
Generating Preview Tables for Entity Graphs

1Ning Yan
∗

2Sona Hasani 2Abolfazl Asudeh 2Chengkai Li
1Huawei U.S. R&D Center 2The University of Texas at Arlington

ning.yan.uta@gmail.com {sona.hasani,ab.asudeh}@mavs.uta.edu cli@uta.edu

ABSTRACT

Users are tapping into massive, heterogeneous entity graphs for
many applications. It is challenging to select entity graphs for a
particular need, given abundant datasets from many sources and
the oftentimes scarce information for them. We propose methods
to produce preview tables for compact presentation of important
entity types and relationships in entity graphs. The preview tables
assist users in attaining a quick and rough preview of the data. They
can be shown in a limited display space for a user to browse and
explore, before she decides to spend time and resources to fetch
and investigate the complete dataset. We formulate several opti-
mization problems that look for previews with the highest scores
according to intuitive goodness measures, under various constraints
on preview size and distance between preview tables. The opti-
mization problem under distance constraint is NP-hard. We design
a dynamic-programming algorithm and an Apriori-style algorithm
for finding optimal previews. Results from experiments, compar-
ison with related work and user studies demonstrated the scoring
measures’ accuracy and the discovery algorithms’ efficiency.

1. INTRODUCTION
We witness an unprecedented proliferation of massive, heteroge-

neous entity graphs that represent entities and their relationships in
many domains. For instance, in Fig. 1—a tiny excerpt of an entity
graph, the edge labeled Actor between nodes Will Smith and Men in

Black captures the fact that the person is an actor in the film. Real-
world entity graphs include knowledge bases (e.g., DBpedia [2],
YAGO [16], Probase [18], Freebase [4] and Google’s Knowledge
Vault [8]), social graphs, biomedical databases, and program anal-
ysis graphs, to name just a few. Numerous applications are tapping
into entity graphs in domains such as search, recommendation sys-
tems, business intelligence and health informatics.

Entity graphs are often represented as RDF triples, due to hetero-
geneity of entities and the often lacking schema. The Linking Open
Data community has interlinked billions of RDF triples spanning
over several hundred datasets (http://linkeddata.org). Many other
entity graph datasets are also available from data repositories such
as the NCBI databases (http://www.ncbi.nlm.nih.gov), Amazon’s

∗
Work done while at the University of Texas at Arlington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915221

Figure 1: An excerpt of an entity graph.

Public Data Sets (http://aws.amazon.com/publicdatasets) and Da-
ta.gov (http://www.data.gov).

It is challenging to select entity graphs for a particular need,
given abundant datasets from many sources and oftentimes scarce
information available about them. While sources such as the afore-
mentioned data repositories often provide dataset descriptions, one
cannot get a direct look at an entity graph before fetching it. Down-
loading a dataset and loading it into a database can be a daunting
task. A data worker may need to tackle many challenges before
they can start any real work on an entity graph.

In this paper, we propose methods to automatically produce pre-

view tables for entity graphs. Given an entity graph with a large
number of entities and relationships, our methods select from the
many entity types a few important ones and produce a table for
each chosen entity type. Such a table comprises a set of attributes,
selected among many candidates, each of which corresponds to a
relationship associated with the corresponding entity type. A tuple
in the table consists of an entity belonging to the entity type and its
related entities for the table attributes.

Fig. 2 is a possible preview of the entity graph in Fig. 1. It
consists of two preview tables—the upper table has attributes FILM,
Director and Genres, and the lower table has attributes FILM ACTOR

and Award Winners. In this preview, entities of types FILM and FILM

ACTOR are deemed of central importance in the entity graph. Hence,
FILM and FILM ACTOR are the key attributes of the two tables, re-
spectively, marked by the underlines beneath them. Attributes Di-

rector and Genres in the upper table are considered highly related to
FILM entities. Similarly, Award Winners in the lower table is highly
related to FILM ACTOR entities. The two tables contain 4 and 2
tuples, respectively. For instance, the first tuple of the upper table is
t1 = 〈Men in Black, Barry Sonnenfeld, {Action Film, Science Fiction}〉. The
tuple indicates that entity Men in Black belongs to type FILM and

1797

http://linkeddata.org
http://www.ncbi.nlm.nih.gov
http://dx.doi.org/10.1145/2882903.2915221
http://aws.amazon.com/publicdatasets
http://www.data.gov
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available

FILM Director Genres

t1 Men in Black Barry Sonnenfeld {Action Film, Science Fiction}

t2 Men in Black II Barry Sonnenfeld {Action Film, Science Fiction}

t3 Hancock Peter Berg -

t4 I, Robot Alex Proyas {Action Film}

FILM ACTOR Award Winners

t5 Will Smith Saturn Award

t6 Tommy Lee Jones Academy Award

Figure 2: A 2-table preview of the entity graph in Fig. 1. (Upper and

lower tables for subgraphs #1 and #2 in Fig. 3, respectively.)

Figure 3: The schema graph for the entity graph in Fig. 1.

has a relationship Director from Barry Sonnenfeld and has relationship
Genres to both Action Film and Science Fiction.

Data workers browse and explore data under inevitable display
space constraints on mobile devices and desktop monitors. The
proposed preview tables are for compact presentation of important
types of entities and their relationships in an entity graph. They
assist data workers in attaining a quick and rough preview of the
schema of the data, before they decide to spend more time, money
and resources to fetch and investigate the complete entity graph.
The tuples in the tables further facilitate an intuitive understanding
of the data. (Our approach shows a few randomly sampled tuples
in each preview table. How to selectively display important tuples
is left to future study.)

To this end, two other approaches are arguably less adequate for
gaining a quick overview of an entity graph.

(1) One solution is to show a schema graph corresponding to
the data graph. Fig. 3 is the schema graph for the entity graph
in Fig. 1. While its definition is given in Sec. 2, we note that it is
generated by merging same-type entity graph vertices (i.e., entities)
and edges (i.e., relationships). Although a schema graph is much
smaller than the corresponding entity graph, it is not small enough
for easy presentation and quick preview. For instance, in a snapshot
of the “film” domain of Freebase, there are 190K vertices and 1.6M
edges. The corresponding schema graph consists of 50 entity types
and 136 relationship types.

(2) Another approach is to present a summary of the schema
graph, by schema summarization techniques [19, 20, 21, 17, 22].
Some of these methods [19, 20, 21] work on relational and semi-
structured data, instead of graph data. Some [21, 17, 22] produce
trees or graphs as output instead of flat tables. It is unclear how to
apply these methods on an entity graph or its schema graph, due to
differences in data models. Although it is plausible that some of
these approaches can be adapted for entity graphs, several reasons
can render them ineffective. First, schema summary can still be
quite large. The most closely related work, [19, 20], clusters the
tables in a database but does not reduce the number of tables or the
complexity of database schema. If we treat each entity type as a
table and its neighboring entity types in the schema graph as the
table attributes, the number of tables would equal the number of
entity types. For the aforementioned “film” domain in Freebase,
it means one would have to understand the result of clustering 50
tables. Second, schema summarization is for helping database ad-
ministrators and programmers in gaining a detailed understanding

of a database in order to form queries. Our goal is to assist data
workers in attaining a quick and rough understanding of an entity
graph, before they decide to grasp such a detailed understanding.
Therefore, our work can be viewed as an approach of finding a
succinct representation of the schema graph (instead of clustering
it). We are not aware of such an approach in previous studies.

In our definition (details in Sec. 2), a preview is a set of pre-
view tables, each of which has a key attribute (corresponding to an
entity type) and a set of non-key attributes (each corresponding to
a relationship type). Given an entity graph and its schema graph,
there is thus a large space of possible previews. Our goal is to find
an “optimal” preview in the space. To this end, we tackle several
challenges: (1) We discern what factors contribute to the goodness
of a preview and propose several scoring functions for key and
non-key attributes as well as preview tables. The scoring functions
are based on several intuitions related to how much information a
preview conveys and how helpful it is to users. (2) Based on the
scoring measures, a preview’s score is maximized when it includes
as many tables and attributes as possible. However, the purpose
of having a preview is to help users attain a quick understanding
of data and thus a preview must fit into a limited display space.
Considering the tradeoff, we enforce a constraint on preview size.
Furthermore, we consider enforcing an additional constraint on the
pairwise distance between preview tables. Given the spaces of
all possible previews, we formulate the optimization problem of
finding an preview with the highest score among those satisfying
the constraints. The optimization is non-trivial, as we prove that
it is NP-hard under distance constraint. (3) The search space of
previews grows exponentially by data size and the constraints. A
brute-force approach is thus too costly. For efficiently finding opti-
mal previews, we designed a dynamic programming algorithm and
an Apriori [1]-style algorithm.

In summary, this paper makes the following contributions:
• We motivated a novel concept of preview for entity graphs.
• We proposed ideas for measuring the goodness of previews based

on several intuitions. (Sec. 3)
• We formulated optimal preview discovery problem, and proved

its NP-hardness under distance constraint. (Sec. 4)
• We developed a dynamic-programming algorithm and an Apriori-

style algorithm for finding optimal previews. (Sec. 5)
• Extensive experiments, comparison with related work, and user

study verified the scoring measures’ accuracy, the algorithms’
efficiency, and the effectiveness of discovered previews. (Sec. 6)

2. PREVIEW DISCOVERY PROBLEM
An entity graph is a directed multigraph Gd(Vd, Ed) with vertex

set Vd and edge set Ed. Each vertex v ∈ Vd represents an entity and
each edge e(v, v′) ∈ Ed represents a directed relationship from
entity v to v′. Gd is a multigraph since there can be multiple edges
between two vertices. (E.g., in Fig. 1, there are two edges Actor and
Executive Producer from entity Will Smith to entity I, Robot.)

Each entity is labeled by a name. For simplicity and intuitiveness
of presentation, we shall mention entities by their names, assuming
all entities have distinct names, although in reality they are distin-
guished by unique identifiers such as URIs. Each entity belongs
to one or more entity types, underlined in Fig. 1. (E.g., Will Smith

belongs to types FILM ACTOR and FILE PRODUCER and I, Robot belongs
to type FILM.) Each relationship belongs to a relationship type.
(E.g., the edge from Will Smith to Men in Black has type Actor .) The
type of a relationship determines the types of its two end enti-
ties. For instance, an edge of type Actor is always from an entity
belonging to FILE ACTOR to an entity belonging to FILM. We will
mention edges by the surface names of their relationship types.

1798

Gd(Vd, Ed) an entity graph

v ∈ Vd an entity

e(v, v′) ∈ Ed a directed relationship from entity v to entity v′

Gs(Vs, Es) a schema graph

τ ∈ Vs an entity type

γ(τ, τ ′) ∈ Es a relationship type from entity type τ to entity type τ ′

T a preview table

T.key the key attribute of T

T.nonkey the non-key attributes of T

T.τ the set of entities of type τ—the key attribute of T

t ∈ T a tuple t in preview table T

t.τ t’s value on τ which is the key attribute of T

t.γ t’s value on non-key attribute γ

P = {P[1], ...,P[k]} a preview, which consists of k preview tables

Popt an optimal preview

S(P) the score of previewP
S(T) the score of preview table T

Scov(τ), Swalk(τ) score of key attribute τ based on coverage/random-walk

Sτ
cov(γ), Sτ

ent(γ) score of non-key attribute γ based on coverage/entropy

T the space of all possible preview tables

P the space of all possible previews

dist(τ, τ ′) distance between τ and τ ′ in schema graph Gs

Table 1: Notations.

Two different relationship types may have the same surface name
for intuitively expressing their meanings, although underlyingly
they have different identifiers. For instance, the Award Winners edge
from Will Smith to Saturn Award and the Award Winners edge from Barry

Sonnenfeld to Razzie Award belong to two different relationship types.
The former is for relationships from FILM ACTOR to AWARD, while the
latter is for relationships from FILM DIRECTOR to AWARD.

Given an entity graph Gd(Vd, Ed), its schema graph is a directed
graph Gs(Vs, Es), where each vertex τ ∈ Vs represents an entity
type and each directed edge γ(τ, τ ′) ∈ Es represents a relationship
type from entity type τ to τ ′. An edge γ(τ, τ ′) ∈ Es if and only if
there exists an edge e(v, v′) ∈ Ed where e has type γ, v has type τ
and v′ has type τ ′. Fig. 3 shows the schema graph corresponding to
the entity graph in Fig. 1. A schema graph is a multigraph as there
can be multiple relationship types between two entity types. (E.g.,
two relationship types—Producer and Executive Producer—are from
entity type FILM PRODUCER to FILM.) It is clear from the above defi-
nitions that, given a data graph, the corresponding schema graph is
uniquely determined.

Definition 1 (Preview Table and Preview). Given an entity graph
Gd(Vd, Ed) and its schema graph Gs(Vs, Es), a preview table T
has a mandatory key attribute (denoted T.key) and at least one
non-key attributes (denoted T.nonkey). T corresponds to a star-
shape subgraph of the schema graph Gs(Vs, Es). The key attribute
corresponds to an entity type τ ∈ Vs, and each non-key attribute
corresponds to a relationship type γ(τ, τ ′) ∈ Es or γ(τ ′, τ) ∈ Es.
Note that the edges from and to an entity are both important. Hence,
a non-key attribute corresponds to either γ(τ, τ ′) or γ(τ ′, τ).

The preview table T consists of a set of tuples. The number of
tuples equals the number of entities of type τ (the key attribute of
T), i.e., |T | = |T.τ | and T.τ = {v|v ∈ Vd ∧ v has type τ}. Given
an arbitrary tuple t ∈ T , we denote t’s key attribute value by t.τ .
Each tuple t attains a distinct value of t.τ . Its value on a non-key
attribute γ(τ, τ ′), denoted t.γ(τ, τ ′) or simply t.γ, is a set—the set
of entities in entity graph Gd incident from t.τ through an edge of
type γ(τ, τ ′). More formally, t.γ(τ, τ ′) = {u|u ∈ Vd∧e(t.τ, u) ∈
Ed ∧ u belongs to type τ ′}. Symmetrically, its value on a non-key
attribute γ(τ ′, τ) is the set of entities in Gd incident to t.τ through
an edge of type γ(τ ′, τ), i.e., t.γ(τ ′, τ) = {u|u ∈ Vd∧e(u, t.τ) ∈
Ed ∧ u belongs to type τ ′}.

A preview P is a set of preview tables, i.e., P = {P [1], ...,P [k]},
where ∀i 6= j,P [i].key 6= P [j].key, k 6 |Vs| is the total number
of preview tables. Note that |Vs| is the number of vertices in Gs,
i.e., the number of entity types in Gd.

According to Definition 1, the upper and lower tables in Fig. 2
correspond to the star-shape subgraphs #1 and #2 in Fig. 3, respec-
tively. The key attribute in the upper table is FILM and the non-key
attributes are Director and Genres. The key attribute in the lower
table is FILM ACTOR and its non-key attribute is Award Winners. It is
worth noting that, although each tuple’s value on the key attribute
is non-empty, unique and single-valued, its value on a non-key
attribute can be empty (e.g., t3.Genres in Fig. 2), duplicate (e.g.,
t1.Director and t2.Director in Fig. 2) and multi-valued (e.g., t1.Genres

and t2.Genres in Fig. 2). It also follows that a preview table is not a
relational table.

By Definition 1, every vertex τ in a schema graph can serve as
the key attribute of a candidate preview table, which also includes
at least one non-key attribute—an edge incident on τ . We use T
to denote the space of all possible preview tables. A preview is a
set of preview tables. We use P to denote the space of all possible
previews. Note that P ⊂ 2T, i.e., not every member of the power
set 2T is a valid preview, because by Definition 1 preview tables in
a preview cannot have the same key attribute.

Problem Statement: Given an entity graph Gd(Vd, Ed) and its
corresponding schema graph Gs(Vs, Es), the preview discovery

problem is to find Popt—the optimal preview among all possible
previews. We shall develop the notions of goodness and optimality
for a preview and define goodness measures in Sec. 3.

Note that the preview discovery problem focuses on selecting
key and non-key attributes for preview tables. It does not select
tuples. As our goal is to help users attain a good initial under-
standing of the schema of an entity graph, we argue that it is only
necessary to show a small number of tuples instead of all. Our
current approach is to randomly select a few. How to choose the
most representative tuples is left for future work.

3. SCORING MEASURES FOR PREVIEWS
In this section, we discuss the scoring functions for measuring

the goodness of previews for entity graphs. The measures are based
on the intuition that a good preview should 1) relate to as many
entities and relationships as possible and 2) help users understand
an entity graph and its schema graph. The first intuition is obvious,
as a preview relating to only a small number of entities or rela-
tionships will inevitably lose lots of information and thus lead to
poor comprehensibility of the original graph. The second intuition
models the goodness of previews according to users’ behavior in
browsing entity and schema graphs.

3.1 Preview Scoring
The score of a preview P = {P [1], ...,P [k]} is simply aggre-

gated from individual preview tables’ scores, by summation:

S(P) =

k
∑

i=1

S(P [i]), (1)

where S(P [i]) is the score of a preview table P [i], defined as:
S(P [i]) = S(τ)×

∑

γ∈P[i].nonkey

Sτ (γ), (2)

where S(τ) is the score of the key attribute of P [i] (i.e., P [i].key=τ)
and Sτ (γ) is the score of a non-key attribute γ in P [i]. S(τ) and
Sτ (γ) are defined and elaborated in Sec. 3.2 and Sec. 3.3.

In the above definition, the score of a preview table equals the
product of its key attribute’s score and the summation of its non-
key attributes’ scores. The definition gives the key attribute τ much
higher importance than any individual non-key attribute, because
the preview table centers around the entities of type τ and describes
their non-key attributes, i.e., their relationships with other entities.

It is possible to propose many viable scoring functions for pre-
views, key attributes and non-key attributes. Furthermore, tech-

1799

niques such as learning-to-rank [12] may be applied in ranking
previews by features related to key and non-key attributes, although
the feasibility of collecting many labelled data is less clear in this
case. We leave it to future work to explore this direction. Nev-
ertheless, we note that the results on the optimization problems in
Section 4 and the algorithms in Section 5 will stand, as long as the
scoring function replacing Eq. 1 and Eq. 2 is monotonic with regard
to S(τ) and Sτ (γ), and the measures defining S(τ) and Sτ (γ) do
not affect the results.

3.2 Key Attribute Scoring
Coverage-based scoring measure: Given an entity graph Gd(Vd,
Ed) and its corresponding schema graph Gs(Vs, Es), the key at-
tribute τ of a candidate preview table T corresponds to an entity
type, i.e., τ ∈ Vs. If the entity graph consists of many entities of
type τ , including T in the preview makes the preview relevant to
all those entities. The coverage-based scoring measure thus defines
the score of τ as the number of entities bearing that type:

Scov(τ) = |{v|v ∈ Vd ∧ v has type τ}|
For example, given the entity graph in Fig. 1 and the correspond-

ing schema graph in Fig. 3, the coverage-based score of the key
attribute FILM is Scov(FILM) = 4.
Random-walk based scoring measure: We consider a random-

walk process over a graph G converted from the schema graph
Gs(Vs, Es), inspired by the PageRank algorithm [5] for Web page
ranking and many related ideas. Similar to Gs, vertices in G are
entity types and edges are relationship types. Different from Gs,
the edges are undirected. As explained in Def. 1, the edges from
and to an entity are both important to the entity. The edge between
τi and τj in G is weighted by the number of relationships (i.e., the
number of edges) in the entity graph between entities of types τi
and τj . We denote the weight by wij , defined as follows.

wij = wji =
∑

γ(τi,τj)∈Es

|{e|e ∈ Ed ∧ e has type γ(τi, τj)}|

+
∑

γ(τj ,τi)∈Es

|{e|e ∈ Ed ∧ e has type γ(τj , τi)}|

In the |Vs| × |Vs| transition matrix M , an element Mij corre-
sponds to the transition probability from τi to τj in G. Mij equals
the ratio of wij to the total weight of all edges incident on τi in G:

Mij = wij/
∑

k

wik

For example, based on Fig. 3, the transition probability from FILM

to FILM GENRE is MFILM,FILM GENRE = wFILM,FILM GENRE/(wFILM,FILM GENRE +
wFILM,FILM ACTOR + wFILM,FILM DIRECTOR + wFILM,FILM PRODUCER) = 5/(5+6+4+
3) = 0.28. The transition probability from FILM to FILM PRODUCER is
MFILM,FILM PRODUCER = wFILM,FILM PRODUCER/(wFILM,FILM GENRE + wFILM,FILM ACTOR

+ wFILM,FILM DIRECTOR + wFILM,FILM PRODUCER) = 3/(5 + 6 + 4 + 3) = 0.17.
Suppose a random walker traverses in G, either by going from

an entity type τi to another entity type τj through the edge between
them with probability Mij or by jumping to a random entity type.
Entity types that are more likely to be visited by the user are of
higher importance. The random walk process will converge to a
stationary distribution which represents the chances of entity types
being visited. The stationary distribution π of the random walk
process is given as follows. Note that a similar idea was applied
in [19] for ranking relational tables by importance.

π = πM
The random-walk based score of a candidate key attribute τi is:
Swalk(τi) = πi,where πi is the stationary probability of τi.

3.3 Non-Key Attribute Scoring
Coverage-based scoring measure: The coverage-based scoring
measure for non-key attribute is similar to that for key attribute.

Given an entity graph Gd(Vd, Ed) and its schema graph Gs(Vs, Es),
consider a candidate preview table T with key attribute τ . A non-
key attribute γ of T corresponds to a relationship type, i.e., γ ∈ Es.
If the entity graph contains many edges (i.e., relationships) belong-
ing to type γ, incorporating such a relationship type into table T
makes it relevant to all those relationships and their corresponding
entities. The coverage-based scoring measure thus defines the score
of γ as the number of relationships bearing that type:

Sτ
cov(γ) = |{e|e ∈ Ed ∧ e has type γ}|

For example, given the entity graph in Fig. 1 and the schema
graph in Fig. 3, the coverage-based scores of non-key attributes
Director and Genres are SFILM

cov (Director) = 4 and SFILM
cov (Genres) = 5.

The coverage-based scoring measure for non-key attribute is sym-
metric, i.e., given γ(τ, τ ′) (or γ(τ ′, τ)) ∈ T.nonkey, Sτ

cov(γ) ≡

Sτ ′

cov(γ). Both τ and τ ′ can be the key attribute of a different
preview table, in which γ is a non-key attribute. The scores of
γ in the two tables are equal.

Entropy-based scoring measure: For a preview table T with
key attribute τ , we measure the goodness of a non-key attribute
γ(τ, τ ′) (or γ(τ ′, τ)) by how much information it provides to T ,
for which the entropy of γ (H(γ)) is a natural choice of measure:

Sτ
ent(γ) = H(γ) =

∑

j=1

nj

|t.γ|
log(

|t.γ|

nj

),

where nj is the number of tuples in T that attain the same jth
attribute value u on non-key attribute γ(τ, τ ′) (or γ(τ ′, τ)), i.e.,
u ∈ Vd ∧ u has type τ ′ and nj = |{v|v ∈ T.τ ∧ e(v, u) ∈
Ed (or e(u, v) ∈ Ed)∧e has type γ}|. |t.γ| is the number of tuples
in T with non-empty values on γ(τ, τ ′) (or γ(τ ′, τ)). Continue
the running example. The entropy-based scores of non-key at-
tributes Director and Genres are SFILM

ent (Director) = (2/4) log(4/2)+

(1/4) log(4/1) + (1/4) log(4/1) = 0.45, and SFILM
ent (Genres) =

(2/3) log(3/2) + (1/3) log(3/1) = 0.28. Note that for two val-
ues on a multi-valued attribute (e.g., {Action Film, Science Fiction}
and {Action Film} for FILM.Genres in Fig. 2), we consider them e-
quivalent if and only if they have the same set of component val-
ues. By definition, the entropy-based scoring measure for non-
key attribute is asymmetric, i.e., given γ(τ, τ ′) (or γ(τ ′, τ)) ∈

T.nonkey, Sτ
ent(γ) 6≡ Sτ ′

ent(γ).

4. OPTIMAL PREVIEWS UNDER SIZE AND

DISTANCE CONSTRAINTS
In this section, based on the scoring measures defined in Sec. 3,

we formulate several optimization problems that look for the opti-
mal previews with best scores under various constraints on preview
size and distance between preview tables. We prove that some of
these optimization problems are NP-hard.

By Eq. 1 (or any other monotonic aggregate function), the s-
core of a preview monotonically increases by its member preview
tables—the more preview tables in a preview, the higher its score.
Similarly by Eq. 2, the score of a preview table monotonically
increases by its non-key attributes. The properties are formally
stated in the following two propositions. Recall that P and T denote
the space of all possible previews and all possible preview tables.

Proposition 1. Given previews P1,P2 ∈ P, if P1 ⊇ P2, then
S(P1) ≥ S(P2).

Proposition 2. Given preview tables T1, T2 ∈ T, if T1.key =
T2.key and T1.nonkey ⊇ T2.nonkey, then S(T1) ≥ S(T2).

By the above propositions, a preview’s score is maximized when
it includes as many tables and attributes as possible. However, a
preview must fit into a limited display space, due to constraints
posed by mobile devices and desktop monitors. Therefore the size

1800

and the goodness score of a preview present a tradeoff. Considering
the tradeoff, we enforce a constraint on preview size, given by a pair
of integers (k, n), where k is the number of allowed preview tables
and n is the number of allowed non-key attributes in the tables.
Their values may be either manually chosen by interactive users or
automatically suggested based on the size of a display space. The
previews satisfying the size constraint are called concise previews.

An alternative size constraint is a maximally allowed number of
attributes per preview table. However, we do not consider such a
constraint in this paper. We argue that forcing each preview table
to have the same width can cause two problems—on the one hand,
the allocated space for some preview tables may be wasted because
they do not have as many important non-key attributes; on the other
hand, the fixed space is insufficient for other preview tables with
more important non-key attributes.

Further, for obtaining either a coherent or a diverse preview, we
enforce an additional constraint on the pairwise distance between
preview tables. The distance between two preview tables T1 and
T2 (denoted dist(T1, T2)) is the length of the shortest undirected
path1 between their key attributes T1.key and T2.key in schema
graph Gs. (Recall that the key attributes are vertices (i.e., entity
types) in Gs.) For example, the distance between the two tables in
Fig. 2 is 1, which is the shortest path length between FILM and FILM

ACTOR in the schema graph in Fig. 3. Similarly, for the two tables
whose key attributes are FILM and AWARD, their distance would be 2.

Based on the above notion of distance, the constraint on table
distance is given by an integer d, which is the maximum (resp.
minimum) distance between preview tables. The previews satisfy-
ing the distance constraint are called tight (resp. diverse) previews.
Intuitively speaking, the preview tables in a tight preview are highly
related to each other due to their short pairwise distance, while the
preview tables in a diverse preview are not tightly related to each
other and cover different types of concepts. Arguably, both types
of previews are useful for understanding an entity graph. We shall
compare them empirically in Sec. 6.

Below we formally define the three types of previews and the
corresponding optimization problems. Note that we assume the
constraints k, n, d are given. While it is intuitive for a user to
specify desired values for these constraints, it is helpful if a system
can automatically suggest values. We leave it to future work.

Definition 2 (Concise, Tight and Diverse Previews). Given the size
constraint (k, n), a concise preview has k preview tables (i.e., key
attributes) and no more than n non-key attributes in the tables. 2

The space of all concise previews is

Pk,n = {P
∣

∣ P ∈ P, |P| = k,
k

∑

i=1

|P [i].nonkey| ≤ n}.

Given the size constraint (k, n) and the distance constraint d,
a tight preview (diverse preview) is a concise preview in which the
distance between any pair of preview tables is smaller (greater) than
or equal to d. The space of all tight previews is

Pk,n,≤d = {P
∣

∣ P ∈ Pk,n,∀T1, T2 ∈ P , dist(T1, T2) ≤ d}.
The space of all diverse previews is
Pk,n,≥d = {P

∣

∣ P ∈ Pk,n, ∀T1, T2 ∈ P , dist(T1, T2) ≥ d}.

1 An undirected path in a directed graph is a path in which the edges are

not all oriented in the same direction.
2

A preview with less than n
non-key attributes may outscore another preview with exactly n non-key
attributes. Further, a set of k entity types may have only less than n edges
in the schema graph. Hence, the condition |P[i].nonkey| ≤ n instead of
|P[i].nonkey| = n. On the other hand, it is safe to assume that an entity
graph with practical significance always has more than k entity types under
any reasonably small k. Therefore an optimal preview always should have
exactly k preview tables, given the monotonic scoring function (cf. Eq. 1).

Given the spaces of concise, tight and diverse previews, we for-
mulate three optimization problems—finding an optimal preview

with the highest score in the corresponding space of previews.

Definition 3 (Optimal Preview Discovery Problem). The optimiza-
tion problem of finding an optimal preview is defined as follows,
where P can be any of the aforementioned three spaces—Pk,n,
Pk,n,≤d and Pk,n,≥d.

Popt ∈ arg max
P∈P

S(P) (3)

Note that the arg max function may return a set of optimal pre-
views due to ties in scores.

For example, given the entity graph in Fig. 1, using coverage-
based scoring measures for both key and non-key attributes, an
optimal concise preview consisting of 2 tables and 6 non-key at-
tributes (i.e., k=2, n=6) is P = {T1 : FILM , Actor ,Genres, Director ,
Producer ; T2 : FILM ACTOR, Actor , Award Winners}. The edge Actor is a
non-key attribute in both T1 and T2, in different directions. An opti-
mal diverse preview under the same size constraint (k=2, n=6) and
distance constraint d=2 is P = {T1 : FILM , Actor ,Genres, Director ,
Producer , Executive Producer ;T2 : AWARD, Award Winners}.

4.1 NP-hardness of the Optimal Tight and Di-
verse Preview Discovery Problems

The optimal preview discovery problem is non-trivial. Particu-
larly, the problem in the spaces of both tight previews (Pk,n,≤d)
and diverse previews (Pk,n,≥d) is NP-hard.

Theorem 1. Optimal tight preview discovery is NP-hard.

Proof. The decision version of the optimal tight preview discovery
problem is TightPreview (Gs, k, n, d, s)—Given a schema graph
Gs, decide whether there exists such a preview P that (1) P has
k tables and no more than n non-key attributes; (2) the distance
between every pair of preview tables is not greater than d; and (3)
the preview’s score is at least s, i.e., S(P) ≥ s.

We construct a reduction, in polynomial-time, from the NP-hard
Clique problem to TightPreview (Gs, k, n, d, s). Recall that the
decision version of Clique(G, k) is to, given a graph G(V,E),
decide whether there exists a clique in G with k vertices. The
reduction is by constructing a schema graph Gs from G. For sim-
plicity of exposition, in both this proof and the proof of Theorem 2,
we assume the schema graph Gs is undirected and every edge γ
in Gs corresponds to the same relationship type. This assumption
is made without loss of generality. Note that our following proof
casts no requirement on the score of a preview (i.e., s = 0) and
thus no requirement on the scores of key and non-key attributes
in Gs. Hence, edge orientation and its corresponding relationship
type bears no significance in the proof.

Formally, we construct a schema graph Gs(Vs, Es) from G
through a vertex bijection f : V → Vs:

• ∀e(v, v′) ∈ E, there exists an edge (i.e., relationship type) γ(τ, τ ′)
∈ Es, where τ = f(v) and τ ′ = f(v′).

• ∀γ(τ, τ ′) ∈ Es, there exists an edge e(v, v′) ∈ E, where v =
f−1(τ) and v′ = f−1(τ ′).

Clique(G, k) is thus reduced to TightPreview (Gs, k, k, 1, 0) by
the above bijections.

The NP-hardness of the optimal diverse preview discovery prob-
lem is also based on a reduction from the Clique problem, although
the proof is more complex.

Theorem 2. Optimal diverse preview discovery is NP-hard.

Proof. The decision version of the optimal diverse preview discov-
ery problem is DiversePreview (Gs, k, n, d, s)—Given a schema
graph Gs, decide whether there exists such a preview P that (1) P

1801

Figure 4: Construction of Gs from G, for reduction from the clique

problem to the optimal diverse preview discovery problem.

has k tables and no more than n non-key attributes; (2) the distance
between every pair of preview tables is not smaller than d; and (3)
the preview’s score is at least s, i.e., S(P) ≥ s.

We construct a reduction, in polynomial-time, from the NP-hard
Clique(G, k) to DiversePreview (Gs, k, n, d, s). The reduction
is also by constructing a schema graph Gs(Vs, Es) from G. It is
similar to the reduction for TightPreview (Gs, k, n, d, s) in Theo-
rem 1, but also bears two important differences. (1) Gs contains
a special vertex, denoted τ0, that is directly connected to every
other vertex in Gs. (2) Barring τ0 and all its incident edges, Gs

is the complement graph of G—There is still a vertex bijection
f : V → Vs, but an edge exists between two vertices in Gs if
and only if there is no edge between the corresponding vertices in
G. Formally, the construction of Gs from G is as follows:

• ∀τ, τ ′ ∈ Vs\{τ0}, γ(τ, τ ′) ∈ Es if and only if ∄e(v, v′) ∈ E,
where v = f−1(τ) and v′ = f−1(τ ′).

• ∀τ ∈ Vs\{τ0}, γ(τ0, τ) ∈ Es.

Clique(G, k) is thus reduced to DiversePreview (Gs, k, k, 2, 0)
by the above construction of Gs.

Fig. 4 can help understand the reduction from Clique(G, k) to
DiversePreview (Gs, k, k, 2, 0) in the above proof. The figure
shows an example with G (left) and the constructed schema graph
Gs (right), where the gray vertex in Gs is τ0. Consider an arbitrary
pair of vertices (v, v′) in G and their corresponding vertices (τ, τ ′)
in Gs. On the one hand, if v and v′ are not directly connected
in G (e.g., v1 and v6), an edge between τ and τ ′ (i.e., τ1 and
τ6) is included into Gs. When finding a diverse preview where
pairwise table distance must be at least 2, τ and τ ′ will never be
chosen together as the key attributes of two tables in the preview.
Correspondingly, this means a clique must not include both v and
v′. On the other hand, if v and v′ are directly connected in G
(e.g., v1 and v2), there must not be a direct edge between τ and τ ′

(i.e., τ1 and τ2) in Gs. The distance between τ and τ ′ is exactly
2, since they are only indirectly connected through τ0. They will
thus be considered in choosing the key attributes of two tables in
a diverse preview where pairwise table distance must be at least
2. Correspondingly, the directly connected v and v′ are considered
together in forming a clique.

5. ALGORITHMS
In this section we discuss algorithms for solving the optimal

preview discovery problem. As given in Eq. 3, the problem is to
find a preview with the highest score among candidate previews,
where the space of candidates can be concise previews (Pk,n), tight
previews (Pk,n,≤d) or diverse previews (Pk,n,≥d). Recall that we
use S(τ) to denote the score of a candidate key attribute τ for a
preview table T and Sτ (γ) to denote the score of a candidate non-
key attribute γ(τ, τ ′) (or γ(τ ′, τ)) for T whose key attribute is τ .

Our effort focuses on reducing the cost in finding optimal pre-
views. Both the schema graph and the scoring measures defined in
Sec. 3 are computed before optimal preview discovery. This is a
realistic assumption, since the schema graph and scoring measures
do not change by the size and distance constraints k, n, d. Fur-
thermore, they can be incrementally updated when the underlying

Algorithm 1: Brute-force algorithm for optimal preview discovery

Input : schema graph Gs, size constraint (k, n)
Output: an optimal preview Popt

1 foreach τ ∈ Vs do

2 〈γτ
1 , γ

τ
2 , . . .〉 ← sort the candidate non-key attributes γτ

j ∈ Γτ by their

scores Sτ (γτ
j);

3 max_score← 0; Popt ← ∅;
4 foreach k-subset of Vs (denoted V) do

5 score← 0; P ← ∅; i← 1;
6 foreach τ ∈ V do

7 P[i].key = τ ;
8 P[i].nonkey = {γτ

1 };
9 score = score+ S(τ)× Sτ (γτ

1);
10 i← i + 1;

11 Γ← top-(n−k) candidate non-key attributes from all τ ∈ V in
descending order of S(τ)× Sτ (γτ

j);

12 foreach γτ
j ∈ Γ, where τ = P[x].key do

13 score← score+ S(τ)× Sτ (γτ
j);

14 P[x].nonkey ← P[x].nonkey
⋃
{γτ

j };

15 if score > max_score then

16 max_score← score;
17 Popt ← P ;

18 return Popt;

entity graph is updated (detailed discussion omitted). On the other
hand, the optimal previews cannot be incrementally updated.

Before we present the algorithms, consider the space of all pos-
sible previews. Every entity type τ can be the key attribute of a
preview table T . Let Γτ denote the set of all edges (i.e., relationship
types) incident on τ in schema graph Gs. Any γ ∈ Γτ can be a
candidate for the non-key attributes of T . By the scoring function in
Eq. 2 and the problem formulation in Eq. 3, the non-key attributes
of T must have the highest scores among the candidates in Γτ . This
property, stated in Theorem 3, is important to our algorithms.

Theorem 3. Suppose an optimal (concise, tight or diverse) preview
Popt contains a preview table T ∈ T with key attribute τ . If T has
m non-key attributes, they must be the top-m non-key attributes by
scores, i.e., ∀γ, γ′ ∈ Γτ , if γ ∈ T.nonkey and γ′ /∈ T.nonkey,
then Sτ (γ) ≥ Sτ (γ′).

5.1 A Brute-Force Algorithm
Alg. 1 is a brute-force algorithm for the optimal preview discov-

ery problem. It enumerates all possible k-subsets of entity types, as
the k entity types in each subset form the key attributes of k preview
tables in a preview P (Line 4). For a candidate key attribute τ ,
the elements in the set of its candidate non-key attributes Γτ are
ordered by their scores. We denote these candidates in descending
order of scores by γτ

1 , γτ
2 , and so on (Line 2). Suppose preview

table T uses τ as its key attribute. Each table must contain at
least one non-key attribute, according to Definition 1. Hence, γτ

1

(i.e., the candidate non-key attribute with the highest score) must
be included into T.nonkey (Line 8), by Theorem 3. Further, a-
mong the remaining candidate non-key attributes for the k entity
types, the top-(n−k) candidates by scores must be included into P
(Lines 11–14), by Theorem 3. Note that, since the sorted list of
candidate non-key attributes for each τ is already created (Line 2),
it is unnecessary to do a full sorting in order to determine the top-
(n−k) candidates Γ. Instead, a simple merge operation on the k
sorted lists will get Γ.

The algorithm has an exponential complexity O(KN logN +
(

K

k

)

(k + n)), where K = |Vs| is the number of candidate key
attributes, N = 2|Es| is the number of candidate non-key attributes
for all candidate key attributes,

(

K

k

)

is the number of k-subsets, and
KN logN is for sorting individual lists of candidates (Line 2), in
which each list contains at most N elements.

1802

Algorithm 2: Dynamic-programming algorithm for optimal concise

preview discovery

Input : schema graph Gs, size constraint (k, n)
Output: an optimal concise preview Popt

1 foreach x← 1 to K do

2 〈γτx
1 , γ

τx
2 , . . .〉 ← sort the candidate non-key attributes γ

τx
j ∈ Γτx by

their scores Sτx (γτx
j);

3 for x← 1 to K do

4 for i← 1 to min(k, x) do

5 for j ← i to n do

6 Popt(i, j, x)← Popt(i, j, x− 1);
7 for m← 1 to min(j − i + 1, |Γτx |) do

8 Tm
x .key ← τx;

9 Tm
x .nonkey ← top-m candidate non-key attributes in

Γτx ;
10 P ← Popt(i− 1, j −m,x− 1)

⋃
{Tm

x };
11 if S(P) > S(Popt(i, j, x)) then

12 Popt(i, j, x)← P ;

13 Popt ← Popt(k, n,K);
14 return Popt;

Alg. 1 is for finding one of the optimal previews. To find all
optimal previews, it needs simple extension to deal with ties in
scores, which we will not further discuss.

The same brute-force algorithm is applicable for optimal preview
discovery in all three types of spaces—concise, tight and diverse
previews. The pseudo code in Alg. 1 is for concise previews and
does not enforce distance constraint, for simplicity of presentation.
Enforcing distance constraint for tight/diverse previews is straight-
forward, by performing distance check on every pair of preview
tables in each k-subset of entity types.

5.2 A Dynamic-Programming Algorithm for
Concise Preview Discovery Problem

As the combinatorial number of k-subsets grows exponentially,
the performance of the above brute-force algorithm becomes un-
acceptable for finding an optimal preview under modest size con-
straints. We thus developed a dynamic-programming algorithm to
discover optimal concise previews more efficiently.

Consider an arbitrary order on all K entity types—τ1, . . . , τK .
We use Popt(k, n, x) to denote an optimal concise preview among
the first x entity types τ1, . . . , τx. The optimal concise preview
discovery problem is to find Popt(k, n,K). Popt(k, n, x) can be
constructed from the solutions to smaller problems, in two ways:
(1) It can be equal to Popt(k, n, x−1), i.e., its k tables and n non-
key attributes are from the first x−1 entity types and the x-th entity
type τx does not contribute anything; (2) It can also be the union of
Popt(k−1, n−m,x−1) and a table Tm

x , where Popt(k−1, n−m,x−1)
is an optimal preview with k−1 tables and n−m non-key attributes
among the first x−1 entity types, and Tm

x is the table whose key
attribute is τx and whose non-key attributes are the top-m elements
in Γτx—the sorted list of candidate non-key attributes for τx. The
number m is between 1 and n−(k−1) (or less if there are less
than n−(k−1) elements in Γτx), since each of the k−1 tables
in Popt(k−1, n−m,x−1) must contribute at least one non-key
attribute. The optimal substructure of the problem is as follows.
(We omit boundary cases (k = 1 or x = 1 or n = k) for brevity.)

Popt(k, n, x) = argmax
P∈P(k,n,x)

S(P)

P(k, n, x) =























Popt(k, n, x−1),
Popt(k−1, n−1, x−1)

⋃

{T 1
x},

Popt(k−1, n−2, x−1)
⋃

{T 2
x},

...

Popt(k−1, k−1, x−1)
⋃

{T
n−(k−1)
x }























,

Algorithm 3: Apriori-style Algorithm for optimal tight/diverse

preview discovery

Input : schema graph Gs, size constraint(k, n), distance constraint d
Output: an optimal tight/diverse previewPopt

1 L2 ← ∅;
2 foreach i← 1 to K do

3 foreach j ← i + 1 to K do

4 if dist(τi, τj) ≤ d then /* ≥ d for diverse preview */

5 L2 ← L2 ∪ {〈i j〉};

6 i← 3;
7 while i ≤ k and Li−1 6= ∅ do

8 Li ← ∅;
9 foreach A,B ∈ Li−1 s.t. (∀j < i− 1 : A[j] = B[j]) and

(A[i− 1] < B[i− 1]) do

/* ≥ d for diverse preview */

10 if dist(τA[i−1], τB[i−1]) ≤ d then

11 Li ← Li ∪ {〈A[1] . . . A[i− 1]B[i− 1]〉};

12 i← i+ 1;

13 if Lk = ∅ then

14 return ∅;

15 max_score← 0;
16 foreach A ∈ Lk do

17 P ← ComputePreview(A);
18 if score(P) > max_score then

19 max_score← score(P);
20 Popt ← P ;

21 return Popt;

where Tm
x .key = τx and Tm

x .nonkey = top-m candidate non-key
attributes in Γτx . Note that the optimal substructure is inapplicable
when previews must satisfy distance constraint in addition to size
constraint (details omitted). Therefore the dynamic-programming
algorithm is for concise previews but not tight/diverse previews.

The pseudo code of the dynamic-programming algorithm is shown
in Alg. 2. Its complexity is O(KN logN + Kkn2). Similar to
Alg. 1, Alg. 2 is for finding one optimal preview. Finding all opti-
mal previews requires simple extension to deal with ties in scores,
which we will not further discuss.

Both Alg. 1 and 2 assume that, given any k entity types (key
attributes), they always together have at least n non-key attributes.
That may not be true in reality. In fact, for two previews with the
same number of tables, the preview with less non-key attributes
may have the higher score than the other preview. Note that, in
Eq. 3, the optimal preview is not required to have exactly n non-
key attributes. It is simple to extend Alg. 1 and 2 to fully comply
with the definition. Given any entity type τ , if it has less than n
candidate non-key attributes, we can simply pad the sorted list Γτ

by pseudo non-key attributes with zero scores.

5.3 An Apriori-style Algorithm for Tight / Di-
verse Preview Discovery Problem

Since the dynamic-programming algorithm is inapplicable when
previews must satisfy distance constraint, we propose an efficient
algorithm for optimal tight/diverse preview discovery, shown in
Alg. 3. It consists of two steps: (1) finding k-subsets of entity types
(i.e., vertices in Gs) satisfying the distance constraint (Lines 1–
14); (2) for each qualifying k-subset of entity types, forming a
preview under the size constraint, computing its score and choosing
a preview with the highest score (Lines 15– 20).

The first step is essentially finding k-cliques in a graph converted
from the schema graph Gs, in which vertices are considered adja-
cent if they are within distance d (for tight previews) or apart by
at least distance d (for diverse previews). The k-clique problem
is well-studied and many efficient algorithms have been designed
in the past. Our method is inspired by the well-known Apriori

1803

Domain # of vertices # of edges

books 6M / 91 15M / 201
film 2M / 63 18M / 136
music 27M / 69 187M / 176
TV 2M / 59 17M / 177
people 3M / 45 17M / 78
basketball 19K / 6 557K / 21
architecture 133K / 23 432K / 48

Table 2: Sizes of entity/schema graphs.

Domain Coverage Entropy

books 0.8 0.786
film 0.2 0.25
music 0.528 0.589
TV 0.622 0.379
people 0.708 0.606

Table 3: MRR of non-key attribute

scoring.

key attribute non-key attribute

Domain YPS09 Coverage Random

Walk

Coverage Entropy

books 0.4 0.55 0.43 0.43 0.43
film -0.01 0.48 0.25 0.35 0.35
music 0.37 0.33 0.46 0.42 0.41
TV 0.37 0.69 0.65 0.47 0.47
people 0.36 0.31 0.29 0.43 0.43

Table 4: PCC of key and non-key attribute scoring.

algorithm [1] for frequent itemset mining. In [11], an algorithm
was proposed for finding k-cliques (where edges correspond to
metabolite correlations) by similar ideas, although the connection
to Apriori was not made. Their experimental results demonstrated
superior efficiency in comparison with the more well-known Bron-
Kerbosch algorithm [6]. Nevertheless, the two broad steps of our
optimal tight/diverse preview discovery algorithm are independent
from each other, and thus any more efficient or even approximate
algorithm for finding k-cliques can be plugged into it to further
improve its execution efficiency.

In more details, the first step of Alg. 3 iteratively generates a k-
subset of entity types by merging two (k−1)-subsets. Entity types
are arbitrarily ordered as τ1, . . . , τK . In the i-th iteration of the
algorithm, if two (i−1)-subsets A and B only differ by their last
entity types τA[i−1] and τB[i−1], and the distance between their last
entity types satisfies the distance constraint, a candidate i-subset is
generated by appending τB[i−1] to the end of A.

In the second step, for each candidate k-subset of entity types, a
preview is computed (ComputePreview (A) in Line 17 of Alg. 3).
The details of function ComputePreview are omitted. It follows
Theorem 3 and is essentially the same as Lines 5– 14 in Alg. 1. The
score of each preview is computed (the same as in Lines 5– 14 of
Alg. 1) and a preview with the highest score is returned.

The worst-case complexity of Alg. 3 is the same as that of Alg. 1.
However, as Sec. 6 shows, in practice it significantly outperforms
the brute-force algorithm, since Line 10 could filter out many com-
binations that do not satisfy the distance constraint.

6. EVALUATION
We conducted experiments to evaluate the preview scoring mea-

sures’ accuracy (Sec. 6.1), the preview discovery algorithms’ ef-
ficiency (Sec. 6.2), and the overall quality of discovered previews
(Sec. B). All experiments were run on a Dell T100 server running
Ubuntu 8.10. The server has a Dual Core Xeon E3120 processor,
6MB cache, 4GB RAM, and two 250GB RAID1 SATA hard driver-
s. All algorithms are implemented in C++ and compiled with ‘-O2’
optimization in GCC-4.3.2.

The entity graph used in our experiment is a dump of Freebase
at September 28, 2012.3 The dataset is imported into an MySQL
database. In Freebase, the entire entity graph is partitioned into
many domains. Our experiments were conducted on seven domain-
s. The sizes of the entity and schema graphs in these domains
are shown in Table 2. Our work currently is limited to named
entities, thus all numeric attribute values from the data dump have
been removed. Note that a schema graph may be disconnected. To
ensure the convergence of random walk in such a graph, we added
a small transition probability 10−5 to every pair of entity types.

6.1 Accuracy of Preview Scoring Measures
We conducted two experiments to evaluate the accuracy of the

scoring measures for both key and non-key attributes presented in
Sec. 3. One experiment compares the ranking orders of candidate
key (non-key) attributes by the scoring measures with gold standard

3
https://developers.google.com/freebase/data

ranking orders. The other calculates the correlation between two
pairwise ordering results on candidate key (non-key) attributes—
one by the scoring measures and the other collected through crowd-
sourcing. In both experiments, we used both measures proposed in
this paper and an adaptation of the approach in [19].

6.1.1 Adaptation of [19]

Yang et al. [19] proposed an algorithm to summarize relational
databases, specifically the tables in TPC-E benchmark. 4 Their ap-
proach works in three steps. First they define an importance value
for each table considering both information content of the tables
and join relationships between the tables. Second, they measure the
similarity/distance between tables. Finally, they use a weighted k-
center clustering algorithm to place the tables into k clusters. The k
cluster centers are the summary of the database. We implemented
their algorithm. We compared the results on TPC-E tables with
those reported in [19] and validated our own implementation.

We adapted [19] for the entity graphs in the aforementioned Free-
base domains. Since [19] was designed to summarize relational
databases only, we converted each entity graph into a relational
database, as follows. For each entity type τ , we created a relational
table, of which the first column takes entities belonging to τ as its
values. Furthermore, a column is created for each relationship type
incident on τ in the scheme graph. The values in such a column are
the entities adjacent to the entities in the first column through the
corresponding relationship type. For each entity belonging to τ , a
number of tuples are inserted into the table, which are essentially a
Cartesian product of distinct values on all these columns.

6.1.2 Comparison with Gold Standard
Key attributes:

We collected gold standard data for 5 largest entity domains in
Freebase—“books”, “film”, “music”, “TV” and “people”. For each
domain, Freebase offers an entrance page showing 6 major entity
types in that domain. A user can choose to browse entities in any
of the 6 types. 5 As such entrance pages were manually created by
Freebase, our conjecture is that they are of high quality and reflect
the most popular entity types. We thus treated the 6 entity types
listed in the entrance page of a domain as the gold standard for top-
6 key attributes in that domain. The schema of the tables in the gold
standard can be found in Table 10 in the Appendix.

For both the coverage-based and the random-walk based scoring
measures in Sec. 3.2, we ranked all candidate key attributes by
their scores. We calculated the accuracy of a scoring measure by
several widely-used measures, including Precision-at-K (P@K),
Average Precision (AvgP) and Normalized Discounted Cumulative
Gain (nDCG) [13]. An approach that ranks accurate results higher
is expected to receive better values under these measures. For a
scoring measure for key attributes, P@K is the percentage of its
top-K results that belong to the aforementioned gold standard top-
6 key attributes. For the adaptation of [19], we use the ranked

4
http://www.tpc.org/tpce/

5
The entrance pages were all under

“Featured Data” on Freebase.com. For instance, http://www.freebase.com/
view/film was the entrance page for domain “film”. We collected these
pages shortly after September 28, 2012, which is the timestamp of the
Freebase entity graph dump used in our experiments. These pages have
become unavailable lately.

1804

https://developers.google.com/freebase/data
http://www.tpc.org/tpce/
Freebase.com
http://www.freebase.com/view/film
http://www.freebase.com/view/film

0 5 10 15 20

K(books)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

-a
t-

K

0 5 10 15 20

K(film)

0 5 10 15 20

K(music)

0 5 10 15 20

K(tv)

0 5 10 15 20

K(people)

Coverage Random Walk Optimal P@K YPS09

Figure 5: Precision-at-K of key attribute scoring.

0 5 10 15 20

K(books)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 P

re
c
is

io
n

0 5 10 15 20

K(film)

0 5 10 15 20

K(music)

0 5 10 15 20

K(tv)

0 5 10 15 20

K(people)

Coverage Random Walk Optimal AvgP@K YPS09

Figure 6: Average precision of key attribute scoring.

list by their table importance scoring. The results are in Fig. 5.
The topmost curves (“Optimal P@K”) represent the best possible
P@K that can be archived by any method. For instance, P@10 can
be at most 0.6, since there are only 6 gold standard key attributes
in each domain, as mentioned above. Fig. 5 shows that both the
coverage-based and the random-walk based scoring measures had
P@10 close to 0.6 in 4 out of the 5 domains. They both had
significantly higher P@K values than [19] (denoted “YSP09”) in
4 out of the 5 domains and similar values in the remaining domain.

We also used AvgP and nDCG to gauge the accuracy of the
scoring measures for key attributes. The results are as follows:

• Average Precision (AvgP): The average precision of the top-k

results is given by AvgP=
∑k

i=1 P@i × reli
size of ground truth

, where reli equals 1
if the result at rank i is in the ground truth and 0 otherwise. Fig. 6
shows significantly higher AvgP for both the coverage-based and
the random-walk based scoring measures, compared to [19], in
4 out of 5 domains.

• Normalized Discounted Cumulative Gain (nDCG): The cumu-
lative gain of the top-k results is DCGk=rel1+

∑k

i=2
reli

log2(i)
.

It penalizes the results if a ground truth result is ranked low.
DCGk is normalized by IDCGk, the cumulative gain for an ideal
ranking of the top-k results. Thus nDCGk=

DCGk

IDCGk
. It is shown in

Fig. 7 that both the coverage-based and the random-walk based
scoring measures had clearly higher nDCG, in comparison with
[19], in 4 out of the 5 domains.

Non-key attributes:
For each entity type, Freebase offers a table for users to browse

and query the entities belonging to that type. 6 The table always has
3 common columns for recording names, types and article contents
of entities. It also has 3 or less type-dependent non-key attributes
manually selected by Freebase editors. Although Freebase allows
users to add more attributes into this table, we believe the origi-
nal 3 type-dependent attributes in general bear higher quality. We
thus treated these attributes as the gold standard for top non-key
attributes for that entity type.

For both the coverage-based and the entropy-based scoring mea-
sures in Sec. 3.3, we ranked all candidate non-key attributes by
their scores. There is no comparison with [19] regarding non-key
attributes, since it does not have an component that can be adapted
for discovering non-key attributes. We calculated the accuracy of a
scoring measure by Mean Reciprocal Rank (MRR) [13] instead of
P@K as there are only 3 or less gold standard answers for top non-

6
http://www.freebase.com/music/artist?instances=, for instance, would

display a table for type ARTIST in “music” domain.

0 5 10 15 20

K(books)

0.0

0.2

0.4

0.6

0.8

1.0

n
D

C
G

-a
t-

K

0 5 10 15 20

K(film)

0 5 10 15 20

K(music)

0 5 10 15 20

K(tv)

0 5 10 15 20

K(people)

Coverage Random Walk Optimal nDCG@K YPS09

Figure 7: nDCG of key attribute scoring.

key attributes in each entity type. For a scoring measure for non-
key attributes, the reciprocal rank is the multiplicative inverse of the
rank of the first gold standard non-key attribute among its ranking
results. MRR is the average reciprocal rank across all entity types
with at least 5 candidate non-key attributes. (If an entity type has
only less than 5 candidates, the gold standard answers are ranked
deceptively high. Thus we exclude such entity types, to obtain
more accurate evaluation.) The results are shown in Table 3. In
every domain except “film” and for both the coverage-based and
the entropy-based measures, MRR is above 0.5. This means in
average a gold standard non-key attribute appeared in the top-2
ranked results. The lower MRR for “film” domain is from only one
entity type and thus is not truly indicative, since only that entity
type has at least 5 candidate non-key attributes.

6.1.3 Correlation with Crowd Ranking

We conducted an extensive study in Amazon Mechanical Turk
(AMT)—a popular crowdsourcing service—and measured the cor-
relation between our scoring measures and users’ opinions with
regard to key and non-key attributes ranking. We explain the pro-
cedure for evaluating key attribute ranking in one domain, since
the procedure is repeated for all 5 gold standard domains and is the
same for both key and non-key attribute ranking.

Given a domain, we randomly generated 50 pairs of entity types,
i.e., candidate key attributes. Each pair was presented to 20 AMT
workers. The workers were asked which of the 2 entity types in
the pair is more important. To help them understand the tasks,
we provided a few examples to explain what are considered more
important in common sense. The workers were also asked to an-
swer a few screening questions that test their common knowledge.
They must answer the screening questions correctly, otherwise their
responses are not considered.

We collected 1, 000 opinions (50 pairs × 20 workers per pair)
in total. We then constructed two lists—X and Y , each of which
contains 50 values corresponding to the 50 pairs. A value in X
represents the difference in the ranking positions (by our scoring
measures, or by the table importance measure in [19]) of the two
entity types in the corresponding pair. A value in Y represents the
difference in the numbers of AMT workers favoring the two entity
types. The correlation between X and Y is measured by Pearson
Correlation Coefficient (PCC) [7] as follows.

PCC =
E(XY)− E(X)E(Y)

√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y))2
(4)

The PCC value ranging from −1 to 1 indicates the degree of cor-
relation between the pairwise ranking orders produced by our scor-
ing methods and the pairwise preferences given by AMT workers.
A PCC value in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3) indi-
cates a strong, medium and small positive correlation, respectively.
PCC values for the 5 gold standard domains are in Table 4. For all
5 domains, the results show at least a medium positive correlation
between our scoring measures and AMT workers. For 4 out of
the 5 domains, the coverage-based and/or the random walk-based
measures had significantly higher PCC values than the adaptation
of [19](“YPS09”), which even demonstrated slightly negative cor-
relation in the “film” domain.

1805

http://www.freebase.com/music/artist?instances=

Brute-Force Algorithm Dynamic-Programming Algorithm

B A M

101

104

107

domain

E
x
ec

u
ti

o
n

T
im

e
(m

s) k=5,n=10

3 6 9
k

music,n=20

8 12 16 20
n

music,k=6

Figure 8: Execution time of optimal concise preview discovery

algorithms.

Brute-Force Algorithm Apriori-style Algorithm

101

104

107

E
x
ec

u
ti

o
n

T
im

e
(m

s) k=5,n=10,d=2 music,n=20,d=2 music,k=6,d=2 music,k=6,n=16

B A M

101

104

107

domain

k=5,n=10,d=4

3 6 9
k

music,n=20,d=4

8 12 16 20
n

music,k=6,d=4

2 4 6
d

music,k=6,n=16

Figure 9: Execution time of optimal tight (upper) and diverse (lower)

preview discovery algorithms.

6.2 Efficiency of Algorithms
This section presents results on the efficiency of the optimal pre-

view discovery algorithms in Sec. 5. On optimal concise preview
discovery, we compared the Brute-Force Alg. 1 and the Dynamic-
Programming Alg. 2. Specifically, we compared their execution
times by varying: (1) size of schema graph (i.e., number of candi-
date key attributes (K) and number of candidate non-key attributes
(N)); (2) number of preview tables (i.e., key attributes) in a pre-
view (k); and (3) maximum number of non-key attributes in a pre-
view (n). For (1), we fixed k=5, n=10 and experimented with 3
domains—“basketball” (B), “architecture” (A), and “music” (M).
They differ greatly in the sizes of their schema graphs (B: K=6,
N=21; A: K=23, N=48; M: K=69, N=176). For (2), we varied
k from 3 to 9, fixed n=20 and used “music” domain. For (3), we
varied n from 8 to 20, fixed k=6 and used “music” domain.

On optimal tight/diverse preview discovery, we compared the
Brute-Force Alg. 1 and the Apriori-style Alg. 3, by varying not only
the aforementioned 3 parameters but also the distance constraint
on d. When we varied other parameters, d is fixed at 2 and 4
for tight and diverse previews, respectively. When we fixed other
parameters, d was varied from 2 to 6.

The results are in Figs. 8 and 9. In all results, the execution
time is averaged across 3 runs, and execution time less than 1
millisecond is rounded to 1 millisecond. The results show that
both the Dynamic-Programming and the Apriori-style algorithms
outperformed the Brute-Force algorithm by orders of magnitude in
most cases. The exceptions are the smallest domain “basketball”
and when the number of requested preview tables is small (k=3).
In these cases, the overheads of complex data structures and calcu-
lations in the advanced algorithms outweighed their benefits.

Fig. 9 shows that the Apriori-style algorithm did not perform
well for d=6 in tight preview discovery and d=2 in diverse preview
discovery. It is due to the excessive number of candidate k-subsets
that satisfy the distance constraint in such cases. For instance, the
diameter of a schema graph typically is not large. In the schema
graph of “film” domain, the longest path length is 7 and the av-
erage path length is around 3–4. Setting distance constraint d=6

in finding tight previews will make most previews “tight”. It is
unnecessary to enforce such a distance constraint.

6.3 User Study
We conducted an extensive user study to compare seven dif-

ferent approaches, including concise previews (“Concise”), tight
previews (“Tight”), diverse previews (“Diverse”), Freebase gold
standard (“Freebase”, cf. Sec. 6.1.2 and Table 10 in Appendix),
hand-crafted previews by experts (“Experts”), schema summariza-
tion based on [19] (“YPS09”), and directly using schema graphs
(“Graph”). For each approach, we created a website for presenting
schema information using the approach and collecting participants’
responses, on the five domains—“books”, “film”, “music”, “TV”,
and “people”.

To produce hand-crafted previews, we used a group of 10 experts
(Ph.D. students in the database area at the authors’ institution).
Each expert participant was rewarded a $20 gift card. For each
domain, we set the expected numbers of key attributes (K) and
non-key attributes (N) to be the same as the values in the Freebase
gold standard. Each expert was requested to produce preview tables
under the size constraints given by K and N . During the process,
the experts had access to the Freebase website, to help them under-
stand the data. After the experts worked on all the five domains,
they were asked to discuss and submit one consolidated preview
for each domain. We use the consolidated previews as the hand-
crafted previews in the ensuing user study. On average an expert
spent about 10 minutes on the simplest domain “people” and more
than 30 minutes on the most complex domain “film”. After that, the
experts spent about 2 hours to discuss. The preview tables from the
experts have a reasonable overlap with the “Freebase” gold stan-
dard, but they also differ substantially, as shown in Tables 22 and 23
in Appendix. The substantial amount of time spent by the experts
individually and as a group suggests that it is a challenging and
time-consuming process to generate preview tables. This motivates
the need for an automatic approach.

The participants of the user study include 84 computer science
graduate students in the authors’ institution. They all have taken
database courses. None of them was affiliated with the authors’
research group or exposed to the research project. Each participant
was rewarded a $15 gift card.

Each participant was randomly assigned to use one of the afore-
mentioned seven approaches (websites). Each approach received
10 to 13 participants. Before a participant started their session, they
were given a 20-minute introduction on the approach of presenting
schema information that they are using. The participant used the
assigned approach to work on all five domains, in the order of
“books”, “film”, “music”, “TV”, and “people”. For each domain
they were requested to answer 4 existence test questions about the
existence/nonexistence of some specific information in the schema
and 4 user experience questions. Hence each domain collected 40
to 52 responses to existence test questions (shown in Table 5), and
40 to 52 responses to user experience questions.

6.3.1 Existence Test Questions

The existence test questions were designed to measure how help-
ful the various approaches are in assisting the participants to ac-
quire a good understanding of the data. An example existence test
question is “Based on this schema summary, I know the dataset pro-
vides the awards of a musician.” The participants were requested
to provide a Boolean yes/no answer.

Time spent by participants: We first verify if the approaches are
convenient to use, in terms of how much time the participants must
spend to answer the existence test questions. For every existence
test question that a participant worked on, we recorded the time

1806

books film music TV people

Concise n=52 n=52 n=52 n=52 n=52
c=0.730 c=0.865 c=0.903 c=0.884 c=0.788

Tight n=48 n=48 n=48 n=48 n=48
c=0.687 c=0.854 c=0.979 c=0.875 c=0.666

Diverse n=52 n=51 n=52 n=48 n=48
c=0.846 c=0.921 c=0.730 c=0.75 c=0.875

Freebase n=44 n=44 n=44 n=44 n=44
c=0.818 c=0.954 c=0.931 c=0.909 c=0.681

Experts n=48 n=48 n=48 n=48 n=48
c=0.604 c=0.833 c=0.895 c=0.812 c=0.687

YPS09 n=52 n=52 n=52 n=52 n=52
c=0.692 c=0.884 c=0.923 c=0.692 c=0.634

Graph n=40 n=40 n=40 n=40 n=40
c=0.975 c=0.875 c=0.875 c=0.9 c=0.85

Table 5: Sample sizes and conversion rates for all approaches and

domains. (For “Diverse” and “film”, 51 instead of 52 responses

were recorded. One response was lost, likely due to imperfect

implementation of session management in the data collection website.)

Ti
gh

t

D
iv
er

se

C
on

ci
se

E
xp

er
ts

F
re

eb
as

e

YP
S09

G
ra

ph
0

20

40

60

80

100

120

140

160

ti
m

e
 p

e
r

ta
s
k
 (

s
)

Figure 10: Time taken on existence tests, domain=“music”.

spent by the participant on the question. All participants worked
on all the five domains in the same order. As a participant gets
gradually more familiar with the tasks, they tend to spend more
time on the initial domains and less on the later domains. This
bias, due to budget and human resource constraints, makes it less
meaningful to compare the time on existence tests across different
domains. A future study that allows every participant to work on
only one domain can shed further light on how the complexity of a
domain determines the time needed for its existence tests.

The time per question for domain “music” is displayed in the
boxplots in Fig. 10, and the results for other domains are included
in the Appendix (Figs. 11 to 14). Table 6 provides a summary of the
results. For each domain, it sorts all seven approaches in ascending
order by the median time spent by participants on the existence test
questions. Tight preview appears to be the most convenient ap-
proach, as its participants needed the least amount of time in three
out of five domains and the second least in a fourth domain. The
Freebase gold standard also did well, as expected. Surprisingly the
previews produced by experts did not fare well. This may indicate
the challenges in generating truly useful previews by hands, even
though the experts spent a lot of time. “Diverse” and “Concise” are
ranked in the middle. In general “YPS09” and “Graph” are the least
convenient approaches. For “YPS09”, the table for each entity type
includes all relationships incident on the entity type, as explained in
Sec. 6.1.1. Since [19] only clusters the tables and does not discern
the importance of different attributes for each table, the tables are
wide. Therefore they are less convenient in existence tests. For
“Graph”, its inconvenience may not be difficult to understand, giv-
en the complexity of a schema graph.

Accuracy of participants: We measured the effectiveness of
the seven approaches by conversion rate, which is the percentage
of existence test questions correctly answered by the participants.
The conversion rates are shown in Table 5. Based on their values,
we compare the seven approaches in a pairwise fashion. Table 7
reports the results for the “music” domain. The results for other

Domain 1 2 3 4 5 6 7

books Graph Freebase Diverse Tight Concise YPS09 Experts

film Tight Freebase Diverse Concise Experts Graph YPS09

music Freebase Tight Experts YPS09 Concise Diverse Graph

TV Tight YPS09 Experts Graph Diverse Concise Freebase

people Tight Freebase Concise Diverse Experts YPS09 Graph

Table 6: Systems sorted in ascending order by the median time spent

on existence test questions.

Tight Diverse Freebase Experts YPS09 Graph

Concise z=1.59 z=−2.28 z=0.49 z=−0.13 z=0.36 z=−0.43
p=0.0559 p=0.0113 p=0.3121 p=0.4483 p=0.3594 p=0.3336

Tight z=−3.48 z=−1.12 z=−1.69 z=−1.282 z=−1.93
p=0.0003 p=0.1314 p=0.0455 p=0.0999 p=0.0268

Diverse z=2.57 z=2.10 z=2.60 z=1.70
p=0.0051 p=0.0179 p=0.0047 p=0.0446

Freebase z=−0.61 z=−0.15 z=−0.87
p=0.2709 p=0.4404 p=0.1922

Experts z=0.49 z=−0.29
p=0.3121 p=0.3859

YPS09 z=−0.77
p=0.2206

Table 7: Pairwise comparisons of seven approaches’ conversion rates,

domain=“music”.

domains can be found in Tables 13 to 16 in Appendix. In the tables,
each cell shows the hypothesis testing outcome when we compare
the two approaches indicated by the corresponding column label
and row label. If a cell is in light blue, users of the approach
corresponding to the cell’s row label are more accurate in existence
tests than users of the approach corresponding to the column label,
and the outcome is statistically significant. If a cell is in dark
blue, it is the opposite. If a cell is not colored, we cannot make
a statistically significant conclusion regarding which of the two
approaches leads to more accurate users. Below we explain the
hypothesis testing in more detail.

Each cell shows a z-score and a p-value, which are the outcomes
of a two-proportion one-tailed z-test with significance level α=0.1.
Such a hypothesis testing is proper, since our samples (responses
from participants using different approaches) are independent and
the sample sizes are large enough. Consider a cell at the inter-
section of column A and row B. The hypothesis testing for the
difference between the two proportions for A and B is as follows.
We assume that answering the existence test questions follows a
Bernoulli trial with the probabilities of success pA and pB for ap-
proaches A and B, respectively. The observed conversion rates of
A and B, cA and cB , are in Table 5. For cA>cB (resp., cA<cB),
the null hypothesis is H0: pA≤pB (resp., pA≥pB) and the alter-
native hypothesis is Ha: pA>pB (resp., pA<pB). According to
the sample sizes (nA and nB) and observed conversion rates (cA
and cB) in Table 5, we calculate the z-score. For calculating the p-
value, if the z-score is positive (i.e., cA>cB), we use a right-tailed
z-test; otherwise we use a left-tailed z-test. Suppose the p-value
is less than α. Then H0 will be rejected and the data significantly
supports the claim that users of A (resp., B) have a higher chance
of answering existence tests correctly, if cA>cB (resp., cB>cA).

The hypothesis testing outcomes for different domains exhibit
certain degree of diversity. In domain “music” (Table 7), “Tight”
outperformed all but “Freebase”. In comparison with “Freebase”,
the conversion rate of “Tight” is actually higher, although we can-
not reject the null hypothesis. On the other hand, “Diverse” per-
formed poorly in this domain, as it is statistically significantly worse
than all other approaches. In domain “books” (Table 13), “Graph”
had the best performance, and “Diverse” did well too. In this
domain “Tight” and “Experts” did poorly. In domain “film”, “Free-
base” did well (Table 14). In domain “TV”, “YPS09” had the
worst performance and no approach positively stood out (Table 15).
In domain “people” (Table 16), both “Graph” and “Diverse” per-

1807

Likert Scale

Score

Q1: How easy was
it to read the schema
summary of this domain?

Q2: How much understanding of
the data in this domain can you
gain from the schema summary?

Q3: How helpful was the schema
summary in assisting you to under-
stand the data of this domain?

Q4: Is the schema summary missing
important information about data in this
domain?

1 Very hard Very little Not helpful at all It provides very little important information.
2 Hard A Little Did not help much It provides some important information.
3 Neutral Neutral Neutral Neutral
4 Easy Some Somewhat helpful It provides most of the important information.
5 Very easy Very much Very helpful It provides all important information.

Table 8: User experience questionnaire.

Question 1 2 3 4 5 6 7

Q1 Freebase Diverse Graph Experts YPS09 Concise Tight

Q2 Graph Freebase YPS09 Diverse Concise Tight Experts

Q3 Graph Freebase YPS09 Diverse Experts Concise Tight

Q4 YPS09 Concise Experts Graph Tight Freebase Diverse

Table 9: Systems sorted in descending order by average user

experience scores across five domains.

formed very well. Across all domains, it is quite surprising that
“Experts” was never statistically significantly better than any other
approach, except for “Diverse” in domain “music”.

6.3.2 User Experience Questions

In each domain, we asked every participant four user experi-
ence questions, after the four existence test questions. The four
questions Q1–Q4 are listed in Table 8. Each question comes with
five options, specifying the level of satisfaction a participant may
have regarding the particular aspect of the approach measured by
the question. We assign a score to every option, based on the
Likert scale shown in Table 8. The least favourable experience
with respect to each question is assigned a score of 1, and the
most favourable experience is assigned a score of 5. For a certain
approach, the overall user experience score for each question is
measured by averaging the scores obtained for that question from
all the participants using that approach.

Results for individual domains can be found in the Appendix
(Tables 17 to 21). The results for different domains are diverse,
likely due to their different sizes and complexities. Hence, we sum-
marize the results in Table 9. For each user experience question,
Table 9 sorts all seven approaches in descending order by their
average user experience scores across all five domains. Overall,
the results suggest a mismatch between the participants’ percep-
tion and their efficacy in answering existence test questions. The
only exception appears to be “Freebase”, of which the participants’
perception largely agrees with their performance in using the ap-
proach. This may not be surprising, given that “Freebase” is the
gold standard. Regarding Q1, while Table 6 indicates that “Tight”
is the most convenient approach, the participants’ perception sug-
gests the opposite. Regarding Q2 and Q3, although the hypothesis
testing results discussed earlier favor “Tight” in many situations,
it once again did not fare well in leaving a satisfactory impression
on the participants. The participants believed they acquired more
understanding of the data when they used “Graph” and “YPS09”,
although the hypothesis testing results suggest that they typically
answered the existence test questions more accurately when they
use approaches such as “Tight”. Regarding Q4, it is interesting that
the participants favored “YPS09” the most, although they answered
the questions less accurately using “YPS09” than using approach-
es such as “Tight”. A logical explanation to these mismatches
might be that the more complex presentation used in “Graph” and
“YPS09” triggered the participants to believe that they had better
understanding of the data and they had seen more complete infor-
mation. A similar observation was made regarding “Tight” and
“Diverse”—“Tight” clearly helped participants to do existence tests
more accurately and quickly, but the participants had better impres-
sion of “Diverse”. More thorough and robust explanation of these
observations is the goal of future investigation, which likely will
need to involve larger-scale user study and in-person interviews.

7. RELATED WORK
There have been several studies on schema summarization for

relational databases [19, 20, 21], XML [21] and general graph
data [17, 22]. [21] produces schema summarization for relation-
al databases and XML data. The notion of summary in [19, 20]
refers to clustering the tables in a database by their semantic roles
and similarities as well as identifying direct join relationships and
indirect join paths between the tables. The graph summarization
in [17, 22] groups graph nodes based on their attribute similarity
and allows users to browse the summary from different grouping
granularities. As explained in Sec. 1, these methods are inapplica-
ble or ineffective for producing preview tables from entity graphs,
due to differences in input/output data models and goals.

There are many works on graph clustering [15]. They are not
effective for generating preview tables, since clustering focuses
on partitioning but does not present a concise structure. On the
contrary, a preview only selects a small number of key attributes
(vertices) and non-key attributes (edges) from a schema graph.

[14] proposed the concept of queried units (“qunits”) for repre-
senting desired query results on a database. For automatic deriva-
tion of qunits, [14] discussed several ideas. One idea is to utilize
the concept of queriability [10] which measures the importance of a
schema entity by its schema connectedness and its data cardinality.
The measure is thus similar to our key attribute scoring measures
(Sec. 3.2). ObjectRank [3] applies authority-based ranking to key-
word search in databases. Part of its ranking formula is extended
from PageRank. The table importance measure in [19] and our
random-walk based scoring measure (Sec. 3.2) bear similar ideas.

[9] studied how to generate query result snippets in XML search.
Similar to [21], they focus on semi-structured data. Differently,
they produce snippets of query results while [21] summarizes schema.
In [9], the problem of generating snippets is formulated as maxi-
mizing information under an upper bound on snippet size. At high
level, this is similar to our problem of finding optimal previews
under size constraint, although its detailed problem formulation,
solution, and data model are different.

8. CONCLUSION
This paper studies how to generate preview tables for entity graph-

s. The problem is challenging due to the scale and complexity of
such graphs. We proposed effective scoring measures for preview
tables. We proved that the optimal preview discovery problem
under distance constraint is NP-hard. We designed efficient algo-
rithms for discovering optimal previews. The experiments and user
study verified the effectiveness of our methods.

There can be several future directions worth pursuing. (1) Guide-
lines and automatic techniques for choosing between tight and di-
verse previews. (2) Selecting representative entity tuples for pre-
view tables. (3) Incorporating numeric attributes into preview ta-
bles. (4) Suggesting values of various parameters, including N , K
and distance constraints for tight and diverse previews.
Acknowledgments The authors have been partially supported by NSF

grants 1018865, 1408928 and NSF-China grant 61370019. Any opinions,

findings, and conclusions in this publication are those of the authors and

do not necessarily reflect the views of the funding agencies. We also thank

Rudresh Ajgaonkar and Aaditya Kulkarni for contributions in user study.

1808

9. REFERENCES
[1] R. Agarwal and R. Srikant. Fast algorithms for mining

association rules. In VLDB, pages 487–499, 1994.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, ,
and Z. Ives. DBpedia: A nucleus for a Web of open data. In
ISWC, pages 722–735, 2007.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, pages
1247–1250, 2008.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, pages 107–117,
1998.

[6] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques
of an undirected graph. CACM, 16(9):575–577, Sept. 1973.

[7] J. Cohen. Statistical Power Analysis for the Behavioral

Sciences. Academic Press, 1988.

[8] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In KDD, pages 601–610, 2014.

[9] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet
generation in xml search. In SIGMOD, pages 315–326, 2008.

[10] M. Jayapandian and H. V. Jagadish. Automated creation of a
forms-based database query interface. PVLDB,
1(1):695–709, Aug. 2008.

[11] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing
plant metabolomic correlation networks using
clique-metabolite matrices. Bioinformatics,
17(12):1198–1208, Dec. 2001.

[12] T.-Y. Liu. Learning to rank for information retrieval. Found.

Trends Inf. Retr., 3(3):225–331, Mar. 2009.

[13] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[14] A. Nandi and H. V. Jagadish. Qunits: queried units in
database search. In CIDR, 2009.

[15] S. E. Schaeffer. Survey: Graph clustering. Comput. Sci. Rev.,
1(1):27–64, Aug. 2007.

[16] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core
of semantic knowledge unifying WordNet and Wikipedia. In
WWW, pages 697–706, 2007.

[17] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
for graph summarization. In SIGMOD, pages 567–580, 2008.

[18] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a
probabilistic taxonomy for text understanding. In SIGMOD,
pages 481–492, 2012.

[19] X. Yang, C. M. Procopiuc, and D. Srivastava. Summarizing
relational databases. PVLDB, 2(1):634–645, 2009.

[20] X. Yang, C. M. Procopiuc, and D. Srivastava. Summary
graphs for relational database schemas. PVLDB,
4(11):899–910, 2011.

[21] C. Yu and H. V. Jagadish. Schema summarization. In VLDB,
pages 319–330, 2006.

[22] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, pages 880–891, 2010.

APPENDIX

A. SCHEMATA OF THE TABLES IN THE

FREEBASE GOLD STANDARD
The schema of the tables in the “Freebase” gold standard can be

found in Table 10.

Key attributes Non-key attributes

Domain=“books”, k=6, n=15
BOOK Characters, Genre, Editions
BOOK EDITION Publication Date, Publisher , Credited To
SHORT STORY Genre, Characters
POEM Characters, Meter , Verse Form
SHORT NON-FICTION Mode Of Writing, Verse Form
AUTHOR Series Written (Or Contributed To), Works Edited ,

Works Written

Domain=“film”, k=6, n=9
FILM Directed By , Tagline, Initial Release Date
FILM ACTOR Film performances
FILM GENRE Films of this genre
FILM DIRECTOR Films directed
FILM PRODUCER Films Executive Produced , Films Produced
FILM WRITER Film Writing Credits

Domain=“music”, k=6, n=18
COMPOSITION Includes, Lyricist , Composer
CONCERT Venue, Start Date, Concert Tour
MUSIC VIDEO Song, Initial release date, Artist
MUSICAL ALBUM Release Type, Initial Release Date, Artist
MUSICAL ARTIST Albums, Place Musical Career Began,

Musical Genres
MUSICAL RECORDING Length, Featured artists, Recorded by

Domain=“TV”, k=6, n=9
TV PROGRAM Program Creator , Air Date Of First Episode,

Air Date Of Final Episode
TV ACTOR Starring TV Roles
TV CHARACTER Programs In Which This Was A Regular Character
TV WRITER TV Programs (Recurring Writer)
TV PRODUCER TV Programs Produced
TV DIRECTOR TV Episodes Directed , TV Segments Directed

Domain=“people”, k=6, n=16
PERSON Profession, Country Of Nationality , Date Of Birth
DECEASED PERSON Cause Of Death, Place Of Death, Date Of Death
CAUSE OF DEATH People Who Died This Way ,

Includes Causes Of Death, Parent Cause Of Death
ETHNICITY Geographic Distribution, Includes Group(S),

Included In Group(S)
PROFESSION Specializations, Specialization Of ,

People With This Profession
PROFESSIONAL FIELD Professions In This Field

Table 10: Gold standard (“Freebase”). For each domain, there are 6

key attributes and at most 3 non-key attributes for each key-attribute.

B. SAMPLE OPTIMAL PREVIEWS
To demonstrate the combined effectiveness of both scoring mea-

sures and preview discovery algorithms, Table 11 presents the op-
timal concise previews in 3 selected domains by 3 different combi-
nations of key attribute scoring (KS) and non-key attribute scoring
(NKS) measures. The size constraint is set as k=5 and n=10. All
result previews show that the selected key and non-key attributes
have covered important entity types and their important relation-
ship types. Further, Table 12 shows the optimal tight (d=2) and
diverse (d=4) previews in “film” domain by one particular choice
of key and non-key attribute scoring measures. We see that, in the
tight preview result, the chosen key attributes are all highly related
to one entity type FILM. In the diverse preview result, the chosen
key attributes are far less related to each other. Both verify the
effectiveness of the concepts of tight/diverse previews.

Note that in the generated previews, certain non-key attributes
represent relationship types involving more than two entity types.
An example in Table 11 is Portrayed in films, which is a non-key

1809

Key attributes Non-key attributes (Target entity types)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10
FILM CHARACTER Portrayed in films (FILM, FILM ACTOR)
FILM ACTOR Film performances (FILM, FILM CHARACTER)
FILM Performances (FILM ACTOR, FILM CHARACTER),

Genres (FILM GENRE),
Runtime (FILM CUT),
Country of origin (COUNTRY),
Directed by (FILM DIRECTOR),
Languages (HUMAN LANGUAGE)

FILM DIRECTOR Films directed (FILM)
FILM CREWMEMBER Films crewed (FILM, FILM CREW ROLE)

Domain=“music”, KS=Random Walk, NKS=Coverage, k=5, n=10
MUSICAL RECORDING Releases (MUSICAL RELEASE),

Tracks (RELEASE TRACK),
Recorded by (MUSICAL ARTIST)

MUSICAL RELEASE Tracks (MUSICAL RECORDING),
Track list (RELEASE TRACK)

RELEASE TRACK Release (MUSICAL RELEASE),
Recording (MUSICAL RECORDING)

MUSICAL ARTIST Tracks recorded (MUSICAL RECORDING)
MUSICAL ALBUM Releases (MUSICAL RELEASE),

Release type (MUSICAL ALBUM TYPE)

Domain=“TV”, KS=Random Walk, NKS=Entropy, k=5, n=10
TV EPISODE Previous episode (TV EPISODE),

Next episode (TV EPISODE),
Performances (TV ACTOR, TV CHARACTER),
Season (TV SEASON),
Series (TV PROGRAM) ,
Personal appearances
(PERSON, PERSONAL APPEARANCE ROLE)

TV PROGRAM Regular acting performances
(TV ACTOR, TV CHARACTER, TV SEASON)

TV SEASON Episodes (TV EPISODE)
TV ACTOR TV episode performances

(TV EPISODE, TV CHARACTER)
TV DIRECTOR TV episodes directed (TV EPISODE)

Table 11: Sample optimal concise previews.

attribute of entity type FILM CHARACTER. Different from other non-
key attribute such as Films directed, it represents a 3-way relationship
among FILM CHARACTER, FILM and FILM ACTOR. For instance, Agent J

is a FILM CHARACTER played by FILM ACTOR Will Smith in FILM Men in

Black. To present the values of such a multi-way non-key attribute in
a preview table, we employ a simple approach of presenting values
for all participating entity types in this relationship. It is arguable
that this approach widens the preview table, which to some extent
violates a given size constraint. An alternative solution is to use
separate preview tables for all multi-way relationships. These pose
interesting directions for our future work.

C. ADDITIONAL USER STUDY RESULTS

Ti
gh

t

D
iv
er

se

C
on

ci
se

E
xp

er
ts

F
re

eb
as

e

YP
S09

G
ra

ph
0

20

40

60

80

100

120

140

160

ti
m

e
 p

e
r

ta
s
k
 (

s
)

Figure 11: Time taken on existence tests, domain=“books”.

Key attributes Non-key attributes (Target entity types)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10, d=2
FILM Performances (FILM CHARACTER, FILM ACTOR),

Genres (FILM GENRE),
Runtime (FILM CUT),
Country of origin (COUNTRY),
Directed by (FILM DIRECTOR),
Languages (HUMAN LANGUAGE)

FILM DIRECTOR Films directed (FILM)
FILM PRODUCER Films produced (FILM)
FILM WRITER Film writing credits (FILM)
FILM EDITOR Films edited (FILM)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10, d=4
FILM CHARACTER Portrayed in films (FILM, FILM ACTOR),

Portrayed in films (dubbed) (FILM, FILM ACTOR)
FILM CREWMEMBER Films crewed (FILM, FILM CREW ROLE)
PERSON OR ENTITY Films appeared in (FILM, TYPE OF APPEARANCE)
APPEARING IN FILM

FILM FESTIVAL Individual festivals (FILM FESTIVAL EVENT),
Location (LOCATION),
Focus (FILM FESTIVAL FOCUS),
Sponsoring organization (SPONSER)

FILM COMPANY Films (FILM)

Table 12: Sample optimal tight (upper) and diverse previews (lower).

Ti
gh

t

D
iv
er

se

C
on

ci
se

E
xp

er
ts

F
re

eb
as

e

YP
S09

G
ra

ph
0

20

40

60

80

100

120

140

160

ti
m

e
 p

e
r

ta
s
k
 (

s
)

Figure 12: Time taken on existence tests, domain=“film”.

Ti
gh

t

D
iv
er

se

C
on

ci
se

E
xp

er
ts

F
re

eb
as

e

YP
S09

G
ra

ph
0

20

40

60

80

100

120

140

160

ti
m

e
 p

e
r

ta
s
k
 (

s
)

Figure 13: Time taken on existence tests, domain=“TV”.

Ti
gh

t

D
iv
er

se

C
on

ci
se

E
xp

er
ts

F
re

eb
as

e

YP
S09

G
ra

ph
0

20

40

60

80

100

120

140

160

ti
m

e
 p

e
r

ta
s
k
 (

s
)

Figure 14: Time taken on existence tests, domain=“people”.

1810

Tight Diverse Freebase Experts YPS09 Graph

Concise z=−0.47 z=1.45 z=1.02 z=−1.34 z=−0.43 z=3.15
p=0.3192 p=0.0735 p=0.1539 p=0.0901 p=0.3336 p=0.0008

Tight z=1.89 z=1.45 z=−0.85 z=0.05 z=3.49
p=0.0294 p=0.0735 p=0.1977 p=0.4801 p=0.0002

Diverse z=−0.37 z=−2.72 z=−1.86 z=2.06
p=0.3557 p=0.0033 p=0.0314 p=0.0197

Freebase z=−2.25 z=−1.42 z=2.32
p=0.0122 p=0.0778 p=0.0102

Experts z=0.92 z=4.13
p=0.1788 p=0.0000

YPS09 z=3.47
p=0.0003

Table 13: Pairwise comparisons of seven approaches’ conversion

rates, domain=“books”.

Tight Diverse Freebase Experts YPS09 Graph

Concise z=−0.16 z=0.92 z=1.49 z=−0.45 z=0.29 z=0.14
p=0.4364 p=0.1788 p=0.0681 p=0.3264 p=0.3859 p=0.4443

Tight z=1.06 z=1.61 z=−0.28 z=0.45 z=0.29
p=0.1446 p=0.0537 p=0.3897 p=0.3264 p=0.3859

Diverse z=0.66 z=−1.34 z=−0.63 z=−0.73
p=0.2546 p=0.0901 p=0.2643 p=0.2327

Freebase z=−1.86 z=−1.23 z=−1.31
p=0.0314 p=0.1093 p=0.0951

Experts z=0.73 z=0.55
p=0.2327 p=0.2912

YPS09 z=−0.13
p=0.4483

Table 14: Pairwise comparisons of seven approaches’ conversion

rates, domain=“film”.

Tight Diverse Freebase Experts YPS09 Graph

Concise z=−0.14 z=−1.74 z=0.40 z=−1.01 z=−2.40 z=0.24
p=0.4443 p=0.0409 p=0.3446 p=0.1562 p=0.0082 p=0.4052

Tight z=−1.57 z=0.52 z=−0.85 z=−2.21 z=0.37
p=0.0582 p=0.3015 p=0.1977 p=0.0136 p=0.3557

Diverse z=2.01 z=0.73 z=−0.65 z=1.82
p=0.0222 p=0.2327 p=0.2578 p=0.0344

Freebase z=−1.33 z=−2.61 z=−0.14
p=0.0918 p=0.0045 p=0.4443

Experts z=−1.38 z=1.16
p=0.0838 p=0.1230

YPS09 z=2.40
p=0.0082

Table 15: Pairwise comparisons of seven approaches’ conversion

rates, domain=“TV”.

Tight Diverse Freebase Experts YPS09 Graph

Concise z=−1.37 z=1.16 z=−1.19 z=−1.15 z=−1.73 z=0.76
p=0.0853 p=0.1230 p=0.1170 p=0.1251 p=0.0418 p=0.2236

Tight z=2.43 z=0.15 z=0.22 z=−0.34 z=1.98
p=0.0075 p=0.4404 p=0.4129 p=0.3669 p=0.0239

Diverse z=−2.25 z=−2.23 z=−2.78 z=−0.34
p=0.0122 p=0.0129 p=0.0027 p=0.3669

Freebase z=0.06 z=−0.48 z=1.82
p=0.4761 p=0.3156 p=0.0344

Experts z=−0.56 z=1.79
p=0.2877 p=0.0367

YPS09 z=2.31
p=0.0104

Table 16: Pairwise comparisons of seven approaches’ conversion

rates, domain=“people”.

System Q1 Q2 Q3 Q4

Concise 3.5 4.0769 3.9231 3.6154
Tight 3.5833 3.9167 4 3.3333
Diverse 3.9231 3.8462 4.0769 3.6364
Freebase 3.8182 4.0909 4 3.6
Experts 3.3333 3.75 4.2727 3.5
YPS09 3.75 3.8333 3.8462 3.5385
Graph 4.4 4.1 4.1 3.3333

Table 17: Responses to user experience questions, domain=“books”.

System Q1 Q2 Q3 Q4

Concise 4 4.0909 4.4167 3.7692
Tight 4.0833 4.6667 4.5 3.75
Diverse 4.1538 4.4615 4.4615 3.3846
Freebase 4.1818 4.3636 4.2727 3.4545
Experts 4 4.0833 4.25 3.2727
YPS09 3.5385 4.3077 4.2308 4
Graph 3.8 4.7 4.6 4

Table 18: Responses to user experience questions, domain=“film”.

System Q1 Q2 Q3 Q4

Concise 3.8462 3.8462 4.1538 3.5833
Tight 3.6667 3.8333 4.0833 3.75
Diverse 3.75 3.75 3.9167 3
Freebase 3.8182 4.2727 4.4545 3.5455
Experts 4.1667 4.1667 4.5 4.3333
YPS09 4.3077 4.5385 4.4615 3.8333
Graph 3.6 4.6 4.5 3.9

Table 19: Responses to user experience questions, domain=“music”.

System Q1 Q2 Q3 Q4

Concise 3.7692 4 3.7692 3.7692
Tight 4.1667 4.1667 4.1667 3.6667
Diverse 4.0833 4.25 4.4167 3.6667
Freebase 4.5455 4.3636 4.2727 3.2727
Experts 4.1667 3.8333 3.8333 3.6667
YPS09 3.5385 3.6154 3.7692 3
Graph 3.5 4.6 4.4 3.9

Table 20: Responses to user experience questions, domain=“TV”.

System Q1 Q2 Q3 Q4

Concise 4.2308 4.3846 4.3077 4
Tight 2.9167 3.6364 3.4545 2.9167
Diverse 4.0833 4.1667 4.0833 3.5833
Freebase 3.9091 4.0909 4.0909 3.4545
Experts 3.9167 4.0833 4.0833 3.75
YPS09 4.3333 4.4615 4.6923 4.3846
Graph 4.5 4.1 4 3.1

Table 21: Responses to user experience questions, domain=“people”.

K books film music TV people

1 1 1 1 1 1
2 0.5 0.5 1 1 1
3 0.334 0.334 1 1 0.664
4 0.25 0.5 1 0.75 0.5
5 0.2 0.6 1 0.6 0.6
6 0.333 0.5 0.833 0.5 0.5

Table 22: Precision-at-K of key attribute scoring in “Freebase”, using

“Experts” as ground truth.

K books film music TV people

1 1 1 1 1 1
2 1 0.5 1 1 0.5
3 0.667 0.667 1 0.667 0.667
4 0.5 0.75 1 0.75 0.75
5 0.4 0.6 0.8 0.6 0.6
6 0.333 0.5 0.833 0.5 0.5

Table 23: Precision-at-K of key attribute scoring in “Experts”, using

“Freebase” as ground truth.

1811

	Introduction
	Preview Discovery Problem
	Scoring Measures for Previews
	Preview Scoring
	Key Attribute Scoring
	Non-Key Attribute Scoring

	Optimal Previews under Size and Distance Constraints
	NP-hardness of the Optimal Tight and Diverse Preview Discovery Problems

	Algorithms
	A Brute-Force Algorithm
	A Dynamic-Programming Algorithm for Concise Preview Discovery Problem
	An Apriori-style Algorithm for Tight / Diverse Preview Discovery Problem

	Evaluation
	Accuracy of Preview Scoring Measures
	Adaptation of DBLP:journals/pvldb/YangPS09
	Comparison with Gold Standard
	Correlation with Crowd Ranking

	Efficiency of Algorithms
	User Study
	Existence Test Questions
	User Experience Questions

	Related Work
	Conclusion
	References
	Schemata of the Tables in the Freebase Gold Standard
	Sample Optimal Previews
	Additional User Study Results

