement between the PALM model with the original model as we
increasing the number of partitions k (Figure 4, where agreement
is the accuracy with respect to the original model. We find that
with k = 16, both PALM models still retain > 90% agreement with
the original model. This suggests that PALM can help developers
identify more precise subsets of the training data while still trusting
that the PALM models are reflective of the original model.

Figure 4: On two datasets, we find that the discretized models
agree with greater than 90% accuracy with the original model.
As the number of submodels increase the accuracy goes down.

Exp 4. PALM is efficient PALM can run offline during training
time and queries to PALM are very efficient as it simply involves

a decision tree evaluation. PALM is explicitly designed to mimic
the user’s model, and the decision tree learned by the meta-model
can easily be used to index or partition the training data can be
indexed. For the nearest neighbors approach, it is possible to quickly
find the neighbors by using intelligent indexing structures such as
KD-trees or Oct-trees. However spatial indices are well known
to have difficulty scaling to very high dimensional datasets. In
addition, finding the neighbors in a high dimensional space may
simply not identify relevant results. One could apply dimensionality
reduction but this would further reduce its efficacy. On the other
hand the clustering approach is much faster because it only requires
querying each cluster center. Our interesting insight is that PALM
is much faster than the nearest neighbor approach, and competitive
with the clustering approach in terms of run time. Our approach
returns more than 30x faster than a nearest neighbor search even
when coupled with dimensionality reduction and a KD-Tree. The
clustering approach is much faster but PALM is still within the
latencies needed for interactive latencies.

Table 1: Run times of the different algorithms in seconds

Algorithm Movie Fraud
kNN 35.61 22.11
kNN+PCA 12.34 6.97
PALM 0.334 0.31
Clustering 0.07 0.06

5 RECENT WORK AND NEXT STEPS
The study of model intepretability and explainability is recently a
hot topic in ML research [13, 14, 16], especially in the context of
Neural Networks. An example of one such approach is to train a
sparse linear model in the local neighborhood of a point[13]. An-
other more recent approach in computer vision is to use attention
models, enforce that the model focuses on certain features, for ex-
plainability [9]. Another relevant line of work is Neural Network
Rule Extraction [7]. This problem is very challenging since highly
expressive deep models such as deep neural networks, which in
principle can learn any deterministic function, are susceptible to
adversarial examples (i.e., imperceptible perturbations to the fea-
tures that cause a change in prediction)[15]. Explaining a prediction
exactly in terms of features is highly useful for an end-user, but
developers also need to be able to trace modeling errors to training
data [12]. This is why our approach focuses on identifying the most
informative neighborhood (partition) of training data. We believe
that techniques that isolate features and data are complementary and
hope to explore combinations of the two in the future.

Based on our initial study and survey of recent related work, we
have highlighted a number of important challenges for the future
systems.

Connecting Explainability to Data Provenance: We believe that
there is further work to be done to explain predictions in terms
of relevant source data. Systems like PALM can be connected to
lineage systems to trace even further upstream than just the training
data. This leads a number of computational challenges in storing,
processing, and summarizing the selected tuples.

HILDA’17, May 14, 2017, Chicago, IL, USA Sanjay Krishnan and Eugene Wu

Reducing Hyper-Parameters and Failure Modes: Ironically, ex-
isting work in explainable models, including PALM, all have subtle
failure modes due to their assumptions and hyper-parameters. This
could lead to faulty or misleading explanations and erode user trust.
We hope to explore techniques that require less tuning and less de-
tailed understanding of the mathematical structure of the problem in
the future.

Scalability of Human Effort: Finally, an important concern is
how human analysts can explore and iterate through large training
datasets. While systems like PALM can reduce the burden, there
are still many more hurdles before truly useful machine learning
debuggers. We believe that coupling explanations with anomaly
detection may be a viable next step, as in the MacroBase project [3].

Acknowledgements: This research was supported in part by a
seed grant from the UC Berkeley Center for Information Tech-
nology in the Interest of Society (CITRIS), the UC Berkeley
RISELab, and by the U.S. National Science Foundation under
Award IIS-1227536: Multilateral Manipulation by Human-Robot
Collaborative Systems. This work has been supported in part
by funding from Google and and Cisco.

REFERENCES
[1] Keystone ML. http://keystone-ml.org/.
[2] Tensor Flow. https://www.tensorflow.org/.
[3] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and

Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. SIGMOD.
[4] James Cheney, Laura Chiticariu, Wang-Chiew Tan, and others. 2009. Provenance

in databases: Why, how, and where. Foundations and Trends® in Databases 1, 4
(2009), 379–474.

[5] Andrew Crotty, Alex Galakatos, and Tim Kraska. 2014. Tupleware: Dis-
tributed Machine Learning on Small Clusters. In IEEE Data Eng. Bull. http:
//sites.computer.org/debull/A14sept/p63.pdf

[6] Roy Fox*, Sanjay Krishnan*, Ken Goldberg, and Ion Stoica. 2017. Multi-Layer
Deep Option Discovery. In Under Review ICML.

[7] Tameru Hailesilassie. 2016. Rule Extraction Algorithm for Deep Neural Networks:
A Review. arXiv preprint arXiv:1610.05267 (2016).

[8] Joseph M. Hellerstein, Christopher Re, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library or MAD Skills,
the SQL. In VLDB. http://vldb.org/pvldb/vol5/p1700 joehellerstein vldb2012.pdf

[9] Jinkyu Kim and John Canny. 2017. Interpretable Learning for Self-Driving Cars
by Visualizing Causal Attention. arXiv preprint arXiv:1703.10631 (2017).

[10] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin,
and Michael I. Jordan. 2013. MLbase: A Distributed Machine-learning System.
In CIDR. http://www.cidrdb.org/cidr2013/Papers/CIDR13 Paper118.pdf

[11] Sanjay Krishnan, Animesh Garg, Richard Liaw, Lauren Miller, Florian T. Pokorny,
and Ken Goldberg. 2016. HIRL: Hierarchical Inverse Reinforcement Learning
for Long-Horizon Tasks with Delayed Rewards. CoRR abs/1604.06508 (2016).
http://arxiv.org/abs/1604.06508

[12] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken
Goldberg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Modeling.
PVLDB 9, 12 (2016), 948–959. http://www.vldb.org/pvldb/vol9/p948-krishnan.
pdf

[13] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural
predictions. arXiv preprint arXiv:1606.04155 (2016).

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1135–1144.

[15] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199 (2013).

[16] Jessica Taylor, Eliezer Yudkowsky, Patrick LaVictoire, and Andrew Critch. 2016.
Alignment for advanced machine learning systems. Technical Report. Technical
Report 20161, MIRI.

[17] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in
Aggregate Queries. In VLDB. http://www.vldb.org/pvldb/vol6/p553-wu.pdf

http://keystone-ml.org/
https://www.tensorflow.org/
http://sites.computer.org/debull/A14sept/p63.pdf
http://sites.computer.org/debull/A14sept/p63.pdf
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper118.pdf
http://arxiv.org/abs/1604.06508
http://www.vldb.org/pvldb/vol9/p948-krishnan.pdf
http://www.vldb.org/pvldb/vol9/p948-krishnan.pdf
http://www.vldb.org/pvldb/vol6/p553-wu.pdf

	Abstract
	1 Introduction
	2 Framework and API
	2.1 Notation
	2.2 Debugging with PALM
	2.3 API and System

	3 Algorithm Description
	3.1 Technical Details

	4 Highlighted Experiments
	4.1 Setup
	4.2 Datasets
	4.3 Experiments

	5 Recent Work and Next Steps
	References

