
SnappyData: A Hybrid Transactional Analytical Store Built
On Spark∗

Jags Ramnarayan1 Barzan Mozafari1,2 Sumedh Wale1 Sudhir Menon1

Neeraj Kumar1 Hemant Bhanawat1 Soubhik Chakraborty
Yogesh Mahajan Rishitesh Mishra Kishor Bachhav

1SnappyData Inc., Portland, OR 2University of Michigan, Ann Arbor, MI
1 {jramnarayan,barzan,swale,smenon,nkumar,hbhanawat}@snappydata.io

2 mozafari@umich.edu

ABSTRACT
In recent years, our customers have expressed frustration in
the traditional approach of using a combination of disparate
products to handle their streaming, transactional and ana-
lytical needs. The common practice of stitching heteroge-
neous environments in custom ways has caused enormous
production woes by increasing development complexity and
total cost of ownership. With SnappyData, an open source
platform, we propose a unified engine for real-time oper-
ational analytics, delivering stream analytics, OLTP and
OLAP in a single integrated solution. We realize this plat-
form through a seamless integration of Apache Spark (as
a big data computational engine) with GemFire (as an in-
memory transactional store with scale-out SQL semantics).

In this demonstration, after presenting a few use case sce-
narios, we exhibit SnappyData as our our in-memory solu-
tion for delivering truly interactive analytics (i.e., a couple of
seconds), when faced with large data volumes or high veloc-
ity streams. We show that SnappyData can exploit state-
of-the-art approximate query processing techniques and a
variety of data synopses. Finally, we allow the audience to
define various high-level accuracy contracts (HAC), to com-
municate their accuracy requirements with SnappyData in
an intuitive fashion.

1. INTRODUCTION
Many of our customers, particularly those active in finan-

cial trading or IoT (Internet of Things), are increasingly re-
lying on applications whose workflows involve (1) continuous
stream processing, (2) transactional and write-heavy work-
loads, and (3) interactive SQL analytics. These applications
need to consume high-velocity streams to trigger real-time
alerts, ingest them into a write-optimized store, and perform
OLAP-style analytics to derive deep insight quickly.

∗For a detailed paper, see [13].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD/PODS’16 June 26 - July 01, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2899408

While there have been a flurry of data management so-
lutions designed for one or two of these tasks, there is no
single solution that is apt at all three.

SQL-on-Hadoop solutions (e.g., Hive, Impala, and Spark
SQL) use OLAP-style optimizations and columnar formats
to run OLAP queries over massive volumes of static data.
While apt at batch-processing, these systems are not de-
signed as real-time operational databases, as they lack the
ability to mutate data with transactional consistency, use in-
dexing for efficient point accesses, or handle high-concurrency
and bursty workloads.

Hybrid Transaction/Analytical Processing (HTAP) sys-
tems support both OLTP and OLAP queries by storing
data in dual formats—row-oriented fashion (on disk or tra-
ditional database cache buffers) and compressed in-memory
columns—but need to be used alongside a streaming engine
(e.g., Storm [14], Kafka, Confluent) to support streaming
processing.

Finally, stream processors (e.g., Samza [1]) provide some
form of state management, but only allow support simple
analytics over data streams. This is because complex ana-
lytics require the same optimizations used in a OLAP en-
gine [7, 10], such as columnar formats and efficient oper-
ators for joining, grouping, or aggregating large histories.
For example, many of our customers in Industrial IoT de-
rive insight by ingesting unbounded streams of data at very
high speeds, while running continuous analytical queries on
windows correlated with large quantities of history.

Consequently, the demand for mixed workloads has re-
sulted in several composite data architectures, exemplified
in the “lambda” architecture, requiring multiple solutions to
be stitched together—an exercise that can be hard, time
consuming and expensive.

For instance, in capital markets, a real time market surveil-
lance application has to stream in trades at very high rates
and detect abusive trading patterns (e.g., insider trading).
This requires correlating large volumes of data by joining a
stream with historical records, other streams, and financial
reference data (which may change throughout the trading
day). A triggered alert could in turn result in additional an-
alytical queries, which need to run on both the ingested and
historical data. Trades arrive on a message bus (e.g., Tibco,
IBM MQ, Kafka) and are processed using a stream proces-
sor (e.g., Storm) or a homegrown application, writing state
to a key-value store (e.g., Cassandra) or an in-memory data

2153

http://dx.doi.org/10.1145/2882903.2899408


grid (e.g., GemFire). This data is also stored in HDFS and
analyzed periodically using SQL-on-Hadoop OLAP engines.

Increased TCO (total cost of ownership) — This het-
erogeneous architecture, which is far too common among our
customers, has several drawbacks (D1–D3) that significantly
increase the total cost of ownership for these companies.

D1. Increased complexity: The use of incompatible
and autonomous systems has significantly increased the total
cost of ownership for these companies. Developers have to
master disparate APIs, data models, configurations and tun-
ing options for multiple products. Once in production, op-
erational management is a nightmare. Diagnosing the root
cause of problems often requires hard-to-find experts that
have to correlate logs and metrics across different products.

D2. Lower performance: The required analytics necessi-
tates data access across multiple non-colocated clusters, re-
sulting in several network hops and multiple copies of data.
Data may also need to be transformed when dealing with
incompatible data models (e.g., turning Cassandra Colum-
nFamilies into domain objects in Storm).

D3. Wasted resources: With data getting duplicated,
increased data shuffling wastes network bandwidth, CPU
cycles and memory.

Lack of Interactive Analytics — Achieving interactive
SQL analytics has remained an on-going challenge, even
for modest volumes of data. Unfortunately, any analyti-
cal query that requires distributed shuffling of the records
can take tens of seconds to minutes, hardly permitting inter-
active analytics (e.g., for exploratory analytics). Moreover,
distributed clusters can be shared by hundreds of users con-
currently running such queries.

Our Goal — We aim to deliver interactive-speed analytics
with modest investments in cluster infrastructure and far less
complexity than today. SnappyData fulfills this promise by
(i) enabling streaming, transactions and interactive analyt-
ics in a single unifying system—rather than stitching differ-
ent solutions—and (ii) delivering true interactive speeds via
a state-of-the-art approximate query engine that can lever-
age a multitude of synopses as well as the full dataset.

Our Approach — We envision a single unified, scale out
database cluster that ingests static data sets (e.g., from
HDFS), acquires updatable reference data from enterprise
databases, manages streams in memory, while permitting
both continuous SQL analytics on the streams and interac-
tive queries on entire data (acquired from streams, HDFS or
enterprise DBs). To achieve this goal, our approach consists
of a deep integration of Apache Spark, as a computational
framework, and GemFire, as an in-memory transactional
store, as described next.

Best of two worlds — Spark offers an appealing program-
ming model to both modern application developers and data
scientists. Through a common set of abstractions, Spark
programmers can tackle a confluence of different paradigms
(e.g., streaming, machine learning, SQL analytics). Spark’s
core abstraction, a Resilient Distributed Dataset (RDD),
provides fault tolerance by efficiently storing the lineage of
all transformations instead of the data. The data itself is
partitioned across nodes and if any partition is lost, it can
be reconstructed using the lineage information. The benefit

of this approach is avoiding replication over the network and
operating on data as a batch for higher throughput. While
this approach provides efficiency and fault tolerance, it also
requires that an RDD be immutable. In other words, Spark
is simply designed as a computational framework, and there-
fore (i) does not have its own storage engine, and (ii) does
not support mutability semantics.

On the other hand, GemFire is an in-memory data grid,
which manages records in a partitioned row-oriented store
with synchronous replication. It ensures consistency by in-
tegrating a dynamic group membership service (GMS) and a
distributed transaction service (DTS). Data can be indexed
and updated in a fine grained or batch manner. Updates
can be reliably enqueued and asynchronously written back
out to an external database. Data can also be persisted on
disk using append-only logging with offline compaction for
fast disk writes.

Therefore, to combine the best of both worlds, Snap-
pyData seamlessly fuses the Spark and GemFire runtimes,
adopting Spark as the programming model with extensions
to support mutability and HA (high availability) through
GemFire’s replication and fine grained updates. For in-
stance, when ingesting a stream, we process the incoming
stream as a batch, avoid replication, and replay from the
source on a failure. Here, the processed state could be writ-
ten into the store in batches to avoid a tuple-at-a-time repli-
cation. Recovery from failure will thus be limited to the time
needed to replay a single batch.

Challenges — Spark is designed as a computational en-
gine for processing batch jobs. Each Spark application (e.g.,
a Map-reduce job) runs as an independent set of processes
(i.e., executor JVMs) on the cluster. These JVMs are re-
used for the lifetime of the application. While, data can be
cached and reused in these JVMs for a single application,
sharing data across applications or clients requires an ex-
ternal storage tier, such as HDFS. We, on the other hand,
target a real-time, “always-on”, operational design center—
clients can connect at will, and share data across any number
of concurrent connections. This is similar to any operational
database on the market today. Thus, to manage data in the
same JVM, our first challenge is to alter the life cycle of
these executors so that they are long-lived and de-coupled
from individual applications.

A second but related challenge is Spark’s design for how
user requests (i.e., jobs) are handled. A single driver orches-
trates all the work done on the executors. Given our need
for high concurrency and a hybrid OLTP-OLAP workload,
this driver introduces (i) a single point of contention for all
requests, and (ii) a barrier for achieving high availability
(HA). Executors are shutdown if the driver fails, requiring
a full refresh of any cached state.

Spark’s primary usage of memory is for caching RDDs
and for shuffling blocks to other nodes. Data is managed in
blocks and is immutable. On the other hand, we need to
manage more complex data structures (along with indexes)
for point access and updates. Therefore, another challenge
is merging these two disparate storage systems with little
impedance to the application. This challenge is exacerbated
by current limitations of Spark SQL—mostly related to mu-
tability characteristics and conformance to SQL.

Finally, Spark’s strong and growing community has zero
tolerance for incompatible forks. This means that no changes

2154



can be made to Spark’s execution model or its semantics for
existing APIs. In other words, our changes have to be an
extension.

Contributions — SnappyData makes the following contri-
butions to deliver a unified and optimized runtime.

(a) Marrying an operational in-memory data store
with Spark’s computational model. We introduce
a number of extensions to fuse our runtime with that
of Spark. When Spark executes tasks in a partitioned
manner, it keeps all available CPU cores busy. We ex-
tend this design by allowing low latency and fine grained
operations to interleave and get higher priority, without
involving the scheduler. To support high concurrency,
we also extend the runtime with a “Job Server” that
decouples applications from data servers, while sharing
state across many clients and applications.

(b) Unified API for OLAP, OLTP, and streaming.
We extend Spark’s API to (i) allow for OLTP opera-
tions, e.g., transactions and inserts/updates/deletions
on tables, (ii) be conformant with SQL standards, e.g.,
allowing tables alterations, constraints, indexes, and (iii)
support declarative stream processing in SQL.

(c) Optimized Spark applications Our deeply integrated
store eliminates the need for an external one (e.g., a
KV store) for Spark applications. This improves overall
performance by minimizing network traffic and serializa-
tion costs. In addition, by promoting colocated schema
designs, in many scenarios SnappyData eliminates the
need for shuffling altogether.

(d) To deliver analytics at truly interactive speeds, we have
equipped SnappyData with state-of-the-art AQP tech-
niques [4, 5] as well as several novel features. Unlike
previous AQP engines [2, 3, 6, 9, 15], Instead of over-
whelming end users with numerous statistics, we provide
an intuitive means for expressing accuracy requirements
as high-level accuracy contracts (HAC) [11]. Snappy-
Data is also the first AQP engine to offer automatic bias
correction for arbitrarily complex SQL queries. Finally,
while traditional load shedding techniques are restricted
to simple queries [12], SnappyData provides error esti-
mates for arbitrarily complex queries on streams.

2. SYSTEM OVERVIEW

2.1 System Architecture
Figure 1 depicts the core components of SnappyData, where

Spark’s original components are highlighted in gray. To sim-
plify, we have omitted standard components, such as security
and monitoring.

The storage layer is primarily in-memory and manages
data in either row or column formats. The column format
is derived from Spark’s RDD caching implementation and
allows for compression. Row oriented tables can be indexed
on keys or secondary columns, supporting fast reads and
writes on index keys.

We support two primary programming models—SQL and
Spark’s API. SQL access is through JDBC/ODBC and is
based on Spark SQL dialect with several extensions. One
could perceive SnappyData as a SQL database that uses
Spark API as its language for stored procedures. We provide

Figure 1: SnappyData’s core components

a glimpse over our SQL and programming APIs. Our stream
processing is primarily through Spark Streaming, but it is
integrated and runs in-situ with our store.

The OLAP scheduler and job server coordinate all OLAP
and Spark jobs and are capable of working with external
cluster managers, such as YARN or Mesos. We route all
OLTP operations immediately to appropriate data parti-
tions without incurring any scheduling overhead.

To support replica consistency, fast point updates, and in-
stantaneous detection of failure conditions in the cluster, we
use a P2P (peer-to-peer) cluster membership service that en-
sures view consistency and virtual synchrony in the cluster.
Any of the in-memory tables can be synchronously repli-
cated using this P2P cluster.

In addition to the “exact” dataset, data can also be sum-
marized using probabilistic data structures, such as strati-
fied samples and other forms of synopses. Using our API,
applications can choose to trade accuracy for performance.
SnappyData’s query engine has built-in support for approx-
imate query processing (AQP) and will exploit appropriate
probabilistic data structures to meet the user’s requested
level of accuracy or performance.

2.2 Data Ingestion Pipeline
SnappyData focuses on use cases that involve stream in-

gestion and interactive analytics with transactional updates.
The steps to support these tasks are depicted in Figure 2,
and explained below.

Step 1. Once the SnappyData cluster is started and before
any live streams can be processed, we ensure that the histor-
ical and reference datasets are readily accessible. The data
sets may come from HDFS, enterprise relational databases
(RDB), or disks managed by SnappyData. Immutable batch
sources (e.g., HDFS) can be loaded in parallel into a colum-
nar format table with or without compression. Reference
data that is often mutating can be managed as row tables.

Step 2. We rely on Spark Streaming’s parallel receivers to
consume data from multiple sources. These receivers pro-
duce a DStream, whereby the input is batched over small
time intervals and emitted as a stream of RDDs. This
batched data is typically transformed, enriched and emit-
ted as one or more additional streams. The raw incoming
stream may be persisted into HDFS for batch analytics.

Step 3. Next, we use SQL to analyze these streams. As
DStreams (RDDs) use the same processing and data model
as data stored in tables (DataFrames), we can seamlessly
combine these data structures in arbitrary SQL queries (re-

2155



Figure 2: Data ingestion pipeline in SnappyData

ferred to as continuous queries as they execute each time
the stream emits a batch). When faced with complex ana-
lytics or high velocity streams, SnappyData can still provide
answers in real time by resorting to approximation.

Step 4. The stream processing layer can interact with the
storage layer in a variety of ways. The enriched stream can
be efficiently stored in a column table. The results of contin-
uous queries may result in several point updates in the store
(e.g., maintaining counters). The continuous queries may
join, correlate, and aggregate with other streams, history
or reference tables. When records are written into column
tables one (or a small batch) at a time, data goes through
stages, arriving first into a delta row buffer that is capable
of high write rates, and then aging into a columnar form.
This delta row buffer is merged during query execution.

Step 5. To prevent running out of memory, tables can be
configured to evict or overflow to disk using an LRU strategy.
For instance, an application may ingest all data into HDFS
while preserving the last day’s worth of data in memory.

Step 6. Once ingested, the data is readily available for
interactive analytics using SQL. Similar to stream analytics,
SnappyData can again use approximate query processing
to ensure interactive analytics on massive historical data in
accordance to users’ requested accuracy.

3. DEMONSTRATION DETAILS
Our demonstration scenario imagines the audience as users

of a energy management system, monitoring in real time,
metrics from thousands to millions of smart meters to un-
derstand load distribution, outliers, trends and so on. We
organize our demonstration into two phases:

1. A brief introduction to the main system functionali-
ties, in which we will exhibit the key components and
features of our system.

2. A hands-on phase where the audience is invited to di-
rectly interact with the system and test its capabilities.

Our primary goal with this demonstration is to decisively
show that curated sampled data sets and synopsis data struc-
tures can be extremely effective in providing quick responses
to arbitrary analytic class queries at interactive speeds. We
show side by side comparison to native Spark in-memory
performance.

For interactive analytics on historical data, we store me-
ter readings for households and businesses for the last few
years and permit our demonstration users to try out queries
using Apache Zeppelin—a web based notebook for interac-
tive analytics (see Figure 3). They would be able to create
our CMS (count-min-sketch [8]) based structures for man-
aging time series meter readings across multiple dimensions
or create one or more stratified samples.

Figure 3: A screenshot of the demonstration scenario using
Zeppelin and SnappyData

The demonstration is divided into 3 different notebooks.
The first notebook introduces the APIs for sampling struc-
tures, loading data, and monitoring memory utilization. More-
over, the users will be given an opportunity to define their
own HACs and observe their impact on the cardinality, ac-
curacy, and response time of of various analytical queries.

The second notebook demonstrates the power of sampling
and summary structures on already ingested data. The third
notebook demonstrates the use of SQL-based “continuous
queries” for detecting complex patterns in streaming data
over arbitrary time windows. User will be able to choose
various forms of exact or approximate answers using our
CMS-based structures. For instance, energy utilization pat-
tern over few mins correlated with similar periods in the past
may predict future demand and enable outage management.

Bibliography
[1] Apache Samza. http://samza.apache.org/.
[2] Fast, approximate analysis of big data (yahoo’s druid). http:

//yahooeng.tumblr.com/post/135390948446/data-sketches.
[3] Presto: Distributed SQL query engine for big data. https:

//prestodb.io/docs/current/release/release-0.61.html.
[4] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jor-

dan, S. Madden, B. Mozafari, and I. Stoica. Knowing when
you’re wrong: Building fast and reliable approximate query
processing systems. In SIGMOD, 2014.

[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: queries with bounded errors and
bounded response times on very large data. In EuroSys,
2013.

[6] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden,
and I. Stoica. Blink and it’s done: Interactive queries on
very large data. PVLDB, 2012.

[7] L. Braun et al. Analytics in motion: High performance event-
processing and real-time analytics in the same database. In
SIGMOD, 2015.

[8] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
Journal of Algorithms, 55, 2005.

[9] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggre-
gation. In SIGMOD, 1997.

[10] E. Liarou et al. Monetdb/datacell: online analytics in a
streaming column-store. PVLDB, 2012.

[11] B. Mozafari and N. Niu. A handbook for building an ap-
proximate query engine. IEEE Data Engineering Bulletin,
2015.

[12] B. Mozafari and C. Zaniolo. Optimal load shedding with
aggregates and mining queries. In ICDE, 2010.

[13] J. Ramnarayan, B. Mozafari, S. Menon, et al. Snappy-
data: Streaming, transactions, and interactive analytics in
a unified engine. http://web.eecs.umich.edu/ mozafari/ph-
p/data/uploads/snappy.pdf, 2016.

[14] A. Toshniwal et al. Storm@twitter. In SIGMOD, 2014.
[15] K. Zeng, S. Gao, J. Gu, B. Mozafari, and C. Zaniolo. Abs: a

system for scalable approximate queries with accuracy guar-
antees. In SIGMOD, 2014.

2156

http://samza.apache.org/
http://yahooeng.tumblr.com/post/135390948446/data-sketches
http://yahooeng.tumblr.com/post/135390948446/data-sketches
https://prestodb.io/docs/current/release/release-0.61.html
https://prestodb.io/docs/current/release/release-0.61.html

	Introduction
	System overview
	System Architecture
	Data Ingestion Pipeline

	Demonstration Details



