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ABSTRACT
Scaling complex transactional workloads in parallel and distributed
systems is a challenging problem. When transactions span data par-
titions that reside in different nodes, significant overheads emerge
that limit the throughput of these systems. In this paper, we present
a low-overhead data partitioning approach, termed JECB, that can
reduce the number of distributed transactions in complex database
workloads such as TPC-E. The proposed approach analyzes the
transaction source code of the given workload and the database
schema to find a good partitioning solution. JECB leverages par-
titioning by key-foreign key relationships to automatically identify
the best way to partition tables using attributes from tables. We
experimentally compare our approach with the state of the art data-
partitioning techniques and show that over the benchmarks consid-
ered, JECB provides better partitioning solutions with significantly
less overhead.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

Keywords
OLTP; Partitioning; Parallel; Distributed

1. INTRODUCTION
Exploiting parallelism to improve transaction processing perfor-

mance has received renewed attention in recent years, perhaps due
to the ubiquity of parallel computing platforms ranging from multi-
core processors to database appliances to cloud computing services.
Scaling transactional workloads through parallelism is limited by
the efficacy of the techniques used to distribute data across mul-
tiple processing units, for a simple reason: if each compute node
in a distributed transaction processing system accesses only local
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data, there is no need for a distributed concurrency control mecha-
nism. Thus, if we want to execute transactional workloads at scale
by exploiting parallelism, we need to partition so as to minimize
the number of distributed transactions.

A common approach to solve this problem is to rely on human
intuition, that is, to ask the database administrator to propose a par-
titioning scheme. This works well for simple workloads involving
a small number of tables, where the ratio of the insight of the DBA
to the inherent difficulty of the problem is high. Unfortunately, for
more complex workloads, the situation is harder, and some auto-
mated support for chosing partitioning strategies is desirable.

Two pioneering state-of-the-art proposals for automated data par-
titioning are Schism [11] and Horticulture [17]. Both approaches
utilize workload traces and information from the database schema
to identify a partitioning solution for a given workload. These ap-
proaches are powerful enough to partition arbitrary databases, and
in principle, given enough resources and training examples, can al-
ways find the best partitioning solution. However, while they per-
form well when the solution search space is reasonable, in more
challenging and complex situations, our experimental results show
that they may be overly expensive and/or suboptimal.

In addition to proposing a specific mechanism, one can view
our work as exploring the tradeoff between generality and perfor-
mance. Schism is the most general in that it requires only a work-
load trace, Horticulture is somewhat less general in that it requires
the schema and a workload trace, whereas our approach, which we
call “JECB”, is the least general, requiring a trace, a schema, and
the code for the stored procedures that specify the transactions to
be run. We have implemented our approach and tested it over a
diverse set of benchmarks, both simple and complex, all of which
have been used by previous work investigating transaction process-
ing performance. Our results show that over these benchmarks, our
approach never produces worse partitionings than Schism or Horti-
culture, and often produces substantially better partitionings. This
indicates that at least for this class of benchmarks, a computation-
ally simple approach like JECB that exploits source code, schemas,
and traces can be very effective.

In our work we found that the use of key-foreign key joins in
the context of partitioning transactional workloads is particularly
beneficial. To be sure, we are not the first to propose partition-
ing databases through the use of key-foreign key constraints; key-
foreign key partitioning has been explored and even deployed many
times previously. However, to the best of our knowledge, no au-
tomated way of systematically considering the partitioning space
induced by key-foreign key attributes for minimizing distributed

39



transactions appears in the literature, nor has a comparison of such
an approach to Schism and Horticulture been published.

A summary of our contributions is:

• An automatic partitioning method that utilizes transaction
source code and the database schema and considers local and
foreign key attributes as candidate partitioning attributes.

• A method to search and prune the space of partitioning alter-
natives.

• A comparison between this method and two state-of-the-art
approaches on commonly studied transaction processing bench-
marks.

The rest of the paper is organized as follows. In the next section, we
describe related work. In Section 3, we present an overview of our
approach. The details of our approach appear in Sections 4, 5 and
6. In Section 7, we present experimental results, and we conclude
in Section 8 along with a brief discussion on issues of data skew
and choice of cost model.

2. RELATED WORK
Horizontal data partitioning has long been used by parallel database

systems [12], and has been studied intensively [13, 19, 9, 15, 20].
The goal of partitioning in this work is to exploit partitioned paral-
lelism to speed up read-only workloads. This differs from our focus
here — partitioning to avoid multi-site transactions in OLTP work-
loads — hence the techniques developed in the context of parallel
DBMS partitioning are not directly applicable.

As an example, consider two representative efforts at automated
partitioning for decision support workloads: [15] and [20]. These
techniques consider multiple partitioning options, evaluating each
by consulting the query optimizer to arrive at an estimated cost for
a given workload over a given partitioning. This may result in a
partitioning strategy that would also be effective for a transactional
workload, but this is far from certain. A main reason for this is that
none of the optimizer cost models employed consider the effect
of concurrency control costs due to distributed transactions. Ex-
tending the optimizer cost model to apply this kind of solution to
partitioning transactional workloads is an interesting area for future
work.

In work more directly related to ours, there has been a grow-
ing focus on partitioning to support OLTP workloads, in particu-
lar Schism [11] and Horticulture [17]. Schism begins by model-
ing training transactions as a tuple graph, with nodes as tuples and
edges between all tuple pairs that are accessed together in some
transaction. The graph is then partitioned into the desired number
of partitions while minimizing the number of edges cut. The re-
sultant partitioning is input to a machine learning algorithm that
trains a classifier to partition arbitrary tuples from the database (not
just those seen in the training trace). Schism also proposes exploit-
ing joins to optimize the case where the tuples of one table are
frequently accessed via a join path from another table. However,
no automated method of selecting joins is presented, nor is there
a discussion for handling multiple joins alternatives nor are there
experimental results from this approach to considering joins.

In contrast to Schism’s learning approach, Horticulture begins by
using the database schema to generate proposed partitionings. For
each table accessed by the transaction stream, it picks a partition-
ing attribute and uses a training trace to evaluate its quality. This
process is repeated by choosing different partitioning attributes in a
“generate and test” search process. Unlike our work, Horticulture
uses a sophisticated cost model and addresses the problem of data

skew. Their cost function incorporates the number of distributed
transactions, along with the total number of partitions touched in
the distributed transactions and the workload temporal skew factor.
Also, Horticulture proposes an optimization to look into the trans-
action source code and combine sets of similar queries/transactions
in order to improve scalability through workload compression. How-
ever, there is no discussion on its effect on the quality of the result-
ing partitioning solutions.

SWORD [18] is similar to Schism in that it models the work-
load as a hypergraph over the tuples, compresses the hypergraph,
and applies graph partitioning techniques to obtain partitioning so-
lutions. However, the main focus of the work is on incremental
re-partitioning, effective workload modeling and compression, and
not on algorithms to initially partition the data.

The concept of partitioning via key-foreign key joins is sup-
ported by at least one commercial product (Oracle [4]) where it
is referred to as partition by reference or REF partitioning [4].
However, this feature is designed for improving the performance
of key-foreign joins between two tables, and not for choosing the
best data partitioning solution for transactional workloads. Along
similar lines, HadoopDB [6] supports referential partitioning to en-
able faster execution of data warehouse queries. Google’s F1 [21]
supports hierarchical schemas, which co-locate tuples that join on
key-foreign keys.

An extension of the work done by Ceri et al. [8], as described
by Zilio [23], partitions a set of relations by first categorizing the
relations into primary relations, which are relations with no foreign
keys, or secondary relations, which have at least one foreign key.
The partitioning keys for the primary relation are selected based on
minterms constructed from the query predicates. The partitioning
keys for the secondary relations are the foreign keys in the relations
that are involved in the most frequent joins with one of these other
relations. However, no algorithm/strategy has been published to
achieve this partitioning automatically, nor has it been compared to
modern solutions such as Schism or Horticulture.

3. OVERVIEW OF JECB
The “JE” in “JECB” stands for “Join Extension.” This captures

the fact that JECB leverages key-foreign key constraints to propa-
gate partitioning decisions from one table to another. For concrete-
ness and as background for what follows we illustrate the approach
an example:

EXAMPLE 1. Suppose we have a subset of the TPC-E database
as shown in Figure 1, where (HS_S_SYMB, HS_CA_ID), T_ID, and
CA_ID are the primary keys of the tables HOLDING_SUMMARY,
TRADE, and CUSTOMER_ACCOUNT. Furthermore, suppose we
have a workload with one transaction type that takes as input a
customer identifier and retrieves: (a) the total number of securities
that customer holds, and (b) the average number of securities the
customer bought in each trade. This transaction class, which we
call CustInfo, can be implemented by the following stored proce-
dure (note that this is not a real TPC-E transaction class):

CustInfo(@cust_id bigint)
{

SELECT SUM(HS_QTY)
FROM HOLDING_SUMMARY join CUSTOMER_ACCOUNT

on HS_CA_ID = CA_ID
WHERE CA_C_ID = @cust_id

SELECT AVERAGE(T_QTY)
FROM TRADE join CUSTOMER_ACCOUNT

on T_CA_ID = CA_ID
WHERE CA_C_ID = @cust_id

} Our goal is to split this database into two partitions such that
for any valid value of cust_id, the transaction is single-partitioned,
that is, all tuples the transaction accesses belong to the same par-
tition.
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HOLDING_SUMMARY
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1
1

1
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10

1
2
1
2

CUSTOMER_ACCOUNTTRADE

Figure 1: The “CustInfo” Transaction

Consider first the table TRADE. There is no obvious hash or
range partitioning that can be applied to any of its three columns
T_ID, T_CA_ID, and T_QTY to make transactions single-partitioned.
However, this database and transaction class actually has a very
natural partitioning strategy: TRADE should be partitioned by col-
umn CA_C_ID of the CUSTOMER_ ACCOUNT table by following
the key-foreign key join between TRADE and CUSTOMER_ACCOUNT.
The same holds for HOLDING_ SUMMARY. The result of this par-
titioning is shown in Figure 1, where the database is partitioned
into two partitions: the red partition for tuples associated with
CA_C_ID = 1, and the blue partition for tuples associated with
CA_C_ID = 2.

The preceding example is illustrative in another aspect as well: If
we partition on column CA_C_ID of the CUSTOMER_ACCOUNT
table, and then use this to partition TRADE and HOLDING_ SUM-
MARY via their foreign key joins with CUSTOMER_ACCOUNT,
then executions of the specified transaction will be single parti-
tioned for any instance of the database that adheres to the key-
foreign key requirements of the schema.

With this join-extension approach, a table can be partitioned by
columns of any table connected by one or more key-foreign key
joins. Note however, that multiple join paths may exist for a given
pair of tables. Therefore, the total number of possible partitioning
solutions for a table in our join-extension approach is often bigger
than that of approaches that only consider intra-table attributes for
partitioning, which makes our search space larger. For example,
the TRADE table in TPC-E has only 15 columns, but more than
100 possible join-extension solutions.

Another issue is the overhead of evaluating the cost of each can-
didate solution. With join-extension partitioning, computing the
cost of a specific solution can be expensive since the values of the
partitioning attributes may not be available from the trace. To ob-
tain the values of the partitioning attributes for a tuple, we may need
to evaluate the key-foreign key join sequence defining the partition-
ing solution and use it to access the values needed.

We address these two issues by exploiting the following obser-
vations. First, OLTP workloads are often composed of a predeter-
mined set of stored procedures. A stored procedure is a transaction
template which may already define a specific join path. Hence,
by inspecting the SQL code of these templates and the database
schema, we can significantly prune the search space of partitioning
solutions. We exploit this idea in our approach, and it is the reason
for the “CB” (“Code-Based”) part of “JECB.”

As an example, for the CustInfo example in Section 1, we first
use the SQL queries to discover that HOLDING_SUMMARY joins
CUSTOMER_ACCOUNT viaHS_CA_ID = CA_ID and TRADE
joins CUSTOMER_ACCOUNT via T_CA_ID=CA_ID, and we
then use the workload trace to identify that CA_C_ID is the best
partitioning attribute.

Our second observation is that when the workload consists of
multiple classes of transactions, the global optimal partitioning so-
lution must be related to the local partitioning solutions of each
transaction class. Therefore, we search for the global partitioning
solution in the search space created from local partitioning solu-
tions, which is much smaller than the general search space. Horti-
culture uses a related idea to compress the input to their approach.

Putting these observations together, JECB takes as input a work-
load trace, the database schema, the SQL code of transaction classes
and the number of desired partitions and generates a partitioning
solution. JECB has three phases:

• Phase 1: Pre-processing. In this phase, we gather informa-
tion that supports the next two phases. We collect the work-
load trace, which contains sets of tuples accessed in each ex-
ecuted transaction. Read-only and read-mostly tables, which
will be replicated by default, are also identified in this phase.

• Phase 2: Partitioning individual transaction classes. To find
the best solution for each transaction class, we first use the
SQL code for the class and the database schema to construct
a graph that connects accessed tables with key-foreign key
joins. We then use the workload trace to select connection
structures that produce the partitioning solutions with the
lowest cost.

• Phase 3: Combining solutions After obtaining the partition-
ing solutions for each transaction type, we combine them
in order to find the best global partitioning solution for the
database. A table is often accessed in multiple transaction
types, thus, it often has multiple potential partitioning so-
lutions. To search for the best combination of partitioning
solutions, we employ two heuristics based on the concept of
compatibility among partitioning solutions.

These phases are elaborated in the next three sections.
A current limitation of our approach is that we only consider key-

foreign key joins. As we will see in our experimental section, this
is sufficient to perform well on the benchmarks we consider. There
may be other workloads for which general joins must be consid-
ered. This is an interesting yet potentially challenging area for fu-
ture work, as general joins represent many-many relationships and
using them in partitioning decisions may require something akin to
multi-valued dependencies.

Finally, as with any partitioning strategy for OLTP workloads,
at runtime one needs to route transactions to partitions. Here we
briefly touch on how this can be done.

In general, to route a query or a stored procedure, we select a
routing attribute from attributes appearing in selection conditions
in WHERE clauses, or from attributes that map to the parameter
set of the stored procedure. In the simplest case where the routing
attribute matches the partitioning attribute, we simply use the value
of the partitioning attribute to decide the partition. However, that
does not happen in many cases, especially in our approach since
the global partitioning attribute may not belong to every table.

There have been several approaches [22, 14, 7] proposed to ad-
dress the mismatch problem between partitioning attributes and
routing attributes, and among them, the lookup table approach is
the one that best fits our solution. A lookup table is a mapping
for a table column that maps each value of the column to a set of
partition ids that store the corresponding tuples. We can see that
the lookup table for the attribute in this case is the mapping func-
tion that we have defined in Definition 10. Note that the coarser
the attribute, the less space we need to store its lookup table. To
route a query or stored procedure, we find a relevant attribute that
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is compatible and finer than the partitioning attribute and build a
lookup table on it via a join path. If no such attribute exists, then in
some fundamental sense the query or stored procedure in question
does not match our partitioning, and we are forced to broadcast the
query or stored procedure to all partitions.

4. PHASE 1: PRE-PROCESSING
We begin with definitions of transactions and workloads.

DEFINITION 1. A database D is a set of tables. We represent a
transaction by the tuples it reads and writes. Given a database D,
a transaction τ is a set of tuples drawn from a read set and a write
set, τ = R ∪W, where R = {r1, r2, ..., rn}, ri ∈ D for i = 1..n,
and W = {w1, w2, ..., wm}, wj ∈ D for j = 1..m.

A workload is a bag of transactions. If all transactions of a work-
load access tuples belonging to the same set of tables via the same
SQL queries, we call the workload a homogeneous workload. The
set of transactions generated by a stored procedure represents a
transaction class. A trace of a transaction class is a homogeneous
workload, and thus we use “transaction class” and “homogeneous
workload” interchangeably.

The pre-processing phase comprises the following:
Collecting the workload trace: To obtain the tuples accessed

within each transaction, we instrument each stored procedure with
additional SQL statements to collect tuples accessed in queries of
the stored procedure.

Identifying the set of tables that need to be partitioned: Using
the workload trace, we identify read-only and read-mostly tables in
the workload and the remaining tables will be partitioned. We first
replicate read-only tables among all partitions. We also replicate
read-mostly tables, which makes transactions updating these tables
distributed by default. However, if the percentage of such transac-
tions is small, this replication will not have a substantial affect on
the quality of the final partitioning result.

Splitting the trace into different streams: The trace collected
from the driver is further partitioned into sub-traces, one for each
transaction class.

5. PHASE 2: PARTITIONING
The goal of this phase is to find partitioning strategies for indi-

vidual transaction classes. To do so, we find solutions that partition
every table referenced in an individual transaction class; however,
we also consider solutions that only partition some of the tables
referenced by the transaction class. These partial solutions may be
more useful in the construction of the global strategy than the total
solutions, as they are often of finer granularity.

As mentioned in Section 3, we use key-foreign key joins to allow
a table T to be partitioned by an attribute of a table other than T .
We call the sequence of key-foreign key joins connecting the parti-
tioned table T to the partitioning attribute X the join path, defined
as follows:

DEFINITION 2. Given a database D and a table T , a sequence
of attribute sets {X0, X1, ..., Xn} is called a join path, denoted by
p(X0, Xn), if:

1. Xn consists of only one attribute.

2. For every i ∈ {0 . . . n}, all attributes of Xi belong to the
same table.

3. For every i ∈ {0 . . . n− 1}, if the attributes of Xi and Xi+1

belong to the same table, then Xi is the primary key of the
table. Otherwise, Xi is a foreign key referring to Xi+1.

We call the first node (X0) and the last node (Xn) the source and
destination nodes, respectively, of the join path. Given a value of
X0, we can uniquely identify a value of Xn via the join path, thus
the join path specifies a functional dependency from X0 to Xn:
X0 → Xn.

EXAMPLE 2. In Figure 1, the join paths from the primary keys
of HOLDING_SUMMARY and TRADE to CA_C_ID are
{{HS_S_SYMB, HS_CA_ID}, HS_CA_ID, CA_ID, CA_C_ID} and
{T_ID, T_CA_ID, CA_ID, CA_C_ID}.

A join path p(key(T ), X), where key(T ) is the primary key of
T , can also be considered to be a mapping from every tuple of T to
a unique value of X . To retrieve the value of X for a given tuple of
T , we can use a query constructed by following the joins in the join
path. Therefore, by connecting a table to columns of other tables,
we say that join paths extend the column set of a table.

We observe that often one of the best ways to partition a homo-
geneous workload is to partition all tables of the workload by a
common attribute connected to these tables via join paths. For ex-
ample, the best way to partition the tables accessed by the CustInfo
transactions presented in Section 1 is to partition all of them by
CA_C_ID. We call the structure that connects tables accessed in a
homogeneous workload on the same attribute a join tree, which is
defined as follows:

DEFINITION 3. Given a homogeneous workload W and an at-
tribute X , A join tree over W and X , denoted Tree(W,X), is a
combination of join paths from all tables accessed in W to X . X
is called the root of the tree.

A discussion on choosing of join paths and of cases where join
trees cannot be formed is provided in Section 5.2.

For an example of a join tree, refer Figure 2. It represents the
join tree for the CustInfo transactions presented in Section 1. In
this graph, blue nodes represent the source nodes of join paths, i.e.,
the primary keys of tables, and the red node represents the root of
the tree.

Figure 2: A join tree for CustInfo transactions. Blue nodes rep-
resent the source nodes of join paths, and the red node repre-
sents the root of the tree.

A join tree Tree(W,X) for the workload W maps each tuple t
accessed in the workload to a value x of X . Therefore, a partition-
ing solution for a homogeneous workload is defined by a join tree
and a mapping function on X as follows.

DEFINITION 4. A partitioning solution of a homogeneous work-
load W on a partitioning attribute X has the following two com-
ponents:

• A join tree from W to X , Tree(W,X)

• A mapping function over X , fk,X , that maps each value x
of X to an integer i ∈ [0..k], where k is the number of par-
titions, and i = 0 means all tuples associated with x are
replicated.
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The partitioning solution is denoted asPW = (Tree(W,X), fk,X).

Given a partitioning solution, we define a distributed transaction,
followed by the definition of the cost of a given partitioning solu-
tion.

DEFINITION 5. Given a database D, transaction τ = R ∪W
and a partitioning solution PD , τ is called a distributed transaction
if either of the following conditions hold:

1. PD(w) = 0 for any w ∈ W

2. |∪t∈τPD(t)| > 1

The first condition means the transaction writes a replicated tu-
ple, while the second condition means the transaction accesses tu-
ples belonging to more than one partition. If a transaction is not
distributed, it is called a single-partition or local transaction.

DEFINITION 6. Given a database D, a workload W , and a
partitioning solution PD , the cost of PD on W , denoted as cost(
PD, W ), is the percentage of distributed transactions in W .

Now, for each transaction class, we consider two types of parti-
tioning solutions:

• Total solutions: these are partitioning solutions for a homo-
geneous workload that incur the lowest cost.

• Partial solutions: these are partitioning solutions of a work-
load obtained by eliminating one or more tables from a ho-
mogeneous workload. These are not complete solutions for
the homogeneous workload, but they have the potential to
produce a better global solution when combined with solu-
tions from other homogeneous workloads.

We use the following three steps to find these total and partial
solutions:

1. Construct a join graph, which is a graph of tables and columns
connected by key-foreign key joins that reflects how tuples
are connected to each other in the schema.

2. Enumerate all join trees in the join graph.

3. Find all total and partial solutions from these join trees.

We consider each step in more detail.

5.1 Step 1: Constructing the join graph
We construct the join graph by inspecting the SQL code from the

stored procedure of the transaction class. We use the SQL queries
in the stored procedures to first identify which tables they access,
and also potential candidates for partitioning attribute (candidate
attributes), and finally all possible key-foreign key joins to connect
the tables.

The tables accessed are those appearing in FROM clauses, and
the candidate attributes are attributes appearing in WHERE clauses.
After obtaining accessed tables and candidate attributes, we use
schema information to identify key-foreign key pairs appearing in
accessed attributes and connect the corresponding tables.

EXAMPLE 3. Suppose we have a following simple query:

SELECT CA_C_ID
FROM TRADE, CUSTOMER_ACCOUNT
WHERE T_CA_ID = CA_ID AND

T_ID = @t_id

Using the procedure above, the tables accessed are TRADE and
CUSTOMER_ACCOUNT, and the candidate attributes are T_ID,
T_CA_ID, and CA_ID. Since T_CA_ID is a foreign key referring to
CA_ID, we connect TRADE and CUSTOMER_ACCOUNT by this
key-foreign key join.

However, this approach fails to capture implicit joins. For exam-
ple, the above query can be rewritten into two separate queries as
follows.

SELECT @cust_acct = T_CA_ID
FROM TRADE
WHERE T_ID = @t_id

and

SELECT CA_C_ID
FROM CUSTOMER_ACCOUNT
WHERE CA_ID = @cust_acct

To capture implicit joins, we also consider attributes appearing in
SELECT clauses to discover other possible key-foreign key joins.
This may lead to false-positive joins in our discovery of partitioning
strategies, but we will later use the workload trace to eliminate such
joins.

EXAMPLE 4. Figure 3 shows the join graph for the Customer-
Position transaction type in TPC-E workload. In the graph, tables
with blue attributes, which are the table’s primary keys, are non-
replicated tables.

CA_ID CA_C_ID

CUSTOMER_ACCOUNT

HS S SYMB, HS CA ID HS CA ID

HOLDING_SUMMARY

T ID T CA ID

TRADE

HS S SYMB

LT S SYMB

LAST_TRADE

C_ID C_TAX_ID

CUSTOMER

TH T ID, TH ST ID TH T ID

TRADE_HISTORY

ST ID

STATUS

TH ST ID

Figure 3: The join graph for the customer-position transaction
type in TPC-E. Blue nodes are primary keys of partitioned ta-
bles.

5.2 Step 2: Enumerating all join trees
From the join graph obtained from the previous step, we look

for root attributes, which are attributes reachable from all primary
keys of non-replicated tables via join paths in the graph. There are
two cases.

Case 1: Such root attributes exist. Now, for each root attribute
found, the combination of all possible join paths from each table’s
primary key to that root attribute comprises all possible join trees.
We expect that this is a common case if the workload respects the
database schema (all joins are key-foreign key joins).

EXAMPLE 5. In the join graph of Figure 3, there are four root
attributes: CA_ID, CA_C_ID, C_ID, and C_TAX_ID. For each
partitioned table, we see that there is a unique join path to each
of these attributes. Since CA_C_ID and C_ID refer to the same
attribute, we end up with total three join trees for the Customer-
Position transaction type with the root at CA_ID, CA_C_ID, and
C_TAX_ID, respectively.

43



Case 2: Such root attributes do not exist. In this case, no total
solution for the transaction class exists, since no join trees can be
constructed for the workload. Instead, we look for partial solutions
by separating the graphs into smaller subgraphs such that join trees
can be constructed for each subgraph. The original graph will be
split as follows:

• If the graph contains multiple connected components, each
connected component will be a new subgraph.

• In each connected component, if there exists an m-to-n re-
lationship, i.e., a non-replicated table has two edges, say a
left edge and right edge, that point to other non-replicated ta-
bles, then the subgraph is split into two new subgraphs where
the first subgraph contains the table and the part with the left
edge, and the second subgraph contains the table and the part
with the right edge.

EXAMPLE 6. Suppose in the join graph in Figure 3,
LAST_TRADE were also a non-replicated table (it is actually the
read-mostly table in TPC-E.) There are now no root attributes among
those five non-replicated tables because of the m-to-n relationship
in HOLDING_SUMMARY. In this case, we split the graph into two
parts: the first part with HOLDING_SUMMARY and LAST_TRADE
and the second part will all tables except LAST_TRADE.

5.3 Step 3: Join tree and mapping function
In this step, we find the best partitioning solution from the set of

join trees obtained in the previous step. We look for join trees that
map every tuple in each transaction to a unique value of the root
attribute. For example, the join tree in Figure 2 maps every tuple of
a CustInfo transaction in Figure 1 to a unique value of CA_C_ID.
Such join trees reflect how tuples in transactions are connected to
each other. Also, since the quality of the partitioning solution does
not depend on the selection of the mapping function (as long as it
does not replicate tuples), we call them mapping independent solu-
tion. We provide the intuitive meaning of a mapping independent
solution following the formal definition.

DEFINITION 7. Given a homogeneous workload W , a parti-
tioning solution, PW = (Tree(W,X), fk,X) is a mapping inde-
pendent solution for W if for any transaction τ of W , PW maps
all tuples of τ to a unique value x of X .

Intuitively, mapping independent solutions arise when all tuples
accessed by a given transaction are associated with a single value of
X . If this is not true, that is, the tuples of the transaction are associ-
ated with multiple values of X , then the transactions will be single
site only if the multiple values of X associated with the transaction
are mapped to the same partition. Hence, the partitioning solution,
if one can be found, will depend on the details of the function map-
ping values of X to partitions. Different functions may succeed at
this task to different degrees, so in this case there is a notion of bet-
ter or worse mapping functions. We call a mapping function that
incurs the lowest cost an optimal mapping function, and it is more
formally defined as follows:

DEFINITION 8. Given a homogeneous workload W and a join
tree Tree(W,X), f∗

k,X is an optimal mapping function on W and
Tree(W,X) if it incurs the lowest cost among all possible map-
ping functions:

f∗
k,X(Tree(W,X),W ) = minf (cost(fk,X , T ree(W,X),W ))

We observe that for each homogeneous workload, there may be
more than one join tree, thus more than one mapping independent
solution. Since selecting the global partitioning solution will now
be a search on all local partitioning solutions and for workloads
consisting of many transaction classes, we need to keep a minimal
number of solutions of each transaction class to reduce the search
space in the next phase. We do that by merging compatible so-
lutions from a single homogeneous workload, which is formally
defined as follows.

DEFINITION 9. Given a homogeneous workload W , the join
tree Tree(W,Y ) is compatible with (and called coarser than) the
join tree Tree(W,X) if Tree(W,Y ) is the combination of Tree(
W,X) and a join path fromX to Y : Tree(W,Y ) = Tree(W,X)+
p(X,Y ).

Intuitively, two join trees are compatible if the partitionings spec-
ified by one join tree is a refinement of that specified by the other.
When a workload has two mapping independent solutions with join
trees compatible with each other, the following property will help
us to decide which one to choose for the next phase.

PROPERTY 1. If Tree(W,Y ) is coarser than Tree(W,X), and
Tree(W,X) is a mapping independent solution ofW , then Tree(W,Y )
is a mapping independent solution of W .

This means the mapping-independent property is preserved when
moving from finer to the coarser trees.

Now, for each join tree, we use Definition 7 to identify if it is a
mapping independent solution. If there are two compatible map-
ping independent solutions, we eliminate the coarser one. The ra-
tionale for this is that, choosing the finer one provides finer parti-
tioning solutions, and also increases the chances of the solution be-
ing compatible with solutions from other workloads, as will be re-
quired for merging in phase 3.). Finally, we add all non-compatible
mapping independent solutions to the set of total solutions.

If the set of total solution is not empty, we also consider all possi-
ble partial solutions for each solution from its sub-join trees, which
are one or more subtrees obtained by removing the root attribute
from the original join tree. For each sub-join tree, if it is still map-
ping independent over the workload that contains only tuples of
tables belonging to the sub-join tree, we add it to the set of partial
solutions and continue finding possible solutions from its smaller
sub-join trees.

EXAMPLE 7. Among three join trees for the Customer-Position
transaction type, shown in Figure 3, there are two join trees that are
mapping independent. These are the trees with roots at CA_C_ID
and C_TAX_ID. Since these two trees are compatible, there is a
total solution, which is the join tree with the root at CA_C_ID. In
this example, there is no partial solution since the closest subtree
of the total solution is the join tree with the root at CA_ID, which
is not mapping independent. (To see why this is not mapping in-
dependent consider two different customer accounts for the same
customer. Now, if the root of the tree is the customer account num-
ber (CA_ID), it is possible that the two accounts which belong to
the same customer are split across different partitions, and hence
not mapping independent.)

If there are no mapping independent total solutions, we need to
find the best mapping function that captures clusters of root at-
tribute values appearing within transactions. Our approach to build
such a mapping is by using the statistic-based method similar to
the one used in Schism [11]. Specifically, the best mapping func-
tion for each join tree is built as follows:
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• Use the workload trace and join paths to compute the set of
values of the root attribute that each transaction accesses.

• Build a graph where each node is a value of the attribute,
and edges are used to connect nodes accessed together within
transactions. The weight of an edge is the number of trans-
actions that co-access the two nodes.

• Apply a min-cut graph partitioning algorithm to obtain the
mapping that maps each attribute value to a partition label.

• The mapping found is considered to be meaningful only if its
cost on a new trace is smaller than the costs of both hashing
and range-based mapping functions. If there are no join trees
with meaningful mapping functions, the transaction class is
considered as non-partitonable.

As mentioned earlier, an issue with statistics-based approaches
is the lack of scalability in the database size, and we briefly dis-
cuss this in Section 7.3. However, JECB may scale better than
approaches that scale proportionally to the total number of tuples
since JECB scales propotionally to the number of distinct values
of the root attributes, which will be no larger and could be much
smaller than the total number of tuples.

6. PHASE 3: COMBINING SOLUTIONS
This phase selects a final solution for each non-replicated table

such that the global solution produces the lowest cost. A table can
be accessed by multiple homogeneous workloads, thus, each table
might have multiple associated partitioning solutions.

DEFINITION 10. A partitioning solution for table T on a parti-
tioning attribute X is a pair of components:

• A join path from T to X , p(key(T ), X);

• A mapping function over X , denoted fk,X , that maps each
value x of X to an integer i ∈ [0 . . . k], where k is the num-
ber of partitions, and i = 0 means all tuples associated with
x are replicated.

A partitioning solution for a table is denoted as
PT = (p(key(T ), X), fk,X).

The set of partitioning solutions for a table consists of all possi-
ble solutions found from all transaction classes accessing the table
and also the full replication solution. The partitioning solution for
a database consists of the partitioning solutions for all its tables.

DEFINITION 11. A partitioning solution for a database D, de-
noted PD , is a collection of partitioning solutions for all of its ta-
bles: PD = {PT , T ∈ D}.

A naive approach to find the best global solution is exhaustive
search of all possible solutions for each table. However, as men-
tioned in Section 5, exhaustive search does not scale. Accordingly,
to reduce the search space, we use the concept of compatibility and
merge solutions. In Phase 2, we merged compatible join trees for
each homogeneous workload, and in this phase we merge compat-
ible solutions for each table in the workload.

We now define the conditions under which two solutions for a
table are compatible. These conditions must eliminate one of the
two solutions without affecting the quality of the search result, or
in other words, one must “include” the other. If two partitioning
solutions are compatible, their join paths and partitioning attributes
need to be compatible. We first formally define the compatibility
of attributes join paths.

DEFINITION 12. Two attributes X and Y are compatible if ei-
ther

• They participate in a key-foreign key relationship. In this
case, they have the same level of granularity, denoted as
X ≡ Y , or

• There exists a join path connecting them. If the join path goes
from X to Y , then Y is coarser than X , denoted as Y > X ,
and vice versa.

EXAMPLE 8. In Figure 2, CA_ID has the same level of gran-
ularity as T_CA_ID and HS_CA_ID; CA_C_ID is coarser than
T_ID; T_QTY is not compatible with CA_C_ID.

PROPERTY 2. • If X ≡ Y and Y ≡ Z, then X ≡ Z

• If X > Y and Y > Z, then X > Z

• If X > Y and Y ≡ Z, then X > Z

• If X ≡ Y and Y > Z, then X > Z

DEFINITION 13. Given table T and two join paths p1(key(T ),
X) and p2(key(T ), Y ), suppose that p2 is not shorter than p1.
These two join paths are called compatible if one of the below con-
ditions hold:

1. p1 is a prefix of p2.

2. p1 − X is a prefix of p2 and the attributes X and Y are
compatible.

EXAMPLE 9. Suppose we have three tables:

1. R1(X,A) where X is the key

2. R2(X1, X2, B) where X1, X2 is the key and they both re-
fer to R1.X

3. R3(X1, X2, Y, C)whereX1, X2, Y is the key, andX1, X2
refer to R2.X1, R2.X2

and the following join paths
p1 = {{R3.X1, R3.X2, R3.Y}, {R3.X1, R3.X2}, {R2.X1, R2.X2},
R2.X1, R1.X, R1.A}
p2 = {{R3.X1, R3.X2, R3.Y}, {R3.X1, R3.X2}, {R2.X1, R2.X2},
R2.X2, R1.X, R1.A}
p3 = {{R3.X1, R3.X2, R3.Y}, {R3.X1, R3.X2}, {R2.X1, R2.X2},
R2.X1}
p4 = {{R3.X1, R3.X2, R3.Y}, R3.X1}
p5 = {{R3.X1, R3.X2, R3.Y}, R3.X2}

Using the definition, we have:

• p1 is not compatible with p2 because neither condition 1 nor
condition 2 holds (R2.X1 �= R2.X2).

• p1 > p3 since condition 1 is satisfied.

• p4 ≡ p3 since condition 2 is satisfied withR2.X1 ≡ R3.X1.

• p5 is not compatible with p1, p3, or p4 because neither of the
two conditions is satisfied.

PROPERTY 3. Given a table T and two compatible join paths
p1(key(T ), X) and p2(key(T ), Y ) where p2 > p1 or p2 ≡ p1,
for every pair of tuples t1, t2 ∈ T , if p1(t1) = p1(t2) then p2(t1) =
p2(t2)
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We can now define the compatibility of two partitioning solu-
tions and how to merge them:

DEFINITION 14. Consider a table T and two partitioning solu-
tions on T , P1 = ((p1(key(T ), X), f1

k,X) and P2=((p2(key(T ),
Y ), f2

k,Y ). P1 and P2 are compatible with each other if they satisfy
both of following conditions:

• p1 and p2 are compatible.

• If p2 ≡ p1, then one of two solutions needs to be mapping
independent. Otherwise, the solution with the finer join path
needs to be mapping independent.

When P1 and P2 are compatible, we can merge them into solu-
tion P , defined as follows:

• If p2 ≡ p1 and suppose that P1 is mapping independent, then
P = P2.

• Otherwise, the merged solutionP is the one with coarser join
path. (We cannot choose the solution with the finer join path
as the merged solution, since it would result in the coarser
join path not having a meaningful root attribute for parti-
tioning. However, choosing the coarser join path will always
result in a meaningful partitioning root attribute for the finer
join path, since these 2 paths are compatible.)

Combining Definition 13 and Definition 14, we have the follow-
ing property:

PROPERTY 4. Let T be a table with two compatible partition-
ing solutions, P1 = ((p1(key(T ), X), f1

k,X) andP2= (p2(key(T ),

Y ), f2
k,Y ). Furthermore, let the merged solution P = P2. Then P1

is mapping independent, and there exists a specific mapping func-
tion for P1 such that for every tuple t: P1(t) = P2(t) = P (t).

Proof: From Definition 14, we can see that P1 needs to be map-
ping independent because if it is not, the two solutions will not be
compatible. Using Definition 13, we define the specific mapping
function f1

k,X for P1 as follows:

1. If p2 ≡ p1, then f1
k,X = f2

k,Y .

2. If p2 > p1, then f1
k,X = p(X,Y ) ◦ f2

k,Y where p(X,Y ) is
a part of p2 that connects X (or X ′) to Y .

For every tuple t we have:

1. If p2 ≡ p1, then P1(t) = f1
k,X(p1(t)) = f2

k,Y (p1(t)) =

f2
k,Y (p2(t)) = P2(t).

2. If p2 > p1, then P1(t) = f1
k,X(p1(t)) = (p(X,Y ) ◦

f2
k,Y )(p1(t)) = f2

k,Y (p(X,Y ) ◦ p1(t)) = f2
k,Y (p2(t)) =

P2(t)

This property implies that we can use compatible solutions inter-
changeably without affecting the quality of the partitioning.

After merging compatible solutions, we apply another technique
of searching only around compatible attributes to arrive quickly at
the partitioning solution. This technique can be illustrated by the
following example. Suppose we have two tables A and B, and for
table A, we already selected a solution with partitioning attribute
X. We observe that, among solutions of B, solutions that have par-
titioning attributes compatible with X produce better results when
combined with the selected solution of A than solutions whose par-
titioning attributes are not compatible with X.

Choosing solutions with compatible attributes is desirable be-
cause it produces join trees that are compatible; that is, it does not
give rise to two contradictory partitioning solutions.

Using the two described techniques, we our search algorithm
works as follows.

Step 1: Finding partitioning attributes From solution sets of ta-
bles, we find all partitioning attributes that are not compatible with
each other. If two attributes are compatible, we select the coarser
one.

Step 2: Enumerating all global solutions associated with each
attribute Given a partitioning attribute X , we first find the solu-
tion set associated with X , called the reduced solution set, for each
non-replicated table. Then we enumerate all possible combinations
associated with X from these reduced solution sets.

To find the reduced solution set associated with X for table T ,
we add to the reduced solution set all solutions that have the parti-
tioning attribute compatible with X . Among these solutions, if any
two of them are compatible with each other, we merge them using
Definition 14. After that, if there is any solution with a partitioning
attribute other than X , we use the shortest join path to extend its
join path to X . If the solution set is empty, we add the full replica-
tion solution.

Step 3: Searching for the best global solution We evaluate the
cost of a partitioning solution for a specific workload by the per-
centage of distributed transactions that would result from execut-
ing the workload with the given partitioning (Defined in Section 5.)

For all partitioning solutions obtained from step 2, we apply a
global trace, i.e., a trace consists of all types of transactions, to get
their costs, and select the one with the lowest cost.

EXAMPLE 10. In TPC-E benchmark, after replicating all read-
only and read-mostly tables, we have ten non-replicated tables ac-
cessed by ten transaction types. After running the first phase, we
get a search space of about 2.6 million combinations. However, our
two heuristics help to reduce the search space to only twelve combi-
nations over four partitioning attributes: C_ID, B_ID, T_S_SYMB,
and T_DTS. Among them, the solution of partitioning all tables via
attribute C_ID incurs the lowest cost of 21% distributed transac-
tions for eight partitions.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate and compare the performance and

scalability of our approach, JECB, to Schism [11] and Horticul-
ture [17].

7.1 Data partitioning evaluation framework
To evaluate the scalability and performance of a data partition

approach, we built a general framework, shown in Figure 4.
In this framework, we used a trace collector to collect the work-

load trace. As described in Section 4, we injected a SQL statement
right after each query in stored procedures to capture the tuples
accessed in the query. For each tuple, we capture its table name,
its primary key, the transaction id, and whether it is read or up-
dated. Compared to the approach of rerunning transactions from
the query log, this method lessen errors arising due to stale data.
The collected trace is then split into two parts: a training trace and
a testing trace. The training trace is fed into a partitioner along
with the database schema and the transaction’s SQL code. The par-
titioner uses this information depending on the given data partition-
ing algorithm to find the best partitioning strategy for the database.
The testing trace is used to measure the performance of a given
data partitioning algorithm. We use a partitioning evaluator that
applies the partitioning solution produced from the partitioner on
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Figure 4: Data partitioning evaluation framework

the testing trace to compute the cost, as given in Definitions 5 and
6.

In our experiments, we implemented two different data partition-
ing algorithms for the partitioner: JECB and Schism. We did not
implement Horticulture since the partitioning solution obtained by
Horticulture for each workload is deterministic, i.e., it does not de-
pend on the size and the state of the database. It provides the parti-
tioning column and the partitioning function (usually hashing) for
each table; thus, for each workload, we directly apply the partition-
ing solution found in [17].

7.2 Experimental settings
We implemented and executed the data partitioning evaluation

framework on an Intel Xeon L5630, 2.13GHz machine with 32GB
of RAM, running Microsoft SQL-Server.

As mentioned in Section 1, one of the main problems with tuple-
based approaches is scalability with database size. Experiments
in [11] show good results only for small database sizes with lim-
ited numbers of partitions, and the authors of that paper also quali-
tatively state that the performance of Schism depends on workload
complexity, database size, and number of partitions. Therefore,
in the first experiment, we quantitatively examine the performance
and scalability of Schism and JECB on bigger databases with more
partitions. In this experiment, we use TPC-C since it is known to
be best partitioned by warehouse_id for all non-replicated tables.

In the next experiment, we compare the quality of partitioning
solutions obtained by JECB, Schism, and Horticulture on a variety
of benchmarks, including TPC-C, TPC-E, TATP and two others in
the OLTP benchmark suite [10]: SEATS and AuctionMark. We
then explore in more detail one of the more complex benchmarks,
TPC-E. Finally, we discuss the performance of JECB on synthetic
workloads where our assumption that all joins are key-foreign key
joins does not hold.

7.3 Scalability in database size
In this experiment, we first applied Schism to partition 128 and

1024 warehouse TPC-C databases into various numbers of parti-
tions. In Figure 5, we present the result of running Schism with
training sets of 30K, 180K, and 400K transactions, which cover
1%, 5%, and 10% of the initial 128-warehouse database. Also, in
Figure 6, we see the result of running Schism with training sets of
40K and 110K transactions, which covers 0.1% and 0.2% of the
initial 1024-warehouse database.

From these graphs we can see that JECB is independent of the
database size and the number of partitions and always produces
solutions matching the best partitioning solutions (partitioning on
warehouse ID). On the other hand, Schism produces good partition-

Approach RAM (MB) CPU (seconds)
schism 1% 692 232
schism 5% 4442 577
schism 10% 9774 1870
JECB 30 35

Table 1: Resource consumption for partitioning TPC-C 128-
warehouse database

ing solutions only for small number of partitions when the training
set is big enough.

Figure 5: TPC-C 128 warehouses

Figure 6: TPC-C 1024 warehouses

Both graphs show that Schism’s partitioning quality increases as
the size of the training set increases. In the extreme case, where the
number of partitions equals the number of warehouses, the errors
in Schism’s partitioning come from the approximate nature of the
min-cut graph partitioning algorithm used.

In our experiments, Schism could not find a good partitioning
solution in extreme cases for both databases due to restrictions on
our machine resources. Tables 1 and 2 show the resource consump-
tion for experiments with 128- and 1024-warehouse databases, re-
spectively. For the 128-warehouse database, the graph partitioning
phase is the major source of resource consumption while for 1024-
warehouse database, the explanation phase is the major source of
resource consumption. On the other hand, the resource consump-
tion of JECB does not depend on the size of the database or the
number of partitions.

Scalability of JECB.
As discussed in Section 5.3, in the event of not finding any map-

ping independent total solutions, we fall-back to the statistics-based
approach. Of course, the problem of lack of scalability in the
database size for statistics based approaches applies here too. But,
it is less severe in our context since the number of distinct val-
ues of the root attribute is often smaller than the number of tuples
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Approach RAM (MB) CPU (seconds)
schism 0.1% 5285 1250
schism 0.2% 30252 3870
JECB 30 36

Table 2: Resource consumption for partitioning TPC-C 1024-
warehouse database

in the corresponding table, which in turn is often much smaller
than the total number of tuples in the whole database. However,
it is important to note that in all five common OLTP benchmarks
we experimented with, most transaction classes had mapping inde-
pendent partitioning solutions and the remaining classes were non-
partitionable.

To summarize, one can view the results of the section as high-
lighting the penalty Schism pays for generality. There is a great
deal of information available in the database schema and transac-
tion source code, and Schism ignores this information. Of course,
for scenarios in which the schema and source code are not avail-
able, Schism has the advantage, as JECB does not apply.

7.4 Partitioning quality on benchmarks
In the next experiment, we applied JECB on various benchmarks

and compared the quality of our partitioning solutions with those
obtained by Schism and Horticulture. We used 5 benchmarks:
TPC-C, TPC-E, TATP, SEATS, and AuctionMark. This first three
benchmarks are popular OLTP benchmarks while the last two are
from the OLTP benchmark suite [10].

In each benchmark, we obtained partitioning solutions for JECB
and Schism with 10% coverage. Then we applied these solutions
along with the solution from Horticulture, which was supplied by
authors of [17], on the testing trace to obtain the partitioning qual-
ity for each approach. Since the performance of Schism depends
on the number of partitions and the training set coverage, we fixed
the training set to 10% and the partition number to 8 for all bench-
marks. The workload details and experiment results for each bench-
mark are described as follows.

TPC-C: This is an OLTP standard benchmark for simulating an
order processing system [2]. Figure 7 shows that solutions from
all three approaches have the same quality. These solutions are
actually the same; all tables except the item table are partitioned by
warehouse id, which is also the popular way of partitioning TPC-C.

TATP: This is an OLTP benchmark that simulates a typical telecom-
munication systems [16]. Similar to TPC-C, this workload is easy
to partition since most tables in TATP are accessed via a common
attribute, subscriber id. Figure 7 shows both JECB and Horticulture
are able to obtain this solution. However, Schism 10% produces a
solution with 22.6% of distributed transactions. We observe that in
this case the graph partitioning algorithm worked well, producing a
total edge cut of 0, and that the actual reason for errors is from the
high cardinality of the classification attribute. Since the workload
trace of 10% coverage, consisting of 70K transactions, does not
cover the 100K distinct values of the classification attribute, sub-
scriber id, it cannot produce the correct partitioning rule for each
individual value.

SEATS: This is an OLTP benchmark for modeling an airline
ticketing system [1]. Looking at Figure 7, we see that there is
a significant difference between the partitioning quality of JECB
and that of Horticulture. Unlike the two previous benchmarks,
there is no common attribute among non-replicated tables, which
means different transaction types have different optimal partition-
ing attributes. JECB uses join paths to connect all non-replicated
tables to a common attribute, and is able make the workload com-

Transaction class Mix Total Partial
solutions solutions

Broker-Volume 4.9% No No
Customer-Position 13% CA_C_ID No
Market-Feed 1% No No
Market-Watch 18% HS_CA_ID No
Security-Detail 14% Read-only Read-only
Trade-Lookup Frame1 2.4% No No
Trade-Lookup Frame2 2.4% CA_ID No
Trade-Lookup Frame3 2.4% T_S_SYMB or T_DTS No
Trade-Lookup Frame4 0.8% CA_ID or T_DTS No
Trade-Order 10.1% B_ID CA_ID
Trade-Result 10.0% B_ID CA_ID
Trade-Status 19.0% B_ID CA_ID
Trade-Update Frame1 0.66% No No
Trade-Update Frame2 0.67% CA_ID or T_DTS

No
Trade-Update Frame3 0.67% T_S_SYMB or T_DTS

No

Table 3: Transaction classes and solutions found by JECB for
TPC-E (after Phase 1)

pletely partitionable. Schism’s performance can be understood for
the same reasons as its performance on TATP.

AuctionMark: This is an OLTP benchmark that models an Inter-
net auction system [5]. Similar to TPC-C and TATP, non-replicated
tables in AuctionMark are often accessed by the common attribute
of user id. However, there are two types of users, sellers and buy-
ers, and there existm-to-n relationships among them in some trans-
action types, which makes the workload not completely partition-
able. We can see in Figure 7 that the partitioning provided by JECB
is better than Schism 10% and approximately the same as Horticul-
ture.

TPC-E: This benchmark is more complicated than TPC-C and
is designed to model modern OLTP applications [3]. The database
schema consists of 33 tables with a total of 188 columns and 50 for-
eign keys, and its workload features 10 types of complex transac-
tional activities, which are often composed of multiple SQL queries
that access multiple tables. We observe in Figure 7 that both Schism
and Horticulture perform badly on TPC-E, while JECB is sill able
to produce a solution in less than two minutes with only 21% dis-
tributed transactions. The benchmark will be presented in more
detail in Section 7.5.
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Figure 7: Partitioning qualities on different benchmarks

We now explore the details of the TPC-E benchmark and explain
the relative performance between JECB and Horticulture.

7.5 TPCE details
The TPC-E benchmark emulates the activities of a brokerage

firm, which include managing customer accounts, executing cus-
tomer trade orders, and managing the interaction between customers
and financial markets. There are a total of 10 types of activities,
which are decomposed into 15 classes of transactions, as summa-
rized in Table 3.

In this table, the “mix percentage” of a transaction class is the
frequency that these transactions are executed in the workload. Among
15 transaction classes, there are 6 transaction classes updating the
database: Market-Feed, Trade-Order, Trade-Result, and three Trade-
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Figure 8: Join-extension on TPCE

Table HC Join-extension
ACCOUNT_PERMISSION AP_CA_ID replicated
CUSTOMER_TAXRATE CX_C_ID replicated
DAILY_MARKET DM_DATE replicated
WATCH_LIST WL_C_ID replicated

CASH_TRANSACTION
CT_T_ID CT_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID
CUSTOMER_ACCOUNT replicated CA_C_ID

HOLDING
H_CA_ID H_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID

HOLDING_HISTORY
HH_T_ID HH_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID

HOLDING_SUMMARY
HS_CA_ID (HS_CA_ID, HS_S_SYMB)→

HS_CA_ID→CA_ID→CA_C_ID

SETTLEMENT
SE_T_ID SE_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID

TRADE
T_CA_ID T_ID → T_CA_ID →

CA_ID → CA_C_ID

TRADE_HISTORY
TH_T_ID TH_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID

TRADE_REQUEST
replicated TR_T_ID → T_ID → T_CA_ID

→ CA_ID → CA_C_ID

Table 4: Partitioning solutions for TPC-E. All columns are par-
titioned by hashing.

Update transaction classes; the remaining transactions are read-
only.

Table 4 shows the partitioning solutions obtained by Horticulture
and by JECB. Among 33 tables, the first 23 tables are read-only or
read-mostly. For the remaining 10 tables, our solution replicates
the BROKER table and partitions all remaining tables by the C_ID
attribute (the primary key of the CUSTOMER table).

The performance of our partitioning solution for each transaction
class is shown in Figure 8. In the graph, there are seven transaction
classes on which our solution does not perform well. To understand
why our solution does not perform well on these classes, we list all
total and partial solutions found in the first phase of our algorithm
for each transaction class in Table 3 (for brevity, we do not show the
whole join trees, but only their root attributes instead.) Using this
table, we divide these seven transaction classes into two groups:

1. The first group, including Broker-Volume, Market-Feed, Trade-
Lookup Frame1, and Trade-Update Frame1, are transaction
classes that are not partitionable (we do not consider the triv-
ial solution of replicating all tables since that would make
transactions updating them distributed). The common prop-
erty of all transactions in this group is that each transaction
is always mapped into a set of values of the partitioning at-
tribute, which are actually values of stored procedure input
parameters, thus there are no mapping-independent solutions
for such transactions. In addition, because these values are
randomly chosen, there are no patterns or clusters among
these values. So, there is effectively no way to partition such
transactions.

2. The second group, including Trade-Lookup Frame3, Trade-
Result, and Trade-Update Frame3, are transaction classes
that each have their own mapping independent solutions, but

Figure 9: Horticulture on TPCE

their partitioning attributes are incompatible with C_ID, which
is the attribute chosen in the second phase of our algorithm
as the one that incurs the lowest cost. In this group, Trade-
Lookup Frame3 and Trade-Update Frame3 are both parti-
tioned by S_SYMB (primary key of SECURITY table), but
since the mix percentages of these transaction classes are
small, the main candidates are C_ID and B_ID (primary key
of BROKER table). Because the mix percentage of Customer-
Position is greater than that of Trade-Result, C_ID is the final
winner.

Comparing to the performance of the Horticulture solution, shown
in Figure 9, our solution is better on most transaction classes. The
transaction class where Horticulture performs better is on Broker-
Volume, but their solution is to replicate both non-read-only ta-
bles of the class: BROKER and TRADE_REQUEST. Replicating
TRADE_REQUEST makes Trade-Order transactions, which up-
date TRADE_REQUEST, also distributed, and as the mix percent-
age of Trade-Order is greater than that of Broker-Volume, this repli-
cation increases the overall rate of distributed transactions. Also,
Horticulture solution does not perform well on Customer-Position,
Market-Watch, Trade-Lookup Frame2, and Trade-Update Frame2
transaction classes, which are completely partitionable by our so-
lution.

7.6 Synthetic workloads
In this subsection we briefly touch upon the performance of our

approach on workloads that do not respect the database schema
(that is, some joins are not key-foreign key joins). To do so, we
experimented with synthetic workloads on a simple database with
1-to-n relationships in the schema. Our workload consists of two
transactions classes, one which respects the database schema, and
the other which has implicit joins. We vary the mix percentages
of these two transaction type and fix the number of partitions at
100 in all runs. Our observation is that the join-extension approach
performs well when transactions that respect the database schema
dominate in the workload. On the other hand, the quality of the
column-based solutions decrease as the percentage of transactions
with implicit joins decreases and the column-based approaches only
perform well when these transactions dominate in the workload.

8. CONCLUSION
We have presented JECB, an approach for automatically parti-

tioning OLTP databases. We leverage join-paths, made of a se-
quence of key-foreign key joins, to enlarge the search space to
capture partitioning solutions that might be missed if they were
not considered. We then use a divide-and-conquer strategy, the
database schema, and the transaction SQL code to direct our search
algorithm to reach a good partitioning solution. Our experimental
results suggest that JECB is able to produce better partitioning so-
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lutions more quickly than previous approaches on many popular
benchmarks, especially on more complicated benchmarks includ-
ing TPC-E.

Substantial room for future work remains. One issue that always
arises with parallel performance is skew. Alleviating the effects
of “hot” and “cold” partitions on performance will be important in
some cases. A promising idea is to partition the database into many
more partitions than processing elements; thus, each processing el-
ement (a core, or node) can have different numbers of partitions
mapped to it. A heuristic bin packing that does so while consid-
ering the heat of partitions might alleviate the impact of skew on
performance, but of course this needs to be fully developed and
evaluated.

Another direction for future work is the exploration of more
complex cost models. Our cost model in this work was extraordi-
narily simple: minimize the fraction of distributed transactions. Of
course, many more complex cost models can be and should be con-
sidered, including models that take into account the number of sites
over which a transaction is distributed, the relative running times of
local vs. distributed transacitons, and so forth. It would be interest-
ing to consider a spectrum of increasingly complex cost functions
and to see under what scenarios they produce significantly better
results.

Finally, as we have alluded to in the introduction, JECB can
be viewed as trading generality for performance — by requiring
knowledge about the source code, schema, and workload, JECB
can do better on the benchmarks that we considered than SCHISM
(which only needs the workload) and Horticulture (which needs
only the workload and schema). An empirical study of how of-
ten each type of partitioning approach is applicable in practice, as
well as the identification of other solutions that are perhaps even
less general (can we improve partitioning by analyzing the applica-
tion program in which the transactions are embedded?) would be
interesting.
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